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ON DYNAMICS OF QUADRATIC STOCHASTIC
OPERATORS: A SURVEY
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Abstract. We discuss the notion of Volterra, ℓ-Volterra and separable quadratic stochastic

operators defined on (m− 1)-dimensional simplex, where ℓ ∈ {0, 1, ...,m}. The ℓ-Volterra operator

is a Volterra operator if and only if ℓ = m. We study the structure of the set of all Volterra and

ℓ-Volterra operators and describe their several fixed and periodic points. For m = 2 and m = 3 we

describe behavior of trajectories of (m−1)-Volterra operators. We also mention many remarks with

comparisons of ℓ-Volterra operators and Volterra ones. Also we discuss the dynamics of separable

quadratic stochastic operators.

1 Introduction

There are many systems which are described by nonlinear operators. Quadratic is
one of the simplest nonlinear cases. Quadratic dynamical systems have been proved
to be a rich source of analysis for the investigation of dynamical properties and
modeling in different domains, such as population dynamics in physics, economics
and mathematics. On the other hand, the theory of Markov processes is a rapidly
developing field with numerous applications to many branches of mathematics and
physics. However, Markov processes fails to describe some physical and biological
system. One of such system is given by Quadratic Stochastic Operators (QSOs)
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and they are related to population
genetics. The main problem is, to study the behavior of trajectories of Quadratic
Stochastic Operators (QSOs). The limit behavior and properties of trajectories of
Quadratic Stochastic Operators and their applications to population genetics were
studied.

A Quadratic Stochastic Operator (QSOs) has meaning of a population evolution
Operator in biology which can be described as follows: Consider a population
consisting of m species i.e. E = {1, 2, . . . , m}. Let (x0) = (x01, x

0
2, . . . , x

0
m) be the
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probability distribution of species in the initial generations, and pij,k the probability
that individuals in the ith and jth species interbreed to produce an individual k.
Then the probability distribution x

′
= (x

′
1, x

′
2, . . . , x

′
m) of the species in the first

generation can be found by the total probability,

where x
′
k =

m∑
i,j=1

pij,kxixj . (1.1)

This means that the association x0 → x
′
defines a map V called the evolution

operator. The population evolves by starting from an arbitrary state x0, then passing
to the state x

′
= V (x0), similarly x

′′
= V (V (x0)) = V 2(x0) and so on. Hence states

of the population are described by the following dynamical system

x0, x
′
= V (x0), x

′′
= V 2(x0), x

′′′
= V 3(x0) and so on.

Note that V defined in (1.1) is a nonlinear Quadratic Operator and if m ≥ 3,
then it is higher dimensional. The dynamics of Quadratic Operators were basically
defined due to some recurrent rule which marks a possibility to study asymptotic
behaviors of such operators. Under some conditions on coefficients of such operators
we describe Lyapunov Functions on them. We will also describe a set of fixed points
of the Volterra Operators [4, 9].

This article is arranged as follows: In section 2 we will discuss about the definition
of Simplex, Quadratic Stochastic Operators (QSOs), the properties of Quadratic
Stochastic Operators (QSOs). We will see that each Quadratic Stochastic Operators
(QSOs) will be uniquely defined by a cubic matrix P = (pij,k)

m
i,j,k=1.

In section 3 and 4 we study Volterra Quadratic Stochastic Operators, Canonical
form of Volterra’s discrete model, extremal points and the compactness of Volterra
Quadratic Stochastic Operators, Lyapunov functions [2, 7], limits and critical points
of Lyapunov functions of Volterra Quadratic Stochastic Operators.

In section 5 we study l-Volterra Quadratic Stochastic Operators, Canonical form
of l-Volterra’s discrete model, extremal points and the compactness of l-Volterra
Quadratic Stochastic Operators, Lyapunov functions, for m = 2 and 3 we describe
behavior of trajectories of (m− 1)-Volterra operators.

Section 6 is devoted to the study of Separable Quadratic Stochastic Operators.

2 Preliminaries

In this chapter, we will study the definition of Simplex, Face of the Simplex, Relative
Inside of the Face of Simplex and some examples. Also we will discuss some canonical
form of Volterra Operators in discrete models.
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Quadratic Stochastic Operators (QSOs) 119

2.1 Simplex and Quadratic Stochastic Operators

In this Section we will give some basic definitions:

Definition 1. The set

Sm−1 = {x = (x1, x2, . . . , xm) ∈ Rm :

m∑
i=1

xi = 1, 0 ≤ xi ≤ 1}

is called Simplex with dimension m− 1.

