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STABILITY FOR PERIODIC EVOLUTION
FAMILIES OF BOUNDED LINEAR OPERATORS

Olivia Saierli

Abstract The long time behavior for solutions of evolution periodic equations are reviewed.

1 Introduction

The study of differential autonomous systems, especially when the ”coefficients”
are unbounded (the case of infinitesimal generators, for example) is well represented
in the contemporary mathematics literature. The study of asymptotic behavior of
solutions of systems with time-varying coefficients is more difficult since, in this
context, the well known spectral criteria (such as those existing in the autonomous
case) are no longer valid. In the following, we describe the history of the issue
and also we state new results concerning asymptotic behavior of solutions of non-
autonomous periodic systems.

Let A be a bounded linear operator acting on a Banach space X, x an arbitrary
vector in X and let µ be a real parameter.

First consider the autonomous system

ẏ(t) = Ay(t), t ≥ 0 (1.1)

and the associated inhomogeneous Cauchy Problem{
ẏ(t) = Ay(t) + eiµtx, t ≥ 0
y(0) = 0.

(1.2)

It is well-known, [30], [6], that the system (1.1) is uniformly exponentially stable
(i.e. there exist two positive constants N and ν such that ∥etA∥ ≤ Ne−νt) if and
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62 O. Saierli

only if for each µ ∈ R and each x ∈ X, the solution of the Cauchy Problem (1.2) is
bounded, i.e. if and only if

sup
t>0

∫ t

0
e−iµsesAxds

 := M(µ, x) < ∞. (1.3)

We complete the previous result as follows:

Theorem 1. The following four statements are equivalent:

(1) The semigroup
{
etA

}
t≥0

is uniformly exponentially stable.

(2) The relation (1.3) occurs.

(3) The relation (1.3) occurs and for a given positive q and each ω ∈ R, the
operator Vω(q) :=

∫ q
0 e−iωsesAds, is invertible.

(4) For each x ∈ X, one has

sup
µ∈R

sup
t>0

∫ t

0
e−iµsesAxds

 := M(x) < ∞. (1.4)

It is easy to see that the map s ↦→ Vω(s) : [0,∞) → L(X) is the solution of the
following operatorial Cauchy Problem{

Ẏ (t) = AY (t) + eiωtI, t ≥ 0, Y (t) ∈ L(X)
Y (0) = 0.

Here and in the following, L(X) denotes the Banach algebra of all linear and
bounded operators acting on X endowed with the operator norm.

Clearly, in the above Theorem 1, the assertions (3) and (4) contain additional
assumptions in comparison with (2). The presentation was made in this manner
because we are interested in formulating of a similar result in the time varying
periodic case. In this latter case, the first two assertions are no longer equivalent.

Proof of Theorem 1. The equivalence between (1) and (2) was settled in [6], and
the implications (4) ⇒ (2), (1) ⇒ (4) and (3) ⇒ (2) are straightforward. It remains
to show that (1) ⇒ (3). A simple calculation leads to

Vω(q) =
∫ q
0 e−iωsesAds =

∫ q
0 e−iωsIesAds

=
∫ q
0 es(A−iωI)ds = (A− iωI)−1

(
eq(A−iωI) − I

)
.

Suppose for a contradiction that 1 ∈ σ
(
eq(A−iωI)

)
. From the spectral mapping

theorem we get σ
(
eq(A−iωI)

)
= eqσ(A−iωI). Thus, e2kπi = eqλ, for k ∈ Z and some

λ ∈ σ(A − iωI). Therefore,
(
2kπ
q + ω

)
i ∈ σ(A), which is a contradiction because,
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Stability for periodic evolution families 63

from hypothesis, the spectrum of A does not intersect the imaginary axis. These
complete the proof.

In the following, we analyze if the time varying periodic version of the above
Theorem 1, remains valid or not.

2 The issue for bounded linear operators

Let X be a complex Banach space. Assume that the map

t ↦→ A(t) : R → L(X)

is continuous and q-periodic, i.e. A(t+ q) = A(t) for t ≥ 0 and some positive q. The
evolution family associated to the family {A(t)} is denoted and defined by

U = {U(t, s)}t≥s≥0, U(t, s) := Φ(t)Φ−1(s), ∀t ≥ s ≥ 0.

Here and in as follows, Φ(·) is the unique solution of the operatorial Cauchy Problem:{
Ẋ(t) = A(t)X(t), t ∈ R
X(0) = I.

For each given t ≥ 0, the operator Φ(t) is invertible. Its inverse is Ψ(t), where Ψ(·)
is the solution of the Cauchy Problem{

Ẋ(t) = −X(t)A(t), t ∈ R
X(0) = I.

The family U = {U(t, s)}t≥s satisfy:

1. U(t, t) = I, for all t ∈ R. Here I is the identity operator on X.

2. U(t, s)U(s, r) = U(t, r), for all t ≥ s ≥ r.

3. The map (t, s) ↦→ U(t, s) : {(t, s) ∈ R2 : t ≥ s} → L(X) is continuous.

4. U(t+ q, s+ q) = U(t, s), for all t, s ∈ R.

5. ∂
∂tU(t, s) = A(t)U(t, s), for all t, s ∈ R.

6. ∂
∂sU(t, s) = −U(t, s)A(s), for all t, s ∈ R.

7. There exist two constants ω ∈ R and M ≥ 1 such that

∥U(t, s)∥ ≤ Meω(t−s),∀t ≥ s.
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64 O. Saierli

In particular, the family U is strongly continuous and exponentially bounded.
Clearly, Vµ(·) =

∫ ·
0 e

iµsU(·, s)ds, is the unique solution of the next inhomogeneous
operatorial problem {

Ẋ(t) = A(t)X(t) + eiµtI, t ≥ 0
X(0) = 0.

Some details concerning the proof of the next two theorems are presented in as
follows and full details can be found in [4]. The next lemma is the key tool in the
proof of the Theorem 3 below. It belongs to the general ergodic theory which is well
developed in [41]

Lemma 2. ([19, Lemma 1]) A strongly continuous, q-periodic and exponentially
bounded evolution family acting on a Banach space X U = {U(t, s)}t≥s≥0 is uniformly
exponentially stable if and only if for each µ ∈ R occurs

sup
ν≥1


ν∑

k=1

eiµkU(q, 0)k

 := L(µ) < ∞.

Theorem 3. The following two statements hold true:

1. If the evolution family U is uniformly exponentially stable then, for each µ ∈ R
and each x ∈ X, have that

sup
t≥0

∫ t

0
eiµsU(t, s)xds

 := M(µ, x) < ∞. (2.1)

2. Conversely, if (2.1) occurs and for each ω ∈ R, the operator

Vω(q) :=

∫ q

0
eiωsΦ(q)Φ−1(s)ds is invertible, (2.2)

then, the family U is uniformly exponentially stable.

Proof. The proof of the first statement is obvious. To prove the second one, let
t ≥ 0, ν ∈ Z+ and r ∈ [0, q] such that = νq + r. A simple calculation yields:

Φµ(t) = U(r, 0)
ν−1∑
k=0

eiµqkU(q, 0)ν−k−1Φµ(q) +

∫ qν+r

qν
eiµsU(t, s)ds.

