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FUNCTION VALUED METRIC SPACES

Madjid Mirzavaziri

Abstract. In this paper we introduce the notion of an F-metric, as a function valued distance

mapping, on a set X and we investigate the theory of F-metric spaces. We show that every metric

space may be viewed as an F-metric space and every F-metric space (X, δ) can be regarded as

a topological space (X, τδ). In addition, we prove that the category of the so-called extended F-

metric spaces properly contains the category of metric spaces. We also introduce the concept of an

F̄-metric space as a completion of an F-metric space and, as an application to topology, we prove

that each normal topological space is F̄-metrizable.

1 Introduction

The celebrated paper of Zadeh [15], motivated some authors to define and discuss
some notions of a fuzzy metric on a set and fuzzy norm on a linear space. A
probabilistic metric space is a fuzzy generalization of metric spaces where the distance
is no longer defined on positive real numbers, but on distribution functions. For
an account on probabilistic metric spaces the reader is referred to the book [13].
Katsaras [6] in 1984 introduced a concept of a fuzzy norm. Later, Felbin [4]
introduced an idea of a fuzzy norm on a linear space by assigning a fuzzy real to
each element of the fuzzy linear space so that the corresponding metric associated
to this fuzzy norm is of the Kaleva type [5] fuzzy metric. In 2003, following [3], Bag
and Samanta in [1] and [2], introduced and studied an idea of a fuzzy norm on a
linear space in such a manner that its corresponding fuzzy metric is of Kramosil and
Michalek type [8]. All of these can be assumed as norms whose values are mappings.

On the other hand, if A is a C∗-algebra then a Hilbert A-module is a right
A-module E (which is at the same time a complex vector space) equipped with an
A-valued inner product. The reader is referred to [9, 10, 14] and [12] for further
information on Hilbert C∗-modules. If A is a commutative C∗-algebra then an
A-valued inner product is a function valued inner product.
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322 M. Mirzavaziri

This point of view to the metric, norm and inner product motivates us to work
on function valued metrics on sets. Whence, in light of the definition of a usual
metric and the definition of a Hilbert C∗-module, one can find an interesting idea
to define the notion of an F-metric δ on a set X as a mapping from X ×X into the
positive cone A+ of a C∗-algebra A. Here, we do this in the case of commutative
unital C∗-algebras, i.e. A = C(Ω), where Ω is a compact Hausdorff topological
space. The partial order ≤ defined on the self-adjoint part As of A helps us to
consider the triangle inequality for F-metrics. Once an F-metric is defined on a
set X, we may construct the open neighborhood at a point x ∈ X with radius
r ∈ A+. Moreover, we are interested in viewing an F-metric space (X, δ) as a
topological space (X, τδ) and this is done by using some open neighborhoods whose
radiuses form a downwards directed set. The downwards directed assumption helps
us to prove that the intersection of a finitely many number of open neighborhoods
is again an open neighborhood. Obviously, we expect that each metric space is an
F-metric space, for every commutative C∗-algebra A. However, if each A-metric
space (X, δ) is metrizable then the notion of an F-metric space is in vain, since we
can consequently infer that these two theories coincide. So it will be nice, and indeed
necessary, to find an example of an F-metric space (X, δ) which is not metrizable.
We do these in the following and as an application to topology, we prove that each
normal topological space is F̄-metrizable.

In this paper we assume that Ω is a compact Hausdorff topological space and
A = C(Ω), the commutative unital algebra of all continuous mappings f : Ω → C
with the norm ‖.‖∞ defined by ‖f‖∞ = sup{|f(ω)| : ω ∈ Ω}. The unit of A is
denoted by ι, i.e. ι : Ω → C is defined by ι(ω) = 1. A simple modification gives
similar results concerning the non-unital case.