Definition 2. The Quadratic Stochastic Operator is a mapping defined as

V : Sm−1 → Sm−1

such that V (x) = x
′
i.e. V (x1, x2, . . . , xm) = (x

′
1, x

′
2, . . . , x

′
m)

where

x
′
k =

m∑
i,j=1

pij,kxixj , ∀ k = 1, 2, . . . , m, (2.1)

and pij,k is called coefficient of heredity, which satisfy the following conditions

pij,k = pji,k, 0 ≤ pij,k ≤ 1,
m∑
k=1

pij,k = 1, (i, j, k = 1, . . . , m). (2.2)

Note that each such operator can be uniquely defined by a cubic matrix P = (pij,k)
m
i,j,k=1,

where m ∈ R.

Example 3. For the system E = {1, 2}, find the corresponding quadratic stochastic
operator.

Solution: Given that E = {1, 2} then the corresponding QSO is given by
V (x1, x2) = (x

′
1, x

′
2). Now by definition, we can find x

′
1 and x

′
2 as:

x
′
1 =

2∑
i,j=1

Pij,1xixj

=
2∑

i=1

2∑
j=1

pij,1xixj

=

2∑
i=1

[pi1,1xix1 + pi2,1xix2]

=

2∑
i=1

pi1,1xix1 +

2∑
i=1

pi2,1xix2

= p11,1x1x1 + p21,1x2x1 + p12,1x1x2 + p22,1x2x2

= p11,1x
2
1 + 2p12,1x1x2 + p22,1x

2
2.
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Similarly

x
′
2 =

2∑
i,j=1

Pij,2xixj

=
2∑

i=1

2∑
j=1

pij,2xixj

=

2∑
i=1

[pi1,2xix1 + pi2,2xix2]

=
2∑

i=1

pi1,2xix1 +
2∑

i=1

pi2,2xix2

= p11,2x1x1 + p21,2x2x1 + p12,2x1x2 + p22,2x2x2

= p11,2x
2
1 + 2p12,2x1x2 + p22,2x

2
2.

So

V (x1, x2) = (p11,1x
2
1 + 2p12,1x1x2 + p22,1x

2
2, p11,2x

2
1 + 2p12,2x1x2 + p22,2x

2
2).

Example 4. If m=2 and i, j, k ∈ {1, 2}.Then

P =

(
p11,1 p12,1 p21,1 p22,1
p11,2 p12,2 p21,2 p22,2

)
.

Thus the corresponding Quadratic Stochastic Operator (QSO) from above matrix

for k = 1 is x
′
1 = p11,1x

2
1 + 2p12,1x1x2 + p22,1x

2
2,

and
for k = 2 is x

′
2 = p11,2x

2
1 + 2p12,2x1x2 + p22,2x

2
2.

3 Volterra Operators

First to study the Canonical form of Volterra’s discrete model.

3.1 Canonical form of Volterra’s discrete model

Definition 5. A Quadratic Stochastic Operator V : Sm−1 → Sm−1 is called Volterra
if

pij,k = 0, ∀ k /∈ {i, j}. (3.1)

The biological treatment of condition (3.1) is clear i.e. the offspring repeats the
genotype of one of its parents.
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Example 6. Let E = {1, 2}, then V (x1, x2) = (x
′
1, x

′
2). Find x

′
1 and x

′
2.

Solution: Since

x
′
1 = p11,1x

2
1 + 2p12,1x1x2 + p22,1x

2
2,

and
x

′
2 = p11,2x

2
1 + 2p12,2x1x2 + p22,2x

2
2,

but V is a Volterra QSO, so
p11,2 = p22,1 = 0.

Hence for Volterra QSO
x

′
1 = p11,1x

2
1 + 2p12,1x1x2,

and
x

′
2 = 2p12,2x1x2 + p22,2x

2
2.

The cubic matrix for the corresponding Volterra QSOs is

P =

(
p11,1 p12,1 p21,1 0
0 p12,2 p21,2 p22,2

)
.

