HIGHER *-DERIVATIONS BETWEEN UNITAL C*-ALGEBRAS

M. Eshaghi Gordji, R. Farokhzad Rostami and S. A. R. Hosseinioun

Abstract

Let \mathcal{A}, \mathcal{B} be two unital C^{*}-algebras. We prove that every sequence of mappings from \mathcal{A} into $\mathcal{B}, H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$, which satisfy $h_{m}\left(3^{n} u y\right)=\sum_{i+j=m} h_{i}\left(3^{n} u\right) h_{j}(y)$ for each $m \in \mathbb{N}_{0}$, for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n=0,1,2, \ldots$, is a higher derivation. Also, for a unital C^{*}-algebra \mathcal{A} of real rank zero, every sequence of continuous mappings from \mathcal{A} into \mathcal{B}, $H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$, is a higher derivation when $h_{m}\left(3^{n} u y\right)=\sum_{i+j=m} h_{i}\left(3^{n} u\right) h_{j}(y)$ holds for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$, all $y \in \mathcal{A}$, all $n=0,1,2, \ldots$ and for each $m \in \mathbb{N}_{0}$. Furthermore, by using the fixed points methods, we investigate the Hyers-Ulam-Rassias stability of higher $*$-derivations between unital C^{*}-algebras.

1 Introduction

The stability of functional equations was first introduced by S. M. Ulam [27] in 1940. More precisely, he proposed the following problem: Given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and a positive number ϵ, does there exist a $\delta>0$ such that if a function $f: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G 1$, then there exists a homomorphism $T: G_{1} \rightarrow G_{2}$ such that $d(f(x), T(x))<\epsilon$ for all $x \in G_{1}$? As mentioned above, when this problem has a solution, we say that the homomorphisms from G_{1} to G_{2} are stable. In 1941, D. H. Hyers [10] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Th. M. Rassias [24] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias [24] is called the Hyers-Ulam-Rassias stability. According to Th. M. Rassias theorem:

Theorem 1. Let $f: E \longrightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

[^0]for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \longrightarrow E^{\prime}$ such that
$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$
for all $x \in E$. If $p<0$ then inequality (1.3) holds for all $x, y \neq 0$, and (1.4) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is linear.

During the last decades several stability problems of functional equations have been investigated by many mathematicians. A large list of references concerning the stability of functional equations can be found in $[9,12,15]$.
D.G. Bourgin is the first mathematician dealing with the stability of ring homomorphisms. The topic of approximate ring homomorphisms was studied by a number of mathematicians, see $[1,2,3,11,17,18,20,22,25]$ and references therein.

Jun and Lee [14] proved the following: Let X and Y be Banach spaces. Denote by $\phi: X-\{0\} \times Y-\{0\} \rightarrow[0, \infty)$ a function such that $\tilde{\phi}(x, y)=\sum_{n=0}^{\infty} 3^{-n} \phi\left(3^{n} x, 3^{n} y\right)<$ ∞ for all $x, y \in X-\{0\}$. Suppose that $f: X \longrightarrow Y$ is a mapping satisfying

$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq \phi(x, y)
$$

for all $x, y \in X-\{0\}$. Then there exists a unique additive mapping $T: X \longrightarrow Y$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\tilde{\phi}(x,-x)+\tilde{\phi}(-x, 3 x))
$$

for all $x \in X-\{0\}$.
Recently, C. Park and W. Park [21] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^{*}-algebra(See also [13]). Throughout this paper, let \mathcal{A} be a unital C^{*}-algebra with unit e, and \mathcal{B} a unital C^{*}-algebra. Let $U(\mathcal{A})$ be the set of unitary elements in $\mathcal{A}, \mathcal{A}_{s a}:=\left\{x \in \mathcal{A} \mid x=x^{*}\right\}$, and $I_{1}\left(\mathcal{A}_{s a}\right)=\left\{v \in \mathcal{A}_{s a}\| \| v \|=1, v \in \operatorname{Inv}(\mathcal{A})\right\}$.

A linear mapping $d: A \rightarrow A$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in A$.