2 Preliminaries

An element f in A is called positive (denoted by 0 ≤ f or f ≥ 0) if its range, f(Ω),
is a subset of the non-negative real numbers R+. It is strictly positive (denoted by
0 ≺ f or f � 0) if f(Ω) is a subset of the positive real numbers R++. Note that
f � 0 is not equivalent to f > 0 (i.e. f ≥ 0 and f 6= 0). The set of all positive
elements and the set of all strictly positive elements of A are denoted by A+ and
A++, respectively. Obviously, f ∈ A+ is strictly positive if and only if it is invertible
in A. There is a nice criterion for invertabilty of a positive element of A as follows
(see Proposition 3.2.12 of [11]). It can be viewed as the C∗-Archimedean property.

Proposition 1. A positive element f of A is invertible if and only if f ≥ λι for
some λ ∈ R++.

A simple argument shows that A++ is downwards directed, i.e. if f, g ∈ A++

then there is an h ∈ A++ such that h � f and h � g. Moreover, if f ∈ A++ then
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Function valued metric spaces 323

there is an f0 ∈ A++ such that f0 ≺ f . Furthermore, A++ is a cone, in the sense
that the sum of two strictly positive elements of A is again strictly positive and if
f ∈ A++ then so is λf for all λ ∈ R++.

Let f, g ∈ A+. We use the notation f Cg to show that f(ω) < g(ω) for all ω ∈ Ω
with g(ω) 6= 0. The relation C is transitive on A+ and f C g implies f + h C g + h
for all real valued mapping h with f + h ∈ A+. Note that if g ∈ A++ then f C g is
equivalent to f ≺ g.

We also need a version of the axiom of completeness for non-empty bounded
subsets of A. For some reasons we have to consider a topology, other than the
Euclidean one, to reach into this axiom. Consider the topological space (R, τu),
where τu is the upper limit topology on R. Then a function f : Ω → R is upper semi-
continuous if and only if f : Ω → (R, τu) is continuous (see, for example [7]). This,
together the fact that Ω is compact, imply that ‖f‖ = sup{|f(ω)| : ω ∈ Ω} < ∞ for
each upper semi-continuous mapping f : Ω → R. Let C1/2(Ω) be the set of all upper
semi-continuous mappings f : Ω → R. Proposition 1.5.12 of [11] states that

Proposition 2. A pointwise infimum of any number of elements in C1/2(Ω) and
a supremum of finitely many elements will again define an element in C1/2(Ω).
Furthermore, C1/2(Ω) is stable under addition and under multiplication with positive
real numbers. Finally, C1/2(Ω) is closed under uniform convergence.

Let A+
u = C1/2(Ω)+, the space of all positive valued upper semi-continuous

mappings on Ω, and A++
u = C1/2(Ω)++, the space of all strictly positive valued

upper semi-continuous mappings on Ω. Clearly A+ ⊆ A+
u ,A++ ⊆ A++

u . We then
can prove the following axiom of completeness.

Theorem 3. Let F be a non-empty subset of A+
u . Then inf F exists in A+

u . In
other words, there is an f0 ∈ A+

u such that f0 ≤ f for each f ∈ F and if g is any
lower bound for F then g ≤ f0.

Proof. For each f ∈ F and ω ∈ Ω we have f(ω) ≥ 0. Thus the set {f(ω) : f ∈ F}
is a non-empty bounded below subset of R+ and so its infimum exists. Let

f0(ω) = inf{f(ω) : f ∈ F}.

Then f0 ∈ A+
u , by Proposition 2. Now let g be a lower bound for F . Hence

g(ω) ≤ f(ω) and so g(ω) is a lower bound for the set {f(ω) : f ∈ F}. Thus
f0(ω) ≤ g(ω) or equivalently f0 ≤ g.

3 F-metrics

The notion of positive elements and similarity between the cone of positive elements
of Au and R+ tempt us to introduce the following notion.
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Definition 4. Let X be a set. A mapping δ : X ×X → A+
u is called an F-metric,

or an A-metric, if for all x, y, z ∈ X the following conditions hold:
(i) δ(x, y) = 0 if and only if x = y;
(ii) δ(x, y) = δ(y, x);
(iii) δ(x, y) ≤ δ(x, z) + δ(z, y). (triangle inequality)
In this case (X, δ) is called an F-metric space, or an A-metric space.

