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UNBOUNDED SOLUTIONS FOR INTEGRAL
BOUNDARY VALUE PROBLEM OF
SECOND-ORDER ON THE HALF-LINE

Abdellatif Ghendir Aoun

Abstract. The purpose of this paper is to establish the existence of solutions for an integral
boundary value problem of second-order set on the infinite interval. The arguments we have used
are based upon the nonlinear alternative of Leray-Schauder type. As applications, two examples

are included to show the applicability of our result.

1 Introduction

In this paper, we will consider the boundary value problem (bvp for brevity)

a"(t)+ f(t,z(t)) =0,  t€(0,+00),
z(0) =0, tl}inoo 2'(t) = a [} x(s)ds, (1.1)

where 7 € (0,400), @ € R such that 0 < a < 77%

Boundary value problems on unbounded intervals arise in many applications
in physics, biology, dynamic of population, ...Most of mathematical problems are
naturally posed on finite intervals of the real line. We refer the reader, e.g., to ([1],
[3]-[15]) and references therein.

For instance, Tariboon and Sitthiwirattham in [12] proved the existence of positive
solutions for the three-points bvp with an integral condition:

{ 2" +a(t)f(z) =0, te (0, 1),
z(0) =0, x(1) = a [ z(s)ds,

2

where 0 < n < 1land 0 < a < 2 They have employed the Krasnosel’skii fixed

point theorem in cones.

2010 Mathematics Subject Classification: 47H10;54H25.
Keywords:Boundary value problem; unbounded solution; infinite interval; fixed point theorem;
Green’s function.
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90 A. Ghendir Aoun

Galvis, Rojas and Sinitsyn in [5] have considered the same problem on the
interval [0,~]. Making use of Schauder’s fixed point theorem, they have also proved
existence of positive solutions.

We however notice that less papers have dealt with bvps posed on infinite
domains. For instance, in [1] Agarwal, Bohner and O’Regan discussed the time
scale bvp:

{ 2" (t) + f(t,z(o(t))) =0, t € [a,+00),
z(a) =0, z(t) is bounded for ¢ € [a, +00),

where a € T is fixed and T (a time scale) is a closed subset of R. The forward
(respectively, backward) jump operator at t for ¢ < sup T (respectively, ¢ > inf T) is
defined by o(t) = inf{r > ¢t : 7 € T} (respectively, o(t) = sup{r < t: 7€ T}) for
all ¢t € T. The authors have employed a diagonal procedure together with a fixed
point approaches.

We also mention paper [8] where the authors have studied the existence of
multiple positive solutions of the following bvp:

(p(@'(®)) +a(t)f(t,x(t) =0,  te(0,+00),

m—2
z(0) = > aiw(&), z'(00) = 0,
i=1
where ¢ : R — R is an increasing positive homeomorphism with ¢(0) = 0 and
& € (0,4+00) such that 0 < & < & < ... < &p—2 < +00. The coefficients «; satisfy

m—1
o; € [0,+OO), 0< Z a; < 1.
i=1
O’Regan, Yan, and Agarwal in [10] established the existence of an unbounded

solutions for the second order bvp on the half line:

2" (t) + @(t) f (¢, z(t)) = 0, t € (a,+00),
z(a) =0, tE—rl—noo ' (t) =0,

where f € C([a,+00) X (0,+0),[0,+00)) with lilr(r)l+ f(t,z) = 400 for each t €
z—

(a,+00) and ® € C((a,+0o0),(0,+00)). Also the existence of multiple unbounded
positive solutions is discussed by means of the theory of the fixed point index.

