A NONCOMMUTATIVE CONVEXITY IN C^{*}-BIMODULES

M. Kian and M. Dehghani

Abstract

Let \mathscr{A} and \mathscr{B} be C^{*}-algebras. We consider a noncommutative convexity in Hilbert \mathscr{A} - \mathscr{B}-bimodules, called \mathscr{A} - \mathscr{B}-convexity, as a generalization of C^{*}-convexity in C^{*}-algebras. We show that if \mathcal{X} is a Hilbert \mathscr{A} - \mathscr{B}-bimodule, then $\mathcal{M}_{n}(\mathcal{X})$ is a Hilbert $\mathcal{M}_{n}(\mathscr{A})$ - $\mathcal{M}_{n}(\mathscr{B})$-bimodule and apply it to show that the closed unit ball of every Hilbert \mathscr{A} - \mathscr{B}-bimodule is \mathscr{A} - \mathscr{B}-convex. Some properties of this kind of convexity and various examples have been given.

1 Introduction and preliminaries

Suppose that \mathscr{A} and \mathscr{B} are C^{*}-algebras. Let $\left(\mathcal{X},\langle\cdot, \cdot\rangle_{\mathscr{A}}\right)$ be a left Hilbert \mathscr{A}-module and $\left(\mathcal{X},\langle\cdot, \cdot\rangle_{\mathscr{B}}\right)$ be a right Hilbert \mathscr{B}-module satisfying

$$
\langle x, y\rangle_{\mathscr{A}} z=x\langle y, z\rangle_{\mathscr{B}} \quad(x, y, z \in \mathcal{X})
$$

Then \mathcal{X} is called Hilbert \mathscr{A} - \mathscr{B}-bimodule. It is known that every C^{*}-algebra \mathscr{A} is a Hilbert \mathscr{A} - \mathscr{A}-bimodule via the bimodule structure given by the multiplication in \mathscr{A} and the inner products $\langle a, b\rangle=a b^{*}$ and $\langle a, b\rangle=a^{*} b$. Particularity, if \mathcal{H} and \mathcal{K} are Hilbert spaces and $\mathbb{B}(\mathcal{K}, \mathcal{H})$ is the Banach algebra of all bounded linear operators from \mathcal{K} into \mathcal{H}, then $\mathbb{B}(\mathcal{K}, \mathcal{H})$ is a Hilbert $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-bimodule with the following inner products:

$$
\begin{aligned}
\langle S, T\rangle_{\mathbb{B}(\mathcal{H})} & =S T^{*} . \\
\langle S, T\rangle_{\mathbb{B}(\mathcal{K})} & =S^{*} T .
\end{aligned}
$$

We recall that every Hilbert \mathscr{A} - \mathscr{B}-bimodule \mathcal{X} satisfies

$$
\begin{align*}
\langle x b, x b\rangle_{\mathscr{A}} & \leq\|b\|^{2}\langle x, x\rangle_{\mathscr{A}}, \quad\langle a x, a x\rangle_{\mathscr{B}} \leq\|a\|^{2}\langle x, x\rangle_{\mathscr{B}} . \tag{1.1}\\
\langle x b, y\rangle_{\mathscr{A}} & =\left\langle x, y b^{*}\right\rangle_{\mathscr{A}}, \quad\langle a x, y\rangle_{\mathscr{B}}=\left\langle x, a^{*} y\right\rangle_{\mathscr{B}} . \tag{1.2}\\
\|a x b\| & \leq\|a\|\|x\|\|b\| \tag{1.3}
\end{align*}
$$

[^0]http://www.utgjiu.ro/math/sma
for all $a \in \mathscr{A}, b \in \mathscr{B}$ and all $x, y \in \mathcal{X}$ (cf. [7, 15]).
For a full description of Hilbert bimodules, see for example [7, 15] and the references therein.

$1.1 \quad C^{*}$-convexity

Let \mathscr{A} be a unital C^{*}-algebra with unit $1_{\mathscr{A}}$. For $a_{1}, \cdots, a_{n} \in \mathscr{A}$ with $\sum_{i=1}^{n} a_{i}^{*} a_{i}=$ $1_{\mathscr{A}}$, the sum $\sum_{i=1}^{n} a_{i}^{*} x_{i} a_{i}$ is called a C^{*}-convex combination of $\left\{x_{1}, \cdots, x_{n}\right\} \subseteq \mathscr{A}$, with coefficients a_{1}, \cdots, a_{n}. A subset \mathcal{S} of \mathscr{A} is called C^{*}-convex if it is closed under C^{*}-convex combinations of its elements. It means that

$$
\sum_{i=1}^{n} a_{i}^{*} x_{i} a_{i} \in \mathcal{S}
$$

for all $x_{1}, \cdots, x_{n} \in \mathcal{S}$ and all $a_{1}, \cdots, a_{n} \in \mathscr{A}$ with $\sum_{i=1}^{n} a_{i}^{*} a_{i}=1_{\mathscr{A}}$.
This notion of convexity, called the C^{*}-convexity, has been introduced by Loebl and Paulsen [10] as a non-commutative generalization of linear convexity. It is known that the sets
(1) $\left\{T \in \mathbb{B}(\mathcal{H}): 0 \leq T \leq I_{\mathcal{H}}\right\}$;
(2) $\{T \in \mathbb{B}(\mathcal{H}) ;\|T\| \leq M\}$ for a fix scalar $M>0$;
(3) $\{T \in \mathbb{B}(\mathcal{H}): \omega(T) \leq r\}$, where $\omega(T)$ is the numerical radius of T
are C^{*}-convex in the C^{*}-algebra $\mathbb{B}(\mathcal{H})$ with the identity operator $I_{\mathcal{H}}$. It is evident that the C^{*}-convexity of a set \mathcal{S} in \mathscr{A}, implies its convexity in the usual sense. For if $x, y \in \mathcal{S}$ and $\lambda \in[0,1]$, then with $a_{1}=\sqrt{\lambda} 1_{\mathscr{A}}$ and $a_{2}=\sqrt{1-\lambda} 1_{\mathscr{A}}$ we have $a_{1}^{*} a_{1}+a_{2}^{*} a_{2}=1_{\mathscr{A}}$ and

$$
\lambda x+(1-\lambda) y=a_{1}^{*} x a_{1}+a_{2}^{*} y a_{2} \in \mathcal{S} .
$$

But the converse is not true in general. For example, it was shown that [10] if $A \geq 0$, then $[0, A]=\{X \in \mathbb{B}(\mathcal{H}) ; \quad 0 \leq X \leq A\}$ is convex but not C^{*}-convex.

Some essential results of convexity theory have been generalized in [3] to C^{*} convex sets. Specially, a version of the so-called Hahn-Banach theorem was presented. The operator extension of extreme points, the C^{*}-extreme points have also been introduced and studied, see [4, 6, 10, 13]. Moreover, Magajna [12, 14] extended the notion of C^{*}-convexity to operator modules and proved some separation theorems. We refer the reader to $[8,9,11,12,14,16]$ for further results concerning C^{*}-convexity.

In this paper, we consider the notion of \mathscr{A} - \mathscr{B}-convex sets in Hilbert $\mathscr{A}-\mathscr{B}$ bimodules as a generalization of C^{*}-convex sets in C^{*}-algebras. We will try to illustrate differences between these notions by giving various examples. Some properties of $\mathscr{A}-\mathscr{B}$-convex sets are also presented. In particular, it is shown that the closed unit ball of a Hilbert $\mathscr{A}-\mathscr{B}$-bimodule is $\mathscr{A}-\mathscr{B}$-convex.

