$R C$-CLASS AND $L C$-CLASS ON FIXED POINT
 THEOREMS FOR α-CARISTI TYPE CONTRACTION MAPPINGS

Arslan Hojat Ansari and Muhammad Usman Ali

Abstract

In this paper, we introduce the notion of $\left(\alpha, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction mappings and prove fixed point theorem by using this notion on complete metric space. To illustrate our result, we construct an example.

1 Introduction

Caristi [9] proved that if a self mapping T on a complete metric space (X, d) satisfies the condition:

$$
\begin{equation*}
d(x, T x) \leq \phi(x)-\phi(T x) \forall x \in X \tag{1.1}
\end{equation*}
$$

where $\phi: X \rightarrow[0, \infty)$ is a lower semicontinuous function, then T has a fixed point. The mapping T satisfying the condition (1.1) is known as Caristi mapping. Kirk [15] showed that if Caristi mapping for (X, d) has a fixed point, then (X, d) is complete and viceversa. Semat et al. [19] introduced the notion of α-admissible and $\alpha-\psi$-contractive type mappings. These notions were extended by several authors, see for example, $[1,3,4,5,6,7,8,10,11,12,13,14,16,17,18,20]$. Recently, Ali [1] introduced the notion of α-Caristi type contraction mapping and proved a fixed point theorem on complete metric space. On the other hand Ansari [2] introduced the family of functions known as $R C$-class and $L C$-class to generalize some existing fixed point theorems. In this paper we introduce a new Caristi type contraction condition by combining the above ideas. Note that, we denote by $C L(X)$ the space of all nonempty closed subsets of X. For $x \in X$ and $A \in C L(X)$, $d(x, A)=\inf \{d(x, a): a \in A\}$. A function $H: C L(X) \times C L(X) \rightarrow[0, \infty]$ defined by

$$
H(A, B)=\left\{\begin{array}{l}
\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\} \text { if exists } \\
\infty \text { otherwise }
\end{array}\right.
$$

is a generalized Hausdorff metric space induced by metric d.
2010 Mathematics Subject Classification: $47 \mathrm{H} 10 ; 54 \mathrm{H} 25$.
Keywords: α_{*}-admissible; α-admissible; Caristi mappings; $R C$-class and $L C$-class.

Mohammadi et al. [18] and Asl et al. [8] extended the notion of α-admissible mapping from singlevalued to multivalued mapping in the following way:

Definition 1. [18] Let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. A mapping $T: X \rightarrow$ $C L(X)$ is α-admissible if for each $x \in X$ and $y \in T x$ with $\alpha(x, y) \geq 1$, we have $\alpha(y, z) \geq 1$ for each $z \in T y$.

Definition 2. [8] Let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. A mapping $T: X \rightarrow$ $C L(X)$ is α_{*}-admissible mapping if for each $x, y \in X$ with $\alpha(x, y) \geq 1$, we have $\alpha_{*}(T x, T y) \geq 1$, where $\alpha_{*}(T x, T y)=\inf \{\alpha(u, v): u \in T x$ and $v \in T y\}$.

Minak and Altun [17] showed that every α_{*}-admissible mapping is α-admissible, but converse is not true in general, and gave the following example.

Example 3. Let $X=[-1,1]$. Define $T: X \rightarrow C L(X)$ by

$$
T x=\left\{\begin{array}{l}
\{0,1\} \quad \text { if } x=-1 \\
\{1\} \quad \text { if } x=0 \\
\{-x\} \quad \text { if } x \notin\{-1,0\}
\end{array}\right.
$$

and $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

This T is α-admissible but not α_{*}-admissible.
Kutbi and Sintunavarat [16] introduced the notion of α-continuous multivalued mapping which is more general than continuous multivalued mappings.

Definition 4. Let (X, d) be a metric space and $\alpha: X \times X \rightarrow[0, \infty)$ be a mapping. A mapping $T: X \rightarrow C L(X)$ is said to be an α-continuous, if for each sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for each $n \in \mathbb{N} \cup\{0\}$, we have $T x_{n} \rightarrow T x$, that is, $\lim _{n \rightarrow \infty} H\left(T x_{n}, T x\right)=0$.