Now, we use the fact that the operators U(r, 0) and Φµ(q) are invertible and apply
Lemma 2.
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Stability for periodic evolution families 65

Theorem 4. The family U is uniformly exponentially stable if and only if for each
x ∈ Cn, one has

sup
µ∈R

sup
t≥0

∫ t

0
eiµsΦ(t)Φ−1(s)xds

 := K(x) < ∞. (2.3)

To prove Theorem 4 we need two lemmas. In order to introduce them, let denote
by FΦ(R+, X) the set of all continuous and q-periodic functions f : R+ → X, whose
restriction to the interval [0, q] are given by f(s) = h(s)Φ(s)b, with b ∈ X. The map
h(·) belongs to {h1(·), h2(·)}, where h1 and h2 are scalar-valued functions, defined
on [0, q] by (see Figure 1):

h1(s) =

{
s, s ∈ [0, q2);
q − s, s ∈ [ q2 , q]

and h2(s) = s(q − s).

Figure 1: Graphic representation of function h1 and h2

Lemma 5. Every function f ∈ FΦ(R+, X) satisfy a Lipschitz condition on R+.

Proof. Let b ∈ X, j ∈ {1, 2} and f ∈ FΦ(R+, X). The function hj is bounded and

max
s∈[0,q]

hj(s) = ρ, where ρ := max

{
q

2
,
q2

4

}
. (2.4)

Integrating the equality ∂
∂tΦ(t) = A(t)Φ(t) between the positive numbers t1 and t2,

with t2 ≥ t1, t1, t2 ∈ [0, q] and taking into account that sups∈[0,q] ∥Φ(s)∥ := M < ∞,
we get

∥Φ(t2)− Φ(t1)∥ ≤ M∥A(·)∥∞|t2 − t1|.
Clearly, the last inequality remains valid for t2 ≤ t1. Moreover, using the inequality
|hj(t2)− hj(t1)| ≤ ρ̃|t2 − t1|, ρ̃ := max{1, q}, we get

∥f(t2)− f(t1)∥ ≤ M (ρ̃+ ρ∥A(·)∥∞) ∥b∥|t2 − t1|.
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66 O. Saierli

If t2 ∈ [(k − 1)q, kq] and t1 ∈ [kq, (k + 1)q], with t2 < t1 and k ∈ Z, then from

∥f(t2)− f(kq)∥ ≤ c · |t2 − kq| and ∥f(kq)− f(t1)∥ ≤ c · |kq − t1|

it follows

∥f(t2)− f(t1)∥ ≤ c · [|t2 − kq|+ |kq − t1|] = c · |t2 − t1|.

Finally, if t1, t2 ∈ [kq, (k + 1)q] or |t2 − t1| ≥ q, considering t1 = t∗1 + k1q and
t2 = t∗2 + k2q, with t∗1, t

∗
2 ∈ [0, q] and k1, k2 ∈ Z, we obtain

∥f(t2)− f(t1)∥ = ∥f(t∗2)− f(t∗1)∥ ≤ c · |t2 − t1|.

Now, denote by FU (R+, X) the set of all continuous and q-periodic functions
f : R+ → X, whose restrictions to the interval [0, q] are given by f(s) = h(s)U(s, 0)b,
with b ∈ X. The second lemma is stated as follows:

Lemma 6. [15, Thm. 1] Let U = {U(t, s)}t≥s≥0 be a strongly continuous and q-
periodic evolution family acting on a Banach space X. If for each µ ∈ R and each
f ∈ FU (R+, X), occurs

sup
t>0

∫ t

0
eiµsU(t, s)f(s)ds

 := K(µ, f) < ∞, (2.5)

then the family U is uniformly exponentially stable.

Sketch of the proof of Theorem 4:

We show that (2.5) is a consequence of (2.3). First, according to Lemma 5, every
function from FΦ(R+, X) satisfy a Lipschitz condition on R+. Then, using the well
known Fourier theorem, [60, Ex. 16, pp. 92-93], such functions belong to the space
AP1(R+, X). The desired assertion is obtained by applying Lemma 6.

�

Extensions of the above results to the general case of exponential dichotomy has
been obtained in [71], [42], [72].

Next, we analyze the issue when the ”coefficient” A is the infinitesimal generator
of a strongly continuous semigroup T = {T (t)}t≥0.
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Stability for periodic evolution families 67

3 The semigroup case

Let X be a Banach space and let L(X) be the Banach algebra of all bounded linear
operators acting on X. The norms in X and in L(X) will be denoted by the same
symbol, namely by ∥ · ∥.

A family T= {T (t) : t ≥ 0} ⊆ L(X) is called semigroup of operators if T (0) = I
and T (t + s) = T (t) ◦ T (s), for all t, s ≥ 0. Here I denotes the identity operator
in L(X). Recall that a semigroup T is called uniformly continuous (or uniformly
continuous at 0) if limt→0+ ∥T (t) − T (0)∥L(X) = 0 , it is called strongly continuous
(or strongly continuous at 0) if limt→0+ ∥T (t)x − x∥X = 0, for all x ∈ X and it
is weakly continuous if limt→0+ |x∗(T (t)x) − x∗(T (0)x)| = 0, for all x ∈ X and
all x∗ ∈ X∗. Here X∗ is the (strong) dual space of X. It is well-known that a
semigroup of operators is strongly continuous if and only if it is weakly continuous,
[32]. Obviously, uniformly continuous semigroups are strongly continuous, but the
converse statement is not true. The continuity at 0 of a trajectory t ↦→ T (t)x, (x ∈
X), implies its continuity everywhere in R+. More exactly, in such circumstances,
the map t ↦→ T (t)x is continuous on R+. If T is a strongly continuous semigroup
then it is exponentially bounded, i.e., there exist two positive constants ω ∈ R and
M ≥ 1 such that

∥T (t)∥ ≤ Meωt, for all t ≥ 0. (3.1)

If the inequality (3.1) is fulfilled, the semigroup T has an uniform growth bound
denoted by

ω0(T) = inf{ω ∈ R : there exists M ≥ 1 such that ∥T (t)∥ ≤ Meωt,∀t ≥ 0}
= inf{ω ∈ R : the map t ↦→ e−ωt∥T (t)∥ is bounded on R+}.

(3.2)

Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on a Banach space
X. The linear operator A : D(A) ⊂ X → X, defined by

Ax = lim
t→0+

T (t)x− x

t
, x ∈ D(A),

is called the infinitesimal generator of the semigroup T. Here, D(A) denotes the

maximal domain of A, and it consists of all x ∈ X for what the limit: limt→0+
T (t)x−x

t ,
exists in X. The infinitesimal generator (A,D(A)) of the semigroup T verify:

• A is a linear operator defined on the linear subspace D(A).

• If x ∈ D(A) then T (t)x ∈ D(A) and the map t ↦→ T (t)x is continuous
differentiable on R+. In addition,

d

dt
[T (t)x] = T (t)Ax = AT (t)x, for all t ≥ 0.
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68 O. Saierli

In particular, the map T (·)x is the classical solution of the abstract Cauchy
Problem

u̇(t) = Au(t), t ≥ 0, u(0) = x.

When y ∈ X\D(A), the map T (·)y is calledmild solution of the above problem.

• For each t ≥ 0 and each x ∈ X have that
∫ t
0 T (s)xds ∈ D(A) and

T (t)x− x = A

∫ t

0
T (s)xds.

Moreover, when x ∈ D(A) one has

T (t)x− x =

∫ t

0
T (s)Axds. (3.3)

• The generator A is densely defined, i.e. D(A) = X. This property help us
to define the adjoint of A. We define D(A2) as the set of all x ∈ D(A) with
Ax ∈ D(A). The domain of the other powers of A are defined in a similar
manner. We mention that even the smaller set D :=

⋂∞
n=1D(An) is dense in

X.