To illustrate the notion, let us give some examples.

Example 5. Let f be a non-zero positive element of Au. Then

δ(x, y) =
{

f if x 6= y
0 otherwise

gives an A-metric δ on X which is called the discrete F-metric on X constructed
via f .

Example 6. Let X = A. Then δ(f, g) = |f − g| defines an F-metric on X. For the
triangle inequality we have

δ(f, g)(ω) = |f − g|(ω)
≤ |f − h|(ω) + |h− g|(ω)
= δ(f, h)(ω) + δ(h, g)(ω),

for all ω ∈ Ω and f, g, h ∈ X. Thus δ(f, g) ≤ δ(f, h) + δ(h, g).

Example 7. Let Ω = C and X = C. For each x ∈ X, let fx be the constant
function fx(ω) = x, (ω ∈ Ω). Then δ(x, y) = |fx − fy| is an F-metric on X. Note
that this is nothing but the Euclidean metric on C.

Let (X, δ) be an A-metric space. Similar to the case of metric spaces, we can
define the ball Nr(x) centered at x ∈ X with radius r ∈ A++

u by Nr(x) = {y ∈ X :
δ(x, y) C r}. Interior points of a subset of X and open sets are defined in a usual
manner. Note that Nr(x) is an open set. In fact, if y ∈ Nr(x) then δ(x, y) C r and
for the strictly positive element r0 = r−δ(x, y) we have Nr0(y) ⊆ Nr(x). This shows
that y is an interior point of Nr(x).

The following theorem guarantees that the open subsets of an F-metric space
form a topology.

Theorem 8. Let (X, δ) be an A-metric space. Then the family of all open subsets
of X with respect to δ forms a topology on X.

Proof. We need to show that for an arbitrary family {Nrγ (xγ) : γ ∈ Γ} of open
balls, the set U =

⋃
γ∈Γ Nrγ (xγ) is open. Let x ∈ U . Then there is a γ ∈ Γ such

that x ∈ Nrγ (xγ). Thus there is an r0 such that Nr0(x) ⊆ Nrγ (xγ) ⊆ U . So x is an
interior point of U .
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In addition, we have to show that V =
⋂n

j=1 Nrj (xj) is open. Let x ∈ V . Then
x ∈ Nrj (xj) and so there are sj ∈ A++

u such that Nsj (x) ⊆ Nrj (xj). Pick an
r0 ∈ A++

u such that r0 Csj for all 1 ≤ j ≤ n. (Note that A++
u is downwards directed

and so r0 exists.) We then have Nr0(x) ⊆ V .

The topology mentioned in the above theorem is called the topology on X
induced by the F-metric δ and is denoted by τδ.

We can consider a subset of A+
u \ {0} as the set of radiuses of our open balls as

follows.

Definition 9. Let (X, δ) be an A-metric space. A non-empty subset R of A+
u \ {0}

is called allowance with respect to δ if it is downwards directed, λR ⊆ R for each
λ ∈ R++, and δ(x, y)C r for some r ∈ R implies the existence of an element r0 ∈ R
and a λ ∈ R++ such that r0 + δ(x, y) C r C λr0. The R-extended topology on X
induced by δ, denoted by τRk

δ , is defined to be the topology on X generated by the
topological base {N δ

r (x)}r∈Rk,x∈X .

Note that the third condition helps us to prove that open balls are indeed open
and so we have the following theorem.

Theorem 10. Let (X, δ) be an A-metric space and R be an allowance set with
respect to δ. Then τRk

δ is indeed a topology on X.

Definition 11. Let Rw be the set of all λr ∈ A+
u such that λ ∈ R++ and r ∈ A+

u

has a finite support. Then Rw is an allowance set with respect to any A-metric and
is called the weak allowance subset of A+

u .

The following theorem shows that we can view a metric space as an F-metric
space. To avoid any confusion, we will show the balls in (X, d) by Nd and the balls
in (X, δ) by N δ.