Definition 5. [2] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. The function f is said to be a $R C$-class if f is continuous and satisfies

$$
\begin{aligned}
f(s, t) & >0 \Longrightarrow s>t \\
f(t, t) & =0 \\
s & \leq t \Longrightarrow f(e, s) \geq f(e, t) \text { for each } e \in \mathbb{R} \\
t & \leq e \leq s \Longrightarrow f(s, e)+f(e, t) \leq f(s, t) \\
\exists g & : \mathbb{R} \rightarrow \mathbb{R}, f(g(s), g(t)) \geq 0 \Longrightarrow s \leq t
\end{aligned}
$$

where $s, t, e \in \mathbb{R}$.

In the following, we can see some examples for $R C$-class functions.
Example 6. For $n \in \mathbb{N}$ and $a>1$,

$$
\begin{array}{ccc}
f(s, t)=s-t & & g(t)=-t \\
f(s, t)=\frac{s-t}{1+t} & , & g(t)=\frac{1}{t}-1 \\
f(s, t)=s^{2 n+1}-t^{2 n+1} & g(t)=-t \\
f(s, t)=a^{s}-a^{t} & , & g(t)=-t \\
f(s, t)=a^{s}-a^{t}+t-s, & g(t)=-t \\
f(s, t)=e^{s^{2 n+1}-t^{2 n+1}-1}, & g(t)=-t \\
f(s, t)=e^{s-t}-1, & g(t)=-t .
\end{array}
$$

Definition 7. [2] We say that $\mathcal{H}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a LC-class if h is continuous and satisfies the following conditions

$$
\begin{aligned}
& \mathcal{H}(t)>0 \text { if and only if } t>0 \\
& \mathcal{H}(0)=0 \\
& \mathcal{H}(s+t) \leq \mathcal{H}(s)+\mathcal{H}(t)
\end{aligned}
$$

and

$$
x \leq y \Longrightarrow \mathcal{H}(x) \leq \mathcal{H}(y)
$$

Example 8. For $a>1, m>0$ and $n \in \mathbb{N}$

$$
\begin{aligned}
\mathcal{H}(t) & =1-a^{-t} \\
\mathcal{H}(t) & =m t \\
\mathcal{H}(t) & =m \sqrt[n]{t} \\
\mathcal{H}(t) & =\log _{a} 1+t \\
\mathcal{H}(t) & =\log _{a} 1+\sqrt[n]{t},
\end{aligned}
$$

are some examples for $L C-$ class.

2 Main Results

We begin this section with the following definition.
Definition 9. Let (X, d) be a metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and $\phi: X \rightarrow[0, \infty)$ be two mappings, further, f is a RC-class and \mathcal{H} is a LC-class function. A mapping $T: X \rightarrow C L(X)$ is said to be an $\left(\alpha, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction if for each $x \in X$ and $u \in T x$ with $\alpha(x, u) \geq 1$ there exists $v \in T u$ such that

$$
\begin{equation*}
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u)) . \tag{2.1}
\end{equation*}
$$

Remark 10. If we take $\mathcal{H}(t)=t$ and $f(s, t)=s-t$, then above definition reduces to the Definition 2.1 [1].
Theorem 11. Let (X, d) be a complete metric space and let $T: X \rightarrow C L(X)$ be an $\left(\alpha, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction mapping. Assume that the following conditions hold:
(i) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(ii) T is α-admissible;
(iii) T is α-continuous.

Then T has a fixed point.
Proof. By hypothesis (i), we have $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$. By Definition 9, for $x_{0} \in X$ and $x_{1} \in T x_{0}$ with $\alpha\left(x_{0}, x_{1}\right) \geq 1$ there exists $x_{2} \in T x_{1}$ such that

$$
\mathcal{H}\left(d\left(x_{1}, x_{2}\right) \leq f\left(\phi\left(x_{0}\right), \phi\left(x_{1}\right)\right) .\right.
$$

As T is α-admissible, then $\alpha\left(x_{0}, x_{1}\right) \geq 1$ implies $\alpha\left(x_{1}, x_{2}\right) \geq 1$. Again, by Definition 9 , for $x_{1} \in X$ and $x_{2} \in T x_{1}$ with $\alpha\left(x_{1}, x_{2}\right) \geq 1$ there exists $x_{3} \in T x_{2}$ such that

$$
\mathcal{H}\left(d\left(x_{2}, x_{3}\right)\right) \leq f\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right) .
$$

Continuing in the same way, we get a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \in T x_{n-1}$, $\alpha\left(x_{n-1}, x_{n}\right) \geq 1$ and

$$
\begin{equation*}
0 \leq \mathcal{H}\left(d\left(x_{n}, x_{n+1}\right)\right) \leq f\left(\phi\left(x_{n-1}\right), \phi\left(x_{n}\right)\right) \text { for each } n \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

