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BOUNDARY VALUE PROBLEM FOR
CAPUTO-HADAMARD FRACTIONAL

DIFFERENTIAL EQUATIONS

Yacine Arioua and Nouredine Benhamidouche

Abstract. The aim of this work is to study the existence and uniqueness solutions for boundary

value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in

bounded domain. We used the standard and Krasnoselskii’s fixed point theorems. Some new results

of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.

1 Introduction

The origins of fractional calculation go back to the late 17th century. In fact,
some mathematicians (L’Hopital, Leibniz(1695)) began to consider how to define
the fractional derivative. But it is only during the last three decades that fractional
calculation has been the most interesting and the applications of fractional derivatives
have become more diversified. There are several definitions of fractional derivatives,
the definitions of Riemann-Liouville (1832), Riemann (1849) Caputo (1997), Grunwald-
Letnikov (1867) as well as Hadamard (1891, [10]) which are the most used.

The Fractional order differential equations are generalizations of classical integer
order differential equations and they are increasingly used to model problems in fluid
dynamics, finance, and other areas of application. Recent investigations have shown
that sometimes physical systems can be modeled more accurately using fractional
derivative formulations, [16]. The reader interested in the subject is refereed to the
books (Kilbas et al. 2006 [12]; Klimek 2009; Podlubny 1999 [18]; Samko et al. 1993
[19], Diethelm, 2010, [7]).
In recent years, some authors have investigated the existence and uniqueness of
solutions for nonlinear fractional differential equation boundary value problems. For
a small sample of such work, we refer the reader to works by Ahmad and Ntouyas
[1, 2, 3], Alsaedi et al. [4], Benchohra, Hamani and Ntouyas [5], Mengmeng and
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Jinrong [17].

Alsaedi et al. [4] studied the following boundary value problem of nonlinear
Hadamard fractional differential equations:{

Dαx (t) = f (t, x (t)) , 1 < t < e, 1 < α ≤ 2,

x (1) = 0, A
Γ(γ)

∫ η
1

(
log η

s

)γ−1
x (s) ds

s +Bx (e) = c, γ > 0, 1 < η < e,

where Dα is the Hadamard fractional derivative of order α, f : [1, e] × R → R is a
given continuous function, and A,B, c are real constants.
Mengmeng LI, and Jinrong Wang [17] studied the existence of local and global
solutions to the Hadamard type fractional differential equation{

HDα
a+u (t) = f (t, u (t)) , t ∈ J, 0 < α < 1,

HDα−1
a+

u (a) = c, c ∈ R,

where J = [a, a + h], h > 0 or [a,+∞) and the symbol HDα
a+ is the Hadamard

fractional derivative.

Bashir Ahmad and Sotiris K. Ntouyas [1] studied the existence and uniqueness
of solutions for the following boundary value problem{

Dαu (t) = f (t, u (t)) , 1 < t < e, 1 < α ≤ 2,

u (1) = 0, u (e) = Iβu (e) = A
Γ(β)

∫ e
1

(
log e

s

)β−1
u (s) ds

s , β > 0,

where Dα is the Hadamard fractional derivative of order α, and Iβ is the Hadamard
fractional integral of order β and f : [1, e]× R → R is a given continuous function.

In this paper, we discuss the existence of a positive solution to boundary value
problem of nonlinear fractional differential equation:

CDα
1+u (t) + f (t, u (t)) = 0, 1 < t < e, 2 < α ≤ 3, (1.1)

with fractional boundary conditions:

u (1) = u
′
(1) = 0,

(
CDα−1

1+
u
)
(e) =

(
CDα−2

1+
u
)
(e) = 0, (1.2)

where CDα
1+ is the Caputo-Hadamard fractional derivative of order α, and f : [1, e]×

R → R is a given continuous function.

We obtain two different results for the existence and uniqueness of the solution
for this boundary value problem.