Surveys in Mathematics and its Applications 12 (2017), 7 - 21

2 Main results

Throughout this section, suppose that \mathscr{A} and \mathscr{B} are unital C^{*}-algebras with units $1_{\mathscr{A}}$ and $1_{\mathscr{B}}$, respectively and $\mathbb{B}(\mathcal{H})$ is the C^{*}-algebra of all bounded linear operators on a Hilbert space \mathcal{H} with the identity operator $I_{\mathcal{H}}$. For given C^{*}-subalgebras \mathcal{A} and \mathcal{B} of $\mathbb{B}(\mathcal{H})$ the notion of " \mathcal{A}, \mathcal{B}-absolutely convexity" in operator bimodules has been defined and studied in [12]. Similarly, an \mathscr{A} - \mathscr{B}-convex set in a Hilbert \mathscr{A} - \mathscr{B}-bimodule can be defined as follows.

Definition 1. Let \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule. A subset \mathcal{S} of \mathcal{X} is called \mathscr{A} - \mathscr{B} convex if

$$
\sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}, \quad \sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}} \quad \Longrightarrow \quad \sum_{i=1}^{n} a_{i} x_{i} b_{i} \in \mathcal{S}
$$

for all $a_{i} \in \mathscr{A}, b_{i} \in \mathscr{B}, x_{i} \in \mathcal{S}$ and $n \in \mathbb{N}$.
Remark 2. Assume that \mathcal{X} is a Hilbert \mathscr{A} - \mathscr{B}-bimodule, \mathcal{S} is an \mathscr{A} - \mathscr{B}-convex subset of \mathcal{X} and $0 \in \mathcal{S}$. Assume that $x_{i} \in \mathcal{S}, a_{i} \in \mathscr{A}$ and $b_{i} \in \mathscr{B}$ with $\sum_{i=1}^{k} a_{i} a_{i}^{*} \leq 1_{\mathscr{A}}$ and $\sum_{i=1}^{k} b_{i}^{*} b_{i} \leq 1_{\mathscr{B}}$. Put $c=\sqrt{1_{\mathscr{A}}-\sum_{i=1}^{k} a_{i} a_{i}^{*}}$ and $d=\sqrt{1_{\mathscr{B}}-\sum_{i=1}^{k} b_{i}^{*} b_{i}}$. Then $\sum_{i=1}^{k} a_{i} a_{i}^{*}+c c^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{k} b_{i}^{*} b_{i}+d^{*} d=1_{\mathscr{B}}$. Moreover,

$$
\sum_{i=1}^{k} a_{i} x_{i} b_{i}=\sum_{i=1}^{k} a_{i} x_{i} b_{i}+c 0 d \in \mathcal{S}
$$

In other words, $\sum_{i=1}^{k} a_{i} x_{i} b_{i} \in \mathcal{S}$ even if $\sum_{i=1}^{k} a_{i} a_{i}^{*} \leq 1_{\mathscr{A}}$ and $\sum_{i=1}^{k} b_{i}^{*} b_{i} \leq 1_{\mathscr{B}}$.
Note that, if r is a positive scalar, then it is easy to see that the set

$$
\mathcal{S}:=\{T \in \mathbb{B}(\mathcal{H}): 0 \leq T \leq r\}
$$

is C^{*}-convex, see e.g., [10]. We give some examples in the case of \mathscr{A} - \mathscr{B}-convexity.
Example 3. Let Γ be an index set. Define \mathcal{X} to be the set

$$
\mathcal{X}=\left\{\left(X_{\alpha}\right)_{\alpha \in \Gamma} \mid X_{\alpha} \in \mathbb{B}(\mathcal{H}), \quad \sum_{\alpha \in \Gamma} X_{\alpha}^{*} X_{\alpha} \quad \text { converges in } \mathbb{B}(\mathcal{H})\right\}
$$

Define a map $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{B}(\mathcal{H})$ by

$$
\left\langle\left(X_{\alpha}\right)_{\alpha \in \Gamma},\left(Y_{\alpha}\right)_{\alpha \in \Gamma}\right\rangle=\sum_{\alpha \in \Gamma} X_{\alpha}^{*} Y_{\alpha}
$$

Surveys in Mathematics and its Applications 12 (2017), 7 - 21
http://www.utgjiu.ro/math/sma

It is not hard to see that $\langle\cdot, \cdot\rangle$ is well-defined inner product on \mathcal{X}. Moreover, if $T \in \mathbb{B}(\mathcal{H})$ and $\left(X_{\alpha}\right)_{\alpha \in \Gamma} \in \mathcal{X}$, then

$$
X_{\alpha}^{*} T^{*} T X_{\alpha} \leq\|T\|^{2} X_{\alpha}^{*} X_{\alpha}
$$

It follows that \mathcal{X} can be regarded as a $\mathbb{B}(\mathcal{H})$-bimodule via the bimodule structure given by

$$
\mathcal{X} \times \mathbb{B}(\mathcal{H}) \rightarrow \mathcal{X}, \quad\left(X_{\alpha}\right)_{\alpha \in \Gamma} \times T=\left(X_{\alpha} T\right)_{\alpha \in \Gamma}
$$

and

$$
\mathbb{B}(\mathcal{H}) \times \mathcal{X} \rightarrow \mathcal{X}, \quad T \times\left(X_{\alpha}\right)_{\alpha \in \Gamma}=\left(T X_{\alpha}\right)_{\alpha \in \Gamma}
$$

Hence, \mathcal{X} would be a Hilbert $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{H})$-bimodule.
Assume that r is a positive real number. We are going to show that the subset \mathcal{S} of \mathcal{X} defined by

$$
\mathcal{S}=\left\{\left(X_{\alpha}\right)_{\alpha \in \Gamma} \in \mathcal{X} \mid 0 \leq X_{\alpha}^{*} X_{\alpha} \leq r, \quad \alpha \in \Gamma\right\}
$$

is $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{H})$-convex.
Assume that $A_{i}, B_{i} \in \mathbb{B}(\mathcal{H})$ with $\sum_{i=1}^{n} A_{i} A_{i}^{*}=I_{\mathcal{H}}=\sum_{i=1}^{n} B_{i}^{*} B_{i}$. If

$$
\left(X_{\alpha}\right)_{\alpha \in \Gamma}^{i}=\left(X_{\alpha}^{i}\right)_{\alpha \in \Gamma} \in \mathcal{S} \quad(i=1, \cdots, n)
$$

then $0 \leq\left(X_{\alpha}^{i}\right)^{*} X_{\alpha}^{i} \leq r$. Obviously

$$
\left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right)^{*}\left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right) \geq 0
$$

Moreover, $\left(X_{\alpha}^{i}\right)^{*} X_{\alpha}^{i} \leq r$ if and only if $\frac{1}{\sqrt{r}}\left(X_{\alpha}^{i}\right)^{*} X_{\alpha}^{i} \leq \sqrt{r}$ if and only if (see e.g., [1, 2, 5])

$$
\left(\begin{array}{cc}
\sqrt{r} & \left(X_{\alpha}^{i}\right)^{*} \\
X_{\alpha}^{i} & \sqrt{r}
\end{array}\right) \geq 0, \quad i=1, \cdots, n
$$