• A is a closed operator, i.e. its graph is a closed set in X×X. With other words,
if (xn), x and y are such that xn ∈ D(A), x, y ∈ X and xn → x,Axn → y as
n → ∞, in the norm of X, then x ∈ D(A) and Ax = y.

3.0.1 Elements of spectral theory

Let T : D(T ) ⊂ X → X be a linear operator. The set of all λ ∈ C for what
(λI − T ) : D(T ) → X is invertible in L(X), (i.e. there exists L ∈ L(X) such that
(λI − T )Lx = x for all x ∈ X and L(λI − T )y = y for all y ∈ D(T )) is denoted
by ρ(T ), and is called the resolvent set of T. The set σ(T ) := C \ ρ(T ) is called the
spectrum of T . Generally speaking, the sets ρ(T ), σ(T ) can be empty. When T is
closed and λ ∈ ρ(T ) then R(λ, T ) := (λI − T )−1 is a bounded linear operator on X
called the resolvent operator (of T in λ). If T is a closed operator then λ ∈ ρ(T ) if and
only if the map λI−T : D(T ) → X is bijective. If A generates a strongly continuous
semigroup then ρ(A) is a non-empty open set. In fact, in this case ρ(A) contains an
half-plane of the complex plane. However, the spectrum of a generator can be the
empty set. The spectral bound of a infinitesimal generator denoted by s(A) is the
supremum of the set {ℜ(z) : z ∈ σ(A)}. Clearly, we have −∞ ≤ s(A) < ∞. For a
bounded linear operator A, defined on the Banach space X, the spectrum σ(A) is
always a compact and nonempty set; therefore, its spectral radius, denoted by r(A)
is given by

r(A) := sup{|λ| : λ ∈ σ(A)} = lim
n→∞

∥An∥1/n.
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Stability for periodic evolution families 69

Moreover it is finite and satisfy r(A) ≤ ∥A∥ ([63, Chapter V, Theorem 3.5] or [69,
XIII.2, Theorem 3]).

In the next two theorems, several connections between a strongly continuous
semigroup and the resolvent of its infinitesimal generator, are established.

Theorem 7. Let T= {T (t)}t≥0 be a strongly continuous semigroup defined on a
Banach space X and let ω ∈ R and M ≥ 1 such that ∥T (t)∥ ≤ Meωt, for t ≥ 0. Let
(A,D(A)) be the infinitesimal generator of T. The following statements hold true.

• If for λ ∈ C there exists (as improper integral) R(λ)x :=
∫∞
0 e−λsT (s)xds for

all x ∈ X, then λ ∈ ρ(A) and R(λ,A) = R(λ).

• If ℜ(λ) > ω, then λ ∈ ρ(A) and R(λ,A) = R(λ).

• ∥R(λ,A)n∥ ≤ M
(ℜ(λ)−ω)n , for each ℜ(λ) > ω and each n ∈ Z+.

The proof of the above Theorem 7 can be found in [32, Cap. II]. We mention
that a closed and densely defined operator A, verifying the third statement from the
previous theorem, generates a strongly continuous semigroup.

Theorem 8. Let A be a closed operator. The following statements hold true.

• For every λ ∈ ρ(A), the following spectral mapping theorem for operator
resolvent one has:

σ(R(λ,A)) =
1

σ(λI −A)
:=

{
1

λ− µ
: µ ∈ σ(A)

}
. (3.4)

• An obvious consequence of (3.4) is the next useful inequality:

dist (λ, σ(A))∥R(λ,A)∥ ≥ 1. (3.5)

In particular, this shows that the operator resolvent ”exploding” in the near of
the spectrum. An important property of the operator resolvent is presented in
the following.

• Assume that the resolvent set ρ(A) contains the half-plane {ℜ(z) > 0} and
that

sup
ℜ(z)>0

∥R(z,A)∥ := M < ∞.

Thus, π := {ℜ(z) > − 1
M } ⊂ ρ(A) and ∥R(z,A)∥ ≤ M for all z ∈ π.

The proof of the above Theorem 8 can be found, for example, in the van Neerven
monograph [65].
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3.0.2 Characterizations of the uniform exponential stability

The semigroup of operators T= {T (t)}t≥0, defined on a Banach space X is called
uniformly exponential stable if there exist the nonnegative constants N and ν such
that

∥T (t)∥ ≤ Ne−νt, for each t ≥ 0.

From the definition of the uniform growth bound of a semigroup T= {T (t)}t≥0

(3.2), it follows that the semigroup T is uniformly exponentially stable if and only
if ω0(T) is negative.

Next, we analyze the concept of stability from two perspectives: the analytical
continuation of the operator resolvent and the admissibility of Perron type.

Obviously, if T is an uniformly exponentially stable semigroup then, for each
x ∈ X and each 1 ≤ p < ∞, the map T (·)x belongs to Lp(R+, X).

The following theorem shows that the converse statement is also true. See [25],
[51] and [52, Chapter.4, Theorem 4.1].

Theorem 9. ([Datko-Pazy Theorem]) A strongly continuous semigroup T= {T (t)}t≥0,
acting on a Banach space X is uniformly exponentially stable if and only if for a
given p ∈ [1,∞) (so for all) and for any x ∈ X, occurs∫ ∞

0
∥T (t)x∥pdt < ∞.

With other words, the trajectories of a strongly continuous semigroup T belong
to the space Lp(R+, X) if and only if the semigroup T is uniformly exponentially
stable.

Based on this theorem it follows that the uniform growth bound ω0(T) is the
abscissa of absolute convergence of the improper Laplace transform of T, i.e.

ω0(T) = inf

{
ω ∈ R : lim

t→∞

∫ t

0
e−ωs∥T (s)x∥ds exists, for each x ∈ X

}
.

An important role in the study of asymptotic behavior of the trajectories of a
semigroup T, is also played by the index ω1(T) which monitors the growth bound
of the classical solutions, i.e. of solutions that have started from D(A). Frank
Neubrander has shown in [48] that ω1(T) is the abscissa of convergence of the
improper Laplace transform of the semigroup T, i.e. it is the infimum of all ω ∈ R
for what the limit limt→∞

∫ t
0 e

−λsT (s)xds exists in X for all x ∈ X and all λ ∈ C
with ℜ(λ) > ω. As is well known, such complex numbers λ belong to the resolvent
set ρ(A) and the above limit is equal to R(λ,A)x. In [3, A.IV, Corolarul 1.5], it was
shown that always occurs

s(A) ≤ ω1(T) ≤ ω0(T).
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Stability for periodic evolution families 71

When the semigroup T is uniformly continuous the above indices are equal, but in
the general case they can be mutually different.

Generally speaking, it is difficult to apply Theorem 9 in concrete applications,
since the knowledge of the semigroup T is needed. Most often, we only have
information about its infinitesimal generator A. Therefore, characterizations of
uniform exponential stability in terms regarding the generator A or the operator
resolvent R(λ,A) are useful and effective.

