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Fluorescence-enhanced optical tomography in small
volume: Telegrapher and Diffusion models
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Abstract. Small animal fluorescence-enhanced optical tomography has possibility for restruc-

turing drug discovery and preclinical investigation of drug candidates. However, accurate modeling

of photon propagation in small animals is critical to quantitatively obtain accurate tomographic

images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques

in turbid large media where absorption is low compared to scattering system. Unfortunately, this

approximation has significant limitations to accurately predict radiative transport in turbid small

media and also in a media where absorption is high compared to scattering systems. A radiative

transport equation (RTE) is best suited for photon propagation in human tissues. However, such

models are quite expensive computationally. To alleviate the problems of the high computational

cost of RTE and inadequacies of the diffusion equation in a small volume, we use telegrapher

equation (TE) in the frequency domain for fluorescence-enhanced optical tomography problems.

The telegrapher equation can accurately and efficiently predict ballistic as well as diffusion-limited

transport regimes which could simultaneously exist in small animals. The accuracy of telegrapher-

based model is tested by comparing with the diffusion-based model using stimulated data in a small

volume. This work demonstrates the use of the telegrapher-based model in small animal optical

tomography problems.

1 Introduction

The optical tomography in small animals has generated great interest for molecular
imaging, specifically drug and contrast agent development (Weissleder and Mah-
mood 2001 [42], Contag 2002 [6]). However, accurate modeling of photon propa-
gation in small animals is essential to quantitatively obtain accurate tomographic
images. In fluorescence-enhanced optical tomography, the diffusion equation is an
approximation to the radiative transport equation and is widely used to describe
photon migration in turbid media because it is simple and accurate if scattering
exceeds absorption in large tissue volumes. The limitations of this approach are
well known, namely, that the diffusion equation is accurate only at large times and
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distance and for relatively weak absorption, i.e. the absorption coefficient is much
smaller than the isotropic scattering coefficient. A shortcoming of diffusion equations
is that a local variation in photon density spreads over the medium instantaneously.
Furthermore, diffusion theory does not take into account unscattered light and it
neglects the ballistic nature of photon propagation (ballistic photons that travel
some distance from the source before their first scattering event) between successive
scattering events. Hence, diffusion theory entirely breaks down for short times and
distance, as well as for strong absorption. In contrast, a variation in photon density
should initially spread with the speed of light in the medium. Kim and Ishimaru
(1998) [19], Mitra and Kumer (1999) [24] and Elaloufi et al (2002) [12] have studied
the domain of validity of the diffusion equation by comparing with the prediction
of the radiative transport equation. They confirmed that the diffusion approxima-
tion is able to predict the long-time behavior of transmitted pulses through of size
L > 8ltr, where ltr is the transport mean free path and L is the length. They have
shown that in the absence of absorption, the transition (from ballistic to diffusive
regime) takes place for systems sizes of the order of 8ltr. That is an estimate of
the critical size L > 8ltr below which the transport is non-diffusive. Hence diffusion
theory will likely not be valid to model biological tissue of small animals. However,
some researchers have used the diffusion theory and have obtained good results
(Bkuestone et al 2004a [4], 2004b [5], Culver et al 2003 [7], Ntziachristos et al 2001
[25], Patwardhan et al 2005 [26], Ripoll et al 2003 [32], Schultz et al 2003 [37], 2004
[38], Xu et al 2005 [43], Graves et al 2004 [14], Siegel et al 2003 [39]).

Radiative transport equations (RTE) describe the density of photons as a func-
tion of position and direction is best suited for photon propagation in human tissues.
The RTE accurately predicts the propagation of photons through highly absorptive
tissue and is not limited by separation distances between the source and detectors.
Numerical methods such as finite element, finite difference, and finite volume meth-
ods (Dorn 1998 [8], Hielscher et al 1998 [15], Klose et al 2002a. [20] 2002b [21],
Abdoulaev and Hielscher 2003 [1], Aydin et al 2004 [3], Ren et al 2004 [30], Joshi et
al 2008) [18] are used to solve the RTE and other methods such as discrete ordinates
method (Duderstadt and Martin 1979 [9], Feng et al 2007 [13]), spherical harmonic
method (Duderstadt and Martin 1979 [9]), and integral transport method (Dud-
erstadt and Martin 1979 [9]) are used. However, such models are quite expensive
computationally. The images reconstructed by the diffusion equation are 60 times
faster than those of the radiative transport equation (Ren et al 2007 [31]). It was
demonstrated that the RTE gave more accurate results than the diffusion equation
for a variety of absorption to scattering ratios (Hielscher et al 1998 [15]).