In [15] Zima studied the existence of at least one positive solution to the following
bvp for the second-order differential equation posed on the half-line:

o (t) — k?x(t) + f(t, (1)) =0,  t€(0,+00),

#(0)=0,  lim 2(t)=0,
where k > 0 and f is a continuous nonnegative function. The existence results are
based on application of the Krasnosel’skii fixed point theorem of cone compression
and expansion.
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Integral boundary value problem 91

The aim of this work is to discuss the existence of solution to the nonlocal
bvp (1.1). The lack of compactness is compensated here by a Corduneanu type
compactness lemma. Some preliminaries are given in section 2 while the main
existence theorem is given in Section 3. The paper ends with two examples of
application in Section 4.

2 Notation and auxiliary facts

In this section, we collect some auxiliary facts which will be needed throughout this

paper.
Consider the space X defined by

t
X = {:n € C([0, +00),R), tliinoo 1::(_ ;t exists} ,

with the norm

ol =
zl|x = sup |—=

tE[0,00) ]. + 2t
Lemma 1. (X, ||.||x) is a Banach space.

Proof. Let {up}nen be a Cauchy sequence in the space (X, |.||x). Then
Ve > 0,dN > 0 such that ||u, — un||x < € for any n,m > N.

As a consequence, the sequence {uy(t)}nen for t € [0, +00), is a Cauchy sequence in
R, too. Hence there exists u(t) € R such that liI_fI_l |un (t)—u(t)] =0, (¢t >0). Then
n—-—+0oo

un () —u(t)

nli)I—iI—loo | =3¢ | = 0 this implies ngrfoo ||lun, — ul|x = 0, proving that (X, |.||x) is
a Banach space. O

We recall the Leray-Schauder nonlinear alternative theorem, which is the main
tool used to prove the main existence result.

Theorem 2. ([2]) Let C be a convex subset of a Banach space and U an open subset
of C with 0 € U. Then every completely continuous map N : U — C satisfies at
least one of the following two properties:

(A1) N has a fived point in U, or

(A2) There is an x € OU and X € (0, 1) with x = ANz.

3 Main results

First, we list some hypotheses on the linearity f:
(H) 0 < a< n%
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92 A. Ghendir Aoun

(H2) f:][0,400) x R — [0, 4+00) is continuous.
(H3) |£(t, (1 +2t)z)| < @(t)¥(|z]) on [0, +00) x R with ¢ € L]0, 4+00) and
Y € C([0,4+00),[0,4+00)) is nondecreasing.

Lemma 3. If an? # 2 and e € L[0,+00), then the bup

2 (t) +e(t) =0, t € (0, +00),
{ ZL‘(O) =0, tl}g})o $l(t) = Ozf(? l‘(s)ds’ (31)

has a unique solution given by

x(t) = /0 (t — s)e(s)ds — 5 _oz(tWQ /077(77 — 5)2%e(s)ds + 2_21;772 /000 e(s)ds.

Proof. Integrating the equation in (3.1) twice from 0 to t yields

2(t) = 2/ (0)t — /0 (1 — 5)e(s)ds. (3.2)

So
lim 2/(t) = 2'(0) /0 e(s)ds,

t—+o0

Integrating once again (3.2) from 0 to 7 (n € (0, +0o0)) gives

/Onx(s)ds = x (0)7722 - /077 </OT(T — s)e(s)ds) dr
U
2

= 2/(0)% — ;/On(n — 5)2%e(s)ds.

From lim 2/(t) = o [} x(s)ds, we obtain

t—-+o00
e an’®  «
2'(0) — /0 e(s)ds = x’(O)Tn -3 /On(vy — 5)%e(s)ds.
Thus . ) -
2'(0) = _2a772/0 (n—s)Qe(s)ds—FW/O e(s)ds.
Then
=— t — 5)e(s)ds ot ! — s)%e(s)ds 2t 00658
o) = = [t = 9e(s)s = 2 [ = 92e()s+ =iy [ (o)
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Integral boundary value problem 93

Lemma 4. Under the assumptions of Lemma 3, the unique solution of problem
(3.1) can be written as

(1) = / Gt 5)e(s)ds
0
where G(t, s) is the Green’s function defined by

25 — ats? — an’s + 2atns, s < min{t, n}

1 2t — at(n — s)?, t<s<n
G(t,s)=5—— 2, .9
2 —an 2s + an“t — an*s, n<s<t
2t, max{t, n} < s.