Example 7. Let E = {1, 2, 3}, then V (x1, x2, x3) = (x
′
1, x

′
2, x

′
3). Find x

′
1, x

′
2

and x
′
3.

Solution: For k=1

x
′
1 =

3∑
i,j=1

pij,1xixj

=

3∑
j=1

3∑
i=1

pij,1xixj

=
3∑

j=1

(p1j,1x1xj + p2j,1x2xj + p3j,1x3xj)

=

3∑
j=1

p1j,1x1xj +

3∑
j=1

p2j,1x2xj +

3∑
j=1

p3j,1x3xj

= p11,1x
2
1 + p12,1x1x2 + p13,1x1x3 + p21,1x1x2 + p22,1x

2
2

+ p23,1x2x3 + p31,1x3x1 + p32,1x3x2 + p33,1x
2
3

= p11,1x
2
1 + 2(p12,1x1x2 + p13,1x1x3), since p22,1 = p33,1 = p23,1 = p32,1 = 0

= x21 + 2(p21,1x1x2 + p31,1x1x3), since p11,1 = 1

x
′
1 = x1

⎛⎝x1 + 2
3∑

i=2,i ̸=1

pi1,1xi

⎞⎠ .
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For k=2

x
′
2 =

3∑
i,j=1

pij,2xixj

=
3∑

j=1

3∑
i=1

pij,2xixj

=
3∑

j=1

(p1j,2x1xj + p2j,2x2xj + p3j,2x3xj)

=
3∑

j=1

p1j,2x1xj +
3∑

j=1

p2j,2x2xj +
3∑

j=1

p3j,2x3xj

= p11,2x
2
1 + p12,2x1x2 + p13,2x1x3 + p21,2x1x2 + p22,2x

2
2

+ p23,2x2x3 + p31,2x3x1 + p32,2x3x2 + p33,2x
2
3

= p22,2x
2
2 + 2(p12,2x1x2 + p32,2x2x3), since p11,2 = p33,2 = p13,2 = p31,2 = 0

= x22 + 2(p12,2x1x2 + p32,2x3x2), since p22,2 = 1

= x2(x2 + 2(p12,2x1 + p32,2x3)

x
′
2 = x2

⎛⎝x2 + 2
3∑

i=1,i ̸=2

pi2,2xi

⎞⎠ .

Similarly for k=3

x
′
3 = x3

⎛⎝x3 + 2
2∑

i=1,i ̸=3

pi3,3xi

⎞⎠ .

The cubic matrix for the corresponding operators is

P =

⎛⎝ p11,1 p12,1 p13,1 p21,1 0 0 p31,1 0 0
0 p12,2 0 p21,2 p22,2 p23,2 0 p32,2 0
0 0 p13,3 0 0 p23,3 p31,3 p32,3 p33,3

⎞⎠ .

The above examples are for m=2 and m=3. So in general

x
′
k = xk

⎛⎝xk + 2

m∑
i=1,i ̸=k

pik,kxi

⎞⎠ .

It is called the canonical form of Volterra Quadratic Stochastic Operators and it will
be discussed in the next Proposition 3.5.

Proposition 8. [6] Let V be a Volterra QSO then it can be represented by

x
′
k = xk

(
1 +

m∑
i=1

akixi

)
,
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where aki = 2pik,k − 1 for i ̸= k and akk = 0. Moreover aki = −aik and |aki| ≤ 1.

Proof. As V is a Volterra QSO and by definition pkk,i = 0 for i ̸= k but
m∑
i=1

pkk,i = 1,

so we have pkk,k = 1. As we know that pij,k = pji,k, so by using these conditions we
will get

x
′
k = xk

⎛⎝xk + 2

m∑
i=1,i ̸=k

pik,kxi

⎞⎠ . (3.2)

Now as we know that

m∑
i=1

xi = 1

x1 + x2 + · · ·+ xk + · · ·+ xm = 1

⇒ xk = 1−
m∑

i=1,i ̸=k

xi.

By putting the value of xk in (3.2) we will get

x
′
k = xk

(
1−

m∑
i=1

xi + 2
m∑
i=1

pik,kxi

)

x
′
k = xk

⎛⎝1 +

m∑
i=1,i ̸=k

(2pik,k − 1)xi

⎞⎠ .