By using the properties of \mathcal{H}, f and above inequality, we conclude that the sequence $\left\{\phi\left(x_{n-1}\right)\right\}$ is a nonincreasing sequence, there exists $r \geq 0$ such that $\phi\left(x_{n}\right) \rightarrow r$. Now consider $n, p \in \mathbb{N}$, by using the triangular inequality and subadditivity of \mathcal{H}, we have

$$
\begin{align*}
\mathcal{H}\left(d\left(x_{n}, x_{n+p}\right)\right) \leq & \mathcal{H}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)\right. \\
& \left.+\cdots+d\left(x_{n+p-1}, x_{n+p}\right)\right) \\
\leq & \mathcal{H}\left(d\left(x_{n}, x_{n+1}\right)\right)+\mathcal{H}\left(d\left(x_{n+1}, x_{n+2}\right)\right)+\mathcal{H}\left(d\left(x_{n+2}, x_{n+3}\right)\right) \\
& +\cdots+\mathcal{H}\left(d\left(x_{n+p-1}, x_{n+p}\right)\right) \\
\leq & f\left(\phi\left(x_{n-1}\right), \phi\left(x_{n}\right)\right)+f\left(\phi\left(x_{n}\right), \phi\left(x_{n+1}\right)\right)+f\left(\phi\left(x_{n+1}\right), \phi\left(x_{n+2}\right)\right) \\
& +\cdots+f\left(\phi\left(x_{n+p-2}\right), \phi\left(x_{n+p-1}\right)\right) \\
= & f\left(\phi\left(x_{n-1}\right), \phi\left(x_{n+p-1}\right)\right) . \tag{2.3}
\end{align*}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in X, since $\phi \rightarrow r$. By completeness of X, we have $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$. By hypothesis (iii), we have $\lim _{n \rightarrow \infty} H\left(T x_{n}, T x^{*}\right)=$ 0 . By using the triangular inequality, we have

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) & \leq d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, T x^{*}\right) \\
& \leq d\left(x^{*}, x_{n+1}\right)+H\left(T x_{n}, T x^{*}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality, we have $d\left(x^{*}, T x^{*}\right)=0$. This implies that $x^{*} \in T x^{*}$.

Example 12. Let $X=\mathbb{R}$ be endowed with the usual metric $d(x, y)=|x-y|$. Define $T: X \rightarrow C L(X)$ by

$$
T x= \begin{cases}{[0, x]} & \text { if } x \geq 0 \\ \left\{-e^{x}\right\} \quad \text { if } x<0,\end{cases}
$$

and $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Define $\phi: X \rightarrow[0, \infty)$ by

$$
\phi(x)= \begin{cases}x & \text { if } x>0 \\ 0 & \text { otherwise } .\end{cases}
$$

Take $H(x)=\frac{x}{2}$ and $f(x, y)=x-y$ for each $x, y \in X$. Then, for each $x \in X$ and $u \in T x$ with $\alpha(x, u)=1$, there exists $v \in T u$ such that

$$
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u)) .
$$

Therefore, T is $\left(\alpha, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction mapping. For $x_{0}=3$ we have $x_{1}=3 / 2 \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right)=1$. Clearly, T is α-admissible. Let $\left\{x_{n}\right\}$ is any sequence in X such that $x_{n} \rightarrow x^{*}$ and $\alpha\left(x_{n}, x_{n+1}\right)=1$ for each $n \in \mathbb{N}$, then by definition of α, it clear that $x_{n} \geq 0$ for each $n \in \mathbb{N}$. Since $x_{n} \rightarrow x^{*}$, then $x^{*} \geq 0$. Thus, $T x_{n}=\left[0, x_{n}\right]$ and $T x^{*}=\left[0, x^{*}\right]$. Therefore, $\lim _{n \rightarrow \infty} H\left(T x_{n}, T x^{*}\right)=0$. This shows that T is α-continuous. Thus, by Theorem 11, T has a fixed point.
Example 13. Let $X=\mathbb{R}$ be endowed with the usual metric $d(x, y)=|x-y|$. Define $T: X \rightarrow C L(X)$ by

$$
T x=\left\{\begin{array}{l}
{\left[0, \frac{x}{x+1}\right] \quad \text { if } x \geq 0} \\
\left\{-x^{2}\right\} \quad \text { if } x<0,
\end{array}\right.
$$

and $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Define $\phi: X \rightarrow[0, \infty)$ by

$$
\phi(x)= \begin{cases}\frac{x}{2} & \text { if } x>0 \\ 0 & \text { otherwise } .\end{cases}
$$