Proof. We distinguish between two cases:
(a) If t < m, the solution of problem (3.1) can be expressed as

o) = —/Ot(t—s)e(s)ds
o [ o= s+ (-]

T2 — an?

+2—27;?72 [/Ote(s)ds + /;7 e(s)ds + /noo e(s)ds]

t 2 2
25 — ats® — 2aet
_ / s asz_an;—k anse(s)ds
0 arn
"2t — at(n —s)? 2t
‘|‘/t 2_0“726(8)d8+/7] 2_70”726(8)615

= / G(t,s)e(s)ds.
0
(b) If ¢t > n, the solution of problem (3.1) can be expressed as

z(t) = — /On(t —s)e(s)ds — / (t —s)e(s)ds
"

at

/n(n — 5)2%e(s)ds

2—an? /g

+2—224772 [/On e(s)ds + /nte(s)ds + /too e(s)ds}

125 — ats? — an?s + 2atns
= 5 5 e(s)ds
0 —an
' 25 + an’t — an’s 2t d
+ g 9 _ 0”72 e(s)ds + ’ 2_70”726(8) S

_ /O Gt 5)e(s)ds.
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94 A. Ghendir Aoun

O]

Lemma 5. If (H1) holds, then the Green’s function of problem (3.1) satisfies

0 <Gt s) < 5, fort,s €[0,+00).

2—an

Proof. Claim 1. We show that G(t,s) > 0.
For 0 < s < min{¢, n}, we have

25 — ats® — an’s + 2atns

G(t,s) = 5 o
_s(2—an?) + ats(2n — s)
N 2 — an?
> 0.
For0<t<s<n,
2t — at(n — s)?
G(t = —
22— an?) + ats(2n — s)
N 2 — an?
= 0.
For0<n<s<t,
2s + an’t — an?
Gits) — s 2a11 2an s
arn
_ 2s+an?(t—s)
N 2 — an?
> 0
For s > max{t,n} > 0,
2t
G(t = > 0.
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Claim 2. From 0 < o < ;5 we will show that G(t, ) < 575

For 0 < s < min{¢,n}, we have

25 — ats® — an’s + 2atns

G(t,s) = 5 o

s(2 — an?) + ats(2n — s)
2 — an?
t(2 — an?®) + ats(2n — s)
2 —an?
2t — at(n — s)?
2 — an?
2t
2 —an?’

N

N

N

For0<t<s<n,

2t — at(n — 5)?
2 —an?
2t

2 —an?’

G(t,s) =

N

ForO<n<s<t,

92 2t— 2
Glt,s) — s+ an an<s

2 — an?
(2 —an?)s + an’t
2 —an?
(2 — an®)t + an’t
2 — an?
2t
2 —an?’

N

N

For s > max{t,n} > 0,

2t
2 —an?’
Thus

2t
m, fOI' t,S - [O,+OO)

Now, define the operator 17" by
(T2)(t) = / G(t, 5)f(s,2(s))ds, forz € X.
0
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Bvp (1.1) has a solution z if and only if  solves the operator equation x = Tx.
We will study the existence of a fixed point of T'. For this, we verify that the operator
T satisfies all conditions of Theorem 2.

Since the Arzela-Ascoli theorem fails to work in the space X, we need a modified
compactness criterion to prove 1" is compact. The proof of the following compactness
criterion can be found in [9].

Lemma 6. ([9]) Let B = {z € X, ||z||x <} such that >0,
By ={&Y, zeB).
If By is equicontinuous on any compact intervals of [0,4+00) and equiconvergent at

infinity, then B is relatively compact on X.

Remark 7. Bj is called equiconvergent at infinity if for all € > 0, there exists
d = d(e) > 0 such that

z(t) lim x(t)
142t to400 142t

’ <e foranyxr € B andt> 4.