Let aki = 2pik,k − 1 for i ̸= k and akk = 0.
As the maximum value of aki is 1 and -1 i.e. |aki| ≤ 1. Also 0 ≤ pik,k ≤ 1.

Finally by using the definition of Volterra QSO, we have pik,k + pik,i = 1. Hence,

aki + aik = 2pik,k − 1 + 2pki,i − 1 = 2(pik,k + pki,i − 1) = 2(1− 1) = 0

i.e.
aki = −aik.

This completes the proof.

Remark 9. It should be noted that
m∑
i=1

akixi is actually the multiplication of the

matrices and aki = −aik shows the symmetry of the matrices. The Volterra Operator

x
′
k totaly depends upon the matrix

m∑
i=1

akixi. Let us suppose A = (aki)
m
i,k=1 such that

akk = 0 ∀ k and aki = −aik. Keep in mind that A is a skew symmetric matrix with
zeros on its main diagonal.
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Example 10. If E = {1, 2}. Then find x
′
1 and x

′
2 by using above proposition.

Solution: Since m=2, then A = (aki)
2
i,k=1 and aki = −aik. So this implies that

A =

(
0 a12

−a12 0

)(
x1
x2

)
A =

(
a12x2
−a12x1

)
.

Then by using Proposition 3.5

x
′
1 = x1(1 + a12x2)

x
′
2 = x2(1 + a21x1).

3.2 Face of the Simplex

Definition 11. For any I ⊆ E = {1, . . . , m}, we define the Face ΓI of the Simplex
Sm−1 by

ΓI = {x ∈ Sm−1 : xi = 0 for any i ∈ I}.

Example 12. If E = {1, 2, 3} and I = {1, 2}. Clearly I ⊆ E, Then find ΓI .

Solution:

Γ{1,2} = {x ∈ S3−1 : xi = 0 ∀ i ∈ I}
= {x = (x1, x2, x3) ∈ S2 : x1 = 0, x2 = 0}
= {x = (0, 0, x3) : 0 + 0 + x3 = 1}

Γ{1,2} = (0, 0, 1),

i.e. Γ{1, 2} = (0, 0, 1) is the Face of the Simplex S2.

Definition 13. The Relative Inside denoted by riΓI of ΓI is defined as

riΓI = {x ∈ ΓI : 0 < xi, ∀ i /∈ I}.

Example 14. If E = {1, 2, 3} and I = {1, 2}. Clearly I ⊆ E, Then find the
relative inside of ΓI .

Solution: Since ΓI = (0, 0, 1), so the relative inside of ΓI is

r3Γ{1,2} = {x = (x1, x2, x3) ∈ Γ{1,2} : x3 > 0, since 3 /∈ I}
= {x = (0, 0, x3) ∈ ΓI : x3 > 0, since 3 /∈ I}

r3Γ{1,2} = {(0, 0, 1) ∈ ΓI : x3 = 1 > 0, since 3 /∈ I}.
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Definition 15. A subset S of the domain U is called an invariant set under the
mapping f if x ∈ S ⇒ f(x) ∈ S.

Definition 16. Let f : R → R be any function. A point x ∈ R is called a fixed
point if f(x) = x.

Proposition 17. [4], Let V be a Volterra QSO. Then the following assertions hold
true
(i) Any Face of Sm−1 is invariant set with respect to V.
(ii) The vertices of the Simplex Sm−1 are fixed points of V.
(iii) The Relative Inside of any Face of Sm−1 is invariant with respect to V.

Proof. (i) Since V is a Volterra QSO. So if xi = 0, then by Proposition 3.5

x
′
i = xi

(
1 +

m∑
k=1

aikxk

)
, (3.3)

by putting xi = 0 in (3.3), we get

x
′
i = (0)

(
1 +

m∑
k=1

aikxk

)
x

′
i = 0.

So

xi = 0 ⇒ V (xi) = 0.

And as xi ∈ ΓI and V : Sm−1 → Sm−1. So by definition of invariant set, any Face
of Sm−1 is invariant set with respect to V i.e.

V (ΓI) ⊆ ΓI .