Therefore,

$$
\begin{aligned}
&\left(\begin{array}{cc}
\sqrt{r} & \left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right)^{*} \\
\sqrt{r}
\end{array}\right) \\
& \sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}=\sum_{i=1}^{n}\left(\begin{array}{cc}
B_{i}^{*} & 0 \\
0 & A_{i}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{r} & \left(X_{\alpha}^{i}\right)^{*} \\
X_{\alpha}^{i} & \sqrt{r}
\end{array}\right)\left(\begin{array}{cc}
B_{i} & 0 \\
0 & A_{i}^{*}
\end{array}\right) \geq 0
\end{aligned}
$$

which implies that $\left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right)^{*}\left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right) \leq r$. Hence

$$
\sum_{i=1}^{n} A_{i}\left(X_{\alpha}\right)_{\alpha \in \Gamma}^{i} B_{i}=\left(\sum_{i=1}^{n} A_{i} X_{\alpha}^{i} B_{i}\right)_{\alpha \in \Gamma} \in \mathcal{S}
$$

and so \mathcal{S} is $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{H})$-convex.

A similar argument used in Example 3 can be applied to show the following result.

Proposition 4. Consider $\mathbb{B}(\mathcal{K}, \mathcal{H})$ as a Hilbert $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-bimodule. Then for a fixed scalar $r>0$, the set

$$
\mathcal{S}:=\left\{T \in \mathbb{B}(\mathcal{K}, \mathcal{H}) ; \quad 0 \leq T^{*} T \leq r I_{\mathcal{K}}\right\}
$$

is $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-convex.
Remark 5. Let \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule. If \mathcal{S} is an \mathscr{A} - \mathscr{B}-convex subset of \mathcal{X}, then it is convex in the usual sense. For if $\lambda_{i} \in[0,1],(i=1, \ldots, n)$, and $\sum_{i=1}^{n} \lambda_{i}=1$, then with $a_{i}=\sqrt{\lambda_{i}} 1_{\mathscr{A}} \in \mathscr{A}$ and $b_{i}=\sqrt{\lambda_{i}} 1_{\mathscr{B}} \in \mathscr{B}$ we have

$$
\sum_{i=1}^{n} a_{i} a_{i}^{*}=\sum_{i=1}^{n} \lambda_{i} 1_{\mathscr{A}}=1_{\mathscr{A}} \quad \text { and } \quad \sum_{i=1}^{n} b_{i}^{*} b_{i}=\sum_{i=1}^{n} \lambda_{i} 1_{\mathscr{B}}=1_{\mathscr{B}} .
$$

Now if $x_{i} \in \mathcal{S}(i=1, \ldots, n)$, then

$$
\sum_{i=1}^{n} \lambda_{i} x_{i}=\sum_{i=1}^{n} a_{i} x_{i} b_{i} \in \mathcal{S}
$$

which means that \mathcal{S} is convex.
Remark 6. Consider the C^{*}-algebra \mathscr{A} as a Hilbert $\mathscr{A}-\mathscr{A}$-bimodule. If a subset \mathcal{S} of \mathscr{A} is \mathscr{A} - \mathscr{A}-convex, then it is C^{*}-convex. Assume that $c_{1}, \ldots, c_{k} \in \mathscr{A}$ with $\sum_{i=1}^{k} c_{i}^{*} c_{i}=1_{\mathscr{A}}$. If $x_{1}, \ldots, x_{k} \in \mathcal{S}$, then the $\mathscr{A}-\mathscr{A}$-convexity of \mathcal{S} with $a_{i}:=c_{i}^{*}$ and $b_{i}:=c_{i}$, implies that

$$
\sum_{i=1}^{k} c_{i}^{*} x_{i} c_{i}=\sum_{i=1}^{k} a_{i} x_{i} b_{i} \in \mathcal{S}
$$

Therefore, it seems that the concept of $\mathscr{A}-\mathscr{B}$-convexity is stronger than C^{*}-convexity. The next example reveals this fact.

Example 7. (1) Consider $\mathcal{M}_{2}(\mathbb{C})$ as a Hilbert $\mathcal{M}_{2}(\mathbb{C})-\mathcal{M}_{2}(\mathbb{C})$-bimodule. Let α be a fixed scalar and I be the identity matrix. It is clear that the set $\mathcal{S}=\{\alpha I\}$ is a C^{*}-convex subset of $\mathcal{M}_{2}(\mathbb{C})$. However, it is not $\mathcal{M}_{2}(\mathbb{C})-\mathcal{M}_{2}(\mathbb{C})$-convex. Put

$$
A=\left(\begin{array}{cc}
\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\
-\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}}
\end{array}\right) .
$$

Then $A A^{*}=I=B^{*} B$, while $A(\alpha I) B=\alpha A B \notin \mathcal{S}$.
(2) Consider $\mathbb{B}(\mathcal{H})$ as a Hilbert $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{H})$-bimodule. The subsets

$$
\mathcal{S}_{1}=\left\{T \in \mathbb{B}(\mathcal{H}): T^{*}=T\right\} \quad \text { and } \quad \mathcal{S}_{2}=\left\{T \in \mathbb{B}(\mathcal{H}): 0 \leq T \leq I_{\mathcal{H}}\right\}
$$

are C^{*}-convex subsets of the C^{*}-algebra $\mathbb{B}(\mathcal{H})$. Let $A, B \in \mathbb{B}(\mathcal{H})$ with $A A^{*}=I_{\mathcal{H}}=$ $B^{*} B$ and put $T=I_{\mathcal{H}} \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$. Since $A B=A T B$ is not hermitian at all, we conclude that $A B \notin \mathcal{S}_{1}$ and $A B \notin \mathcal{S}_{2}$. It follows that \mathcal{S}_{1} and \mathcal{S}_{2} are not $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{H})$ convex.

Example 8. Let \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule. Then the subset

$$
\mathcal{S}:=\left\{x \in \mathcal{X}:\langle x, x\rangle_{\mathscr{A}} \leq r^{2} 1_{\mathscr{A}}, \text { for some positive real number } r \neq 1\right\}
$$

of \mathcal{X} is \mathscr{A} - \mathscr{B}-convex.
Proof. Let $a_{i} \in \mathscr{A}$ and $b_{i} \in \mathscr{B}(i=1, \ldots, n)$ with $\sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{n} b_{i}^{*} b_{i}=$ $1_{\mathscr{B}}$. We have

$$
0 \leq a_{i} a_{i}^{*} \leq \sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}, \quad 0 \leq b_{i}^{*} b_{i} \leq \sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}}
$$

It follows that $\left\|b_{i}\right\| \leq 1$. If $x_{i} \in \mathcal{S}(i=1, \ldots, n)$, then (1.1)implies that

$$
\begin{aligned}
\left\langle a_{i} x_{i} b_{i}, a_{i} x_{i} b_{i}\right\rangle_{\mathscr{A}} & \leq\left\|b_{i}\right\|^{2}\left\langle a_{i} x_{i}, a_{i} x_{i}\right\rangle_{\mathscr{A}} \\
& \leq a_{i}\left\langle x_{i}, x_{i}\right\rangle_{\mathscr{A}} a_{i}^{*} \\
& \leq r^{2} a_{i} a_{i}^{*} \\
& \leq r^{2} 1_{\mathscr{A}}, \quad(1 \leq i \leq n)
\end{aligned}
$$