It is known that the location of the spectrum of a generator of a strongly
continuous semigroup in the half-plane C− := {λ : ℜ(λ) < 0}, does not ensure
convergence towards 0 of the semigroup trajectories. Moreover, the spectral mapping
theorem (i.e. the equality σ(T (t)) = etσ(A) \ {0}) does not work for strongly
continuous semigroups, but it works for eventually norm continuous semigroups,
i.e. the semigroups T for which there exists t0 ≥ 0 such that the map t ↦→ T (t) is
continuous on (t0,∞) in the norm topology of L(X), [26].

However, Gearhart, [34], has obtained a characterization of σ(T (t)) for strongly
continuous semigroups of contractions acting on a complex Hilbert space. He has
shown that a nonzero complex number z belongs to the resolvent set ρ(T (t)) if and
only if the set M of all complex scalars, verifying the equality eλt = z, is contained
in the resolvent set of A and R(·, A) is uniformly bounded on M.

Theorem 10. ([34], [38], [55], Greiner 1985) Let H be a complex Hilbert space and
T = {T (t)}t≥0 be a strongly continuous semigroup on H having A as a generator.
Assume that σ(A) lies in C− := {z ∈ C : ℜ(z) < 0}. The following statements are
equivalent:

• The semigroup T is uniformly exponentially stable.

•
sup
µ∈R

∥R(iµ,A)∥ < ∞, (3.6)

• The resolvent R(·, A) is the Laplace transform of T (·) on the imaginary axis,
and

sup
µ∈R

∫ ∞

0
e−iµtT (t)xdt

 := M(x) < ∞, ∀x ∈ X. (3.7)

Denote by

s0(T) := inf

{
ω ∈ R : sup

ℜ(λ)≥ω

∫ ∞

0
e−λtT (t)xdt

 < ∞, for all x ∈ X

}
,

the uniform growth bound of the resolvent. Obviously we have:

s(A) ≤ ω1(T) ≤ s0(T) ≤ ω0(T). (3.8)
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First example of semigroup whose generator verifies the inequality s(A) < ω0(A)
was provided by Foiaş, [33]. An important example, on Hilbert spaces, verifying

s(A) < ω1(T) = ω0(T)

was offered by Zabczyk, [70].
From the Gearhart theorem follows that for any strongly continuous semigroup

acting on a Hilbert space the equality s0(T) = ω0(T) holds.
Huang, [39], has conjectured that under the same Gearhart theorem assumptions,

but on Banach spaces, the semigroup T is exponentially stable, i.e. ω1(T) is
negative. The result was settled by Weis and Wrobel, [66], [68].

From the boundedness condition (3.7) to the assumptions of the next van Neerven
theorem, is just one step.

Theorem 11. ([64, Corolarul 5]) Let T= {T (t)}t≥0 be a strongly continuous semigroup
acting on a complex Banach space X, having A as infinitesimal generator. If

sup
µ∈R

sup
t≥0

∫ t

0
e−iµsT (s)xds

 := M(x) < ∞, ∀x ∈ X. (3.9)

then T is exponentially stable, i.e. there exist two positive constants N and ν such
that

∥T (t)x∥ ≤ Ne−νt∥x∥D(A), (∥x∥D(A) := ∥x∥+ ∥Ax∥), ∀x ∈ D(A).

The ideas of the proof of the above van Neerven theorem, [64], comes from the
Complex Analysis for vector-valued functions. Using the Phragmen-Lindelöf and
Vitali theorems, [36], he has shown that for a given x0 ∈ X, the map λ ↦→ R(λ,A)x0
has a bounded analytical continuation on C+ := {λ ∈ C : ℜ(λ) > 0} provided that

sup
µ∈R

sup
t≥0

∫ t

0
e−iµsT (s)x0ds

 := M < ∞.

Further, if the map λ ↦→ R(λ,A)x0 has an bounded analytical continuation on
C+, then for each λ ∈ C, with ℜ(λ) > ω0(T), one has

∥T (t)R(λ,A)x0∥ ≤ M(1 + t), ∀t ≥ 0. (3.10)

To prove (3.10) he used the inversion formula, [2],

T (t)R(λ,A)x0 =

∫ α+i∞

α−i∞
eztR(z,A)R(λ,A)x0dz, ℜ(λ) > ω0(T).

From the Cauchy theorem, the integral on the closed curve Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4

(oriented as in Figure 2) is equal to 0, so the integral on Γ1 is equal to the sum of
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Figure 2: The deformation of the integration contour

integrals on Γ2, Γ3 and Γ4. Evaluating the integrals separately the desired assertion
is obtained.

On the other hand, it is shown that if

sup
µ∈R

sup
t≥0

∫ t

0
e−iµsT (s)xds

 := M(x) < ∞, ∀x ∈ X,

then the resolvent R(·, A), as operator-valued function, admits a bounded analytical
continuation on C+. A well known result assures that if

sup
ℜ(λ)≥0

∥R(λ,A)∥ ≤ L < ∞,

then the resolvent is bounded by the same constant L, on the half-plane {ℜ(z) >
− 1

2L}. Choosing δ = 1
4L > 0 and considering the semigroup S(t) = eδtT (t),

generated by B := δI + A, whose resolvent, given by R(λ,B) = R(λ − δ, A), is
bounded, is obtained

∥T (t)R(λ− δ, A)x∥ ≤ Mxe
−δt(1 + t), ∀t ≥ 0, ∀x ∈ X.

Finally have

ω1(T) = lim sup
t→∞

ln ∥T (t)R(λ− δ, A)∥
t

≤ −δ < 0.

Originally, the condition (3.9), without the uniformity in respect to the parameter
µ, was introduced by Krein, [30]. Next example, shows that the condition (3.9) does
not imply the uniform exponential stability of the semigroup.

Example 12. [11, Ex. 2] Let X1 := C0(R+,C) be the set of all continuous functions
x : R+ → C which tend to zero to infinity and let X2 := L1(R+,C, esds) be the
set of all measurable functions x : R+ → C for which

∫∞
0 et|x(t)|dt < ∞. Let

X := X1∩X2. The norm in X is given by ∥x∥X := |x|∞+
∫∞
0 et|x(t)|dt, x ∈ X. For
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each t ≥ 0, define the operator S(t) : X → X, (S(t)x)(τ) = x(t+ τ), for τ ≥ 0. Let

T (t) = e
t
2S(t), t ≥ 0. For the semigroup T the condition (3.9) is fulfilled although

ω0(T) = 1
2 .

Actually, the roots of Example 12 are in [35].

For semigroups defined on Hilbert spaces verifying (3.9), Quoc Phong Vu, [54,
Theorem 2], settled the following:

Theorem 13. A strongly continuous semigroup T = {T (t)} acting on a complex
Hilbert space H is uniformly exponentially stable if and only if (3.9) is fulfilled.

Now we review the main ideas of the proof of Vu Phong theorem. In [56] (see
also [54]) it was shown that if

sup
t≥0

∫ t

0
T (s)xds

 = M(x) < ∞, ∀x ∈ X,

then 0 ∈ ρ(A), i.e. there exists A−1 = R(0, A). Previous result remains valid
when the semigroup S(t) = eiµtT (t), with µ ∈ R, replaces T (t), in which case, the
conclusion says that iµ ∈ ρ(A). Vu Phong has completed the proof of this result
showing that for every real number µ,

∥R(iµ,A)∥ ≤ Mµ := sup
t≥0

∫ t

0
e−iµsT (s)ds


L(X)

.