Take $H(x)=\frac{x}{4}$ and $f(x, y)=x-y$ for each $x, y \in X$. Then, for each $x \in X$ and $u \in T x$ with $\alpha(x, u)=1$, there exists $v \in T u$ such that

$$
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u))
$$

Therefore, T is $\left(\alpha, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction mapping. It is easy to see that the rest of the conditions of Theorem 11 hold. Thus, T has a fixed point. Note that Theorem 2.1 of [1] is not applicable here, to see consider $x=\frac{1}{3}$ and $u=\frac{1}{4} \in T x$.

Definition 14. Let (X, d) be a metric space, $\alpha: X \times X \rightarrow[0, \infty)$ and $\phi: X \rightarrow[0, \infty)$ be two mappings, further, f is a RC-class and \mathcal{H} is a LC-class function. A mapping $T: X \rightarrow C L(X)$ is said to be an $\left(\alpha_{T}, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction if for each $x \in X$ and $u \in T x$ there exists $v \in T u$ such that

$$
\begin{equation*}
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u)) \text { whenever } \alpha(u, v) \geq 1 \tag{2.4}
\end{equation*}
$$

Theorem 15. Let (X, d) be a complete metric space and let $T: X \rightarrow C L(X)$ be an $\left(\alpha_{T}, \mathcal{H}_{L C}, f_{R C}\right)$-Caristi type contraction mapping. Assume that the following conditions hold:
(i) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(ii) T is α_{*}-admissible;
(iii) T is α-continuous.

Then T has a fixed point

Proof. The proof of this theorem can be obtained on the same lines as the proof of last theorem is done.

3 Consequence

In this section we list some fixed point theorems which can be obtained from our results:

Theorem 16. Let (X, d, \preceq) be a complete ordered metric space and let $T: X \rightarrow$ $C L(X)$ be a mapping such that for each $x \in X$ and $u \in T x$ with $x \preceq u$ there exists $v \in T u$ satisfying

$$
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u))
$$

where $\phi: X \rightarrow[0, \infty)$ be a function. Assume that the following conditions hold:
(i) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $x_{0} \preceq x_{1}$;
(ii) for each $x \in X$ and $y \in T x$ with $x \preceq y$, we have $y \preceq z$ for each $z \in T y$;
(iii) T is ordered-continuous, that is, for each sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x$ and $x_{n} \preceq x_{n+1}$ for each $n \in \mathbb{N} \cup\{0\}$, we have $T x_{n} \rightarrow T x$.

Then T has a fixed point.
Proof. Define $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{l}
1 \text { if } x \preceq y \\
0 \text { otherwise } .
\end{array}\right.
$$

Then by the hypothesis of this theorem, it is easy to see that all conditions of Theorem 11 hold. Thus, T has a fixed point.

In following result, we assume that (X, d) is a metric space and $G=(V(G), E(G))$ is a directed graph such that the set of its vertices $V(G)$ coincides with X (i.e., $V(G)=X)$ and the set of its edges $E(G)$ is such that $E(G) \supseteq \triangle$, where $\triangle=$ $\{(x, x): x \in X\}$. Further assume that G has no parallel edges.

Theorem 17. Let (X, d) be a complete metric space endowed with the graph G and let $T: X \rightarrow C L(X)$ be a mapping such that for each $x \in X$ and $u \in T x$ with $(x, u) \in E(G)$ there exists $v \in T u$ satisfying

$$
\mathcal{H}(d(u, v)) \leq f(\phi(x), \phi(u))
$$

where $\phi: X \rightarrow[0, \infty)$ be a function. Assume that the following conditions hold:
(i) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\left(x_{0}, x_{1}\right) \in E(G)$;
(ii) for each $x \in X$ and $y \in T x$ with $(x, y) \in E(G)$, we have $(y, z) \in E(G)$ for each $z \in T y ;$
(iii) T is G-continuous, that is, for each sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E$ for each $n \in \mathbb{N} \cup\{0\}$, we have $T x_{n} \rightarrow T x$.

Then T has a fixed point.
Proof. Define $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if }(x, y) \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Then by the hypothesis of this theorem, it is easy to see that all the conditions of Theorem 11 hold. Thus, T has a fixed point.

