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COMMON FIXED POINT THEOREM FOR
OCCASIONALLY WEAKLY COMPATIBLE
MAPPINGS IN MENGER SPACE

B.D. Pant and Sunny Chauhan

Abstract. The concept of occasionally weakly compatible (shortly, owc) mappings introduced
by Al-Thagafi and Shahzad [2], which is more general than the concept of weakly compatible maps.
In this paper, we prove a common fixed point theorem for owc mappings in Menger space using

arbitrary continuous t-norm for a nonlinear case.

1 Introduction

K. Menger [11] introduced the notion of probabilistic metric space, which is a gen-
eralization of the metric space. The study of this space was expanded rapidly with
the pioneering works of Schweizer and Sklar [14, 15]. It is also of fundamental
importance in probabilistic functional analysis, nonlinear analysis and applications.

In 1986, Jungck [6] introduced the notion of compatible mappings in metric
spaces. Mishra [12] extended the notion of compatibility to probabilistic metric
spaces. And this condition has further been weakened by introducing the notion of
weakly compatible mappings by Jungck and Rhoades [7, 8]. The concept of weakly
compatible mappings is most general as each pair of compatible mappings is weakly
compatible but the reverse is not true. Recently, Aamri and El Moutawakil [1] in-
troduced the (E.A) property and thus generalized the concept of non-compatible
maps. The results obtained in the metric fixed point theory by using the notion of
non-compatible maps or the (E.A) property, are very interesting. Lastly, Al-Thagafi
and Shahzad [2] introduced the notion of occasionally weakly compatible mappings
which is more general than the concept of weakly compatible maps. Several inter-
esting and elegant results have been obtained by various authors in this direction
3, 4, 5, 9, 10, 13, 17].

In this paper, we prove a common fixed point theorem for occasionally weakly
compatible mappings in Menger space using arbitrary continuous t-norm for a non-
linear case.
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2 Preliminaries

Definition 1. [15] A triangular norm /A (shortly t-norm) is a binary operation on
the unit interval [0,1] and the following conditions are satisfied: for all a,b,c,d €
[07 1]7

(i) Aa,1) = a for all a € [0,1];

(ii) A(a,b) = A(b,a);

(iii) A(a,b) < A(e,d) fora<e, b<d;

(iv) A(A(a,b),c) = A(a, A(b,c));

Ezxamples of t-norms are A(a,b) = ab and A(a,b) = min{a, b}.

Now t-norms are recursively defined by A = A\ and

AM(x1,. . Tp1) = A (A"’l(:vl, R xn),:vnH) .

Definition 2. [15] A mapping F : R — RT is called a distribution function if it is
non-decreasing and left continuous with inf;cp F'(t) = 0 and sup,cp F(t) = 1.

We shall denote by S the set of all distribution functions while H will always
denote the specific distribution function defined by

0, ift<o0;
1, ift>0.

H(t) = {

Definition 3. [15] A probabilistic metric space (shortly PM-space) is an ordered
pair (X, F), where X is a nonempty set of elements and F is a mapping from
X x X to S, the collection of all distribution functions. The value of F at (z,y) €
X x X is represented by F, . The functions Fy , are assumed to satisfy the following
conditions: for all x,y,z € X and t,s >0,

(1) Fpy(t) =1 for allt > 0 if and only v = y;

(i1) Fry (0) = 0;

(iii) Fyy(t) = Fyo(t);

(w) if Fpy(t) =1 and Fy .(s) =1 then F, ,(t+s) =1,

The ordered triple (X, F, ) is called a Menger space if (X, F) is a PM-space,
A is a t-norm and the following inequality holds:

(v) Fpy(t+5) > A(Fy 2 (t), Fsy(s)), for all z,y,z € X and t,s > 0.

Every metric space (X,d) can always be realized as a PM-space by considering
F: X x X — S defined by Fyy(t) = H(t — d(x,y)) for all x,y € X. So PM-spaces
offer a wider framework than that of metric spaces and are better suited to cover
even wider statistical situations.

Definition 4. [15] Let (X, F, ) be a Menger space with continuous t-norm.

(i) A sequence {zy} in X is said to be converge to a point x in X if and only if
for every e > 0 and A € (0,1), there exists an integer N such that Fy, y(e) > 1— X
foralln > N.
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(ii) A sequence {x,,} in X is said to be Cauchy if for every e > 0 and A € (0,1),
there exists an integer N such that F, ;. (€) >1— X for alln,m > N.

(iii) A Menger space in which every Cauchy sequence is convergent is said to be
complete.

Definition 5. [12] Two self mappings A and B of a Menger space (X,F,/) are
said to be compatible if and only if Faps, BAz,(t) = 1 for allt > 0, whenever {x,}
is a sequence in X such that Ax,, Bx, — z for some z in X.

Definition 6. [9] Let (X,F,A) be a Menger space and A, B be self maps of X. A
point x € X is called a coincidence point of A and B if and only if Ax = Bzx. In
this case w = Ax = Bux is called a point of coincidence of A and B.

Definition 7. [16] Two self mappings A and B of a Menger space (X, F,) are
said to be weakly compatible if they commute at their coincidence points, that is, if
Ax = Bx for some x € X, then ABx = BAx.