(ii) Since V : Sm−1 → Sm−1 and as in part(i)

xi = 0 ⇒ V (xi) = 0

i.e. V (xi) = xi. Also xi ∈ Sm−1 is an arbitrary point. So by definition of fixed
points, the vertices of the Simplex Sm−1 are fixed points of V.
(iii) Suppose xk > 0, then by Proposition 3.5

x
′
k = xk(1 + ak1x1 + · · ·+ akk−1xk−1 + akkxk + akk+1xk+1 + · · ·+ akmxm), (3.4)

putting akk = 0 in (3.4), we get

x
′
k = xk(1 + ak1x1 + · · ·+ akk−1xk−1 + akk+1xk+1 + · · ·+ akmxm). (3.5)

******************************************************************************
Surveys in Mathematics and its Applications 12 (2017), 117 – 164

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma


126 A. Zada and S. O. Shah

Now as we know that

|aki| ≤ 1

−1 ≤ aki ≤ 1

aki ≥ −1.

So (3.5) implies

x
′
k ≥ xk(1− x1 − · · · − xk−1 − xk+1 − · · · − xm). (3.6)

Now since we know that
m∑
i=1

xi = 1

x1 + · · ·+ xk−1 + xk + xk+1 + · · ·+ xm = 1

⇒ xk = 1− x1 − · · · − xk−1 − xk+1 − · · · − xm.

So by putting the value of xk in (3.6), we get

x
′
k ≥ xk(xk)

x
′
k ≥ x2k

x
′
k > 0.

So
xk > 0 ⇒ V (xk) > 0.

Hence by definition of invariant sets, the Relative Inside of any Face of Sm−1 is
invariant with respect ro V i.e.

V (riΓI) ⊆ riΓI .

Remark 18. The set of all Volterra QSOs defined on the Simplex Sm−1 is denoted
by ℜ.

Definition 19. Let S be a vector space over the real numbers. A set C in S is said
to be convex for all x and y in C and all t in the interval [0,1], the point (1− t)x+ ty
in C.

In other words, every point on the line segment connecting x and y is in C.

Proposition 20. The set ℜ is a convex, centrally symmetric compact subset of

R
n(n−1)

2 . The extremal points of ℜ are Volterra Operators with aki ̸= 1 for k ̸= i i.e.

Extr(ℜ) = {V ∈ ℜ : aki = ±1, k ̸= i}.
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Proof. Let V1, V2 be any two Volterra Operators. Then by proposition 3.5 we have

V1(xk) = xk

(
1 +

m∑
i=1

a
′
kixi

)

V2(xk) = xk

(
1 +

m∑
i=1

a
′′
kixi

)
.

Let α be any scalar in the interval [0, 1]. Then by definition of convex set, V =
αV1 + (1− α)V2 can be written as

V (xk) = αxk(1 +

m∑
i=1

a
′
kixi) + (1− α)xk(1 +

m∑
i=1

a
′′
kixi)

= xk(α+

m∑
i=1

αa
′
kixi) + xk(1− α+

m∑
i=1

(1− α)a
′′
kixi)

= xk(α+

m∑
i=1

αa
′
kixi + 1− α+

m∑
i=1

(1− α)a
′′
kixi)

⇒ V (xk) = xk(1 +
m∑
i=1

(αa
′
ki + (1− α)a

′′
ki)xi). (3.7)

Now again from Proposition 3.5

|a′
ki| ≤ 1, a

′
ki = −a′

ik, (3.8)

and
|a′′

ki| ≤ 1, a
′′
ki = −a′′

ik. (3.9)

Now let
aki = αa

′
ki + (1− α)a

′′
ki.

So from (3.8) and (3.9), we get

|aki| ≤ 1, aki = −aik.

So (3.7) implies that

V (xk) = xk

(
1 +

m∑
1=1

akixi

)
.

So V = αV1 + (1− α)V2 is in the set ℜ. Hence ℜ is a convex set.
Now if V ∈ ℜ is a Volterra Operator with coefficients aki, then V

′
is also a

Volterra Operator with coefficients −aki. So ℜ is centrally symmetric. Moreover,
center of symmetry is identical operator with coefficients aki = 0.
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Let us assume aki ̸= ±1 for some k and i (k ̸= i). Suppose α = aki and the
matrix for the Volterra Operator V is

A =

⎛⎝ 0 a12 a13
−a12 0 a23
−a13 −a23 0

⎞⎠ .