The major result of this paper is a generalization of the findings in [1], for
the existence solution to boundary value problems of fractional integro-differential
equation with Hadamard derivative.
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2 Preliminaries

At first, we recall some concepts on fractional calculus and present some additional
properties that will be used later. For more details, we refer to [12]. We present
some basic definitions and results from fractional calculus theory.

Definition 1 (Hadamard fractional integral). (see [12])
The left-sided fractional integral of order α > 0 of a function y : (a, b) → R is given
by

Iα
a+y (t) =

1

Γ (α)

∫ t

a

(
log

t

s

)α−1

y (s)
ds

s
, (2.1)

provided the right integral converges.

Definition 2 (Hadamard fractional derivative). (see [12]).
The left-sided Hadamard fractional derivative of order α ≥ 0 of a continuous function
y : (a, b) → R is given by

Dα
a+f (t) = δn In−α

a+
=

1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1

y (s)
ds

s
, (2.2)

where n = [α]+1, and [α] denotes the integer part of the real number α and δ = t d
dt .

provided the right integral converges.

There is a recent generalization introduced by Jarad and al in [11], where the
authors define the generalization of the Hadamard fractional derivatives and present
properties of such derivatives. This new generalization is now known as the Caputo-
Hadamard fractional derivatives and is given by the following definition:

Definition 3 (Caputo-Hadamard fractional derivative). (see [11]).
Let α ≥ 0, and n = [α] + 1. If y(x) ∈ ACn

δ [a, b], where 0 < a < b < ∞ and

ACn
δ [a, b] = {g : [a, b] → C : δn−1g(x) ∈ AC[a, b]}.

The left-sided Caputo-type modification of left- Hadamard fractional derivatives of
order α is given by

CDα
a+y (t) = Dα

a+

(
y (t)−

n−1∑
k=0

δky (a)

k!

(
log

t

a

)k
)

(2.3)

Theorem 4. ([11], Theorem 2.1).
Let α ≥ 0, and n = [α] + 1. If y(t) ∈ ACn

δ [a, b], where 0 < a < b < ∞. Then
CDα

a+f (t) exist everywhere on [a, b] and
(i) if α /∈ N0,

CDα
a+f (t) can be represented by

CDα
a+y (t) = In−α

a+
δny (t) =

1

Γ (n− α)

∫ t

a

(
log

t

s

)n−α−1

δny (s)
ds

s
, (2.4)
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(ii) if α ∈ N0, then
CDα

a+y (t) = δny (t) . (2.5)

In particular
CD0

a+y (t) = y (t) . (2.6)

Caputo-Hadamard fractional derivatives can also be defined on the positive half
axis R+ by replacing a by 0 in formula (2.4) provided that y(t) ∈ ACn

δ (R)+ . Thus
one has

CDα
0+y (t)

1

Γ (n− α)

∫ t

0

(
log

t

s

)n−α−1

δny (s)
ds

s
. (2.7)

Proposition 5. (see [11, 12]).
Let α > 0, β > 0, n = [α] + 1, and a > 0, then

Iα
a+

(
log t

a

)β−1
(x) = Γ(β)

Γ(β−α)

(
log x

a

)β+α−1
,

CDα
a+

(
log t

a

)β−1
(x) = Γ(β)

Γ(β−α)

(
log x

a

)β−α−1
, β > n,

CDα
a+

(
log t

a

)k
= 0, k = 0, 1, ..., n− 1.

(2.8)

Theorem 6. (see [8]).
Let u(t) ∈ ACn

δ [a, b], 0 < a < b < ∞ and α ≥ 0, β ≥ 0, Then

CDα
a+ Iβ

a+
u (t) = Iβ−α

a+
u (t) ,

CDα
a+

C Dβ
a+

u (t) = CDβ−α
a+

u (t) .
(2.9)

Lemma 7. (see [11]).
Let α ≥ 0, and n = [α]+1. If u(t) ∈ ACn

δ [a, b], then the Caputo-Hadamard fractional
differential equation

CDα
a+u (t) = 0 (2.10)

has a solution:

u (t) =
n−1∑
k=0

ck

(
log

t

a

)k

(2.11)

and the following formula holds:

Iα
a+

C Dα
a+u (t) = u (t) +

n−1∑
k=0

ck

(
log

t

a

)k

(2.12)

where ck ∈ R, k = 1, 2, ..., n− 1.