Theorem 12. Suppose that (X, d) is a metric space and 0 6= f ∈ A+
u . If δf :

X ×X → A+
u is defined by δf (x, y) = d(x, y)f , then (X, δf ) is an F-metric space.

Let R be an allowance set with respect to δf .
(i) If R has the Archimedean property, then τRk

δf
= τd;

(ii) If there is an r in R such that λf 6 r for any λ ∈ R++, then τRk
δf

is the discrete
topology.

Proof. Put δ = δf . To prove the triangle inequality for δ one should note that a
multiple of a positive element of Au by a positive real number is again a positive
element of Au.

(i) We shall show that the family {N δ
λf (x)}λ∈R++,x∈X forms a topological base

for τRk
δ . To see this, let N δ

r (x) be an arbitrary open ball in τRk
δ and y ∈ N δ

r (x). Since
R is allowance, there is an r0 ∈ R such that r0 C r − δ(x, y). By the Archimedean
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property of r0 ∈ R, there is a λ0 ∈ R++ such that λ0f C r0. Now N δ
λ0f (y) ⊆ N δ

r (x),
since for z ∈ N δ

λ0f (y) we have δ(z, x) ≤ δ(z, y)+δ(y, x)Cλ0f+δ(x, y)Cr0+δ(x, y)Cr.
Let N δ

λf (x) be an arbitrary open ball in τRk
δ and y ∈ N δ

λf (x). Let λ0 = λ−d(x, y).
Then λ0 ∈ R++, since δ(x, y)Cλf implies that d(x, y)f Cλf and so λ−d(x, y) > 0.
We assert that Nd

λ0
(y) ⊆ N δ

λf (x). To see this, let z ∈ Nd
λ0

(y). We have d(z, y) < λ0

and so δ(z, x) ≤ δ(z, y)+δ(y, x) = d(z, y)f +d(y, x)f Cλ0f +d(y, x)f = (λ−d(x, y)+
d(x, y))f = λf . This shows that y is an interior point of N δ

λf (x) with respect to d.
Thus N δ

λf (x) ∈ τd.
On the other hand, if Nd

λ(x) is an arbitrary basis element of the topology τd and
y ∈ Nd

λ(x) then for λ0 = λ− d(x, y) we have N δ
λ0f (y) ⊆ Nd

λ(x) and so Nd
λ(x) is open

with respect to τRk
δ . Thus the topologies coincide.

(ii) If δ(x, y)Cr then d(x, y)f Cr, and so d(x, y) = 0 which implies x = y. Hence
N δ

r (x) = {x} for each x ∈ X and the topology τRk
δ is then discrete.

We illustrate the above result by the following example.

Example 13. Let X = C and Ω = [0, 1]. If u : Ω → C is defined by u(ω) = ω then
δ(x, y) = |x − y|u is an F-metric on X. The positive cone A+ is an allowance set
with respect to δ. For the element r ∈ A+ defined by r(ω) = ω2 we have λu 6 r for
any λ ∈ R++. It follows from Theorem 12 (ii) that τAk+

δ is the discrete topology.

The following question arises from Theorem 12. For an A-metric space (X, δ)
can we find an element f ∈ A+

u such that δ(x, y) = d(x, y)f for some metric d on
X? Our next example provides a negative answer to the question.

Example 14. Consider X = C[0, 1] equipped with δ(f, g) = |f − g| as a C[0, 1]-
metric space. If there are a usual metric d on X and a (positive) element h in
C[0, 1]u such that δ(f, g) = d(f, g)h for all f, g ∈ C[0, 1], then |f | = d(f, 2f)h for all
f ∈ C[0, 1] which is clearly impossible.

We now want to find a sufficient condition on an F-metric space to be metrizable.
The following theorem states that if R has the Archimedean property then an R-
extended F-metric space is nothing but a metric space.

Theorem 15. Let (X, δ) be an R-extended A-metric space. If we define d : X×X →
R+ by d(x, y) = ‖δ(x, y)‖ then (X, d) is a metric space. Furthermore, if R has the
Archimedean property then τd = τRk

δ .