Lemma 8. Under Assumptions (H1)— (H3), the operator T : X — X is completely
continuous.

Proof. Claim 1. We show that operator T': X — X is continuous.

Let z, — x as n — +o00, then there exists rg > 0 such that

maX{!xHx, sup Hanx} < 1.

neN

From Lemma 5 and (H3), we have

> G(t,s)
7S s m000) = sl
1

s [ s+ 7o)
B

< g | (vow ([250) et (|5s) ) @

1+2s 1+ 2s
1 o0
2_Om2/0 (e(s)v(llznllx) + @(s)v (2] x)) ds

< ) /OOsO(S)dS-
0

2 — an?

<

<

Since ¢ € L'[0,400), the term [ Cfgf’;t) |f(s,2n(s))—f(s,x(s))|ds is bounded. Using

the continuity of f, we obtain that

Tz, — Tx||x = sup / Gt s) |f(s,xn(s)) — f(s,2(s))|ds = 0, as n — +oo,
teloo0) Jo 1+ 2t
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proving our claim.

Claim 2. We show that operator T': X — X is relatively compact.
Let Q ={z € X, |z||x <k}, (k>0), be any bounded subset of X.
From Lemma 5 and (H3), we have

> G(t,s)
Tx = sup/ f(s,z(s))|ds
el = s [ SIS a(o)

< L /0°°\f<s,m<s>>ds

2—an

2—2m24:’f<&$@¥i;f$>yk
o 20w ()
< 5o | elelods

Y (k) /°°
fi Q.
3o J, p(s)ds, for z €

N

Since ¢ € L'[0,+00), ||Tz| x is bounded for x € €. Hence, T} is uniformly bounded.
To show that T is equicontinuous on any compact interval of [0, +00), let 5 > 0,
t1,12 € [0,,3] (tg > tl) and x € Q2. Then

(Tx)(t2) _ (Tx)(tl)‘

1+ 2t 1+ 2t

* G(ta, s) * G(t1,s)
| T st — [ T fs.n(s))as

< [T[Glmn Gy Gy G0y )
o [1+26 1+2  1+2ty 1+24

< /000 [|G(t2,s) — G(t1,9)] N 2/t; — t2|G(t1, s ] 'f( 1+2s)x(s))‘ds

1+ 2t (1+ 2t2)(1 + 2t 1+ 2s
> ‘G(tg,S)—G(tl,S)’ 2|t1—t2‘G tl,
< .
= w(k)/o [ 1+ 2t T g ot (1420 PO

Since for s € [0, +00) the function ¢t — G(t, s) is continuous on the compact interval
[0, 5], then it is uniformly continuous on [0, 5]. Hence

|G(t2,s) — G(t1,s)| — 0, uniformly as |t; — 2| — 0.

(Tz)(ta) _ (Tx)(t1)
1+ 2ty 1+ 2t

— 0, uniformly as |t; — t2| — 0,
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for all z € Q. Thus T'Q is locally equicontinuous on [0, +00).
We show that T2 is equiconvergent at infinity. For any = € €,

/ooo f(s,(s))ds < (k) / ~ o(s)ds.

Since ¢ € L'[0, +00), we get f € L'[0,400). Moreover
) (Tz)(t)\ .. tt—s at " 9
E&( 112 ) = g <_/0 T/ (5 (s)ds = (1+2t)(2—a172)/0 (0= 8)"f (s, 2(s))ds

2t o0
+(1 + 2t)(2 _ 04772) /0 f(s,l'(s))ds>

1 [ a !
= [ satends - 55t [ st

g | fsalo)as
«

U b s 2(sNds — — & ! 2 (s 2(s)ds
= 2(2_(”72)/0 f(s,2(s))d 2(2_an2)/0(n )2 (s, 2(s))ds.