Let \mathbb{N} be the set of natural numbers. For $m \in \mathbb{N} \cup\{0\}=\mathbb{N}_{0}$, a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{m}\right\}$ (resp. $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$) of linear mappings from A into B is called a higher derivation of rank m (resp. infinite rank) from A into B if

$$
h_{n}(x y)=\sum_{i+j=n} h_{i}(x) h_{j}(y)
$$

holds for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$) and all $x, y \in A$. The higher derivation H from A into B is said to be onto if $h_{0}: A \rightarrow B$ is onto. The higher derivation
H on A is called be strong if h_{0} is an identity mapping on A. Of course, a higher derivation of rank 0 from A into B (resp. a strong higher derivation of rank 1 on A) is a homomorphism (resp. a derivation). So a higher derivation is a generalization of both a homomorphism and a derivation.

In this paper, we prove that every sequence of mappings from \mathcal{A} into $\mathcal{B}, H=$ $\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$ is a higher derivation when for each $m \in \mathbb{N}_{0}, h_{m}\left(3^{n} u y\right)=$ $\sum_{i+j=m} h_{i}\left(3^{n} u\right) h_{j}(y)$ for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n=0,1,2, \ldots$, and that for a unital C^{*}-algebra \mathcal{A} of real rank zero (see [4]), every sequence of continuous mappings from \mathcal{A} into $\mathcal{B}, H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$ is a higher derivation when for each $m \in \mathbb{N}_{0}, h_{m}\left(3^{n} u y\right)=\sum_{i+j=m} h_{i}\left(3^{n} u\right) h_{j}(y)$ for all for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$, all $y \in \mathcal{A}$, and all $n=0,1,2, \ldots$. Furthermore, we investigate the Hyers-Ulam-Rassias stability of higher *-derivations between unital C^{*}-algebras by using the fixed pint methods.

Note that a unital C^{*}-algebra is of real rank zero, if the set of invertible selfadjoint elements is dense in the set of self-adjoint elements (see [4]). We denote the algebric center of algebra \mathcal{A} by $Z(\mathcal{A})$.

2 Higher *-derivations on unital C*-algebras

By a following similar way as in [19], we obtain the next theorem.
Theorem 2. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a sequence of mappings from \mathcal{A} into \mathcal{B} such that $f_{m}(0)=0$ for each $m \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
f_{m}\left(3^{n} u y\right)=\sum_{i+j=m} f_{i}\left(3^{n} u\right) f_{j}(y) \tag{2.1}
\end{equation*}
$$

for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$, all $n=0,1,2, \ldots$ and for each $m \in \mathbb{N}$. If there exists a function $\phi:(\mathcal{A}-\{0\})^{2} \times \mathcal{A} \rightarrow[0, \infty)$ such that $\tilde{\phi}(x, y, z)=\sum_{n=0}^{\infty} 3^{-n} \phi\left(3^{n} x, 3^{n} y, 3^{n} z\right)<$ ∞ for all $x, y \in \mathcal{A}-\{0\}$ and all $z \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\left\|2 f_{m}\left(\frac{\mu x+\mu y}{2}\right)-\mu f_{m}(x)-\mu f_{m}(y)+f_{m}\left(u^{*}\right)-f_{m}(u)^{*}\right\| \leq \phi(x, y, u) \tag{2.2}
\end{equation*}
$$

for all $\mu \in \mathbb{T}$ and all $x, y \in \mathcal{A}, u \in(U(\mathcal{A}) \cup\{0\})$. If $\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})$, then the sequence $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a higher $*-$ derivation.

Proof. Put $u=0, \mu=1$ in (2.2), it follows from Theorem 1 of [14] that there exists a unique additive mapping $h_{m}: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\left\|f_{m}(x)-h_{m}(x)\right\| \leq \frac{1}{3}(\tilde{\phi}(x,-x, 0)+\tilde{\phi}(-x, 3 x, 0)) \tag{2.3}
\end{equation*}
$$

for all $x \in \mathcal{A}-\{0\}$ and for each $m \in \mathbb{N}_{0}$. These mappings are given by

$$
h_{m}(x)=\lim _{n} \frac{f_{m}\left(3^{n} x\right)}{3^{n}}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. By the same reasoning as the proof of Theorem 1 of [19], h_{m} is \mathbb{C}-linear and $*$-preserving for each $m \in \mathbb{N}_{0}$. It follows from (2.1) and (2.2) that

$$
\begin{align*}
h_{m}(u y) & =\lim _{n} \frac{f_{m}\left(3^{n} u y\right)}{3^{n}}=\lim _{n} \sum_{i+j=m} \frac{f_{i}\left(3^{n} u\right) f_{j}(y)}{3^{n}} \\
& =\sum_{i+j=m} h_{i}(u) f_{j}(y) \tag{2.4}
\end{align*}
$$