Proof. For the triangle inequality, we have

d(x, y) = ‖δ(x, y)‖
≤ ‖δ(x, z) + δ(z, y)‖
≤ ‖δ(x, z)‖+ ‖δ(z, y)‖
= d(x, z) + d(z, y),
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since 0 ≤ f ≤ g implies ‖f‖ ≤ ‖g‖ for f, g ∈ Au.
Now suppose that R has the Archimedean property. Let N δ

r (x) be an arbitrary
basis open set in τRk

δ and y ∈ N δ
r (x). Since R is allowance, there is an f Cr−δ(x, y)

in R and so there is a λ0 ∈ R++ such that λ0ι C f . We have Nd
λ0

(y) ⊆ N δ
r (x) since

for z ∈ Nd
λ0

(y),

δ(z, x) ≤ δ(z, y) + δ(y, x)
≤ ‖δ(z, y)‖ι + δ(x, y)
≤ d(z, y)ι + δ(x, y)
C λ0ι + δ(x, y)
C f + δ(x, y)
= r.

Thus N δ
r (x) ∈ τd.

Now let Nd
λ(x) be an arbitrary basis open set in τd and y ∈ Nd

λ(x). Let r be a
fixed element of R and r0 = λ0r

‖r‖ , where λ0 = 1
2(λ − d(x, y)). Then r0 ∈ R ∩ A++

and N δ
r0

(y) ⊆ Nd
λ(x). To see this, let z ∈ N δ

r0
(y). We have δ(z, y) C r0 and since

r0(ω) 6= 0, (ω ∈ Ω) then δ(z, y)(ω) < r0(ω) for all ω ∈ Ω. Thus ‖δ(z, y)‖ ≤ ‖r0‖.
Hence

d(z, x) ≤ d(z, y) + d(y, x)
= ‖δ(z, y)‖+ d(x, y)
≤ ‖r0‖+ d(x, y)
= λ0 + d(x, y)
< λ.

This shows that y is an interior point of Nd
λ(x) with respect to τRk

δ and so Nd
λ(x) ∈

τRk
δ .

Let us denote the category of all metric spaces and the category of all extended
F-metric spaces by Met and F-ExtMet, respectively. We now aim to show that
Met $ F-ExtMet, i.e. the inclusion is proper. Our proof is constructive.

Example 16. Let (X, τp) be the space of all continuous mappings f : Ω → [0, 1]
as a subspace of

∏
ω∈Ω[0, 1] = [0, 1]Ω with the product topology, or equivalently

the topology of pointwise convergence, induced by the Euclidean metric on [0, 1].
Then X is a Hausdorff non-metrizable topological space. We will show that X is
A-metrizable. Define δ : X ×X → A+ by δ(f, g) = |f − g|. Then δ is an A-metric
(see Example 6). Let R = Rw, the weak allowance subset of A+

u . Then τRk
δ = τp.

Suppose that Nλr(f) be a basis τRk
δ -open set, where λ ∈ R++ and r ∈ A+

u has a
finite support. So there are ω1, . . . , ωn ∈ Ω such that r(ωj) 6= 0(1 ≤ j ≤ n) and
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r(ω) = 0 for all ω ∈ Ω \ {ω1, . . . , ωn}. Let g ∈ Nλr(f). Thus |g − f |(ωj) < λr(ωj).
Put

Uωj = (g(ωj)− λr(ωj) + |f − g|(ωj), g(ωj) + λr(ωj)− |f − g|(ωj)).