Acknowledgment. Authors are thankful to the reviewer for his useful comments.

References

[1] M. U. Ali, Fixed point theorem for α-Caristi tpye contraction mappings, J. Adv. Math. Stud., 9 (2016) 1-6. MR3469984. Zbl 1353.54027.
[2] A. H. Ansari, Refinement and generalization of Caristi's fixed point theorem, The 2nd Regional Conference on Mathematics And Applications, PNU, (2014), 382-385.
[3] M. U. Ali and T. Kamran, On $\left(\alpha^{*}, \psi\right)$-contractive multi-valued mappings, Fixed Point Theory Appl., (2013), 2013:137. MR3213155. Zbl 06319488.
[4] M. U. Ali, T. Kamran and E. Karapinar, A new approach to (α, ψ)-contractive nonself multivalued mappings, J. Inequal. Appl., (2014), 2014:71. MR3345439. Zbl 1338.54151.
[5] M. U. Ali, T. Kamran and Q. Kiran, Fixed point theorem for (α, ψ, ϕ) contractive mappings on spaces with two metrics, J. Adv. Math. Stud., 7 (2014), 08-11 MR3287987. Zbl 1329.54040.
[6] M. U. Ali, Q. Kiran and N. Shahzad, Fixed point theorems for multi-valued mappings involving α-function, Abstr. Appl. Anal., 2014 (2014), Article ID 409467. MR3228071.
[7] M. U. Ali, T. Kamran and N. Shahzad: Best proximity point for $\alpha-\psi$-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), Article ID 181598. MR3246318.
[8] J. H. Asl, S. Rezapour and N. Shahzad: On fixed points of $\alpha-\psi$-contractive multifunctions, Fixed Point Theory Appl., (2012), 2012:212. MR3017215. Zbl 1293.54017.
[9] J. Caristi, Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251. MR394329. Zbl 0305.47029.
[10] S. H. Cho, Fixed Point Theorems for $\alpha-\psi$-Contractive Type Mappings in Metric Spaces, Appl. Math, Sci., 7 (2013), 6765-6778. MR3153155.
[11] E. Karapinar, H. Aydi and B. Samet, Fixed points for generalized (α, ψ) contractions on generalized metric spaces, J. Inequal. Appl., (2014), 2014:229. MR3346864.
[12] E. Karapinar, Discussion on (α, ψ) contractions on generalized metric spaces, Abstr. Appl. Anal., 2014 (2014), Article ID 962784. MR3173299.
[13] E. Karapinar and B. Samet, Generalized $\alpha-\psi$-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012(2012), Article ID 793486. MR2965472. Zbl 1252.54037.
[14] E. Karapinar and R. P. Agarwal, A note on 'Coupled fixed point theorems for $\alpha-\psi$ - contractive-type mappings in partially ordered metric spaces', Fixed Point Theory Appl., (2013), 2013:216. MR3110769. Zbl 1293.54026.
[15] W. A. Kirk, Caristi's fixed point theorem and metric convexity, Collo. Mathe., 36 (1976), 81-86. MR436111. Zbl 0353.53041.
[16] M. A. Kutbi and W. Sintunavarat, On new fixed point results for (α, ψ, ξ) contractive multi-valued mappings on α-complete metric spaces and their consequences, Fixed Point Theory Appl., (2015), 2015:2. MR3359790. Zbl 06582761.
[17] G. Minak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl., (2013), 2013:493. MR3212946. Zbl 1293.54030.
[18] B. Mohammadi, S. Rezapour and N Shahzad, Some results on fixed points of α -ψ-Ciric generalized multifunctions, Fixed Point Theory Appl., (2013), 2013:24. MR3029358. Zbl 06261042.
[19] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. MR2870907. Zbl 1242.54027.
[20] T. Sistani and M. Kazemipour, Fixed point theorems for $\alpha-\psi$-contractions on metric spaces with a graph, J. Adv. Math. Stud., 7 (2014), 65-79. MR3222294. Zbl 06313110.

[^0]
License

This work is licensed under a Creative Commons Attribution 4.0 International License. @ ©

[^0]: Arslan Hojat Ansari
 Department of Mathematics
 Karaj Branch, Islamic Azad University
 Karaj, Iran.
 e-mail:analsisamirmath2@gmail.com

 Muhammad Usman Ali
 Department of Mathematics
 COMSATS Institute of Information Technology
 Attock, Pakistan.
 e-mail:muh_usman_ali@yahoo.com