for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Since h_{m} is additive, then by (2.4), we have

$$
3^{n} h_{m}(u y)=h_{m}\left(u\left(3^{n} y\right)\right)=\sum_{i+j=m} h_{i}(u) f_{j}\left(3^{n} y\right)
$$

for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Hence,

$$
\begin{equation*}
h_{m}(u y)=\lim _{n} \sum_{i+j=m} h_{i}(u) \frac{f_{j}\left(3^{n} y\right)}{3^{n}}=\sum_{i+j=m} h_{i}(u) h_{j}(y) \tag{2.5}
\end{equation*}
$$

for all $u \in U(\mathcal{A})$, all $y \in A$ and for each $m \in \mathbb{N}_{0}$. By the assumption, we have

$$
h_{m}(e)=\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})
$$

and for each $m \in \mathbb{N}_{0}$, hence, it follows by (2.4) and (2.5) that

$$
\sum_{i+j=m} h_{i}(e) h_{j}(y)=h_{m}(e y)=\sum_{i+j=m} h_{i}(e) f_{j}(y)
$$

for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Since $h_{m}(e)$ is invertible, then by induction $h_{m}(y)=f_{m}(y)$ for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. We have to show that $F=$ $\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is higher derivation. To this end, let $x \in \mathcal{A}$. By Theorem 4.1.7 of [16], x is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{n} c_{j} u_{j} \quad\left(c_{j} \in\right.$
$\left.\mathbb{C}, u_{j} \in U(\mathcal{A})\right)$, it follows from (2.5) that

$$
\begin{aligned}
f_{m}(x y) & =h_{m}(x y)=h_{m}\left(\sum_{k=1}^{n} c_{k} u_{k} y\right)=\sum_{k=1}^{n} c_{k} h_{m}\left(u_{k} y\right) \\
& =\sum_{k=1}^{n} c_{k}\left(\sum_{i+j=m} h_{i}\left(u_{k}\right) h_{j}(y)\right) \\
& =\sum_{i+j=m} h_{i}\left(\sum_{k=1}^{n} c_{k} u_{k}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}(x) h_{j}(y) \\
& =\sum_{i+j=m} f_{i}(x) f_{j}(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$. And this completes the proof of theorem.
Corollary 3. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Suppose that

$$
F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}
$$

is a sequence of mappings from \mathcal{A} into \mathcal{B} such that $f_{m}(0)=0$ for each $m \in \mathbb{N}_{0}$,

$$
f_{m}\left(3^{n} u y\right)=\sum_{i+j=m} f_{i}\left(3^{n} u\right) f_{j}(y)
$$

for all $u \in U(\mathcal{A})$, all $y \in \mathcal{A}$, all $n=0,1,2, \ldots$ and for each $m \in \mathbb{N}_{0}$. Suppose that

$$
\left\|2 f_{m}\left(\frac{\mu x+\mu y}{2}\right)-\mu f_{m}(x)-\mu f_{m}(y)+f_{m}\left(z^{*}\right)-f_{m}(z)^{*}\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. If $\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})$, then the sequence $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a higher $*-$ derivation.

Proof. Setting $\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ all $x, y, z \in \mathcal{A}$. Then by Theorem 1 we get the desired result.

Theorem 4. Let \mathcal{A} be a C^{*}-algebra of real rank zero. Suppose that

$$
F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}
$$

is a sequence of mappings from \mathcal{A} into \mathcal{B} such that $f_{m}(0)=0$ for each $m \in \mathbb{N}_{0}$,

$$
\begin{equation*}
f_{m}\left(3^{n} u y\right)=\sum_{i+j=m} f_{i}\left(3^{n} u\right) f_{j}(y) \tag{2.6}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{\text {sa }}\right)$, all $y \in \mathcal{A}$, all $n=0,1,2, \ldots$ and for each $m \in \mathbb{N}_{0}$. Suppose that there exists a function $\phi:(\mathcal{A}-\{0\})^{2} \times \mathcal{A} \rightarrow[0, \infty)$ satisfying (2.2) and $\tilde{\phi}(x, y, z)<\infty$ for all $x, y \in \mathcal{A}-\{0\}$ and all $z \in \mathcal{A}$. If $\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})$, then the sequence $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a higher $*-$ derivation.