Then Uωj is open in [0, 1] with respect to the Euclidean topology. Let Uω = [0, 1]
for ω ∈ Ω \ {ω1, . . . ωn}. Then U =

∏
ω∈Ω Uω is a τp-open neighborhood of g, since

g(ω) ∈ Uω for all ω ∈ Ω. We have U ⊆ Nλr(f). To see this, let h ∈ U . Then
|h− f |(ωj) < λr(ωj) and so δ(h, f) = |h− f |C λr. Hence τRk

δ ⊆ τp.
On the other hand, if U =

∏
ω∈Ω is a τp-open subset of X then there is a finite

set F = {ω1, . . . , ωn} such that Uω is an open subset of [0, 1] for ω ∈ F and is equal
to [0, 1] for all ω ∈ Ω\F . Let f ∈ U . Then f(ωj) ∈ Uωj and so there is an rωj ∈ R++

such that (f(ωj)− rωj , f(ωj) + rωj ) ⊆ Uωj . Let r : Ω → R be defined by r(ωj) = rωj

and 0 elsewhere. Hence Nr(f) ⊆ U . Thus U is τRk
δ -open.

By the same argument, we can show that the space of all upper semi-continuous
mappings f : Ω → [0, 1] as a subspace of [0, 1]Ω equipped with the topology of
pointwise convergence is F-metrizable.

Let (X, δ) be an A-metric and R be an allowance set with respect to δ. We want
to give some simple facts concerning the convergence of nets in X and the continuity
of mappings on (X, τRk

δ ).

Lemma 17. Let (X, δ) be an A-metric space and {xγ}γ∈Γ be a net in X. Then
{xγ} converges to x ∈ X with respect to τRk

δ if and only if for every ε ∈ R there is
a γε ∈ Γ such that δ(xγ , x) C ε, for all γ ≥ γε.

Definition 18. Let (X, δ) be an R-extended A-metric space and {xγ} be a net in X.
{xγ} is called R-Cauchy if for each ε ∈ R there is a γε ∈ Γ such that δ(xγ , xγ′) C ε,
for all γ, γ′ ≥ γε.

Lemma 19. Let A1 = C(Ω1) and A2 = C(Ω2), where Ω1 and Ω2 are compact
Hausdorff topological spaces. Suppose that (X, δ1) is an A1-metric space and (Y, δ2)
is an A2-metric space. Let R1 and R2 be allowance sets with respect to δ1 and
δ2, respectively. If ϕ : (X, τRk1

δ1
) → (Y, τRk2

δ2
) is a mapping and x0 ∈ X, then ϕ

is continuous at x0 if and only if for each ε ∈ R2 there is an η ∈ R1 such that
δ1(x, x0) C η implies δ2(ϕ(x), ϕ(x0)) C ε, for each x ∈ X.

Let δ : X×X → A+
u be an A-metric and R be an allowance set with respect to δ.

For fixed x ∈ X, the mapping δx : (X, τRk
δ ) → (A+

u , ‖.‖∞) defined by δx(y) = δ(x, y)
is obviously continuous. If we consider A+

u as a set then we can put the final topology
tRk
δ,x on A+

u as the finest topology for which δx is continuous. Thus tRk
δ,x ⊆ t‖.‖∞ , where

t‖.‖∞ is the topology induced by ‖.‖∞. Moreover, a subset U of A+
u is tRk

δ,x -open if
and only if δ−1

x (U) is τRk
δ -open in X. This shows that for a net {yγ}γ∈Γ in (X, τRk

δ ),
yγ → x if and only if δ(x, yγ) → 0 in (A+

u , tRk
δ,x ). From now on, as we now have

several topologies on X and Au, we denote the topologies on X by the Greek letters

******************************************************************************
Surveys in Mathematics and its Applications 5 (2010), 321 – 332

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v05/v05.html
http://www.utgjiu.ro/math/sma


Function valued metric spaces 329

(τ, τδ, etc.) and those on Au by the Gothic letters (t, tδ, etc.). Also, we denote the
τ -closure of a subset Y of X by τ -cl(Y ) and the t-closure of a subset F of Au by
t-cl(F).

Let (X, δ) be an A-metric space, R be an allowance set with respect to δ and
let Y be a subset of X. For fixed x ∈ X, the set F = {δ(x, y) : y ∈ Y } is a subset
of A+

u . Thus, regarding to discussions mentioned above, we can consider tRδ,x-cl(F).