A solution for the problems of the high computational cost of the RTE and
inadequacies of the diffusion equation in a small volume may be found by examining
some solutions of the telegrapher equation (TE). Attempts to incorporate a realistic
description of the ballistic feature of light propagation in turbid media have been
done by Durian and Rudnick (1997, 1999) [10, 11]. Durian and Rudnick (1997) [10]
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Fluorescence-enhanced optical tomography 69

have developed telegrapher equations in the time domain for small volume and claim
that by accounting for the ballistic motion of photon between successive scattering
events, provides a more accurate description for short times and distances in case of
strong absorption than the diffusion equation. This equation gives a quite accurate
prediction of time-resolved transmittance and reflectance in slab geometry for slab
thickness down to ltr/10. They have shown the agreement with the rigorous solution
of the radiative transport equation could be obtained by replacing the diffusion
equation by the telegrapher equation. Use of the telegrapher equation was also
advocated by Ishimaru (1989) [17], Polishchuk et al (1997) [27], Porra et al (1997)
[28], Soloviev et al (2007) [40] and Aronson et al (1999) [1]. The telegrapher equation
makes a significant improvement over the diffusion equation for short-time spreading
of a pulse in a media. The principle advantage of this approach over the diffusion
equation is that it provides accurate predictions of light distribution within turbid
media at positions close to the collimated source and over a full range of single
scattering albedo.

To study the impact of these assumptions on the telegrapher equation (TE),
we compare the performance of the diffusion model and the telegrapher model for
fluorescence-enhanced optical tomography problems in a small volume. We address
the cases of considerable absorption and weak scattering. In small geometries, the
phase-shift is very small at low frequency, and it is difficult to measure and prone
to error. Hence, it may be necessary to increase the modulation frequency to get
larger phase shifts, but unfortunately the amplitude decreases. In such cases, the
distance that a photon travels before the first scattering event is not negligible. In
other words, the contribution to the energy density due to ballistic photons cannot
be neglected. We have investigated the performance and the accuracy of these
equations on small tissue volumes using simulated data. Three dimensional (3-
D) finite element methods have been developed for both diffusion and telegrapher
equations using tetrahedral elements. The objective of this work is to demonstrate
that the telegrapher equation can be used for image reconstruction of small tissue
volumes for fluorescence-enhanced optical tomography. In Section 2, we first present
the governing coupled diffusion and telegrapher equations in frequency-domain for
fluorescence-enhanced optical tomography problems. These equations describe the
time-dependent propagation and attenuation of excitation and emission photons,
as well as the decay kinetics associated with generation of fluorescence. We then
present in Section 3 a comparison between the diffusion-based and telegrapher-based
reconstructions. Conclusions are given in Section 4.

2 Mathematical Model and Method

In fluorescence-enhanced frequency domain optical tomography problems, intensity
modulated excitation light launch on the tissue surface created a photon density wave
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through the tissue volume; activate fluorophores and generating intensity modulated
emission light. The emission photon density wave is phase-shifted and amplitude
attenuated relative to its activating excitation light due to the decay kinetics of the
fluorophore. The amplitude (IAC) and phase-shift (θ) are measured on the surface
and used for image reconstruction. Near-infrared light in tissues is modeled by the
diffusion equation of the radiative transport equation and the telegrapher equation
The coupled diffusion/telegrapher equations are solved with assumed optical prop-
erties of a small media like tissue by the finite element method to predict the fluo-
rescence measurement (IAC and θ) on the boundary. The penalty modified barrier
function method and truncated Newton method with trust region (PMBF/CONTN)
is then used within the inverse problem to update the values of the optical properties
(our case the absorption coefficients owing to fluorophore, µaxf ) that minimizes the
error between the boundary measurements and those calculated from the forward
problem (Roy et al 2005, 2006, 2007).