Proof. By the same reasoning as the proof of Theorem 1, there exist a unique involutive \mathbb{C}-linear mappings $h_{m}: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (2.3) for each $m \in \mathbb{N}_{0}$. It follows from (2.6) that

$$
\begin{equation*}
h_{m}(u y)=\lim _{n} \frac{f_{m}\left(3^{n} u y\right)}{3^{n}}=\lim _{n} \sum_{i+j=m} \frac{f_{i}\left(3^{n} u\right) f_{j}(y)}{3^{n}}=\sum_{i+j=m} h_{i}(u) f_{j}(y) \tag{2.7}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$, and all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. By additivity of h_{m} and (2.7), we obtain that

$$
3^{n} h_{m}(u y)=h_{m}\left(u\left(3^{n} y\right)\right)=\sum_{i+j=m} h_{i}(u) f_{j}\left(3^{n} y\right)
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Hence,

$$
\begin{equation*}
h_{m}(u y)=\lim _{n} \sum_{i+j=m} h_{i}(u) \frac{f_{j}\left(3^{n} y\right)}{3^{n}}=\sum_{i+j=m} h_{i}(u) h_{j}(y) \tag{2.8}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. By the assumption, we have

$$
h_{m}(e)=\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})
$$

and for each $m \in \mathbb{N}_{0}$. Similar to the proof of Theorem 1, it follows from (2.7) and (2.8) that $h_{m}=f_{m}$ on A for each $m \in \mathbb{N}_{0}$. So h_{m} is continuous for each $m \in \mathbb{N}_{0}$. On the other hand \mathcal{A} is real rank zero. On can easily show that $I_{1}\left(\mathcal{A}_{s a}\right)$ is dense in $\left\{x \in \mathcal{A}_{s a}:\|x\|=1\right\}$. Let $v \in\left\{x \in \mathcal{A}_{s a}:\|x\|=1\right\}$. Then there exists a sequence $\left\{z_{n}\right\}$ in $I_{1}\left(\mathcal{A}_{s a}\right)$ such that $\lim _{n} z_{n}=v$. Since h_{m} is continuous for each $m \in \mathbb{N}_{0}$, it follows from (2.8) that

$$
\begin{align*}
h_{m}(v y) & =h_{m}\left(\lim _{n}\left(z_{n} y\right)\right)=\lim _{n} h_{m}\left(z_{n} y\right)=\lim _{n} \sum_{i+j=m} h_{i}\left(z_{n}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}\left(\lim _{n} z_{n}\right) h_{j}(y)=\sum_{i+j=m} h_{i}(v) h_{j}(y) \tag{2.9}
\end{align*}
$$

for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Now, let $x \in \mathcal{A}$. Then we have $x=x_{1}+i x_{2}$, where $x_{1}:=\frac{x+x^{*}}{2}$ and $x_{2}=\frac{x-x^{*}}{2 i}$ are self-adjoint.

First consider $x_{1}=0, x_{2} \neq 0$. Since h_{m} is \mathbb{C}-linear for each $m \in \mathbb{N}_{0}$, it follows from (2.9) that

$$
\begin{aligned}
f_{m}(x y) & =h_{m}(x y)=h_{m}\left(i x_{2} y\right)=h_{m}\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =i\left\|x_{2}\right\| h_{m}\left(\frac{x_{2}}{\left\|x_{2}\right\|} y\right)=i\left\|x_{2}\right\| \sum_{i+j=m} h_{i}\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right) h_{j}(y)=\sum_{i+j=m} h_{i}\left(i x_{2}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}(x) h_{j}(y)=\sum_{i+j=m} f_{i}(x) f_{j}(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$.
If $x_{2}=0, x_{1} \neq 0$, then by (2.9), we have

$$
\begin{aligned}
f_{m}(x y) & =h_{m}(x y)=h_{m}\left(x_{1} y\right)=h_{m}\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y\right) \\
& =\left\|x_{1}\right\| h_{m}\left(\frac{x_{1}}{\left\|x_{1}\right\|} y\right)=\left\|x_{1}\right\| \sum_{i+j=m} h_{i}\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right) h_{j}(y)=\sum_{i+j=m} h_{i}\left(x_{1}\right) h_{j}(y) \\
& =\sum_{i+j=m} h_{i}(x) h_{j}(y)=\sum_{i+j=m} f_{i}(x) f_{j}(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$.
Finally, consider the case that $x_{1} \neq 0, x_{2} \neq 0$. Then it follows from (2.9) that