Then $a_{i} x_{i} b_{i} \in \mathcal{S}$ for all $i=1, \ldots, n$. Moreover, if $x, y \in \mathcal{S}$, then there exist positive real numbers $r \neq 1$ and $s \neq 1$ such that $\langle x, x\rangle \leq r^{2} 1_{\mathscr{A}}$ and $\langle y, y\rangle \leq s^{2} 1_{\mathscr{A}}$. In a C^{*}-algebra \mathscr{A} we have

$$
(\text { Rea })^{2}+(\operatorname{Ima})^{2}=\frac{a^{*} a+a a^{*}}{2}, \quad(a \in \mathscr{A})
$$

Therefore

$$
0 \leq 2(\operatorname{Re}\langle y, x\rangle)^{2} \leq\langle x, y\rangle\langle y, x\rangle+\langle y, x\rangle\langle x, y\rangle
$$

It follows that

$$
2\|\operatorname{Re}(\langle y, x\rangle)\|^{2} \leq\|\langle y, x\rangle\|^{2}+\|\langle x, y\rangle\|^{2} \leq 2\|x\|^{2}\|y\|^{2} \leq 2 r^{2} s^{2}
$$

Hence

$$
\operatorname{Re}(\langle y, x\rangle) \leq\|\operatorname{Re}(\langle y, x\rangle)\| 1_{\mathscr{A}} \leq r s
$$

Consequently

$$
\begin{aligned}
\langle x+y, x+y\rangle & =\langle x, x\rangle+\langle y, y\rangle+2 \operatorname{Re}(\langle y, x\rangle) \\
& \leq\left(r^{2}+s^{2}+2 r s\right) 1_{\mathscr{A}} \\
& =(r+s)^{2} 1_{\mathscr{A}}
\end{aligned}
$$

It follows that $x+y \in \mathcal{S}$ and so $\sum_{i=1}^{n} a_{i} x_{i} b_{i} \in \mathcal{S}$.

Many properties of a topological vector space, like locally boundedness, locally compactness and locally convexity come from the structure of the neighborhoods of its origin, the zero vector. In a normed space, the unit ball plays this role. We know that the unit ball of every normed space is convex. More generally, the unit ball of $\mathbb{B}(\mathcal{H})$ is C^{*}-convex [10]. The next theorems show that more generally, the closed unit ball of every Hilbert \mathscr{A} - \mathscr{B}-bimodule is \mathscr{A} - \mathscr{B}-convex.

Theorem 9. Let \mathscr{A} and \mathscr{B} be commutative C^{*}-algebras and let \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule. Then the closed unit ball of \mathcal{X} is $\mathscr{A}-\mathscr{B}$-convex.

Proof. Suppose that $\varphi: \mathscr{A} \rightarrow C(T)$ and $\psi: \mathscr{B} \rightarrow C(S)$ are the Gelfand representations of \mathscr{A} and \mathscr{B}, respectively, where S, T are compact Hausdorff spaces. Let $a_{i} \in \mathscr{A}$ and $b_{i} \in \mathscr{B}(i=1, \cdots, n)$ such that

$$
\sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}, \quad \sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}}
$$

It follows from the Gelfand representation theorem that $\sum_{i=1}^{n}\left|\varphi\left(a_{i}\right)(t)\right|^{2}=1(t \in T)$ and $\sum_{i=1}^{n}\left|\psi\left(b_{i}\right)(s)\right|^{2}=1(s \in S)$. Let $\mathcal{S}=\{x \in \mathcal{X}:\|x\| \leq 1\}$ and $x_{i} \in \mathcal{S}$ $(i=1, \cdots, n)$. Then we have

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right\| & \leq \sum_{i=1}^{n}\left\|a_{i} x_{i} b_{i}\right\| \\
& \leq \sum_{i=1}^{n}\left\|a_{i}\right\|\left\|x_{i}\right\|\left\|b_{i}\right\| \quad(\text { by }(1.3)) \\
& \leq \sum_{i=1}^{n}\left\|a_{i}\right\|\left\|b_{i}\right\| \\
& =\sum_{i=1}^{n}\left\|\varphi\left(a_{i}\right)\right\|\left\|\psi\left(b_{i}\right)\right\| \quad \text { (by the Gelfand representation theorem) } \\
& \leq\left(\sum_{i=1}^{n}\left\|\phi\left(a_{i}\right)\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left\|\psi\left(b_{i}\right)\right\|^{2}\right)^{\frac{1}{2}} \quad(\text { by the Cauchy-Schwarz inequality) } \\
& \leq\left(\sup _{t \in T} \sum_{i=1}^{n}\left|\phi\left(a_{i}\right)(t)\right|^{2}\right)^{\frac{1}{2}}\left(\sup _{s \in S} \sum_{i=1}^{n}\left|\psi\left(b_{i}\right)(s)\right|^{2}\right)^{\frac{1}{2}}=1 .
\end{aligned}
$$

Therefore \mathcal{S} is \mathscr{A} - \mathscr{B}-convex.
More generally, the C^{*}-algebras \mathscr{A} and \mathscr{B} need not to be commutative. We prove this fact using a different argument.

Surveys in Mathematics and its Applications 12 (2017), 7 - 21
http://www.utgjiu.ro/math/sma

Theorem 10. Let \mathscr{A} and \mathscr{B} be C^{*}-algebras and \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule. If M is a positive scalar, then $\mathcal{S}=\{x \in \mathcal{X}, \quad\|x\| \leq M\}$ is \mathscr{A} - \mathscr{B}-convex. In particular, the closed unit ball of \mathcal{X} is $\mathscr{A}-\mathscr{B}$-convex.

Proof. Assume that $\mathcal{M}_{n}(\mathscr{A})$ and $\mathcal{M}_{n}(\mathscr{B})$ are the matrix C^{*}-algebras whose elements are $n \times n$ matrices with entries in \mathscr{A} and \mathscr{B}, respectively. Put

$$
\mathcal{M}_{n}(\mathcal{X})=\left\{\left[x_{i j}\right] ; x_{i j} \in \mathcal{X}, 1 \leq i, j \leq n\right\}
$$

Then $\mathcal{M}_{n}(\mathcal{X})$ is a $\mathcal{M}_{n}(\mathscr{A})-\mathcal{M}_{n}(\mathscr{B})$-bimodule with respect to the following module operations:

$$
\begin{array}{r}
\cdot: \mathcal{M}_{n}(\mathscr{A}) \times \mathcal{M}_{n}(\mathcal{X}) \rightarrow \mathcal{M}_{n}(\mathcal{X}) \\
\quad\left(\left[a_{i j}\right],\left[x_{i j}\right]\right) \mapsto\left[\sum_{k=1}^{n} a_{i k} x_{k j}\right], \\
:: \mathcal{M}_{n}(\mathcal{X}) \times \mathcal{M}_{n}(\mathscr{B}) \rightarrow \mathcal{M}_{n}(\mathcal{X}) \\
\quad\left(\left[x_{i j}\right],\left[b_{i j}\right]\right) \mapsto\left[\sum_{k=1}^{n} x_{i k} b_{k j}\right],
\end{array}
$$

and the inner products on $\mathcal{M}_{n}(\mathcal{X})$ defined by

$$
\begin{aligned}
\mathcal{M}_{n}(\mathcal{X}) \times \mathcal{M}_{n}(\mathcal{X}) & \rightarrow \mathcal{M}_{n}(\mathscr{A})\left(\mathcal{M}_{n}(\mathscr{B})\right) \\
\left\langle\left[x_{i j}\right],\left[y_{i j}\right]\right\rangle & \mapsto\left[\sum_{k=1}^{n}\left\langle x_{i k}, y_{k j}\right\rangle_{\mathscr{A}}\right]\left(\left[\sum_{k=1}^{n}\left\langle x_{i k}, y_{k j}\right\rangle_{\mathscr{B}}\right]\right) .
\end{aligned}
$$