2.1 Forward Problem

(i) The diffusion equation

The coupled diffusion equations for fluorescence- enhanced optical tomography
problem in frequency domain are given below;
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where Φx and Φm are the AC components of the excitation and emission fluence
(photons/s cm2), and are given by Φx,m = IACx,m . The term µax is the sum of
the absorption coefficients that are due to the chromophores (µaxi, cm−1) (i.e.,
the endogenous chromophores in tissues) and the fluorophores or the exogenous
fluorescing agents (µaxf , cm

−1); µam represents the sum of the absorption coefficients
of the emission light that are due to the chromophores (µami, cm

−1) and fluorophores
(µamf , cm−1). The right hand term of equation 2.2 describes the generation of
fluorescence within the medium. The term φ represents the quantum efficiency of the
fluorescence process, which is defined as the probability that an excited fluorophore
will decay radiatively, and τ is the fluorophore lifetime (ns). Note that the source
term requires coupling with the solution of excitation fluence described by equation
2.1. Also, cx and cm represent the velocity of light at excitation and emission
wavelengths (cm/s); ω corresponds to the modulation frequency of propagating light
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(= 2πf radians); and r is the positional vector. The optical diffusion coefficients,
Dx and Dm for the excitation and emission light (centimeter) are given by

Dx,m = 1/3
[
µax,m + µsx,m (1− g)

]
(2.3)

where g represents the anisotropy coefficient, which has a value > 0.9 for biolog-
ical tissues, and µsx,m are the scattering coefficients at excitation (suffix “x”) and
emission (suffix “m”) wavelengths (cm−1), respectively. Partial current boundary
condition was employed to solve the coupled diffusion equations and is given by
(Ishimaru 1978)

Φx,m (r, ω) + 2γDx,m (r)
∂Φx,m (r, ω)

∂n
= 0 (2.4)

where γ is the index-mismatch parameter and a function of the effective refractive
index (Reff) at the boundary surface, which is determined directly from Fresnels
reflections. It is important to note that the diffusion equation applies when µax,m ≪
µ′

sx,m
.

(ii) The telegrapher equation

Three dimensional telegrapher equations in frequency domain is given below
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Since the values of speed of light cx,m and reduced scattering coefficient µ′

sx,m
=

µsx,m (1− g) set the scales for ballistic and diffusive behavior, it is convenient to
work in a dimension less system of units where all length are measured in units of
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and all times are measured in units of

(
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)
. The resulting dimensionless

telegrapher equation in frequency domain for fluence in three dimensions is thus

∇2Φx −

(
2µax +

1

Dx

)
iω +

[
µax

(
µax +

1

Dx

)
− ω2

]
Φx = 0 on Ω (2.7)

∇2Φm −

(
2µam +

1

Dm

)
iω +

[
µam

(
µam +

1

Dm

)
− ω2

]
Φx

= φµax
1.0

1− iωτ
Φx on Ω (2.8)

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 67 – 88

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


72 R. Roy

where µax,m = µax,m/µ
′

sx,m
is the dimensionless absorption coefficient, and Dx,m =

1/3 is the dimensionless diffusion coefficient. The boundary conditions are

[
ze

Dx,m

n̂ · ∇+

(
1

Dx,m

+ µa

)
+ iω

]
Φ (r, ω) = 0 (2.9)
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whereRw (µ) is angle-dependent reflectivity (Durian and Rudnick , 1997 [10], Lemieux
et al 1998 [22]) and points are normal to the boundary away from the medium. ze = 1
is used for this analysis (Vanel et al 2001 [41])