By the assumption there exists an absolute constant M such that

sup
µ∈R

∥R(iµ,A)∥ ≤ M := sup
µ∈R

sup
t≥0

∫ t

0
e−iµsT (s)ds


L(X)

and the desired assertion is obtained via Theorem 10.
We mention that (1.3) is not enough to imply the uniform exponential stability

of a semigroup T which acts on a Hilbert space, [17, Example 4.2.2].

3.1 Strong stability. A possible new approach.

Recall that the trajectory started from x ∈ X of a strongly continuous semigroup
T = {T (t)}t≥0 is strongly stable if limt→∞ T (t)x = 0, and that the semigroup is
strongly stable if all its trajectories are strongly stable.

A famous result, known as ABLV theorem, see [1], [44], provides a sufficient
condition for strong stability of semigroups (acting on Banach spaces) in terms of
countability of the boundary spectrum σ(A)∩iR. In particular, lack of the spectrum
of the infinitesimal generator of an uniformly bounded semigroup which acts on a
Banach space on the imaginary axis implies the strong stability of semigroup.

******************************************************************************
Surveys in Mathematics and its Applications 10 (2015), 61 – 93

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v10/v10.html
http://www.utgjiu.ro/math/sma


Stability for periodic evolution families 75

Theorem 14. ([10]) Let T = {T (t)}t≥0 be a strongly continuous semigroup of
bounded linear operators acting on a complex Hilbert space H, and let (A,D(A)) be
its infinitesimal generator. If there exists a positive absolute constant R such that

sup
µ∈R

sup
t≥0

∫ t

0
eiµsT (t− s)yds

 ≤ R∥y∥D(A), ∀y ∈ D(A),

then, for every x ∈ D := D(A2), one has:

sup
z∈C,|z|=1

sup
n∈Z+


n∑

k=0

zkT (q)kx

 := N(x) < ∞.

The key tool in the proof of the Theorem 14 is the next lemma whose proof can
be found in [10, Lemma 2.10].

Lemma 15. Let x ∈ H such that the map s ↦→ U(s, 0)x satisfies a Lipschitz
condition on (0, q). For each j ∈ {1, 2} let us consider the q-periodic function
fj : R → H, given on [0, q] by

fj(t) := hj(t)U(t, 0)x.

The following two statements are true:

(1) Each function fj satisfies a Lipschitz condition on R.

(2) The Fourier series associated to fj is absolutely and uniformly convergent on
R.

In order to do a consequence of Theorem 14, we state the following useful Lemma,
[10].

Lemma 16. Let T be a bounded linear operator acting on the complex Hilbert space
H. If for some x ∈ H, one has

sup
z∈C,|z|=1

sup
n∈Z+


n∑

k=0

T kx

zk+1

 := N(x) < ∞, (3.11)

then limk→∞ T kx = 0.

Corollary 17. Let T = {T (t)}t≥0 be a uniformly bounded and strongly continuous
semigroup acting on a Hilbert space H, and let D(A) the maximal domain of its
infinitesimal generator. If there exists a positive constant K such that

sup
µ∈R

sup
t≥0

∫ t

0
eiµsT (t− s)yds

 ≤ K∥y∥D(A), ∀y ∈ D(A), (3.12)

then, the semigroup T is strongly stable.
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Proof. As is well-known, the map T (·)x is differentiable for every, x ∈ D(A).
Therefore, for a given positive q, it satisfies a Lipschitz condition on (0, q). Indeed,
for any pair (t, s) with t ≥ s, have that:

∥T (t)x−T (s)x∥ =

∫ t

s

d

dr
[T (r)x]dr

 =

∫ t

s
T (r)Axdr

 ≤ ∥Ax∥ sup
r∈[0,q]

∥T (r)∥|t−s|.

(3.13)
Clearly, (3.13) remains valid for all pairs (t, s) with t < s. Then, by applying the
above Theorem it follows that T (·)x is strongly stable for every x ∈ D(A). Let now,
y ∈ H and xn ∈ D(A) such that xn → y, as n → ∞, in the norm of H. Then,

∥T (t)y∥ ≤ ∥T (t)(y − xn)∥+ ∥T (t)xn∥

≤ (sup{∥T (s)∥ : s ≥ 0})∥y − xn∥+ ∥T (t)xn∥ → 0, as t, n → ∞.

4 The issue for periodic evolution families

The content of this section is based on the articles [10], [21] and [58]. A family U =
{U(t, s) : t ≥ s} ⊂ L(X) is called evolution family on X if U(t, s)U(s, r) = U(t, r)
for all t ≥ s ≥ r and U(t, t) = I for every t ∈ R. The evolution family U is strongly
continuous if for every x ∈ X the map

(t, s) ↦→ U(t, s)x : {(t, s) ∈ R2 : t ≥ s} → X,

is continuous. If the family U is strongly continuous and satisfy the convolution
condition (i.e. U(t, s) = U(t− s, 0) for every pair (t, s), with t ≥ s, then the family
{T (t)}t≥0, given by T (t) := U(t, 0), is a strongly continuous semigroup on X. We
say that the family U has exponential growth if there exist the constants M ≥ 1 and
ω ∈ R such that

∥U(t, s)∥ ≤ Meω(t−s), ∀t ≥ s.

When U(t+q, s+q) = U(t, s), for all t ≥ s and a given q > 0, the family U is called q-
periodic. Obviously a q-periodic evolution family verify: U(pq+q, pq+u) = U(q, u),
for all p ∈ N, u ∈ [0, q] and U(pq, rq) = U((p−r)q, 0) = U(q, 0)p−r, for all p ∈ N, r ∈
N, p ≥ r. Every q-periodic evolution family U = {U(t, s)}, defined for all pairs (t, s),
with t ≥ s ≥ 0, can be extended to a q-periodic evolution family for all pairs (t, s),
with t ≥ s ∈ R, by choosing U(t, s) = U(t + kq, s + kq), where k is the smallest
positive integer for which s+kq ≥ 0. Every strongly continuous q-periodic evolution
family U has exponential growth, [24, Lemma 4.1]. We say that the evolution family
U is uniformly exponentially stable if there exist two nonnegative constants N and
ν such that

∥U(t, s)∥ ≤ Ne−ν(t−s), ∀t ≥ s ≥ 0. (4.1)
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A q-periodic strongly continuous evolution family U is uniformly exponentially stable
if and only if there exist two nonnegative constants N1 and ν1 such that

∥U(t, 0)∥ ≤ N1e
−ν1t, ∀t ≥ 0.

In [12, Lemma 2], it was shown that a strongly continuous q-periodic evolution
family U is uniformly exponentially stable if and only if r(U(q, 0)) < 1. Further
details concerning periodic evolution families can be found in [31]

Let J ∈ {R,R+}. The spaces listed below will be intensively used in the sequel.

• BUC(J,X) is the linear space consisting of all X-valued functions defined on
J , which are uniformly continuous and bounded on J . Endowed with the norm
∥f∥∞ := supt∈J ∥f(t)∥, it becomes a Banach space.

• AP (J,X) is the smallest linear closed subspace of BUC(J,X) which contains
all functions fµ(t) = eiµtx, t ∈ J, with µ ∈ R and x ∈ X.

• AP1(J,X) the space consisting of all functions f ∈ AP (J,X) having the
property that the Fourier coefficients series associated to the function f is
absolutely convergent. For further information concerning the spacesAP (J,X)
and AP1(J,X) we refer the reader to the monographs [29], [43], [73].

• Pq(J,X) is the space of all X-valued, continuous q-periodic functions defined
on J .