Remark 8. [16] Two compatible self-maps are weakly compatible, but the converse
is not true. Therefore the concept of weak compatibility is more general than that of
compatibility.

The following concept [2] is a proper generalization of nontrivial weakly com-
patible maps which do have a coincidence point. The counterpart of the concept of
occasionally weakly compatible maps in PM-spaces is as follows:

Definition 9. [9] Two self mappings A and B of a Menger space (X, F,/) are
occasionally weakly compatible if and only if there is a point x € X which is a
coincidence point of A and B at which A and B commute.

Lemma 10. Let (X, F,A) be a Menger space, A and B are occasionally weakly
compatible self maps of X. If A and B have a unique point of coincidence, w =
Ax = Bx, then w is the unique common fized point of A and B.

Proof. Since A and B are occasionally weakly compatible, there exists a point x € X
such that Az = Br = w and ABx = BAxz. Thus, AAx = ABx = BAx, which says
that Ax is also a point of coincidence of A and B. Since the point of coincidence
w = Az is unique by hypothesis, BAx = AAx = Ax, and w = Az is a common
fixed point of A and B. Moreover, if z is any common fixed point of A and B, then
z = Az = Bz = w by the unique of the point of coincidence. O

3 Result

Theorem 11. Let (X, F,A) be a Menger space. Further, let (L, A) and (M, S) are
occasionally weakly compatible maps in X satisfying

min{FLm’My(kt), FSy,Lx(kt)} + ’ngy,My(kt) > [OéFAm’LI(t) + ﬁFAI’Sy(t)] (3.1)
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for all z,y € X,k € (0,1) and t > 0 where 0 < a, 3 < 1 and 0 < v < 1 such that

Then L, A, M and S have a unique common fixed point in X.

Proof. Since the pairs (L, A) and (M, S) are occasionally weakly compatible, there
exist points u,v € X such that Lu = Au, LAu = ALu and Mv = Sv, MSv = SMwv.
Now we show that Lu = Mwv.

By putting = v and y = v in inequality (3.1), then we get

min{FLu,MU(kt)a FSU,Lu<kt)} + VFSU,MU(kw > [aFAU Lu( ) + BFAu Sv(t)]
min{FLu,MU(kt)y FMU,Lu(kt)} + ’YFMv,MU(kw > [O‘FLU Lu( ) + BFLU MU(t)]
Frumo(kt) +v > [a+ BFrumo(t)],
FLu,MU(kt) > [ FLuM'U )+(a_7)]
Fruo(kt) > <? 7)
FLu,Mv(kt) Z 1.

Thus, we have Lu = Mwv. Therefore, Lu = Au = Mv = Sv. Moreover, if there is
another point z such that Lz = Az. Then using the inequality (3.1) it follows that
Lz = Az = Mv = Sv, or Lu = Lz. Hence w = Lu = Au is the unique point of
coincidence of L and A. By Lemma 10, w is the unique common fixed point of L
and A. Similarly, there is a unique point z € X such that z = Mz = Sz. Suppose
that w # z and taking = u,y = z in inequality (3.1), then we get

min{ Frp nz(kt), Fsz pw(kt)} +YFs2 a2 (kt) > [aFaw pw(t) + BFaws:(t)],
min{ Fy - (kt), Fow(kt)} + 7 F: 2 (kt) > [aFyw(t) + BFw ()],
Fy.(kt)+v > [a +6Fw2( )],
Fu(kt) > [BFuz(t) + (a —7)]
Rt > (5 :ﬁ>
Fy.(kt) > 1

Thus, we have w = z. That is w is the unique common fixed point of L, A, M and
Sin X. O

Now, we give an example which illustrates Theorem 11.

Example 12. Let X = [0, 1] with the metric d defined by d(z,y) = |x — y| and for
each t € [0,1] define

—lz—y
, ift>0;
Foy(?) :{ 8 t tho
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forallx,y € X. Clearly (X, F,A) be a Menger space. Define L, A, M and S : X —
X by

[— N

z, if0<z<i; 3, if

<z
if 5 <z

= O
IAIA

1 : 1. 1 ; 1.
2 Zf0§13§§, (Q?): 2 Zf?§x§§?
1 2, ifi<a<l

Then L, A, M and S satisfy all the conditions of Theorem 11 for k € (0,1) with
respect to the distribution function F .

First, we have

£(3) = L= A(}) and LA = } = AL()

and

M(3) = L = S(2) and MS(2) = } = SM(3),

that is, L and A as well as M and S are occasionally weakly compatible. Also
(%) s the unique common fized point of L, A, M and S. On the other hand, it is
clear to see that the mappings L, A, M and S are discontinuous at (%)

On taking L = M and A = S in Theorem 11 then we get the following interesting
result.

Corollary 13. Let (X,F,A) be a Menger space. Further, let (L, A) be occasionally
weakly compatible maps in X satisfying

min{Fre 1y (kt), Fay,La(kt)} + v Fay,1y(kt) > [0F 4z 12() + BFaz 4y (1)) (32)

forall z,y € X,k € (0,1) and t > 0 where 0 < o, < 1 and 0 < v < 1 such that
Then L and A have a unique common fixed point in X .

Acknowledgements. The authors are thankful to Prof. Calogero Vetro for his
paper [17] and the referee for his/ her critical remarks to improve the paper.
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