2.2 Formulation of the inverse problem

The error function considered for the image reconstruction problems was as follows
(Roy et al 2005 [33])
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where E is the error function associated with measurements; x represents the absorp-
tion coefficient due florophore µaxf , the subscript cal denotes the values calculated
by the forward problem; the subscript mes denotes measured value; and the super-
script Zp denotes the complex conjugate of the complex variable Zp, NS and NB are
the number of sources and detectors, respectively. The error function 2.5 is subject
to the constraint {l ≤ x ≤ u}, where l is the lower and u is the upper bounds of
lifetime, x given as N -vector. Since the known amount of fluorophore is introduced,
we can specify a lower bound of zero, and an upper bound of some practical value.
Zp, comprised of referenced fluorescent amplitude, IACrefp

, and referenced phase
shift θrefp measured at boundary point, p. Specifically the referenced measurement
at boundary point p is given by:

Zp = IACrefp
exp

(
iθrefp

)
. (2.12)

The data are normalized in this manner in order to eliminate instrument functions
(Roy et al 2003 [36]).

2.3 Merits of reconstruction algorithm

Both qualitative (visual) agreement and quantitative figures of merit were used to
assess the accuracy of the optimization techniques. We compare the methods in
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accordance with two error estimators. Weighted L1 and L2 errors are defined as
follows: 
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|△x|
2

=
√

1
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[(x)true − (x)cal]
2

(2.13)

where n is the number of nodal points in the finite element mesh. These estimators
are commonly called respectively: the mean absolute deviation error (MADE) and
the root mean square error (RSME).

3 Numerical Results and Discussion

We provide results of several numerical experiments involving a three-dimensional
cylindrical geometry with diameter 2.5 cm and height 2 cm (Figure 2). The optical
properties of these experiments (#1 – #4) are given in Table 1. We have obtained
the simulated data using the absorption coefficient owing to chrophore in the range
of 0.025 ≤ µax ≤ 0.027, absorption coefficient owing to fluorophore in the range
of 0.15 ≤ µaxf ≤ 0.17, reduced scattering coefficient (excitation) in the range of
14.08 ≤ µ′

sx ≤ 2.45, and emission in the range of 14.68 ≤ µ′

sm ≤ 1.75 (Table 1).
We have embedded a small spherical target and shown in Figure 2a. Figure 2b
shows the actual 2D absorption coefficient owing to fluorophore map in the X − Y
plane at Z = 1.0 cm. We have placed three layers of detectors with Z coordinates
at 0.5, 1.0 and 1.75. On each layer, 30 detectors are uniformly distributed on the
boundary. For reconstructions, we have used detectors in the middle sections only
and four sources are placed on this section (Z = 1.0). The tetrahedral elements
are used to generate the finite element mesh with 31073 elements and 6200 nodes.
All simulated data are generated with a finer finite element mesh about twice as
fine as the finite element mesh used in this analysis. The penalty modified barrier
function method with constrained truncated Newtons method (PMBF/CONTN) is
employed with both the telegrapher-based and the diffusion-based models for the
target reconstruction (Roy et al 2005, 2006, and 2007).

We have shown in Figures 3 and 4 the intensity (IAc) and phase shift of excitation
and emission light of experiments #1 and #4 (for brevity only experiments #1 and
#4 are shown) at a cross section (Z = 1.0) at 100MHz. The intensities (Figures 3a
and 4a) and phase shifts (Figures 3b and 4b) given by the diffusion equation are
smaller than the telegrapher equation, and the differences between them are quite
large. The intensities given by the diffusion equation are very small especially those
are opposite of the source points. The intensities and phase shift of the emission
light are larger than the excitation light. Since the media is relatively small, optical
separations between the source and the detectors are small. Photons go through
only a small number of scattering events between a source and a detector. This is
may be due to the relatively high mean free scattering path, ltr = 1/µ′

