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ACQUIRED KNOWLEDGE AS A STOCHASTIC
PROCESS

George Stoica and Barry Strack

Abstract. The paper argues that stochastic and deterministic knowledge complement and

improve upon each other. We introduce a stochastic model for acquired knowledge and prove that

the numerical data provided fits quite well the estimated outcomes of the model.

1 Purpose and data

Between 2005 and 2015, a number of 420 students registered and finalized an upper-
level specialized undergraduate program, under the first author’s coordination. Among
them, 312 students had the correct and complete pre-requisites for that course,
whereas the other 108 had only partial exposure to the pre-requisites, due to objective
reasons, such as: they were coming from another university, obtained equivalents for
pre-requisites having slightly different content, certain topics have not been taught
by lack of time (bad weather cancellations), took the pre-requisites long time ago,
when the curriculum was less charged than today, etc. However, the performance
of all 420 students has been evaluated using the same criteria: a midterm worth
30% of the final grade, a final exam worth 50% and assignments worth 20%. The
overall failure rate at the midterm was 30.48%, and at the final exam of 14.76%.
The assignments were, in average, in the range of 80%, and this seems to have
contributed to reducing the failure rate between midterm and final exam.

Motivated by the second author’s interest in the possibility of representing this
model in probabilistic terms, in this paper we shall describe a stochastic model that
incorporates and explains quite faithfully this type of acquired knowledge, based on
a deterministic part (coming from taking the correct pre-requisites) and a random or
stochastic part (coming from partial exposure to the pre-requisites). Inter alia, the
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model will demonstrate that, in spite of poor odds, students with incomplete pre-
requisites obtained better results than expected, by working harder on the midterm
and assignments, and thus correctly explaining the small failure rates at that course.

The pioneering ideas from [5] on deterministic models of acquired knowledge have
been developed in [1] and [6], and our model can be seen as an extension, with a
stochastic counterpart, of the recent findings in [3]. The paper is organized as follows.
In Section 2 we describe the mathematical model, obtain the main theoretical results
of the paper, and in Section 3 we estimate the parameters involved in the model,
compare with the numerical data, and interpret the results. In the Appendix we
provide the proofs of the main results.

2 The model and main theoretical results

According to [1], at each time t > 0, the level of acquired knowledge is given by the
integral (or sum, if time is discrete) of the quantities of learnt material prior to time
t. We shall work with continuous time t, and the term ”integral” -the key point in
this paper- will be explained shortly.

The individual’s goal is to reach a level of knowledge b > 0, as a result of the
following learning model. On a filtered probability space (Ω,F , {Ft}t≥0, P ), let
Wt denote the level of acquired knowledge and πt the quantity of learnt material
at time t ≥ 0. Obviously π0 = 0 and we assume that the strategy of learning,
i.e., the collection of all quantities of learnt material, denoted by Π = {πt}t≥0 is

an {Ft}t≥0-progressively measurable stochastic process, satisfying

∫ t

0
π2
sds < ∞ P -

almost surely for all t ≥ 0. We also assume that the individual has an initial level of
knowledge W0 = w0 ≥ 0, whereas the level of acquired knowledge Wt at time t > 0
follows the dynamics of a diffusion process, i.e.,

Wt = w0 + ε

∫ t

0
πsds+ (1− ε)

∫ t

0
πsdBs. (2.1)

Here B = {Bt}t≥0 is a standard Brownian motion process on (Ω,F , {Ft}t≥0, P );
the first integral in (2.1) is Lebesgue-type (or deterministic), whereas the second one
is Itô-type (a.k.a. stochastic integral, cf. [4]). For a fixed 0 < ε ≤ 1, the values ε
and 1 − ε weigh the deterministic, respectively random (or stochastic), quantities
of learnt material in the model. For ε = 1 we obtain a purely deterministic model,
whereas for 0 < ε < 1 we are dealing with mixed deterministic-stochastic model.

The individual has a limited time td to acquire knowledge; we assume that
the random variable td follows an exponential distribution with mean 1/λ. The
individual seeks to maximize the probability that the level of knowledge is at least
b by the time td, i.e., Wtd ≥ b, by optimizing over all strategies of learning Π. To
avoid “bad strategies of learning”, we stop the learning process when the level of
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knowledge reaches 0 before time td. Define t0 = inf{t ≥ 0 : Wt ≤ 0}, and define the
maximum probability of reaching the level of knowledge b by

p(w) := supPw0{Wtd∧t0(ω) ≥ b}, (2.2)

in which Pw0 denotes conditional probability given W0 = w0 ≥ 0, and sup is
calculated upon all strategies of learning Π.

We are looking to obtain an explicit expression for p(ω), and find the optimal
strategy of learning, say Π∗ = {π∗}, where π∗ = π∗

t is the optimal quantity of learnt
material at the time t when the level of knowledge reaches a level w ∈ (0, b). The
next result answers these requirements.

Theorem 1. Assume the above assumptions and hypotheses, and let 0 < ε < 1.

(i) The maximum probability of reaching the level of knowledge b is given by

p(w) = (w/b)λ/[λ+ε2/2(1−ε)2] for 0 ≤ w ≤ b. (2.3)

(ii) At the time when the level of knowledge reaches a level w ∈ (0, b), the optimal
quantity of learnt material is given by

π∗(w) = w[2λ+ ε2/(1− ε)2]/ε. (2.4)

Remarks 2. The probability p in equation (2.3) is a power function of ω, and
increases as ω becomes closer to the a priori level of knowledge b, meaning that: the
larger the quantity of learnt material, the more probable is to acquire a higher level
of knowledge.

For fixed 0 < ε < 1, the exponent of the power in equation (2.3) increases with λ,
hence the probability of reaching the level of knowledge b decreases with λ, meaning
that: as the individual becomes more likely to finish learning sooner than later,
reaching the level of knowledge b becomes less likely.