Definition 8. (see [9]). Let (X, d) be a metric space.
A mapping F : X → X is Lipschitz continuous if there exists a constant L > 0 such
that

d(Fx, Fy) ≤ Ld(x, y) for all x, y ∈ X.

If 0 ≤ L < 1, then F is called a contraction mapping and L is called the contractivity
factor of F .
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Theorem 9. (Banach contraction principle, [9]).
Let (X, d) be a complete metric space and F : X → X be contractive. Then F has a
unique fixed point u, and furthermore, for any x ∈ X, the sequence (F kx)k≥0, where
F k = F ◦ F ◦ ... ◦ F  

k

converges and lim
k→∞

F kx = u for each x ∈ X.

Theorem 10. (Krasnoselskii’s fixed point theorem, [15]).
Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let
A, B be the operators such that
(a) Ax+By ∈ M whenever x, y ∈ M
(b) A is compact and continuous
(c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az +Bz.

3 Main Results

First, we prove a preparatory lemma for boundary value problem of linear fractional
differential equations with Caputo-Hadamard derivative.

Lemma 11. Let y(t) ∈ ACn
δ [1, e].

Then the unique solution of the following Caputo-Hadamard fractional differential
equation:

CDα
a+u (t) = y(t), t ∈ [1, e] , 2 < α ≤ 3, (3.1)

with the fractional boundary conditions

u (1) = u
′
(1) = 0,

(
CDα−1

1+
u
)
(e) =

(
CDα−2

1+
u
)
(e) = 0, (3.2)

is given by the integral equation

u (t) =

∫ e

1
G (t, s) y (s) ds, (3.3)

where
G(t, s) =

=

⎧⎪⎨⎪⎩
(log t

s)
α−1

sΓ(α) +

[
Γ(5−α)(log t)2

2
−Γ(6−α)(log t)3

6

]
s +

[
(4−α)Γ(6−α)(log t)3

6
−Γ(6−α)(log t)2

2

]
(log e

s)

s ,[
Γ(5−α)

2
(log t)2−Γ(6−α)

6
(log t)3

]
s +

[
(4−α)Γ(6−α)

6
(log t)3−Γ(6−α)

2
(log t)2

]
(log e

s)
s ,

1 ≤ s ≤ t ≤ e
1 ≤ t ≤ s ≤ e

(3.4)
is called the Green function of boundary value problem (3.1)-(3.2).

Proof. By Lemma 7, (2.12), we can reduce the equation (3.1) to an equivalent
integral equation

u (t) = Iα
1+y(t) + c0 + c1 (log t) + c2 (log t)

2 + c3 (log t)
3 ,
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for some constants c0, c1, c2, c3 ∈ R.
As boundary conditions for Problem (3.1), by Theorem 6, (2.9), and Proposition 5
(2.8), we have

u (1) = u
′
(1) = 0 implies that c0 = c1 = 0(

CDα−1
1+

u
)
(e) =

(
CDα−1

1+
Iα
1+y
)
(e) + c2

(
CDα−1

1+
(log t)2

)
(e) + c3

(
CDα−1

1+
(log t)3

)
(e)

=
(
I1
1+y
)
(e) +

2c2
Γ (4− α)

+
6c3

Γ (5− α)
= 0,(

CDα−2
1+

u
)
(e) =

(
CDα−2

1+
Iα
1+y
)
(e) + c2

(
CDα−2

1+
(log t)2

)
(e) + c3

(
CDα−2

1+
(log t)3

)
(e)

=
(
I2
1+y
)
(e) +

2c2
Γ (5− α)

+
6c3

Γ (6− α)
= 0,

that is,

c2 =
Γ (5− α)