S , µ
′

S is the
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reduced scattering coefficient, which requires the photon to travel 0.071, 0.146, 0.307
and 0.408cm before they are considered to be diffuse for experiments #1, #2, #3
and #4, respectively (Table 1). The diffusion approximation may be valid when the
ratio of the physical distance between source and detectors to the photon transport
mean free path is greater than 3 (Martelli et al 2000 [23]). In our experiments, the
ratio of the source-detector distance to the photon transport mean free path varies
from 3.6 − 35.2, 1.8 − 17.1, 0.84 − 8.2, 0.64 − 6.1 (Table 1) for experiments # 1,
#2, #3, and #4, respectively. The ratio is slightly greater than 3 in experiment
#1. However, the diffusion equation predictions are not similar to the telegrapher
equation, demonstrating that non-diffusive propagation dominates in the solution.
Figures 3b and 4b show that the minimal value of phase shift given by the diffusion
equation at the central detector, thus demonstrating a shorter time of flight for
photons arriving at the central detectors. This suggests that the photons have a
greater likelihood to directionally travel from the illuminating point source to the
central detector through ballistic propagation than through diffusive propagation
(see discussion below). For fluorescence-enhanced optical tomography, we solve a
coupled diffusion equations, one for excitation light source and another for emission
light source. The excitation diffusion equation does not satisfy ballistic propagation,
thus produce errors in intensity and phase-shift of both excitation and the emission
light.

We have shown in Figures 5, 6, 7 and 4 the reconstructed absorption coefficient
owing to fluorophore by the diffusion-based and the telegrapher-based models in the
X − Y plane through the target at Z = 1.0 cm. Figures 5a, 6a, 7a and 4a show
the actual distribution of the absorption coefficient owing to fluorophore. Figures
5b, 6b, 7b and 4b show the diffusion-based reconstructed images of the absorption
coefficient owing to fluorophore at 100MHz. Figures 5c, 6c, 7c and 4c show the
telegrapher-based reconstructed images of the absorption coefficient at 100 MHz.
There are artifacts in the diffusion-based reconstructed images except for exper-
iment # 1 (Figure 5b) and it is very difficult to find the actual location of the
target. However, the telegrapher-based reconstruction provides better images. Our
numerical experiments show that the differences between the telegrapher-based and
diffusion-based reconstructions are very prominent. There are some artifacts in the
telegrapher-based reconstructed images but these are very small. The reconstructed
targets are clearly identifiable. The shapes of the reconstructed targets are slightly
smaller than the true target. Moreover, the locations of the reconstructed targets
are at the same location as the actual targets (centroids of the reconstructed target
by TE are given in Table 2.

We here consider the reconstruction of the absorption coefficient owing to fluo-
rophore at different modulation frequencies. In practice in small volumes, relatively
high modulation frequencies are needed to obtain a significant phase shift that can
be measured. Three modulation frequencies have been considered, and these are
100, 500 and 1000MHz. Figures 5d, 6d, 7d and 4d illustrate the diffusion based
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reconstruction and figures 5e, 6e, 7e and 4e show the telegrapher based reconstruc-
tion of experiments #1, #2, #3 and #4 at 1000MHz, respectively (for brevity only
100 and 1000MHz shown). As anticipated, the difference between diffusion-based
and telegrapher based models results in terms of quality of reconstructed images
increased as the modulation frequency increases. The quality of the diffusion-based
reconstruction has deteriorated (more artifacts) while the quality of reconstructed
image by the telegrapher-based model remains the same as the modulation fre-
quency increases for experiments #1, #2, and #3 (Figures 5d, 5e, 6d, 6e, 7d, 7,
4d and 4e). However, the quality of telegrapher-based reconstruction has improved
for experiment #4 as the modulation frequency increases. There are no artifacts
for experiment #4 at modulation frequencies 500 and 1000MHz. The CPU times
taken by the TE are more than twice than that of DE. Computationally, higher
modulation frequency result is in only a small increase in the computational times.

For quantitative measurements of the reconstructed image, we calculated cen-
troid, RMSE, and MADE. Calculated values of the MADE and the RMSE are listed
in Table 2. The maximum RMSE is 0.2 for experiment #4 and the minimum is
0.035 for experiment #1. The maximum MADE is 0.01 for experiment #4 and the
minimum is 0.003 for experiment #1.