Definition 20. Let (X, δ) be an A-metric space, R be an allowance set with respect
to δ, Y be a subset of X, x be a fixed element of X and F = {δ(x, y) : y ∈ Y }. Then
tRδ,x-cl(F) is called the distance of the point x ∈ X to the set Y and is denoted by
δ(x, Y ).

Theorem 21. Let (X, δ) be an A-metric space, R be an allowance set with respect
to δ and Y be a subset of X. Then 0 ∈ δ(x, Y ) if and only if x ∈ τRδ -cl(Y ).

Proof. Let 0 ∈ δ(x, Y ). Since 0 ∈ tRδ,x-cl(F) there is a net {yγ}γ∈Γ such that
δ(x, yγ) → 0 with respect to tRk

δ,x , or equivalently yγ → x with respect to τRk
δ .

This implies x ∈ τRδ -cl(Y ).
Conversely, if x ∈ τRδ -cl(Y ) then there is a net {yγ}γ∈Γ in (X, τRk

δ ) such that
yγ → x or equivalently δ(x, yγ) → 0 with respect to tRk

δ,x . Thus 0 ∈ tRδ,x-cl(F) =
δ(x, Y ).

4 Completion of an F-metric space (F̄-metric spaces)

Naturally we can say that an R-extended F-metric (X, δ) is F-complete if each R-
Cauchy net of X converges in X. In the case of ordinary metrics, when we want to
find the completion of a metric space, sometimes we have to extend the range of the
metric into a large subspace of R. For example, if we consider the Euclidean metric
d : Q × Q → Q then its completion d̃ : R × R → R has R as its range. Thus if we
want to construct a complete F-metric space (X, δ) it is natural to have its range in
(R+)Ω instead of A+

u . So we have to generalize the notion of an F-metric as follows.

Definition 22. Let X be a set. A mapping δ : X × X → (R+)Ω is called an F̄-
metric, or a Ā-metric, if for all x, y, z ∈ X the following conditions hold:
(i) δ(x, y) = 0 if and only if x = y;
(ii) δ(x, y) = δ(y, x);
(iii) δ(x, y)(ω) ≤ δ(x, z)(ω) + δ(z, y)(ω) for all ω ∈ Ω.
In this case (X, δ) is called an F̄-metric space, or an Ā-metric space.

The terminology refers to the fact that A+ is dense in ((R+)Ω, tp), where tp
is the product topology on (R+)Ω. To see this note that by Proposition 1.5.13 of
[11], since Ω is compact Hausdorff and hence normal, each upper semi-continuous
mapping f : Ω → R+ is the pointwise infimum of continuous mappings. Thus finite
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support positive valued mappings are in the tp-closure of A+. Now for f ∈ (R+)Ω

consider the net {rF }F , where r : Ω → R+ has finite support F and rF (ω) ≤ f(ω)
for all ω ∈ Ω, which is directed by rF ≤ r′F ′ if and only if r′F ′ |F = rF . Then f is the
pointwise limit of the net {rF }F .

All notions, notations and facts concerning F-metrics and R-extended F-metrics
are still valid. Moreover, regarding to Example 16 we have

Theorem 23. The compact Hausdorff topological space ([0, 1]Ω, tp), where tp is the
product topology, is F̄-metrizable.

Proof. Clearly, ([0, 1]Ω, tp) is Hausdorff and Tychonoff’s Theorem guarantees that
it is compact. Set X = [0, 1]Ω and define δ : X × X → [0, 1]Ω by δ(f, g)(ω) =
|f(ω)− g(ω)|. Then δ is an F̄-metric and by the same argument as in Example 16
we can show that tp = τRk

δ , where R is the weak allowance subset of [0, 1]Ω.

The following result can be expected, whose proof is the same as its ordinary
version.

Theorem 24. For any R-extended Ā-metric space (X, δ) there exists a unique (up
to an isometry) complete R-extended Ā-metric space (X̃, δ̃) and an isometry ϕ of
X onto a dense subspace of X̃.

5 Application to topology

As an application of the concept of F-metrics, we prove in this section that each
normal topological space is Π-metrizable. Prior to that, let us state a simple result.