Assume that $x_{1}, \ldots, x_{n} \in \mathcal{S}$. Let $a_{i} \in \mathscr{A}, b_{i} \in \mathscr{B}(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} a_{i} a_{i}^{*}=$ $1_{\mathscr{A}}$ and $\sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}}$. Put

$$
A=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
b_{1} & 0 & \ldots & 0 \\
b_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
b_{n} & 0 & \ldots & 0
\end{array}\right) \quad \text { and } \quad X=\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

Then $A \in \mathcal{M}_{n}(\mathscr{A}), B \in \mathcal{M}_{n}(\mathscr{B})$ and $X \in \mathcal{M}_{n}(\mathcal{X})$. Moreover,

$$
\left\|\left|A \left\|\| = \| \left|A ^ { * } \left\|\left|=\left\|\left|A^{*} A\| \|^{\frac{1}{2}}=\left\|\left|A A^{*} \|\right|^{\frac{1}{2}}\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

and

$$
\left\|\left|B \left\|\left|=\left\|\left|B ^ { * } \left\|\left|=\left\|\left|B^{*} B\left\|^{\frac{1}{2}}=\right\|\right| B B^{*}\right\|\right|^{\frac{1}{2}}\right.\right.\right.\right.\right.\right.\right.
$$

and

$$
\left\|\left|X \| \| = \| \| \langle X , X \rangle \| | ^ { \frac { 1 } { 2 } } = \| (\begin{array} { c c c c }
{ \| x _ { 1 } \| ^ { 2 } } & { 0 } & { \cdots } & { 0 } \\
{ 0 } & { \| x _ { 2 } \| ^ { 2 } } & { \cdots } & { 0 } \\
{ \vdots } & { \vdots } & { \ddots } & { \vdots } \\
{ 0 } & { 0 } & { \cdots } & { \| x _ { n } \| ^ { 2 } }
\end{array}) \left\|\|^{\frac{1}{2}} \leq M .\right.\right.\right.
$$

It follows from using (1.3) in the $\mathcal{M}_{n}(\mathcal{X})$ that

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right\|=\left\|\left(\begin{array}{cccc}
\sum_{i=1}^{n} a_{i} x_{i} b_{i} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\right\| \| \\
& =\||A X B\||\leq\||A\| \| \cdot\|\mid X\|\|\cdot\| B B \| \\
& \leq M\left\|\left|A A^{*}\| \|^{\frac{1}{2}}\left\|\mid B^{*} B\right\|^{\frac{1}{2}}\right.\right. \\
& =\| \|\left(\begin{array}{cccc}
\sum_{i=1}^{n} a_{i} a_{i}^{*} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\| \| \cdot\|\cdot\|\left\|\left(\begin{array}{cccc}
\sum_{i=1}^{n} b_{i}^{*} b_{i} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)\right\| \|^{\frac{1}{2}} \\
& =\left\|\sum_{i=1}^{n} a_{i} a_{i}^{*}\right\| \cdot\left\|\sum_{i=1}^{n} b_{i}^{*} b_{i}\right\| \\
& \leq M \text {. }
\end{aligned}
$$

Corollary 11. Consider $\mathbb{B}(\mathcal{K}, \mathcal{H})$ as a Hilbert $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-bimodule. If M is a positive scalar, then the set $\mathcal{S}=\{T \in \mathbb{B}(\mathcal{K}, \mathcal{H}),\|T\| \leq M\}$ is $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-convex. In particular, the closed unit ball of $\mathbb{B}(\mathcal{K}, \mathcal{H})$ is $\mathbb{B}(\mathcal{H})-\mathbb{B}(\mathcal{K})$-convex.
Remark 12. It should be remarked that our mean by the closed unit ball of \mathcal{X} in Theorem 9 and 10 is the closed unit ball of \mathcal{X} with respect to the norm induced by the C^{*}-algebras \mathscr{A} and \mathscr{B}. In other words, the closed unit ball of a Hilbert \mathscr{A} - \mathscr{B} bimodule with respect to an arbitrary norm need not to be \mathscr{A} - \mathscr{B}-convex. Too see this, let $\mathcal{M}_{n}(\mathbb{C})$ be the algebra of all $n \times n$ matrices with complex entries. For $A \in \mathcal{M}_{n}(\mathbb{C})$, let $s_{1}(A) \geq s_{2}(A) \geq \cdots \geq s_{n}(A)$ be the singular values of A, i.e., the eigenvalues of $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. Our mean by the spectral norm $\|\cdot\|_{\infty}$ is the norm on $\mathcal{M}_{n}(\mathbb{C})$ defined by $\|A\|_{\infty}=s_{1}(A)$, while the trace norm is defined on $\mathcal{M}_{n}(\mathbb{C})$ by $\|A\|_{1}=\operatorname{Tr}(|A|)$. Consider $\mathcal{M}_{n}(\mathbb{C})$ as a Hilbert $\mathcal{M}_{n}(\mathbb{C})-\mathcal{M}_{n}(\mathbb{C})$-bimodule. The closed unit ball of the trace norm, say $\mathcal{B}=\left\{X \in \mathcal{M}_{n}(\mathbb{C}):\|X\|_{1} \leq 1\right\}$ is not $\mathcal{M}_{n}(\mathbb{C})-\mathcal{M}_{n}(\mathbb{C})$-convex. Indeed, if

$$
P=X=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad Q=Y=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

then P and Q are projections, $P+Q=I$ and $\|P X P\|_{1}=\|Q Y Q\|_{1}=1$. However, $\|P X P+Q Y Q\|_{1}=2$ and so $P X P+Q Y Q \notin \mathcal{B}$. This shows that \mathcal{B} is not $\mathcal{M}_{2}(\mathbb{C})$ -$\mathcal{M}_{2}(\mathbb{C})$-convex.