In this work we focus on the cases of considerable absorption/or weak scattering
and a small volume L = 2.5 cm. In such cases, the distance that a photon travels
before the first scattering event is not negligible as given in Table 1. In other words,
the contribution to the energy density due to ballistic photons cannot be neglected.
Photons move ballistically in a straight line at speed c between successive scattering
events separated by an average distance. The contribution of the ballistic component
decreases exponentially with increasing τ = µel due to scatter and absorption, µe =
µs + µa (µs, is the scattering coefficient, µa is the absorption coefficient and l is
length) (Zhang 1999 [45]). It is well known that the diffusion equation provides
accurate prediction only in region where the angular distribution of the radiance is
nearly isotropic. This limitation restricts the applicability of the diffusion equation
to a media in which optical scattering dominates absorption, and location of the
target is sufficiently distant from modulated light source. Consequently, application
of the diffusion equation to biological tissue demands the use of source-detector
separation greater than several transport mean free paths, [ltr], and wavelengths in
the red to near-infrared spectral region.

Zhang et al 2002 [46] analyzed the transition from ballistic to diffusive trans-
port by solving the Bethe-Salpeter equation from a slab in the lowest-order ladder
approximation with isotropic scattering. They have found a region of strong devi-
ation from the diffusion approximation for 3ltr < L < Lc, where L is the length,
and Lc is a critical length that depends on the amount of internal reflection at the
slab boundaries and the diffusion coefficient in this region. Zhang et al 1999 [45]
found that transition from ballistic to diffusive behavior occurs when L is between
3ltr and 4ltr while anisotropy g is 0.5 and 0.8. However, the crossover becomes less
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sharp when the scattering is more anisotropic. In biological tissue, anisotropy g is
0.9. They have pointed out that the crossover thickness is not universal, as this
thickness depends on the physical quantity as well as the source detector geometry.
The crossover thicknesses are 0.21− 0.28, 0.44− 0.58, 0.92− 1.23 and 1.22− 1.63cm
for experiments #1, #2, #3 and #4, respectively (Table 3). They are quite large
compared to our geometry.

We have found that the diffusion equation is less accurate for predicting the
amplitude at the excitation wavelength than the emission wavelength because of
the isotropic generation of the emission photons. The emission measurements are
susceptible, but less so excitation measurements, when integrating small volumes
(Figures 3 and 4). So, relatively high modulation frequencies need to be used to
obtain a significant phase shift that can be measured in small volumes. Hence in
this numerical study, higher modulation frequencies are utilized.

The domain of validity of the diffusion equation for time-dependent transport
has been studied by comparison with the prediction of the RTE (Kim & Ishimaru
(1998) [19], Mitra and Kumar (1996) [24], Elaloufi et al (2002) [12]). To apply the
diffusion equation, it must satisfy the following conditions:

a. Elaloufi et al 2002 [12] have shown that the diffusion approximation is able
to predict the long-time behavior of transmitted photons through systems of
size L > 8ltr. That is, the diffusion theory is not applicable for thin systems
L > 8ltr. The diameter of our geometry is L = 2.5 cm and the values of
8ltr are 0.55, 1.17, 3.45, and 3.26cm for experiments #1, #2, #3 and #4,
respectively (Table 3). Since 8ltr values of experiments #3 and #4 are greater
than the diameter of our geometry (Table 3), these experiments do not satisfy
the condition of diffusion approximation. Even though, 8ltr values of experi-
ments #1 and #2 are less than the diameter of our geometry (i.e., satisfy the
diffusion approximation) we are able to reconstruct images using the diffusion-
based model for experiment #1 only while the telegrapher-based model can
reconstruct the target.

b. Lemieux et al 1998 [22] have shown that if the thickness of the geometry is
in the range 5 < L/ltr < 20 the diffusion approximations are on the verge
of being unacceptable. The diameter of our geometry is L = 2.5 cm and the
values of L/ltr are 36.6, 17.78, 8.48 and 6.37 cm for experiments #1, #2, #3
and #4, respectively (Table 3). Experiment #1 is outside this range. Thus
the diffusion equation is applicable for this experiment and we are able to
reconstruct images using the diffusion-based model. Experiments #2, #3 and
#4 are within the range. Hence, the diffusion approximation is not valid for
these experiments.