Since aki = −aik and we can assume that α ≥ 0. Here we will discuss two cases
Case-1:
If α > 0 then setting for k=1 and i=3,

a
′
ts =

{
ats, if (t, s) ̸= (k, i)

1, if (t, s) = (k, i).

Then we have

A
′
=

⎛⎝ 0 a12 1
−a12 0 a23
−a13 −a23 0

⎞⎠ .

The above matrix is for Volterra Operator V1. Now

a
′′
ts =

{
ats, if (t, s) ̸= (k, i)

0, if (t, s) = (k, i).

Then we have

A
′′
=

⎛⎝ 0 a12 0
−a12 0 a23
−a13 −a23 0

⎞⎠ .

The above matrix is for Volterra Operator V2.
Now consider

αA
′
+ (1− α)A

′′
=

⎛⎝ 0 αa12 α
−αa12 0 αa23
−α −αa23 0

⎞⎠
+

⎛⎝ 0 (1− α)a12 0
−(1− α)a12 0 (1− α)a23
−(1− α)a13 −(1− α)a23 0

⎞⎠
=

⎛⎝ 0 a12 α
−a12 0 a23
−a13 a23 0

⎞⎠
αA

′
+ (1− α)A

′′
= A.

Hence we obtain
αV1 + (1− α)V2 = V.
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Case-2:
If α = 0, then setting for k=1 and i=3

a
′
ts =

{
ats, if (t, s) ̸= (k, i)

1, if (t, s) = (k, i).

Then we have

A
′
=

⎛⎝ 0 a12 1
−a12 0 a23
−a13 −a23 0

⎞⎠ .

The above matrix is for Volterra Operator V1. Now

a
′′
ts =

{
ats, if (t, s) ̸= (k, i)

−1, if (t, s) = (k, i).

Then we have

A
′′
=

⎛⎝ 0 a12 −1
−a12 0 a23
−a13 −a23 0

⎞⎠ .

The above matrix is for Volterra Operator V2. Now consider

1

2
A

′
+

1

2
A

′′
=

⎛⎝ 0 1
2a12

1
2

−1
2a12 0 1

2a23
−1

2a13 −1
2a23 0

⎞⎠+

⎛⎝ 0 1
2a12 −1

2
−1

2a12 0 1
2a23

−1
2a13 −1

2a23 0

⎞⎠
=

⎛⎝ 0 a12 0
−a12 0 a23
−a13 −a23 0

⎞⎠
1

2
A

′
+

1

2
A

′′
= A.

Hence we obtain
1

2
V1 +

1

2
V2 = V.

So if aki ̸= ±1 for at least one (k, i), k ̸= i, then V is an interior point of any
line segment, not extremal point. So if aki = ±1 ∀ k ̸= i, then the equation
αV1 + (1− α)V2 = V is valid only if V1 = V2 = V . This completes the proof.

4 Lyapunov Functions of Volterra Operators

In this Section we will study about the Lyapunov functions of Volterra Quadratic
Stochastic Operators.
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Let V : Sm−1 → Sm−1 and x(0) ∈ Sm−1 be the initial point. Then the trajectory
of x(0) is denoted by {x(n)} and is defined as V (x(n)) = x(n+1).

Let w(x(0)) denote the set of all limit points of the trajectory {x(n)}. As Sm−1

is a compact set, so w(x(0)) ̸= φ.

Definition 21. A continuous function ϕ : Sm−1 → R is called a Lyapunov function
for V if for any initial point x(0) ∈ Sm−1, there exists limn→∞ϕ(x

(n)).
Clearly if limn→∞ϕ(x

(n)) = c, then ω(x(0)) ⊆ ϕ−1(c).

Remark 22. The set of fixed points of a Volterra Operator V is denoted by

Fix(V ) = {x ∈ Sm−1 : V (x) = x}.

Proposition 23. Let V be a Volterra Operator, then show that each point of a set

P = {x ∈ Sm−1 :
m∑
i=1

akixi ≥ 0, k = 1, . . . , m} and set Q = {x ∈ Sm−1 :
m∑
i=1

akixi ≤

0, k = 1, . . . , m} are fixed points i.e. P ⊆ Fix(V ), Q ⊆ Fix(V ).