Note that Theorem 10 guarantees the $\mathcal{M}_{n}(\mathbb{C})-\mathcal{M}_{n}(\mathbb{C})$-convexity of the closed unit ball of the spectral norm $\|\cdot\|_{\infty}$. More generally, the set

$$
\mathcal{S}:=\left\{X \in \mathcal{M}_{n}(\mathbb{C}):\left(\begin{array}{cc}
S & X \\
X^{*} & T
\end{array}\right) \geq 0, \exists S, T: 0 \leq S \leq I, 0 \leq T \leq I\right\}
$$

is $\mathcal{M}_{n}(\mathbb{C})-\mathcal{M}_{n}(\mathbb{C})$-convex. Indeed, assume that $A_{i}, B_{i} \in \mathcal{M}_{n}(\mathbb{C}),(i=1, \cdots, k)$ with $\sum_{i=1}^{k} A_{i} A_{i}^{*}=I=\sum_{i=1}^{k} B_{i}^{*} B_{i}$. If $X_{i} \in \mathcal{S}, \quad(i=1, \cdots, k)$, then there exist $S_{i}, T_{i} \in \mathcal{M}_{n}(\mathbb{C})$ with $0 \leq S_{i} \leq I$ and $0 \leq T_{i} \leq I$ such that

$$
\left(\begin{array}{cc}
S_{i} & X_{i} \\
X_{i}^{*} & T_{i}
\end{array}\right) \geq 0, \quad i=1, \cdots, k
$$

It follows that

$$
\left[\begin{array}{cc}
\sum_{i=1}^{k} A_{i} S_{i} A_{i}^{*} & \sum_{i=1}^{k} A_{i} X_{i} B_{i} \\
\left(\sum_{i=1}^{k} A_{i} X_{i} B_{i}\right)^{*} & \sum_{i=1}^{k} B_{i}^{*} T_{i} B_{i}
\end{array}\right]=\sum_{i=1}^{k}\left[\begin{array}{cc}
A_{i} & 0 \\
0 & B_{i}^{*}
\end{array}\right]\left[\begin{array}{cc}
S_{i} & X_{i} \\
X_{i}^{*} & T_{i}
\end{array}\right]\left[\begin{array}{cc}
A_{i}^{*} & 0 \\
0 & B_{i}
\end{array}\right] \geq 0
$$

Moreover,

$$
0 \leq \sum_{i=1}^{k} A_{i} S_{i} A_{i}^{*} \leq \sum_{i=1}^{k} A_{i} A_{i}^{*}=I \quad \text { and } \quad 0 \leq \sum_{i=1}^{k} B_{i}^{*} T_{i} B_{i} \leq \sum_{i=1}^{k} B_{i}^{*} B_{i}=I
$$

from which we get $\sum_{i=1}^{k} A_{i} X_{i} B_{i} \in \mathcal{S}$ and so \mathcal{S} is $\mathcal{M}_{n}(\mathbb{C})$ - $\mathcal{M}_{n}(\mathbb{C})$-convex. Putting $S=T=I$ and using the fact that that for $X \in \mathcal{M}_{n}(\mathbb{C}),\|X\|_{\infty} \leq 1$ if and only if $\left[\begin{array}{cc}I & X \\ X^{*} & I\end{array}\right] \geq 0$, (see for example [1]) we conclude the $\mathcal{M}_{n}(\mathbb{C})$ - $\mathcal{M}_{n}(\mathbb{C})$-convexity of

$$
\mathcal{S}=\left\{X \in \mathcal{M}_{n}(\mathbb{C}) ;\|X\|_{\infty} \leq 1\right\} .
$$

Let \mathcal{X} be a Hilbert \mathscr{A} - \mathscr{B}-bimodule, $\mathcal{S} \subseteq \mathcal{X}$ and let $\|\cdot\|_{\mathscr{A}}$ and $\|\cdot\|_{\mathscr{B}}$ be the norms on \mathcal{X} induced by $\langle\cdot, \cdot\rangle_{\mathscr{A}}$ and $\langle\cdot, \cdot\rangle_{\mathscr{B}}$, respectively. We mean by $\overline{\mathcal{S}}_{\mathscr{A}}$ and $\overline{\mathcal{S}}_{\mathscr{B}}$ the norm closures of \mathcal{S} in \mathcal{X} with respect to $\|\cdot\|_{\mathscr{A}}$ and $\|\cdot\|_{\mathscr{B}}$, respectively.

Proposition 13. If \mathcal{S} is \mathscr{A} - \mathscr{B}-convex, then so are $\overline{\mathcal{S}}_{\mathscr{A}}$ and $\overline{\mathcal{S}}_{\mathscr{B}}$.
Proof. Let \mathcal{S} be \mathscr{A} - \mathscr{B}-convex and $x_{1}, \ldots, x_{n} \in \overline{\mathcal{S}}_{\mathscr{A}}$. Assume that $x_{i k}$ is a sequence in \mathcal{S} such that $\left\|x_{i k}-x_{i}\right\|_{\mathscr{A}} \rightarrow 0$ for $i=1, \ldots, n$ as $k \rightarrow \infty$. If $a_{1}, \ldots, a_{n} \in \mathscr{A}$ and
$b_{1}, \ldots, b_{n} \in \mathscr{B}$ with $\sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}}$, then $\sum_{i=1}^{n} a_{i} x_{i k} b_{i} \in \mathcal{S}$, for every $k \in \mathbb{N}$. Moreover, for every $1 \leq i \leq n$ we have

$$
\begin{aligned}
\left\|a_{i} x_{i k} b_{i}-a_{i} x_{i} b_{i}\right\|_{\mathscr{A}}^{2} & =\left\|\left\langle a_{i}\left(x_{i k}-x_{i}\right) b_{i}, a_{i}\left(x_{i k}-x_{i}\right) b_{i}\right\rangle_{\mathscr{A}}\right\| \\
& \leq\left\|b_{i}\right\|_{\mathscr{A}}^{2}\left\|\left\langle a_{i}\left(x_{i k}-x_{i}\right), a_{i}\left(x_{i k}-x_{i}\right)\right\rangle_{\mathscr{A}}\right\| \\
& \leq a_{i}\left\|\left\langle x_{i k}-x_{i}, x_{i k}-x_{i}\right\rangle_{\mathscr{A}}\right\| a_{i}^{*} \\
& =a_{i}\left\|x_{i k}-x_{i}\right\|_{\mathscr{A}}^{2} a_{i}^{*} \rightarrow 0 .
\end{aligned}
$$

Therefore,

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i k} b_{i}-\sum_{i=1}^{n} a_{i} x_{i} b_{i}\right\|_{\mathscr{A}} \leq \sum_{i=1}^{n}\left\|a_{i} x_{i k} b_{i}-a_{i} x_{i} b_{i}\right\|_{\mathscr{A}} \rightarrow 0 .
$$

It follows that $\sum_{i=1}^{n} a_{i} x_{i k} b_{i} \rightarrow \sum_{i=1}^{n} a_{i} x_{i} b_{i}$ as $k \rightarrow \infty$ and so $\sum_{i=1}^{n} a_{i} x_{i} b_{i} \in \overline{\mathcal{S}}_{\mathscr{A}}$.
For every two element x, y in a Hilbert $\mathscr{A}-\mathscr{B}$-bimodule \mathcal{X}, we define the $\mathscr{A}-\mathscr{B}$ segment connecting x and y by

$$
S_{\mathscr{A}, \mathscr{B}}(x, y)=\left\{a x b+c y d \mid a a^{*}+c c^{*}=1_{\mathscr{A}}, \quad b^{*} b+d^{*} d=1_{\mathscr{B}}\right\} .
$$

and the $\mathscr{A}-\mathscr{B}$-convex segment connecting x and y by
$C S_{\mathscr{A}, \mathscr{B}}(x, y)=\left\{\sum_{i=1}^{n} a_{i} x b_{i}+\sum_{j=1}^{m} c_{j} y d_{j} \mid \sum_{i=1}^{n} a_{i} a_{i}^{*}+\sum_{j=1}^{m} c_{j} c_{j}^{*}=1_{\mathscr{A}}, \quad \sum_{i=1}^{n} b_{i}^{*} b_{i}+\sum_{j=1}^{m} d_{j}^{*} d_{j}=1_{\mathscr{B}}\right\}$.
If $\mathscr{A}=\mathscr{B}$, then we denote $S_{\mathscr{A}, \mathscr{B}}(x, y)$ and $C S_{\mathscr{A}, \mathscr{B}}(x, y)$ by $S_{\mathscr{A}}(x, y)$ and $C S_{\mathscr{A}}(x, y)$, respectively. These concepts are natural generalizations of C^{*}-segment and C^{*} convex segments in C^{*}-algebras. The $\mathscr{A}-\mathscr{B}$-segment connecting x and y, the $S_{\mathscr{A}, \mathscr{B}}(x, y)$, is not $\mathscr{A}-\mathscr{B}$-convex in general. The next example shows that $S_{\mathscr{A}, \mathscr{B}}(x, y)$ is not even convex.