c. Soloviev and Karsnosselskaia 2006 [40] have shown that the diffusion approxi-
mation can be used only for the values of albedo a′ ≥ 0.99 (a′ = [µ′

s/ (µa + µ′

s)])
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for frequencies below 1GHz. The values of albedo are 0.99, 0.97, 0.95 and
0.94 for experiments #1, #2, #3 and #4, respectively (Table 3). However,
when albedo is a′ = 0.99 (experiment #1), the diffusion based reconstruction
is successful while the telegrapher-based has reconstructed the images for all
experiments.

d. Diffusion approximation is expected to perform well when b′ ≥ 30 (b′ = µ′/µa)
(You et al 2005 [44]). The values of b′ are 93.0, 40.0, 21.7 and 16.3 for ex-
periments #1, #2, #3 and #4, respectively (Table 3). This condition is not
satisfied by experiments #3 and #4. Although experiments #1 and #2 sat-
isfy this condition, the diffusion-based reconstructions of targets are achievable
only for experiment #1 while the telegrapher-based model has reconstructed
images for all experiments.

All our numerical works were performed on Sun-work station Ultra 80. We ob-
served that diffusion-based reconstructions are about 2 times faster than telegrapher-
based reconstructions while Ren et al (2007) [31] have found that diffusion-based
reconstructions are 60 times faster than radiative transport (RTE)-based reconstruc-
tions.

As demonstrated, the telegrapher equation is capable of predicting the time-
dependent excitation and emission photon flux in small volumes. The telegrapher
equation is a more general type of approximation, which assumes the finite prop-
agation speed and contains the diffusion approximation as its limiting case. To
our knowledge, this is the first fluorescence-enhanced frequency-domain telegrapher-
based model developed for optical tomography problems.

4 Conclusion

In this paper, we have presented the diffusion equation and the telegrapher equation
in frequency-domain for fluorescence-enhanced optical tomography problems in small
volume. The coupled telegrapher equation and diffusion equation are solved by the
finite element method. The simulated data are used to investigate the performance
of the telegrapher equations. We have found that the diffusion-based model is able
to reconstruct images for experiment #1 only in a geometry L = 2.5 cm while the
telegrapher-based model is able to reconstruct images when the albedo is less than or
equal to 0.99. The telegrapher-based model has reconstructed images when (i) the
ratio of the physical distance between source and detectors to the photon transport
mean free path is small, (ii) thin geometry is less than 8ltr and (iii) thin geometry
lies in the range 5 < L/ltr < 20. The telegrapher-based model is able to detect a
target embedded in the media and the calculated location of the reconstructed tar-
get is at the same location of the actual target. For quantitative measurements of
the reconstructed image, we calculated the centroid, RMSE and MADE. Unlike the
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diffusion-based model, the quality of telegrapher-based reconstruction improved as
the modulation frequencies were increased. The principal advantages of the telegra-
pher equation over diffusion equation are (i) it provides accurate predictions of light
distribution within turbid media at positions close to collimated source, and (ii) it
provides accurate predictions over a full range of single scattering albedo. The use
of the telegrapher equation shows promise in solving small volume problems. Specif-
ically, this model will allow using small source detector separation and media with
high absorption and small scattering. For fluorescence-enhanced optical tomography
problems, this may allow the development of image reconstruction with a negligible
computation time compared to the radiative transport equation. In our opinion the
behavior of the telegrapher equation is more general and rigorous than the widely
accepted diffusion approximation. For practical imaging the diffusion model can
be equally well suited to modeling light propagation in highly scattering and large
media. Our results provide a significant test of the applicability of the telegrapher
equations in small volumes for fluorescence-enhanced optical tomography problems.

We will continue to assess the effect of the telegrapher equation in small volumes
for optical tomography problems. Obviously more work is required to validate our
forward solver, such as using experimental data with different geometries. Due
to computational and experimental restraints, we have not been able to run an
extensive number of trials to investigate the performance using different mesh sizes,
models, and data types. However, the results of this first attempt are hopeful.
We are confident that the current efforts to introduce the telegrapher equation as
forward solver instead of the diffusion equation in small volumes.