Proof. Let x ∈ P , then

m∑
i=1

akixi ≥ 0

⇒ 1 +

m∑
i=1

akixi ≥ 1

⇒ xk(1 +

m∑
i=1

akixi) ≥ xk

⇒ x
′
k ≥ xk

⇒ x
′
k = xk, since x

′
k > xk is impossible.

This means that xk is a fixed point but xk is arbitrary. So each point of set P is a
fixed point of V. Hence P ⊆ Fix(V ). Similarly we can show that each point of Q is
a fixed point of V i.e. Q ⊆ Fix(V ).

Definition 24. If bi > 0, pi ≥ 0 and
m∑
i=1

pi = 1, then

bp11 b
p2
2 . . . bpmm ≤ p1b1 + p2b2 + · · ·+ pmbm.

The above inequality is called Young’s inequality.

Theorem 25. [9], Let V is a Volterra Operator. If p = (p1, . . . , pm) such that
m∑
i=1

akipi ≥ 0, k = 1, 2 . . . , m, then ϕ(x) = xp11 x
p2
2 . . . xpmm is a Lyapunov function

for V.
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Proof. Let x ∈ int(Sm−1) i.e. xi ̸= 0; ∀ i ∈ {1, 2, . . . , m}. Then

ϕ(V (x)) = ϕ(x
′
)

= x
′p1
1 x

′p2
2 . . . x

′pm
m

= [x1(1 +

m∑
i=1

a1ixi)]
p1 [x2(1 +

m∑
i=1

a2ixi)]
p2 . . . [xm(1 +

m∑
i=1

amixi)]
pm

= xp11 . . . xpmm [(1 +
m∑
i=1

a1ixi)
p1(1 +

m∑
i=1

a2ixi)
p2 . . . (1 +

m∑
i=1

amixi)
pm ]

ϕ(V (x)) = ϕ(x)
m∏
k=1

[
1 +

m∑
i=1

akixi

]pk
.

Let bk = 1+
m∑
i=1

akixi ⇒ bk > 0 (because bk = 0 ⇔ aki = −1 ∀ k, i). Thus by using

Young’s Inequality

m∏
k=1

[1 +

m∑
i=1

akixi]
pk ≤

m∑
k=1

pk[1 +

m∑
i=1

akixi]

=

m∑
k=1

pk +

m∑
k=1

pk

m∑
i=1

akixi

= 1−
m∑
i=1

(
m∑
k=1

aikpk

)
xi, since aki = −aik and

m∑
k=1

pk = 1

⇒
m∏
k=1

[1 +

m∑
i=1

akixi]
pk ≤ 1−

m∑
i=1

(
m∑
k=1

aikpk

)
xi. (4.1)
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Since given that

m∑
k=1

aikpk ≥ 0 ∀ i = 1, 2 . . . , m

⇒
m∑
i=1

(
m∑
k=1

aikpk

)
xi ≥ 0

⇒ 1−
m∑
i=1

(
m∑
k=1

aikpk

)
xi ≤ 1

⇒
m∏
k=1

[1 +
m∑
i=1

akixi]
pk ≤ 1, using (4.1)

⇒ ϕ(x)
m∏
k=1

[1 +
m∑
i=1

akixi]
pk ≤ ϕ(x)

⇒ ϕ(x
′
) ≤ ϕ(x)

⇒ ϕ(x(n+1)) ≤ ϕ(x(n)).

Thus limn→∞ϕ(x
(n)) exists (since the sequence is convergent). Hence ϕ(x) =

xp11 x
p2
2 . . . xpmm is a Lyapunov function for V.

Proposition 26. Let ϕ(x) = xp11 x
p2
2 . . . xpmm , p ∈ P . Then prove that p is critical

point i.e.

max
x∈Sm−1

ϕ(x) = ϕ(p).