Example 14. [10] Consider $\mathcal{M}_{2}(\mathbb{C})$ as a Hilbert $\mathcal{M}_{2}(\mathbb{C})-\mathcal{M}_{2}(\mathbb{C})$-bimodule. Let $X=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $Y=0$. Then every element in the $S_{\mathcal{M}_{2}(\mathbb{C})}(X, Y)$ is a rank one matrix. If $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then $A A^{*}=I$ and so $T=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=A X A^{*} \in$ $S_{\mathcal{M}_{2}(\mathbb{C})}(X, Y)$. However, $\lambda T+(1-\lambda) X=\left(\begin{array}{cc}1-\lambda & 0 \\ 0 & \lambda\end{array}\right)$ is not of rank one. It follows that $S_{\mathcal{M}_{2}(\mathbb{C})}(X, Y)$ is not even convex.

However, $C S_{\mathscr{A}, \mathscr{B}}(x, y)$ is \mathscr{A} - \mathscr{B}-convex.
Proposition 15. If $x, y \in \mathcal{X}$, then $C S_{\mathscr{A}, \mathscr{B}}(x, y)$ is \mathscr{A} - \mathscr{B}-convex and contains x and y.

Proof. Assume that $n=m=1, a_{1}=1_{\mathscr{A}}, c_{1}=0, b_{1}=1_{\mathscr{B}}$ and $d_{1}=0$. Then

$$
x=a_{1} x b_{1}+c_{1} y d_{1} \in C S_{\mathscr{A}, \mathscr{B}}(x, y)
$$

Similarly $y \in C S_{\mathscr{A}, \mathscr{B}}(x, y)$. Now assume that $z_{1}, \ldots, z_{n} \in C S_{\mathscr{A}, \mathscr{B}}(x, y)$. Then

$$
z_{k}=\sum_{i=1}^{n_{k}} a_{i k} x b_{i k}+\sum_{j=1}^{m_{k}} c_{j k} y d_{j k} \quad \forall k=1, \ldots, n
$$

in which $\sum_{i=1}^{n_{k}} a_{i k} a_{i k}^{*}+\sum_{j=1}^{m_{k}} c_{j k} c_{j k}^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{n_{k}} b_{i k}^{*} b_{i k}+\sum_{j=1}^{m_{k}} d_{j k}^{*} d_{j k}=1_{\mathscr{B}}$, for every k. Let $p_{1}, \ldots, p_{n} \in \mathscr{A}$ and $q_{1}, \ldots, q_{n} \in \mathscr{B}$ with $\sum_{i=1}^{n} p_{k} p_{k}^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{n} q_{k}^{*} q_{k}=1_{\mathscr{B}}$. We have

$$
\begin{aligned}
\sum_{k=1}^{n} p_{k} z_{k} q_{k} & =\sum_{k=1}^{n} p_{k}\left(\sum_{i=1}^{n_{k}} a_{i k} x b_{i k}+\sum_{j=1}^{m_{k}} c_{j k} y d_{j k}\right) q_{k} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n_{k}} p_{k} a_{i k} x b_{i k} q_{k}+\sum_{k=1}^{n} \sum_{j=1}^{m_{k}} p_{k} c_{j k} y d_{j k} q_{k} \in C S_{\mathscr{A}, \mathscr{B}}(x, y)
\end{aligned}
$$

since
$\sum_{k=1}^{n} \sum_{i=1}^{n_{k}} p_{k} a_{i k} a_{i k}^{*} p_{k}^{*}+\sum_{k=1}^{n} \sum_{j=1}^{m_{k}} p_{k} c_{j k} c_{j k}^{*} p_{k}^{*}=\sum_{k=1}^{n} p_{k}\left(\sum_{i=1}^{n_{k}} a_{i k} a_{i k}^{*}+\sum_{j=1}^{m_{k}} c_{j k} c_{j k}^{*}\right) p_{k}^{*}=1_{\mathscr{A}}$
and
$\sum_{k=1}^{n} \sum_{i=1}^{n_{k}}\left(b_{i k} q_{k}\right)^{*} b_{i k} q_{k}+\sum_{k=1}^{n} \sum_{j=1}^{m_{k}}\left(d_{j k} q_{k}\right)^{*} d_{j k} q_{k}=\sum_{k=1}^{n} q_{k}^{*}\left(\sum_{i=1}^{n_{k}} b_{i k}^{*} b_{i k}+\sum_{j=1}^{m_{k}} d_{j k}^{*} d_{j k}\right) q_{k}=1_{\mathscr{B}}$.

We are going to show that every $\mathscr{A}-\mathscr{B}$-convex combination of elements of an $\mathscr{A}-\mathscr{B}$-convex set, can be presented as a combination of two terms.

Proposition 16. Let \mathcal{S} be an \mathscr{A} - \mathscr{B}-convex subset of the Hilbert \mathscr{A} - \mathscr{B}-bimodule \mathcal{X} and let $x_{1}, \cdots, x_{n} \in \mathcal{S}$. If $z=\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ with $a_{i} \in \mathscr{A}, b_{i} \in \mathscr{B}$ and $\sum_{i=1}^{n} a_{i} a_{i}^{*}=1_{\mathscr{A}}$ and $\sum_{i=1}^{n} b_{i}^{*} b_{i}=1_{\mathscr{B}}$, then $z=e_{1} x f_{1}+e_{2} y f_{2}$, for some $x, y \in \mathcal{S}, e_{1}, e_{2} \in \mathscr{A}$ and $f_{1}, f_{2} \in \mathscr{B}$ with $e_{1} e_{1}^{*}+e_{2} e_{2}^{*}=1_{\mathscr{A}}$ and $f_{1}^{*} f_{1}+f_{2}^{*} f_{2}=1_{\mathscr{B}}$.
Proof. Assume that $z=\sum_{i=1}^{n} a_{i} x_{i} b_{i}$. Put $u=\frac{1}{2} a_{1} a_{1}^{*}$ and $v=\frac{1}{2} b_{1}^{*} b_{1}$ so that u and v are positive invertible elements in \mathscr{A} and \mathscr{B}, respectively. Put $c_{1}=\frac{1}{\sqrt{2}}(1-u)^{\frac{-1}{2}} a_{1}$, $d_{1}=\frac{1}{\sqrt{2}} b_{1}(1-v)^{\frac{-1}{2}}$ and

$$
c_{i}=(1-u)^{\frac{-1}{2}} a_{i}, \quad d_{i}=b_{i}(1-v)^{\frac{-1}{2}} \quad i=2, \cdots, n
$$

then $c_{i} \in \mathscr{A}, d_{i} \in \mathscr{B}$ and

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} c_{i}^{*} & =\frac{1}{2}(1-u)^{\frac{-1}{2}} a_{1} a_{1}^{*}(1-u)^{\frac{-1}{2}}+\sum_{i=2}^{n}(1-u)^{\frac{-1}{2}} a_{i} a_{i}^{*}(1-u)^{\frac{-1}{2}} \\
& =(1-u)^{\frac{-1}{2}}\left(\frac{1}{2} a_{1} a_{1}^{*}+\sum_{i=2}^{n} a_{i} a_{i}^{*}\right)(1-u)^{\frac{-1}{2}}=1_{\mathscr{A}}
\end{aligned}
$$