In conclusion, we have presented for the first time the telegrapher equation in
frequency domain in a small volume for fluorescence-enhanced optical tomography
problems. We have shown that the image reconstruction is possible in small vol-
umes using the telegrapher equation as a forward problem. This fact is particularly
important for reconstruction problems to map the optical properties of the medium
in short time and distance. Based on the studies presented herein, the telegrapher-
based model proved to be a fundamental component of a robust tomographic algo-
rithm capable of obtaining quantitatively correct reconstruction and thus opens up
interesting possibilities in future studies.
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Figure 2: (a) Geometry of a small volume and three dimensional distribution of
the absorption coefficient (cm-1) owing to fluorophore, , represent the target as an
isosurface and (b) as 2D actual absorption coefficient map in X-Y plane through the
target at Z=1.0 cm.
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Figure 5: Experiment #1, (a) 2D actual absorption coefficient owing to fluorophore,
map in the X-Y plane through the target at Z=1.0 cm. (b) Reconstructed image in
the 2-D X-Y plane (Z=1.0) by the diffusion-based model at 100 MHz. (c) Recon-
structed image in the 2-D X-Y plane (Z=1.0) by the telegrapher-based model at 100
MHz. (d) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the diffusion-based
model at 1000 MHz. (e) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the
telegrapher-based model at 1000 MHz.
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Figure 6: Experiment #2, (a) 2D actual absorption coefficient owing to fluorophore,
map in the X-Y plane through the target at Z=1.0 cm. (b) Reconstructed image in
the 2-D X-Y plane (Z=1.0) by the diffusion-based model at 100 MHz. (c) Recon-
structed image in the 2-D X-Y plane (Z=1.0) by the telegrapher-based model at 100
MHz. (d) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the diffusion-based
model at 1000 MHz. (e) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the
telegrapher-based model at 1000 MHz.

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 67 – 88

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


82 R. Roy

Figure 7: Experiment #3, (a) 2D actual absorption coefficient owing to fluorophore,
map in the X-Y plane through the target at Z=1.0 cm. (b) Reconstructed image in
the 2-D X-Y plane (Z=1.0) by the diffusion-based model at 100 MHz. (c) Recon-
structed image in the 2-D X-Y plane (Z=1.0) by the telegrapher-based model at 100
MHz. (d) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the diffusion-based
model at 1000 MHz. (e) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the
telegrapher-based model at 1000 MHz.
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Figure 8: The Experiment #4, (a) 2D actual absorption coefficient owing to fluo-
rophore, , map in the X-Y plane through the target at Z=1.0 cm. (b) Reconstructed
image in the 2-D X-Y plane (Z=1.0) by the diffusion-based model at 100 MHz.
(c) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the telegrapher-based
model at 100 MHz. (d) Reconstructed image in the 2-D X-Y plane (Z=1.0) by the
diffusion-based model at 1000 MHz. (e) Reconstructed image in the 2-D X-Y plane
(Z=1.0) by the telegrapher-based model at 1000 MHz.

Table 1: Optical properties of tissue of a phantom
1 The distance 1/µ′

s, the photon transport mean free path
2 The ratio of physical distance between source and detector to the photon transport
mean free path
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Table 2: Centroid of the actual and reconstructed target by telegrapher-based model.
The root mean square error (RMSE) and the mean absolute deviation error (MADE)
of reconstructed target by telegrapher-based model

RMSE = |△x|
2

√√√√ 1

n

n∑

i=1

[(x)true − (x)cal]
2

MADE = |△x|
1
=

1

n
|(x)true − (x)cal|

Table 3: Transition from ballistic to diffusion region and conditions for diffusion
approximation
µ′

sx= reduced scattering coefficient
1. albedo=(a′ = [µ′

sx/ (µa + µ′

sx)])
2. [b′ = (µ′

sx/µa) ≥ 30]
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