For fixed λ > 0, the exponent of the power in equation (2.3) decreases with ε,
hence the probability of reaching the level of knowledge b increases with ε, meaning
that: as the model becomes “more deterministic” (that is, for larger values of ε),
the probability of reaching the level of knowledge b increases.

As ε approaches 0 (that is, the model becomes more and more stochastic), the
optimal quantity of learnt material in equation (2.4) increases, meaning that: in a
stochastic environment, the individual needs to work more towards achieving the
same goal as in the deterministic model.

Corollary 3. Under the assumptions and hypotheses in Theorem 1, corresponding
to the optimal strategy of learning Π∗, the optimal level of acquired knowledge, say
W ∗

t , follows the dynamics of a Geometric Brownian motion process, i.e.,

W ∗
t = w+

ε4

(1− ε)2(ε2 + 2λ(1− ε)2)

∫ t

0
W ∗

s ds+
ε2 + 2λ(1− ε)2

λε

∫ t

0
W ∗

s dBs, for t > 0.

(2.5)
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Remark 4. From formula (2.5) it follows that W ∗
t > 0 P -almost surely for all

t ≥ 0, provided that W ∗
0 = W0 = w ∈ (0, b). As ε approaches 1, the optimal level

of acquired knowledge W ∗
t has a dominant deterministic component, and when ε

approaches 0, the stochastic component becomes dominant (in accordance with the
behavior of the level of acquired knowledge Wt).

3 Data Analysis and Interpretations

We shall use a hatˆto denote the estimated parameters of the model. Let us start
with the midterm. The time to acquire knowledge follows an exponential distribution
with parameter 1/λ, whose maximum likelihood estimator is given by λ̂ = 2. The
parameter ε of the stochastic process within the model (2.1) is estimated directly:
ε̂ = 312/420 ≈ 0.742857. Because the midterm worth 30% of the final grade, we
have ω = b/3. Using formula (2.3) above, we obtain that the maximum probability
of reaching the level of knowledge required by the midterm equals

p̂midterm = (0.33)2/[2+ε̂2/2(1−ε̂)2] = 72.17%,

which gives just a slight underestimate (27.83%) of the midterm failure rate (30.48%).
In the case of the final exam, we have λ̂ = 1, ω = b/2, whereas the other estimated

values do not change. We obtain that the maximum probability of reaching the level
of knowledge required by the final exam equals

p̂final exam = (0.5)1/[1+ε̂2/2(1−ε̂)2] = 86.41%,

which gives just a slight underestimate (13.59%) of the final exam failure rate
(14.76%).

As for assignments, we have λ̂ = 1, ω = b/5, hence

p̂assignments = (0.4)1/[1+ε̂2/2(1−ε̂)2]) = 78.3%,

a slight underestimate of the assignments range (80%).
According to formula (2.4), the optimal percentages of learnt material for midterm,

final exam and assignments are given, respectively, by

π∗
midterm = [4 + ε̂2/(1− ε̂)2]/3ε̂ = 54.8%;

π∗
final exam = [2 + ε̂2/(1− ε̂)2]/2ε̂ = 70.8%;

π∗
assignments = [2 + ε̂2/(1− ε̂)2]/5ε̂ = 27.9%.

The excess of 53.5% (= 54.8%+70.8%+27.9%−100%) comes from overlapping and
consolidation of knowledge from assignments, midterm and final exam (these latter
categories are not independent!).
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Finally, from formula (2.5), in the case of the final exam, we obtain the following
estimates for the coefficients therein:

ε̂4

(1− ε̂)2[ε̂2 + 2(1− ε̂)2]
= 5.64 and

ε̂2 + 2(1− ε̂)2

ε̂
= 0.55,

showing that the optimal level of knowledge is in the ratio 5.64 : 0.55 ≈ 10 : 1
between deterministic and random components.

The results obtained in this section confirm that, in spite of poor odds, students
with incomplete pre-requisites obtained better results than expected, by working
harder on the midterm and assignments, and thus improving the final grade. Thus,
our model correctly explains the small failure rates at that course. Note that the
errors committed in this section are within the acceptable limits, see the guidelines
in [2].

4 Appendix

For the proof of Theorem 1, one needs to produce a classical (smooth) strong solution
of a boundary value problem. More precisely, for α ∈ R, let us define the differential
operator Lα by its action on test functions f , as follows:

Lαf = εαf ′ +
1

2
(1− ε)2α2f ′′ − λ(f − 1{w≥b}).

According to [4], Chapter 6, if we find a non-decreasing, concave function f = f(w)
of class C2 on [0, b] satisfying the boundary value problem

max
α∈R

Lαf(w) = 0; f(0) = 0, f(b) = 1, (4.1)

then f is the maximum probability of reaching the level of acquired knowledge b,
and the optimal quantity of learnt material is given by

π∗
t = − εf ′(W ∗

t )

(1− ε)2f ′′(W ∗
t )

,

for all t ∈ [0, td ∧ t0), in which W ∗
t is the optimal level of knowledge.

One can see that the function p in formula (2.3) satisfies the above requirements
for the boundary value problem (4.1). Indeed, p(0) = 0, p(b) = 1 and, for 0 < ω < b,
we have

Lαp(ω) = −K

(
α− 2[λ+ ε2/(1− ε)2]

ε
ω

)2

, (4.2)

where K > 0 depends on ε, ω, λ and b. The maximum value of the right-hand side
of (4.2) equals 0, and is achieved for α = 2[λ+ ε2/(1− ε)2]ω/ε.
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Corollary 3 follows by applying Itô’s formula (cf. [4], Chapter 5) in (2.1) and
using π∗ from formula (2.4).
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