Proposition 25. Each R-extended F̄-metric space (X, δ) is Hausdorff.

Proof. Let x, y ∈ X and x 6= y. Then δ(x, y) 6= 0. We claim that there is an
r0 ∈ R such that δ(x, y) 6 r0. Otherwise for fix r ∈ R we would have δ(x, y) C λr
for all λ ∈ R++ which implies δ(x, y) = 0 as a contradiction. Now for r = r0

2
we have N δ

r (x) ∩ N δ
r (y) is the empty set, because z ∈ N δ

r (x) ∩ N δ
r (y) implies that

δ(x, y) ≤ δ(x, z) + δ(z, y) C 2r = r0 which is impossible.

Theorem 26. Each normal topological space (X, τ) is F̄-metrizable, in the sense
that there is a compact Hausdorff topological space Ω, a C(Ω)-metric δ and an
allowance set R with respect to δ such that τRk

δ = τ .

Proof. Since X is normal, by Urysohn’s Lemma, for each U, V ∈ τ with τ -cl(U) ⊆ V
there is a continuous mapping fU,V : X → [0, 1] with the property that fU,V (x) = 0
for each x ∈ τ -cl(U) and fU,V (x) = 1 for each x ∈ X \ V . Now let

Ω = {(U, V ) : U, V ∈ τ and τ−cl(U) ⊆ V}.
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If we consider the product topology on 2Ω = {0, 1}Ω then 2Ω will be a compact
Hausdorff space in which Ω can be embedded by ω ↪→ χ{ω} as a closed subspace.
Consequently, Ω can be regarded as a compact Hausdorff topological space. A net
{(Uγ , Vγ)}γ∈Γ converges to (U, V ) if and only if for each ω ∈ Ω there is a γω ∈ Γ
such that χUγ

(ω) = χU (ω) and χVγ
(ω) = χV (ω) for all γ ≥ γω.

Define ϕ : X → [0, 1]Ω by

ϕ(x)(ω) = fU,V (x),

for each ω = (U, V ) ∈ Ω. Then ϕ is one to one. To see this, let x, y ∈ X and x 6= y.
Then there are U, V ∈ τ such that x ∈ U ⊆ τ -cl(U) ⊆ V ⊆ X \ {y}. For ω = (U, V ),
we have

ϕ(x)(ω) = fU,V (x) = 0 6= 1 = fU,V (y) = ϕ(y)(ω).

Thus ϕ(x) 6= ϕ(y).
Moreover, ϕ is continuous. For each ω = (U, V ) ∈ Ω we have πω(ϕ(x)) = fU,V (x),

where πω : [0, 1]Ω → [0, 1] is the projection defined by πω(f) = f(ω), (f ∈ [0, 1]Ω).
This implies that the mappings πω ◦ ϕ = fU,V ’s are continuous and so is ϕ, by the
definition of the product topology.

Now let V be a τ -open subset of X and x ∈ V . Thus there is a U ∈ τ such that
x ∈ U ⊆ τ -cl(U) ⊆ V . Let ω = (U, V ). We then have

ϕ(x) ∈ {f ∈ [0, 1]Ω : f(ω) <
1
2
} ∩ ϕ(X) ⊆ ϕ(V ) (∗)

since ϕ(x)(ω) = fU,V (x) = 0 < 1
2 , and if ϕ(z)(ω) < 1

2 then ϕ(z)(ω) 6= 1 so that
z /∈ X \ V . This implies that z ∈ V and hence ϕ(z) ∈ ϕ(V ).

Now (∗) shows that x is an interior point of ϕ(V ) with respect to the relative
topology on ϕ(X) induced by τp. Hence ϕ(V ) is a relatively tp-open subset of
ϕ(X). Thus ϕ : X → ϕ(X) ⊆ [0, 1]Ω is a homeomorphism. Since [0, 1]Ω is F̄-
metrizable, we can therefore deduce that so is X. Note that the suitable allowance
set is R = Rw.
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