$$
\begin{aligned}
f(x y) & =h_{m}(x y)=h_{m}\left(x_{1} y+\left(i x_{2}\right) y\right) \\
& =h_{m}\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y\right)+h_{m}\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =\left\|x_{1}\right\| h_{m}\left(\frac{x_{1}}{\left\|x_{1}\right\|} y\right)+i\left\|x_{2}\right\| h_{m}\left(\frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =\left\|x_{1}\right\| \sum_{i+j=m} h_{i}\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) h_{j}(y)+i\left\|x_{2}\right\| \sum_{i+j=m} h_{i}\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) h_{j}(y) \\
& =\sum_{i+j=m}\left[h_{i}\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right) h_{j}(y)+h_{i}\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right) h_{j}(y)\right] \\
& =\sum_{i+j=m}\left[h_{i}\left(x_{1}\right)+h_{i}\left(i x_{2}\right)\right] h_{j}(y)=\sum_{i+j=m} h_{i}(x) h_{j}(y)=\sum_{i+j=m} f_{i}(x) f_{j}(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Hence, $f_{m}(x y)=\sum_{i+j=m} f_{i}(x) f_{j}(y)$ for all $x, y \in \mathcal{A}$, for each $m \in \mathbb{N}_{0}$, and $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is higher $*-$ derivation.

Corollary 5. Let \mathcal{A} be a C^{*}-algebra of rank zero. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a sequence of mappings from \mathcal{A} into \mathcal{B} such that $f_{m}(0)=0$ for each $m \in \mathbb{N}_{0}$,

$$
f_{m}\left(3^{n} u y\right)=\sum_{i+j=m} f_{i}\left(3^{n} u\right) f_{j}(y)
$$

for all $u \in I_{1}\left(\mathcal{A}_{\text {sa }}\right)$, all $y \in \mathcal{A}$, all $n=0,1,2, \ldots$ and for each $m \in \mathbb{N}_{0}$. Suppose that

$$
\left\|2 f_{m}\left(\frac{\mu x+\mu y}{2}\right)-\mu f_{m}(x)-\mu f_{m}(y)+f_{m}\left(z^{*}\right)-f_{m}(z)^{*}\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. If $\lim _{n} \frac{f_{m}\left(3^{n} e\right)}{3^{n}} \in U(\mathcal{B}) \cap Z(\mathcal{B})$ for each $m \in \mathbb{N}_{0}$, then the sequence $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a higher $*$-derivation.

Proof. Setting $\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ all $x, y, z \in \mathcal{A}$. Then by Theorem 4 we get the desired result.

3 Stability of higher *-derivations: a fixed point approach

We investigate the generalized Hyers-Ulam-Rassias stability of higher $*$-derivations on unital C^{*}-algebras by using the alternative fixed point.

Recently, Cădariu and Radu applied the fixed point method to the investigation of the functional equations. (see also $[6,7,8,22,23,26]$). Before proceeding to the main result of this section, we will state the following theorem.

Theorem 6. (The alternative of fixed point [5]). Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping $T: \Omega \rightarrow$ Ω with Lipschitz constant L. Then for each given $x \in \Omega$,
either

$$
d\left(T^{m} x, T^{m+1} x\right)=\infty \text { for all } m \geq 0
$$

or there exists a natural number m_{0} such that

$$
d\left(T^{m} x, T^{m+1} x\right)<\infty \text { for all } m \geq m_{0}
$$

the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
y^{*} is the unique fixed point of T in the set $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
$d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.

Theorem 7. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}$ is a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $m \in \mathbb{N}_{0}, f_{m}(0)=0$ for which there exists a function $\phi: \mathcal{A}^{5} \rightarrow[0, \infty)$ satisfying

$$
\begin{array}{r}
\| f_{m}\left(\frac{\mu x+\mu y+\mu z}{3}\right)+f_{m}\left(\frac{\mu x-2 \mu y+\mu z}{3}\right)+f_{m}\left(\frac{\mu x+\mu y-2 \mu z}{3}\right)- \\
-\mu f_{m}(x)+f_{m}(u v)-\sum_{i+j=m} f_{i}(u) f_{j}(v)+f_{m}\left(w^{*}\right)-f_{m}(w)^{*} \| \leq \\
\leq \phi(x, y, z, u, v, w), \tag{3.1}
\end{array}
$$