• P 0
q (J,X)] is the subspace of f ∈ Pq(J,X) consisting by all functions f verifying

the condition f(0) = 0.

Next, for a given t ≥ 0, denote by At the set of all X-valued functions defined
on R having the property that there exists a function F from Pq(R, X)∩AP1(R, X)
such that F (t) = 0, f = F|[t,∞)

and f(s) = 0, for all s < t. Denote by E(R, X) the

closure in respect to the ”sup” norm of the linear span of the set A0 := {∪t≥0At},
i.e. E(R, X) = spanA0. With other words, E(R, X) is the smallest closed subspace
of BUC(R, X) containing A0. The evolution semigroup {T (t)}t≥0 associated to a
strongly continuous and q-periodic evolution family U = {U(t, s)}t≥s on E(R, X) is
formally defined by

(T (t)f)(s) :=

{
U(s, s− t)f(s− t), s ≥ t

0, s < t.
(4.2)

Obviously, it acts on E(R, X) and it is strongly continuous.

First result of this section is stated as follows.
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Theorem 18. Let U be a strongly continuous and q-periodic evolution family acting
on a Banach space X and let T be the evolution semigroup associated to U on
E(R, X). Denote by G its infinitesimal generator. Consider the statements:

(1) U is uniformly exponentially stable.

(2) T is uniformly exponentially stable.

(3) G is invertible.

(4) For each f ∈ E(R, X), the map t ↦→ (U ∗ f)(t) :=
∫ t
0 U(t, s)f(s)ds belongs to

E(R, X).

(5) For each f ∈ E(R, X), the function U ∗ f belongs to BUC(R, X).

Then
(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5).

If, in addition, the family U is uniformly bounded then (5) ⇒ (3).

From structural point of view, this theorem is known. See, for example, [14], [16]
[27], [28],[46] [59] and their references. Everywhere in these references, the evolution
semigroup is defined on a function space having the property that it contains the
set C∞

0 ((0,∞), X); the set of all indefinite differentiable X-valued functions having
compact support in the open interval (0,∞). In addition, in many of those spaces the
set C∞

0 ((0,∞), X) is dense in respect with the corresponding norm of the base space.
This particularity of the spaces allow us to deduce the linear stability principle for
evolution semigroups, i.e. s(G) = ω0(T ). First details concerning the evolution
semigroups and their applications was provided in [37]. Further developments in
this area was made for example in [22], [47], [8].

By contrast, the space E(R, X), does not contain the set C∞
0 ((0,∞), X). In

this context, we can not prove (3)⇒(2). The implication (3) ⇒ (2) is proved in [58,
Theorem 4.1] using a wider space instead of E(R, X). Under additional assumptions,
namely that the evolution family is uniformly bounded and that the map s ↦→
U(s, 0)x satisfies a Lipschitz condition on R+ for each x in a dense subset D of

X, we can state that the set
{
e

2jiπ
q : j ∈ Z

}
is included in the resolvent set of the

operator U(q, 0). Here i ∈ C and i2 = −1.

Proposition 19. Suppose that the family U is uniformly bounded and that there
exists a dense subset D of X such that for each x ∈ D the map s ↦→ U(s, 0)x : R+ →
X satisfies a Lipschitz condition on (0, q). If the condition (5) from the previous

theorem is fulfilled, then the set
{
e

2jiπ
q : j ∈ Z

}
is contained in ρ(U(q, 0)).

For the proof of Proposition 19 we refer the reader to [21, Proposition 3.8] with
the mention that ”i” is missing there.

The following lemmas are used in the proof of Theorems 18.
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Lemma 20. Let U = {U(t, s)}t≥s≥0 be a strongly continuous and q-periodic evolution
family acting on X. Suppose that the family U is uniformly bounded, i.e.

sup
t≥s≥0

||U(t, s)|| := K < ∞.

If for a real number µ and a function f ∈ E(R, X) occurs

sup
t≥0

∫ t

0
eiµsU(t, s)f(s)ds

 := M(µ, f) < ∞,

then

sup
t≥0

∫ t

0
e−iµsT (s)fds

 ≤ K(µ, f) < ∞.

Proof. Let τ ∈ R and Jf,t,µ(τ) =
(∫ t

0 e
−iµsT (s)fds

)
(τ). Evaluate the ”sup” norm

of Jf,t,µ(·) and obtain the conclusion for K(µ, f) := (1 +K)M(µ, f).

The next lemma has a similar proof as [46, Lemma 1.1].

Lemma 21. Let f, u ∈ E(R, X). The following two statements are equivalent:

1. u ∈ D(G) and Gu = −f .

2. u(t) =
∫ t
0 U(t, s)f(s)ds, for all t ≥ 0.

The main result of this section can be stated as follows.

Theorem 22. Let U = {U(t, s)}t≥s≥0 be a strongly continuous and q-periodic
evolution family acting on a Banach space X. If

sup
µ∈R

sup
t≥τ≥0

∫ t

τ
eiµsU(t, s)xds

 ≤ M∥x∥, ∀x ∈ X, (4.3)

for some positive constant M , then

sup
µ∈R

sup
t≥0

∫ t

0
e−iµsT (s)fds

 ≤ L(f) < ∞, ∀f ∈ span{∪t≥0At}.

More, the family U is uniformly exponentially bounded if for each x ∈ X the map
s ↦→ U(s, 0)x satisfies a Lipschitz condition on (0, q).
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Figure 3: The graphical representation of a particular function from span{∪t≥0At}

Sketch of the proof.
We prove the theorem with the supplementary assumption that the evolution

family U is uniformly bounded by the constant K. This complementary assumption
does not affect the generality.

Let f in span{∪t≥0At}. Then there exists a positive number Tf and a function
F ∈ Pq(R, X) ∩ AP1(R, X) such that for any s ≥ Tf have that f(s) = F (s) (see
Figure 3).

The representation F (s) =
k=∞∑
k=−∞

eiµksck(F ), with ck(F ) in X was used. Let

τ ∈ R and Jf,t,µ(τ) as in the proof of Lemma 20. We evaluate the ”sup” norm
of Jf,t,µ(·) analysing three cases which leads us to the first statement by choosing
L(f) := KTf∥f∥∞ +M∥F∥1.

To prove the second statement, consider h ∈ Pq(R,R) having the following
properties: h satisfies a Lipschitz condition on R, h(0) = h(q) = 0 and for each real
number µ, the map µ ↦→ γ(µ) :=

∫ q
0 eiµsh(s)ds is different from 0. For each x ∈ X,

consider the map t ↦→ hx(t) from Pq(R, X), given on [0, q] by hx(s) := h(s)U(s, 0)x.
We define the function fx by

s ↦→ fx(s) :=

{
hx(s), s ≥ 0
0, s < 0.

According to the Lemma 5, fx belongs to AP1(R, X). Therefore fx belongs to
span{∪t≥0At}. Let t = nq, for n = 0, 1, 2, · · · we obtain

∫ nq
0 eiµρU(nq, ρ)fx(ρ)dρ = γ(µ)

n−1∑
k=0

eiµkqU(q, 0)n−kx.

The desired assertion is obtained by passing to the norms and applying the Uniform
Boundedness Principle and Lemma 2.

�
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In Theorem 18 are established several connections between the exponential stability
of a q-periodic evolution family of linear operators acting on a Banach space and the
spectral properties of its infinitesimal generator. In that theorem we could not close
the chain equivalents because the function spaces, E(R, X), that act the evolution
semigroup, was not rich enough. In his section, we extend this function space such
that under certain conditions we can close the chain equivalents.