Similarly, $\sum_{i=1}^{n} d_{i}^{*} d_{i}=1_{\mathscr{B}}$. It follows that $y=\sum_{i=1}^{n} c_{i} x_{i} d_{i} \in \mathcal{S}$. But we have

$$
z=\sum_{i=1}^{n} a_{i} x_{i} b_{i}=\left(\frac{1}{\sqrt{2}} a_{1}\right) x_{1}\left(\frac{1}{\sqrt{2}} b_{1}\right)+(1-u)^{\frac{1}{2}} y(1-v)^{\frac{1}{2}}
$$

in which $x_{1}, y \in \mathcal{S}, \frac{1}{2} a_{1} a_{1}^{*}+(1-u)=1_{\mathscr{A}}$ and $\frac{1}{2} b_{1}^{*} b_{1}+(1-v)=1_{\mathscr{B}}$.
Remark 17. Suppose that \mathcal{X} is a Hilbert \mathscr{A} - \mathscr{B}-bimodule and \mathcal{S} is an \mathscr{A} - \mathscr{B}-convex subset of \mathcal{X} and $0 \in \mathcal{S}$. If $x \in \mathcal{S}$ and u and v are unitaries in C^{*}-algebras \mathscr{A} and \mathscr{B}, respectively, then trivially uxv $\in \mathcal{S}$. Let $x_{1}, x_{2} \in \mathcal{S}, a_{1}, a_{2} \in \mathscr{A}$ and $b_{1}, b_{2} \in \mathscr{B}$ with $a_{1} a_{1}^{*}+a_{2} a_{2}^{*}=1_{\mathscr{A}}$ and $b_{1}^{*} b_{1}+b_{2}^{*} b_{2}=1_{\mathscr{B}}$. Assume that $a_{i}^{*}=u_{i}\left|a_{i}^{*}\right|$ and $b_{i}=v_{i}\left|b_{i}\right|$ be the polar decomposition. Then

$$
z=a_{1} x_{1} b_{1}+a_{2} x_{2} b_{2}=\left|a_{1}^{*}\right| u_{1}^{*} x_{1} v_{1}\left|b_{1}\right|+\left|a_{2}^{*}\right| u_{2}^{*} x_{2} v_{2}\left|b_{2}\right|=\left|a_{1}^{*}\right| y_{1}\left|b_{1}\right|+\left|a_{2}^{*}\right| y_{2}\left|b_{2}\right|
$$

in which, $y_{1}, y_{2} \in \mathcal{S}$ and $\left|a_{1}^{*}\right|^{2}+\left|a_{2}^{*}\right|^{2}=1_{\mathscr{A}}$ and $\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=1_{\mathscr{B}}$. It means that z can be presented as a combination with positive coefficients.

Acknowledgement. The authors would like to express their sincere gratitude to the anonymous referee for his/her helpful comments. The First author was in part supported by a grant from IPM (No.92470040).

References

[1] R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007. MR2284176(2007k:15005). Zbl 1125.15300.
[2] M. Dehghani, S. M. S. Modarres and M. S. Moslehian, Positive block matrices on Hilbert and Krein C^{*}-modules, Surv. Math. Appl. 8 (2013), 23-34 MR3171618.
[3] E.G. Effros and S. Winkler, Matrix Convexity: Operator Analogues of the Bipolar and Hahn-Banach Theorems, J. Funct. Anal. 144 (1997), no. 1, 117152. MR1430718. Zbl 0897.46046.

Surveys in Mathematics and its Applications 12 (2017), 7 - 21
http://www.utgjiu.ro/math/sma
[4] D.R. Farenick and B.P. Morenz, C^{*}-extreme points of some compact C^{*}-convex sets, Proc. Amer. Math. Soc. 118 (1993), no. 3, 765-775. MR1139466. Zbl 0782.15017.
[5] T. Furuta, H. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space, Monographs in Inequalities, 1. ELEMENT, Zagreb, 2005. MR3026316. Zbl 1135.47012.
[6] A. Hopenwasser, R.L. Moore, V.I. Paulsen, C^{*}-extereme points, Trans. Amer. Math. Soc. 266 (1981), no. 1, 291-307. MR0613797. Zbl 0471.47024.
[7] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C^{*}-bimodules and K-theory, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3429-3472. MR1624182. Zbl 0954.46034.
[8] M. Kian, C^{*}-convexity of norm unit balls, J. Math. Anal. Appl. 445 (2017), no. 2, 1417-1427. MR3545251. Zbl 06626211.
[9] M. Kian, Epigraph of operator functions, Quaest. Math. 39 (2016), no. 5, 587594. MR3544211.
[10] R.I. Loebl and V.I. Paulsen, Some remarks on C^{*}-convexity, Linear Algebra Appl. 35 (1981), 63-78. MR0599846. Zbl 0448.46038
[11] P.B. Morenz, The structure of C^{*}-convex sets, Canad. J. Math. 46 (1994), no. 5, 1007-1026. MR1295129. Zbl 0805.47003
[12] B. Magajna, C^{*}-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 2, 375-387. MR1750836. Zbl 0970.46041
[13] B. Magajna, On C^{*}-extereme points, Proc. Amer. Math. Soc. 129 (2001), no. 3, 771-780. MR1802000. Zbl 0967.47042
[14] B. Magajna, C^{*}-convex sets and completely positive maps, Integral Equations Operator Theory 85 (2016), no. 1, 37-62. MR3503178. Zbl 06601124
[15] V.M. Manuilov and E. V. Troitsky, Hilbert C^{*}-Modules, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence RI, 2005. MR2125398. Zbl 1074.46001.
[16] C. Webster and S. Winkler, The Krein-Milman Theorem in operator convexity, Trans. Amer. Math. Soc. 351 (1999), no. 1, 307-322. MR1615970. Zbl 0908.47042.

Surveys in Mathematics and its Applications 12 (2017), 7 - 21
http://www.utgjiu.ro/math/sma

Mohsen Kian
Department of Mathematics,
Faculty of Basic Sciences,
University of Bojnord,
P. O. Box 1339, Bojnord 94531, Iran.
and
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran.
email: kian@ub.ac.ir and kian@member.ams.org

Mahdi Dehghani (Corresponding author)
Department of Pure Mathematics,
Faculty of Mathematical Sciences,
University of Kashan,
P. O. Box 87317-53153, Kashan, Iran.
email: m.dehghani@kashanu.ac.ir

License

This work is licensed under a Creative Commons Attribution 4.0 International License. © (1)

[^0]: 2010 Mathematics Subject Classification: Primary 46L89; Secondary 52A01, 46L08.
 Keywords: Matrix convex set; C^{*}-algebra; Hilbert C^{*}-bimodule; noncommutative convexity.