for all $\mu \in \mathbb{T}$, and all $x, y, z, u, v \in \mathcal{A}, w \in U(\mathcal{A}) \cup\{0\}$ and for each $m \in \mathbb{N}_{0}$. If there exists an $L<1$ such that $\phi(x, y, z, u, v, w) \leq 3 L \phi\left(\frac{x}{3}, \frac{y}{3}, \frac{z}{3}, \frac{u}{3}, \frac{v}{3}, \frac{w}{3}\right)$ for all $x, y, z, u, v, w \in \mathcal{A}$, then there exists a unique higher $*-$ derivation

$$
H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}
$$

such that

$$
\begin{equation*}
\left\|f_{m}(x)-h_{m}(x)\right\| \leq \frac{L}{1-L} \phi(x, 0,0,0,0,0) \tag{3.2}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$.
Proof. It follows from $\phi(x, y, z, u, v, w) \leq 3 L \phi\left(\frac{x}{3}, \frac{y}{3}, \frac{z}{3}, \frac{u}{3}, \frac{v}{3}, \frac{w}{3}\right)$ that

$$
\begin{equation*}
\lim _{j} 3^{-j} \phi\left(3^{j} x, 3^{j} y, 3^{j} z, 3^{j} u, 3^{j} v, 3^{j} w\right)=0 \tag{3.3}
\end{equation*}
$$

for all $x, y, z, u, v, w \in \mathcal{A}$.
Put $y=z=w=u=0$ in (3.1) to obtain

$$
\begin{equation*}
\left\|3 f_{m}\left(\frac{x}{3}\right)-f_{m}(x)\right\| \leq \phi(x, 0,0,0,0,0) \tag{3.4}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Hence,

$$
\begin{equation*}
\left\|\frac{1}{3} f_{m}(3 x)-f_{m}(x)\right\| \leq \frac{1}{3} \phi(3 x, 0,0,0,0,0) \leq L \phi(x, 0,0,0,0,0) \tag{3.5}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$.
Consider the set $X:=\left\{g_{m} \mid g_{m}: \mathcal{A} \rightarrow \mathcal{B}, m \in \mathbb{N}_{0}\right\}$ and introduce the generalized metric on X :

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq C \phi(x, 0,0,0,0,0) \forall x \in A\right\} .
$$

It is easy to show that (X, d) is complete. Now we define the linear mapping J : $X \rightarrow X$ by

$$
J(h)(x)=\frac{1}{3} h(3 x)
$$

for all $x \in \mathcal{A}$. By Theorem 3.1 of [5],

$$
d(J(g), J(h)) \leq L d(g, h)
$$

for all $g, h \in X$.
It follows from (2.5) that

$$
d\left(f_{m}, J\left(f_{m}\right)\right) \leq L
$$

By Theorem 6, J has a unique fixed point in the set $X_{1}:=\left\{h \in X: d\left(f_{m}, h\right)<\infty\right\}$. Let h_{m} be the fixed point of $J . h_{m}$ is the unique mapping with

$$
h_{m}(3 x)=3 h_{m}(x)
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$ satisfying there exists $C \in(0, \infty)$ such that

$$
\left\|h_{m}(x)-f_{m}(x)\right\| \leq C \phi(x, 0,0,0,0,0)
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. On the other hand we have $\lim _{n} d\left(J^{n}\left(f_{m}\right), h_{m}\right)=$ 0 . It follows that

$$
\begin{equation*}
\lim _{n} \frac{1}{3^{n}} f_{m}\left(3^{n} x\right)=h_{m}(x) \tag{3.6}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. It follows from $d\left(f_{m}, h_{m}\right) \leq \frac{1}{1-L} d\left(f_{m}, J\left(f_{m}\right)\right)$, that

$$
d\left(f_{m}, h_{m}\right) \leq \frac{L}{1-L} .
$$

This implies the inequality (3.2). It follows from (3.1), (3.3) and (3.6) that

$$
\begin{aligned}
& \left\|3 h_{m}\left(\frac{x+y+z}{3}\right)+h_{m}\left(\frac{x-2 y+z}{3}\right)+h_{m}\left(\frac{x+y-2 z}{3}\right)-h_{m}(x)\right\| \\
& =\lim _{n} \frac{1}{3^{n}} \| f_{m}\left(3^{n-1}(x+y+z)\right)+f_{m}\left(3^{n-1}(x-2 y+z)\right)+ \\
& \quad+f_{m}\left(3^{n-1}(x+y-2 z)\right)-f_{m}\left(3^{n} x\right) \| \\
& \leq \lim _{n} \frac{1}{3^{n}} \phi\left(3^{n} x, 3^{n} y, 3^{n} z, 0,0,0\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. So