In the following, denote by A the set of all functions eiµ· ⊗ f , with µ ∈ R and
f ∈ ∪t≥0At. The set At was defined in the previous section. Denote by Ẽ(R, X)
the closure in relation to the ”sup” norm of the linear coverage of the set A, i.e.
Ẽ(R, X) := span(A). The evolution semigroup {T (t)}t≥0 associated to the strongly

continuous and q-periodic evolution family U = {U(t, s)}t≥s on Ẽ(R, X), is formal
defined by

(T (t)f̃)(s) :=

{
U(s, s− t)f̃(s− t), s ≥ t

0, s < t
, pentru f̃ ∈ Ẽ(R, X). (4.4)

The evolution semigroup {T (t)}t≥0 acts on Ẽ(R, X) and it is strongly continuous.

Theorem 23. Let U be a strongly continuous and q-periodic evolution family acting
on a Banach space X and let T be the evolution semigroup associated to U on
Ẽ(R, X). Denote by G̃ its infinitesimal generator. Consider the following statements:

(1) U is uniformly exponentially stable.

(2) T is uniformly exponentially stable.

(3) G̃ is invertible.

(4) For each f̃ ∈ Ẽ(R, X) the map t ↦→ g
f̃
(t) :=

∫ t
0 U(t, s)f̃(s)ds belongs to

Ẽ(R, X).

(5) For each f̃ ∈ Ẽ(R, X) the map g
f̃
belongs to BUC(R+, X).

Then,
(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5).

In addition, if there exists a dense subset D of X such that for each x ∈ D the map
s ↦→ U(s, 0)x : R+ → X satisfies a Lipschitz condition on (0, q), then (5) ⇒ (1).

Corollary 24. Let T= {T (t)}t≥0 be a strongly continuous semigroup acting on X

and let T be the evolution semigroup associated to T on Ẽ(R, X). Denote by G̃ the
infinitesimal generator of T . The following four statements are equivalent.

(1) T is uniformly exponentially stable.
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(2) T is uniformly exponentially stable.

(3) G̃ is invertible.

(4) For each f̃ ∈ Ẽ(R, X) the map t ↦→ g
f̃
(t) :=

∫ t
0 T (t − s)f̃(s)ds belongs to

Ẽ(R, X).

(5) For each f̃ ∈ Ẽ(R, X) the map g
f̃
is bounded on R+.

In the proof of (5) ⇒ (1) we no longer need additional conditions because for
x ∈ D(A) the map t ↦→ T (t)x satisfies a Lipschitz condition on R+.

An immediate consequence of the Theorem 23 is the spectral mapping theorem
for the evolution semigroup T on Ẽ(R, X).

Theorem 25. [58] Let U be a q-periodic strongly continuous evolution family acting
on X and let T be the evolution semigroup associated to U on Ẽ(R, X). Denote by
G̃ the infinitesimal generator of the semigroup T . Suppose that there exists a dense
subset D of X such that for each x in D, the map s ↦→ U(s, 0)x : R+ → X satisfies
a Lipschitz condition on (0, q). Then,

etσ(G̃) = σ(T (t)) \ {0}, t ≥ 0.

Moreover,

σ(G̃) = {z ∈ C : ℜ(z) ≤ s(G̃)}

and

σ(T (t)) = {λ ∈ C : |λ| ≤ r(T (t))}, ∀t ≥ 0.

Another result of this paper is the following extension of Vu Phong’s theorem to
the nonautonomous periodic case. It can read as follows.

Theorem 26. A strongly continuous q-periodic evolution family U = {U(t, s)}t≥s≥0

of bounded linear operators acting on a complex Hilbert space H is uniformly exponentially
stable if for each x ∈ X, the map U(·, 0)x satisfy a Lipschitz condition on (0, q) and
there exists a positive constant K such that

sup
µ∈R

sup
t≥0

∫ t

0
eiµsU(t, s)xds

 ≤ K∥x∥. (4.5)

The additional condition, (in comparison with Vu Phong’s theorem), i.e. the
Lipschitz condition, is not very restrictive. In the semigroup case, it is automatically
checked for every x in the domain of the infinitesimal generator, which we know that
is a dense set in the state space. Remains as open problem whether we can replace
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the assumption concerning the previous Lipschitz condition with a similar one, but
for x in a certain dense subset D of H.

All the above results are formulated in the general context given by the functional
analysis. However, the condition (1.4) can be translated in terms of differential
equations (or partial derivative), taking into account that the solution of the following
abstract Cauchy Problem{

ẏ(t) = Ay(t) + eiµtx, t > 0
y(0) = 0

(4.6)

is given by

yµ,x(t) =

∫ t

0
eiµsT (t− s)xds = eiµt

∫ t

0
e−iµsT (s)xds.

In terms of differential equations, the van Neerven-Vu Phong’s theorem says that
the semigroup T is exponentially stable (uniformly exponentially stable) if and only
if for each x ∈ X, the solution of the Cauchy Problem (4.6) is bounded on R+,
uniformly in respect to the real parameter µ.

From this perspective, the problems exposed above, may be classified in the
admissibility theory initiated by Oscar Perron in 1930, [53]. In the general form, it
can be formulated as follows:

Let A(·) be a periodic linear operator valued function acting on a Banach
space X. What is the connection between the exponential stability of solutions of
a homogeneous system

ẋ(t) = A(t)x(t), (4.7)

and the boundedness on R+ (uniformly in respect to the real parameter µ) of the
solutions of the well-posed abstract Cauchy problems{

ẏ(t) = A(t)y(t) + eiµtb, t > 0, b ∈ X, µ ∈ R
y(0) = 0?

(4.8)

Let {A(t)} be a family of closed linear operators acting on X and let x0 ∈ X.
Further, we are referring to the homogeneous Cauchy problem{

ẋ(t) = A(t)x(t), t > 0
x(0) = x0.

(4.9)

Using very general terms, we will say that this problem is well-posed if there are
an evolution family {U(t, s)}t≥s≥0, such that, for every solution x(·) of the Cauchy
Problem (4.9), we have that

x(t) = U(t, s)x(s), for all t ≥ s ≥ 0.

Details concerning the conditions that must be fulfilled by the family {A(t)} so that
the problem (4.9) to be well-posed, can be found, for example, in [62], [49], [50].
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5 The Barbashin type theorems

The above results have through their consequences new real integral characterizations
for the exponential stability of the system (4.7) or even of periodic evolution families.
These real integral characterizations are often used in control theory and in stability
theory; in the latter case when we need to define Lyapunov functions associated
with the system (4.7).

Theorem 27. ([7, Theorem 5.1]): Let Φ(·) be the unique solution of the following
Cauchy problem {

Ẋ(t) = A(t)X(t), t ≥ 0
X(0) = I.

(5.1)

where A(t) and X(t) are square matrix, I is the unit matrix of the same order with
A(t) and the map t ↦→ A(t) is continuous. If supt≥0

∫ t
0 ∥Φ(t)Φ

−1(s)∥ds < ∞, then,

there exist two positive constants N and ν such that ∥Φ(t)Φ−1(s)∥ ≤ Ne−ν(t−s), for
all t ≥ s ≥ 0.

In [45], this theorem was formulated for evolution families as follows.