2

(
I1
1+y
)
(e)− Γ (6− α)

2

(
I2
1+y
)
(e)

=
Γ (5− α)

2

∫ e

1
y (s)

ds

s
− Γ (6− α)

2

∫ e

1

(
log

e

s

)
y (s)

ds

s
.

c3 =
(4− α) Γ (6− α)

6

(
I2
1+y
)
(e)− Γ (6− α)

6

(
I1
1+y
)
(e)

=
(4− α) Γ (6− α)

6

∫ e

1

(
log

e

s

)
y (s)

ds

s
− Γ (6− α)

6

∫ e

1
y (s)

ds

s
.

Therefore, the unique solution of the boundary value problem (3.1)-(3.2) is

u (t) =

= 1
Γ(α)

∫ t
1

(
log t

s

)α−1
y (s) ds

s +
[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1 y (s) ds

s

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
y (s) ds

s

=
∫ t
1

[
(log t

s)
α−1

sΓ(α) +

[
Γ(5−α)

2
(log t)2−Γ(6−α)

6
(log t)3

]
s +

[
(4−α)Γ(6−α)

6
(log t)3−Γ(6−α)

2
(log t)2

]
(log e

s)
s

]
y (s) ds

+
∫ e
t

[[
Γ(5−α)

2
(log t)2−Γ(6−α)

6
(log t)3

]
s +

[
(4−α)Γ(6−α)

6
(log t)3−Γ(6−α)

2
(log t)2

]
(log e

s)
s

]
y (s) ds

=
∫ e
1 G (t, s) y (s) ds.

We now turn to the question of existence for boundary value problem (1.1)-(1.2).

Let E = C([1, e],R) with ∥u∥ = max
t∈[1.e]

|u (t)| be Banach space. If u is a solution
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of (1.1)-(1.2) then

u (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, u (s))
ds

s

+

[
Γ (5− α)

2
(log t)2 − Γ (6− α)

6
(log t)3

] ∫ e

1
f (s, u (s))

ds

s

+

[
(4− α) Γ (6− α)

6
(log t)3 − Γ (6− α)

2
(log t)2

] ∫ e

1

(
log

e

s

)
f (s, u (s))

ds

s
.

Define a mapping F : E → E by

Fu (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, u (s))
ds

s
(3.5)

+

[
Γ (5− α)

2
(log t)2 − Γ (6− α)

6
(log t)3

] ∫ e

1
f (s, u (s))

ds

s

+

[
(4− α) Γ (6− α)

6
(log t)3 − Γ (6− α)

2
(log t)2

] ∫ e

1

(
log

e

s

)
f (s, u (s))

ds

s
.

and the some important constants

ω =
1

Γ (α+ 1)
+

Γ (5− α)

2
+

(4− α) Γ (6− α)

12
. (3.6)

We will prove the first following result via standard fixed point theorems.

Theorem 12. Assume that f(t, u) is continuous on [1, e] × R, and there exists a
constant L > 0 such that:

(H1) ∀u, v ∈ R; |f (t, u)− f (t, v)| ≤ L |u− v| , t ∈ [1, e].

If
Lω < 1, (3.7)

then the fractional boundary value problem (1.1)-(1.2) has a unique solution in [1, e].

Proof. We will consider the equivalent integral equation problem given by Fu = u,
where the operator Fu is defined by (3.5). Using the Banach contraction principle,
we shall show that Fu has a fixed point.
Fixing max

t∈[1.e]
|f (t, 0)| = M and choosing r ≥ Mω

1−Lω . We prove that F (Br) ⊂ Br,

where
Br = {u ∈ C (E,R) / ∥u∥ ≤ r} ,

For u ∈ Br, we have
∥Fu∥ ≤
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≤ max
t∈[1.e]

⎧⎨⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1 |f (s, u (s))| dss +
[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1 |f (s, u (s))| dss

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
|f (s, u (s))| dss

⎫⎬⎭
≤ max

t∈[1.e]