$$
h_{m}\left(\frac{x+y+z}{3}\right)+h_{m}\left(\frac{x-2 y+z}{3}\right)+h_{m}\left(\frac{x+y-2 z}{3}\right)=h_{m}(x)
$$

for all $x, y, z \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Put $w=\frac{x+y+z}{3}, t=\frac{x-2 y+z}{3}$ and $s=\frac{x+y-2 z}{3}$ in above equation, we get $h_{m}(w+t+s)=h_{m}(w)+h_{m}(t)+h_{m}(s)$ for all $w, t, s \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Hence, h_{m} for each $m \in \mathbb{N}_{0}$ is Cauchy additive. By putting $y=z=x, v=w=0$ in (2.1), we have

$$
\left\|\mu f_{m}\left(\frac{3 \mu x}{3}\right)-\mu f_{m}(x)\right\| \leq \phi(x, x,, x, 0,0,0)
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. It follows that

$$
\begin{aligned}
& \left\|h_{m}(\mu x)-\mu h_{m}(x)\right\|= \\
& \quad=\lim _{m} \frac{1}{3^{m}}\left\|f_{m}\left(\mu 3^{m} x\right)-\mu f_{m}\left(3^{m} x\right)\right\| \leq \lim _{m} \frac{1}{3^{m}} \phi\left(3^{m} x, 3^{m} x, 3^{m} x, 0,0,0\right)=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}$, and all $x \in \mathcal{A}$. One can show that the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear. By putting $x=y=z=u=v=0$ in (2.1) it follows that

$$
\begin{aligned}
& \left\|h_{m}\left(w^{*}\right)-\left(h_{m}(w)\right)^{*}\right\| \\
& \quad=\lim _{m}\left\|\frac{1}{3^{m}} f_{m}\left(\left(3^{m} w\right)^{*}\right)-\frac{1}{3^{m}}\left(f_{m}\left(3^{m} w\right)\right)^{*}\right\| \\
& \quad \leq \lim _{m} \frac{1}{3^{m}} \phi\left(0,0,0,0,0,3^{m} w\right) \\
& \quad=0
\end{aligned}
$$

for all $w \in U(\mathcal{A})$ and for each $m \in \mathbb{N}_{0}$. By the same reasoning as the proof of Theorem 1, we can show that $h_{m}: \mathcal{A} \rightarrow \mathcal{B}$ is $*-$ preserving for each $m \in \mathbb{N}_{0}$.

Since h_{m} is \mathbb{C}-linear, by putting $x=y=z=w=0$ in (2.1) it follows that

$$
\begin{aligned}
\left\|h_{m}(u v)-\sum_{i+j=m} h_{i}(u) h_{j}(v)\right\| & =\lim _{m}\left\|\frac{1}{9^{m}} f_{m}\left(9^{m}(u v)\right)-\frac{1}{9^{m}} \sum_{i+j=m} f_{i}\left(3^{m} u\right) f_{j}\left(3^{m} v\right)\right\| \\
& \leq \lim _{m} \frac{1}{9^{m}} \phi\left(0,0,0,3^{m} u, 3^{m} v, 0\right) \\
& \leq \lim _{m} \frac{1}{3^{m}} \phi\left(0,0,0,3^{m} u, 3^{m} v, 0\right) \\
& =0
\end{aligned}
$$

for all $u, v \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$. Thus $H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$ is higher *-derivation satisfying (3.2), as desired.

We prove the following Hyers-Ulam-Rassias stability problem for higher *-derivations on unital C^{*}-algebras:

Corollary 8. Let $p \in(0,1), \theta \in[0, \infty)$ be real numbers. Suppose that

$$
F=\left\{f_{0}, f_{1}, \ldots, f_{m}, \ldots\right\}
$$

is a sequence of mappings from \mathcal{A} into \mathcal{B} such that for each $m \in \mathbb{N}_{0}, f_{m}(0)=0$ and

$$
\begin{aligned}
& \| f_{m}\left(\frac{\mu x+\mu y+\mu z}{3}\right)+f_{m}\left(\frac{\mu x-2 \mu y+\mu z}{3}\right)+f_{m}\left(\frac{\mu x+\mu y-2 \mu z}{3}\right)-\mu f_{m}(x)+f_{m}(u v) \\
& -\sum_{i+j=m} f_{i}(u) f_{j}(v)+f_{m}\left(w^{*}\right)-f_{m}(w)^{*} \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|u\|^{p}+\|v\|^{p}+\|w\|^{p}\right),
\end{aligned}
$$