So

Tla ?é?' - \— / LS s a(o))ds
* <_(1+2t)o([;—an 2) z_an )/077 (s, z(s))ds
i <(1+2t)?;—a772) Gp——y ) /0 I(s

Hence T T

t t
T (T
14 2¢ t—oo 1+ 2t
Then T2 is equiconvergent at infinity. By Lemma 6, we conclude that T': X — X
is completely continuous. O

‘—>0 as t — +oo.

Theorem 9. Assume that (H1) — (H3) and the following condition holds:
(H4) There exists p > 0 such that

p(2 — an?)
p) o~ p(s)ds

Then problem (1.1) has an unbounded solution x = x(t) such that

> 1.

< p, forte[0,400).
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Proof. Consider the family of parameterized bvps

2 (t) + Af(t,z(t)) =0, t € (0, +00),
{ ©(0) =0, lim () = o [yl x(s)ds, (3.3)
for A € (0, 1).
Let

U={zeX, |z|x<p}

Solving problem (1.1) is equivalent to searching for fixed point for operator T in U.
We will prove that © # ATz, for € OU and X € (0, 1). On the contrary, assume
there exists z € OU with x = ATx; then for A € (0, 1) we have

(AT'z)(t) ‘
x = sup |———
H HX te[0,00) ’ 1+2¢
< ’ (T2)(1) ‘
te[0,00) 1+2t

N

] *® Gt s) (14 2s)x(s)
o [T (e

| et

N

< goas | eullalds
< 2 [T tsyas
So
2‘”(372 /0 ~ o(s)ds
Hence

P(p) [y p(s)ds S

which contradicts condition (H4).
By Theorem 2 and Lemma 8, we deduce that bvp (1.1) has an unbounded solution
x = z(t) satisfying

<p, forte|0,+00).
O
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4 Examples
Two examples are provided to illustrate our existence result.
Example 10. Consider the following boundary value problem on the half-line:
7 lz@®)l
z(t) —1—0\/ T € =0, 0<t<+4o0 (4.1)

x(0) lgrn 2/ (t) —afolfvsds

where 0 < a < 2, n=1.
We will apply Theorem 9 to show that problem (4.1) has at least a solution. Let

Choose

Then, we have

(H1) Sincen=1s00<a< 77% satisfies.

(H2) f:]0,+00) x R — [0,400) is continuous.

(H3) |f(t, (14 2t)z)| = \/m et =Y(|z))p(t) on [0,4+00) x R with ¢ € L]0, 400)
and ) € C([O,j—oo), [0,400)) is nondecreasing.

(H4) w(;f)(?omag(s))ds = p\(/zﬁxoi) =Vp2—a)>1.

Hence all conditions of Theorem 9 hold. As a consequence, problem (4.1) has at
least a solution x such that

()]
142t

0< < p, forte[0,+00).

Example 11. Consider the bup set on the half-line:

()+(1j§t)) =0, 0<t<+oo

z(0) =0, lim 2/(t) = %folx s)ds

t——+o00

(4.2)

We will apply Theorem 9 to show that problem (4.2) has at least one solution.
Let

22
f(t,x) = 207
and
P(x) =a*,  p(t) = A+20 p<3.

kst sk ok sk ok ok s ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk ok sk sk ok sk sk sk s sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 12 (2017), 89 — 102
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma

Integral boundary value problem 101

Then, we check the hypotheses
(H1) Sincen=1,a=1s00<a< 77% satisfies.
(H2) f:]0,4+00) x R — [0,400) is continuous.

2

(H3) |f(t, (14 2t)z)| = (1-957275)2 = Y(|z])p(t) on [0,4+00) x R with p € L'[0,+00)
and v € C([0,400), [0, 400)) is nondecreasing.

p(?—anz) o P(é) _ 35
(HY) o = emd = oL =5 > L

Hence all conditions of Theorem 9 hold. Then problem (4.2) has at least a solution
x such that

|z(t)]
0< <, t € [0, 400).
3ot SP fort €0, +0)
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