⎧⎪⎪⎨⎪⎪⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1
[|f (s, u (s))− f (s, 0)|+ |f (s, 0)|] dss

+
[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1 [|f (s, u (s))− f (s, 0)|+ |f (s, 0)|] dss

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
[|f (s, u (s))− f (s, 0)|+ |f (s, 0)|] dss

⎫⎪⎪⎬⎪⎪⎭
≤ (Lr +M) max

t∈[1.e]

⎧⎨⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1 ds
s +

[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1

ds
s

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
ds
s

⎫⎬⎭
≤ (Lr +M) max

t∈[1.e]

⎧⎨⎩
1

Γ(α+1)

[
−
(
log t

s

)α]t
1
+
[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

]
[(log s)]e1

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] [
−1

2

(
log e

s

)2]e
1

⎫⎬⎭
≤ (Lr +M) max

t∈[1.e]

⎧⎨⎩
1

Γ(α+1) (log t)
α +

[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

]
+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] (
1
2

)
⎫⎬⎭

≤ (Lr +M)
{

1
Γ(α+1) +

Γ(5−α)
2 + (4−α)Γ(6−α)

12

}
≤ (Lr +M)ω
≤ r.
which proves that F (Br) ⊂ Br.
Now let u, v ∈ C([1, e],R). Then, for t ∈ [1, e], we have
|(Fu) (t)− (Fv) (t)| ≤

≤ max
t∈[1.e]

⎧⎪⎪⎨⎪⎪⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1 |f (s, u (s))− f (s, v (s))| dss +[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1 |f (s, u (s))− f (s, v (s))| dss +[

(4−α)Γ(6−α)(log t)3

6 − Γ(6−α)(log t)2

2

] ∫ e
1

(
log e

s

)
|f (s, u (s))− f (s, v (s))| dss

⎫⎪⎪⎬⎪⎪⎭
≤ L ∥u− v∥ max

t∈[1.e]

⎧⎨⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1 ds
s +

[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1

ds
s

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
ds
s

⎫⎬⎭
≤ L ∥u− v∥ max

t∈[1.e]

⎧⎨⎩
1

Γ(α+1) (log t)
α +

[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

]
+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] (
1
2

)
⎫⎬⎭

≤ L ∥u− v∥
{

1
Γ(α+1) +

Γ(5−α)
2 + (4−α)Γ(6−α)

12

}
≤ Lω ∥u− v∥ .
Therefore

∥Fu− Fv∥ ≤ Lω ∥u− v∥ .
From the assumption (3.7) and the preceding estimate, it follows that F is a contraction
mapping. Applying theorem 9, the operator F has a fixed point which corresponds
to the unique solution of the problem (1.1)-(1.2). This completes the proof.

We will prove the second result following existence result via Krasnoselskii’s fixed
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point theorem.

Theorem 13. Let f : [1, e] × R → R be a continuous function satisfying (H2). In
addition, we assume that:

(H2) f(t, u) ≤ µ(t) ∀(t, u) ∈ [1, e]× R and µ ∈ C([1, e],R+).

Then the problem (1.1)-(1.2) has at least one solution on [1, e] if

Γ (5− α)

2
+

(4− α) Γ (6− α)

12
< 1. (3.8)

Proof. We define sup
t∈[1.e]

|µ(t)| = ∥µ∥ and choose a suitable constant r̄ as

r̄ ≥ ∥µ∥ω

where ω is defined by (3.6). We define the operators P and Q on

Br̄ = {u ∈ C([1, e],R) : ∥u∥ ≤ r̄}

as

Pu (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, u (s))
ds

s
,

Qu (t) =
[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1 f (s, u (s)) ds

s

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
f (s, u (s)) ds

s .