for all $\mu \in \mathbb{T}$ and all $x, y, z, u, v \in \mathcal{A}, w \in U(\mathcal{A}) \cup\{0\}$. Then there exists a unique higher $*$-derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{m}, \ldots\right\}$ such that

$$
\left\|f_{m}(x)-h_{m}(x)\right\| \leq \frac{3^{p} \theta}{3-3^{p}}\|x\|^{p}
$$

for all $x \in \mathcal{A}$ and for each $m \in \mathbb{N}_{0}$.
Proof. Setting $\phi(x, y, z, u, v, w):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|u\|^{p}+\|v\|^{p}+\|w\|^{p}\right)$ all $x, y, z, u, v, w \in \mathcal{A}$. Then by $L=3^{p-1}$ in Theorem 7 , one can prove the result.

References

[1] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597. MR1944777. Zbl 1014.39020.
[2] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74(2) (1979), 242-246. MR0524294. Zbl 0397.39010.
[3] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397. MR0031194. Zbl 0033.37702 .
[4] L. Brown and G. Pedersen, Limits and C^{*}-algebras of low rank or dimension, J. Oper. Theory 61(2) (2009), 381-417. MR2501012. Zbl pre05566809.
[5] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte 346 (2004), 43-52. MR2089527. Zbl 1060.39028.
[6] L. Cădariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics 23 (2007), 63-72. MR2305836. Zbl 1196.39013.
[7] L. Cădariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara 41 (2003), 25-48. MR2245911. Zbl 1103.39304.
[8] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), Art. ID 4. MR1965984. Zbl 1043.39010.
[9] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. MR1904790. Zbl 1011.39019.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. MR0004076. JFM 67.0424.01.
[11] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 no. 2-3 (1992), 125-153. MR1181264. Zbl 0806.47056.
[12] D.H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998. MR1639801. Zbl 0907.39025.
[13] B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. $\mathbf{3 7}(2)$ (1988), 294-316. MR0928525. Zbl 0652.46031.
[14] K. Jun, Y. Lee, A generalization of the HyersUlamRassias stability of Jensens equation, J. Math. Anal. Appl. 238 (1999), 305-315. MR1711432. Zbl 0933.39053.
[15] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001. MR1841182. Zbl 0980.39024.
[16] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983. MR0719020. Zbl 0888.46039.
[17] T. Miura, S.-E. Takahasi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 4 (2005), 435441. MR2210730. Zbl 1104.39026.
[18] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132(2) (2008), 87-96. MR2387819. Zbl 1140.39016.
[19] C. Park, D.-H. Boo and J.-S. An, Homomorphisms between C*-algebras and linear derivations on C^{*}-algebras, J. Math. Anal. Appl. 337(2) (2008), 14151424. MR2386388. Zbl 1147.39011.
[20] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005) 79-97. MR2132832. Zbl 1091.39007.
[21] C. Park and W. Park, On the Jensens equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531. MR1937477. Zbl 1035.39017.
[22] C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C^{*}-algebras: a fixed point approach, Abstract and Applied Analysis Volume 2009 (2009), Article ID 360432, 17 pages. MR2485640. Zbl 1167.39020.
[23] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96. MR2031824. Zbl 1051.39031.

Surveys in Mathematics and its Applications 5 (2010), 297 - 310
http://www.utgjiu.ro/math/sma
[24] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. MR0507327. Zbl 0398.47040.
[25] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62(1) (2000), 23-130. MR1778016. Zbl 0981.39014.
[26] I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979. (in Romanian).
[27] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940. MR0280310.
M. Eshaghi Gordji
R. Farokhzad Rostami
Department of Mathematics, Semnan University,
Department of Mathematics, P.O. Box 35195-363, Semnan, Iran.
e-mail: madjid.eshaghi@gmail.com
Shahid Beheshti University,
Tehran, Iran.
S. A. R. Hosseinioun

Department of Mathematics,
Shahid Beheshti University,
Tehran, Iran.

[^0]: 2010 Mathematics Subject Classification: 39B52; 39B82; 46B99; 17A40.
 Keywords: Alternative fixed point; Hyers-Ulam-Rassias stability; Higher *-derivation.