Theorem 28. Let U = {U(t, s)}t≥s≥0 be an evolution family of bounded linear
operators acting on a Banach space X and having exponential growth such that for
each t > 0, the map s ↦→ ∥U(t, s)∥ : [0, t] → R is measurable. The family U is
uniformly exponentially stable if and only if for some p ∈ [1,∞), one has

sup
t≥0

(∫ t

0
∥U(t, s)∥pds

) 1
p

< ∞. (5.2)

We mention that in Theorem 28, the operator U(t, s) can be non-invertible.

The strong version of Barbashin’s theorem states that the evolution family
{U(t, s)}t≥s of bounded linear operators acting on a Banach space X is uniformly
exponentially stable if for every x in X and some p ≥ 1, the boundedness condition
of strong Barbashin type occurs, i.e.:

sup
t≥0

∫ t

0
∥U(t, s)x∥pds := Mp(x) < ∞. (5.3)

Surprisingly, the proof of the strong Barbashin theorem seems to be more difficult
than the uniform, and, as we know, it is still an open question for strongly continuous
evolution families acting on an arbitrary Banach space. In this direction, some
progress has been made in [23] and [18], where the dual family U∗ of U was used,
and estimations like (5.3) were considered in respect to the strong topology of L(X∗).
For instance , in Theorem 2 from [23] it is shown that an exponentially bounded
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evolution family, like considered above is uniformly exponentially stable if and only
if there exists 1 ≤ q < ∞ such that

sup
t≥0

t∫
0

∥U(t, s)∗x∗ds∥q < ∞.

In the discrete periodic case, the strong variant of the Barbashin theorem is
completely solved in [5] and [9].

Corollary 29. Let us consider the evolution family U = {Φ(t)Φ−1(s)}t≥s≥0 associated
to the system (4.7), where the map t ↦→ A(t) is q-periodic and continuous. The
following four statements are equivalent:

(i) The family U is uniformly exponentially stable.

(ii) sup
t≥0

∫ t
0 |⟨Φ(t)Φ

−1(s)x, y⟩|ds < ∞, ∀x, y ∈ X.

(iii) sup
t≥0

∫ t
0 |⟨Φ(t)Φ

−1(s)x, x⟩|ds < ∞, ∀x ∈ X.

(iv) sup
t≥0

∫ t
0 ∥Φ(t)Φ

−1(s)x∥ds < ∞, ∀x ∈ X.

This corollary is a consequence of Theorem 4; its proof can be found in [4].

Corollary 30. Let U = {U(t, s)}t≥s≥0 be a q-periodic strongly continuous evolution
family acting on a Hilbert space H, having the property that for each x ∈ H, the
map U(·, 0)x satisfies a Lipschitz condition on (0, q). The following four statements
are equivalent:

(i) The family U is uniformly exponentially stable.

(ii) sup
t≥0

∫ t
0 |⟨U(t, s)x, y⟩| ds < ∞, ∀x, y ∈ H.

(iii) sup
t≥0

∫ t
0 |⟨U(t, s)x, x⟩| ds < ∞, ∀x ∈ H.

(iv) sup
t≥0

∫ t
0 ∥U(t, s)x∥ds < ∞, ∀x ∈ H.

We mention that the third condition in both above corollaries can be deduced
from the second one by using the polarization identity as in [13]. Finally, recall
a very interesting result in this area, concerning strongly continuous semigroups
offered recently by Storozhuk, [61].
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Theorem 31. Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on a
Banach space X such that s0(T) ≥ 0. Then for each nondecreasing function φ :
R+ → R+ which is positive on (0,∞), there are x ∈ X and x∗ ∈ X∗ such that∫∞
0 φ(| < T (t)x, x∗ > |)dt = ∞.

A natural consequence of the above Storozhuk theorem, is the next Rolewicz type
theorem ”rescued” in the weak topology of a Hilbert space H, see [57] for further
details.

Corollary 32. Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on a
Hilbert space H and φ as in the previous theorem. If

∫∞
0 φ(| < T (t)x, y > |)dt < ∞

for every x, y ∈ H then ω0(T) is negative.

Particular cases of Storozhuk theorem has been obtained earlier in [40] and [67].
For discrete versions of Rolewicz theorem see [20].
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Birkhäuser/Springer Basel AG, Basel, 2011. MR2798103(2012b:47109).

[3] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. Lotz, U. Moustakas, R.
Nagel, F. Neubrander, U. Schlotterbeck, One-parameter semigroups of positive
operators, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1184, (1986).
MR0839450(88i:47022).
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semigroups, An. Univ. Timişora, Ser. Mat.−Inform. 35 (1997), no. 1, 3–8.
MR1875631. Zbl 1003.93043.
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[24] C. Buşe and A. Pogan , Individual exponential stability for evolution families
of linear and bounded operators, New Zealand J. Math. 30(2001), no.1, 15–24.
MR1839519(2002c:93147). Zbl 0990.35020.

[25] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space, J. Math.
Anal. Appl. 32 (1970), 610–616. MR0268717(42 #3614). Zbl 0211.16802.

[26] E. B. Davies, One parameter semigroups, London Math. Soc. Mono. 15,
Academic Press, London-New York, 1980. MR0591851(82i:47060).

[27] C. Chicone and Y. Latushkin, Evolution semigroups in dynamical systems and
differential equations, Mathematical Surveys and Monographs, 70, American
Mathematical Society, Providence R. I., (1999). MR1707332(2001e:47068). Zbl
0970.47027.

[28] S. Clark, Y. Latushkin, S. Montgomery-Smith and T. Randolph, Stability
radius and internal versus external stability in Banach spaces: an evolution
semigroup approach, SIAM J. Control Optim. 38 (2000), no. 6, 1757–1793.
MR1776655(2001k:93085). Zbl 0978.47030.

******************************************************************************
Surveys in Mathematics and its Applications 10 (2015), 61 – 93

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=2417501
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1165.47027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2179505
http://www.ams.org/mathscinet-getitem?mr=3164159
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06288007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2992028
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1279.47063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2022073
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1043.35022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2370045
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.47036&format=complete
http://www.ams.org/mathscinet-getitem?mr=1839519
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0990.35020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0268717
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0211.16802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0591851
http://www.ams.org/mathscinet-getitem?mr=1707332
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.47027&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.47027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1776655
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0978.47030&format=complete
http://www.utgjiu.ro/math/sma/v10/v10.html
http://www.utgjiu.ro/math/sma


Stability for periodic evolution families 89

[29] C. Corduneanu, Almost Periodic oscillations and wawes, Springer, New York,
(2009). MR2460203(2009i:34002).

[30] Ju. L. Daletckii and M. G. Krein, Stability of solutions of differential equations
in Banach space, Translated from the Russian by S. Smith. Translations of
Mathematical Monographs, 43, American Mathematical Society, Providence,
R.I., (1974). MR0352639(50 #5126).

[31] Daniel Daners and Pablo Koch Medina, Abstract evolution equations, periodic
problems and applications, Pitman Research Notes in Mathematics Series, 279,
Longman Scientific & Technical, Harlow; copublished in the United States
with John Wiley & Sons, Inc., New York, (1992). MR1204883(94b:34002). Zbl
0789.35001.

[32] K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations, Graduate Texts in Mathematics 194, Springer, 2000.
MR1721989(2000i:47075). Zbl 0952.47036.
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espaces de dimension infinie, Monografii Matematice (Timio̧ara) [Mathematical
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