For u, v ∈ Br̄ we find that

∥Pu+Qv∥ ≤ ∥µ∥

⎧⎨⎩
1

Γ(α)

∫ t
1

(
log t

s

)α−1 ds
s +

[
Γ(5−α)

2 (log t)2 − Γ(6−α)
6 (log t)3

] ∫ e
1

ds
s

+
[
(4−α)Γ(6−α)

6 (log t)3 − Γ(6−α)
2 (log t)2

] ∫ e
1

(
log e

s

)
ds
s

⎫⎬⎭
≤ ∥µ∥ω
≤ r̄.

Thus Pu + Qv ∈ Br̄. It follows from the assumption (12 H1) together with (3.8)
that Q is a contraction mapping. Continuity of f implies that the operator P is
continuous. Also P is uniformly bounded on Br̄ as

∥Pu∥ ≤ ∥µ∥
Γ (α+ 1)

.

Now we will prove the compactness of the operator P .
We define sup

t∈[1.e]×Br̄

|f(t, u)| = f̄ < ∞, τ1, τ2 ∈ [1, e] with τ1 < τ2 and consequently,
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we have

|(Pu) (τ1)− (Pu) (τ2)| ≤

≤ f̄

Γ (α)

⏐⏐⏐⏐∫ τ1

1

(
log

τ1
s

)α−1 ds

s
−
∫ τ2

1

(
log

τ2
s

)α−1 ds

s

⏐⏐⏐⏐
≤ f̄

Γ (α)

⏐⏐⏐⏐∫ τ1

1

[(
log

τ1
s

)α
−
(
log

τ2
s

)α] ds
s

⏐⏐⏐⏐+ f̄

Γ (α)

⏐⏐⏐⏐∫ τ2

τ1

(
log

τ2
s

)α ds

s

⏐⏐⏐⏐
≤ f̄

Γ (α+ 1)

[⏐⏐⏐⏐(log τ1)α +

(
log

τ2
τ1

)α

− (log τ2)
α

⏐⏐⏐⏐+ ⏐⏐⏐⏐(log τ2
τ1

)α⏐⏐⏐⏐] ,
tends to zero as τ1 − τ2 → 0. Thus, P is equicontinuous. So P is relatively compact
on Br̄. Hence, by the Arzela-Ascoli theorem, P is compact on Br̄. Thus all the
assumptions of Theorem 10 are satisfied. So the conclusion of Theorem 10 implies
that the fractional boundary value problem (1.1)-(1.2) has at least one solution on
[1, e]. The proof is completed.

Example 14. Consider the following boundary value problem⎧⎨⎩
CDα

1+u (t) =
arctan t
2+|u| , t ∈ [1, e] ,

u (1) = u
′
(1) = 0,(

CDα−1
1+

u
)
(e) =

(
CDα−2

1+
u
)
(e) = 0,

(3.9)

Here for f (t, u (t)) = arctan t,
1+|u| we have

(12 H1) ∀u, v ∈ R; |f (t, u)− f (t, v)| ≤ π
8 |u− v| , t ∈ [1, e]

If α = 2.75, then

ω =
1

Γ (3.75)
+

Γ (2.25)

2
+

(1.25) Γ (3.25)

12
≃ 1.05805...

Therefore (12 H1) is satisfied with L = π
8 , Further, Lω = π

8 × (1.05805) ≃
0.414952 < 1.
Thus, by Theorem 12, the boundary value problem (3.9) has a unique solution on
[1, e].

Example 15. Consider the boundary value problem⎧⎨⎩
CDα

1+u (t) =
log t
1+u2 , t ∈ [1, e] ,

u (1) = u
′
(1) = 0,(

CDα−1
1+

u
)
(e) =

(
CDα−2

1+
u
)
(e) = 0,

(3.10)

Here for f (t, u (t)) = log t
1+u2 we have

(13H2) |f(t, u)| ≤ µ(t) = log t, ∀(t, u) ∈ [1, e]× R
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If α = 2.75, (13 H2) is satisfied and

Γ (5− α)

2
+

(4− α) Γ (6− α)

12
≃ 0.83205 < 1.

Thus, by Theorem 13, the boundary value problem (3.10) has at least one solution
on [1, e].
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