Proof. For m=2

ϕ(x) = xp11 x
p2
2 : x1 + x2 = 1, p1 + p2 = 1

⇒ ϕ(x) = xp11 (1− x1)
p2 ,

by differentiating both sides with respect to x, we get

ϕ
′
(x) = p1x

p1−1
1 (1− x1)

p2 + xp11 p2(1− x1)
p2−1(−1)

⇒ ϕ
′
(x) = p1x

p1−1
1 (1− x1)

p2 − xp11 p2(1− x1)
p2−1,
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for critical point put ϕ
′
(x) = 0

ϕ
′
(x) = 0

⇒ p1x
p1−1
1 (1− x1)

p2 − xp11 p2(1− x1)
p2−1 = 0

⇒ xp1−1
1 (1− x1)

p2−1(p1(1− x1)− p2x1) = 0

⇒ (p1(1− x1)− p2x1) = 0, since xp1−1
1 ̸= 0, (1− x1)

p2−1 ̸= 0

⇒ p1(1− x1) = p2x1

⇒ p1 − p1x1 = p2x1

⇒ p1 = p1x1 + p2x1

⇒ p1 = (1)x1, where p1 + p2 = 1

⇒ x1 = p1

⇒ x2 = p2,

since p = (p1, p2) and x = (x1, x2), so x = (x1, x2) = (p1, p2) is the critical point
i.e. p is the critical point of ϕ(x) for m=2.
For m=3

ϕ(x) = xp11 x
p2
2 x

p3
3

ϕ(x) = xp11 x
p2
2 (1− x1 − x2)

p3 ,

first by applying partial derivative with respect to x1 and putting ∂
∂x1

(ϕ(x)) = 0 i.e.

∂

∂x1
(xp11 x

p2
2 (1− x1 − x2)

p3) = 0

⇒ p1x
p1−1
1 xp22 (1− x1 − x2)

p3 − xp11 x
p2
2 p3(1− x1 − x2)

p3−1 = 0

⇒ xp1−1
1 xp22 (1− x1 − x2)

p3−1(p1(1− x1 − x2)− x1p3) = 0

⇒ (p1(1− x1 − x2)− x1p3) = 0

⇒ p1(1− x1 − x2) = x1p3

⇒ p1x3 = x1p3

⇒ x1 = x3
p1
p3
.

Similarly by applying partial derivative with respect to x2 and putting ∂
∂x2

(ϕ(x)) = 0
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i.e.

∂

∂x2
(xp11 x

p2
2 (1− x1 − x2)

p3) = 0

⇒ xp11 p2x
p2−1
2 (1− x1 − x2)

p3 − xp11 x
p2
2 p3(1− x1 − x2)

p3−1 = 0

⇒ xp11 x
p2−1
2 (1− x1 − x2)

p3−1(p2(1− x1 − x2)− x2p3) = 0

⇒ (p2(1− x1 − x2)− x2p3) = 0

⇒ p2(1− x1 − x2) = x2p3

⇒ p2x3 = x2p3

⇒ x2 = x3
p2
p3
.

As we know that

x1 + x2 + x3 = 1

x3
p1
p3

+ x3
p2
p3

+ x3 = 1, using values of x1 and x2(
p1 + p2 + p3

p3

)
x3 = 1

x3
p3

= 1, as p1 + p2 + p3 = 1

x3 = p3.

Similarly

x1 = p1,

and

x2 = p2.

Thus x = (x1, x2, x3) = (p1, p2, p3) = p i.e. x = p is the critical point of ϕ(x) for
m=3. Now we will prove it for general. Since given that

ϕ(x) = xp11 x
p2
2 . . . xpmm

⇒ ϕ(x) = xp11 x
p2
2 . . . (1− x1 − x2 − · · · − xm−1)

pm .

Again by applying partial derivative with respect to x1 and
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putting ∂
∂x1

(ϕ(x)) = 0,

∂

∂x1
(xp11 x

p2
2 . . . (1 −

x1 − x2 − · · · − xm−1)
pm) = 0

⇒ p1x
p1−1
1 xp22 . . . (1− x1 −

x2 − · · · − xm−1)
pm − xp11 x

p2
2 . . . pm(1− x1 − x2 − · · · − xm−1)

pm−1 = 0

⇒ xp1−1
1 xp22 . . . (1− x1 −

x2 − · · · − xm−1)
pm−1(p1(1− x1 − x2 . . . xm−1)− x1pm) = 0

⇒ p1(1− x1 − x2 . . . xm−1)− x1pm = 0

⇒ p1xm − x1pm = 0

⇒ x1pm = p1xm

⇒ x1 =
p1
pm

xm.

Similarly by applying partial derivative with respect to x2 and then put ∂
∂x2

(ϕ(x)) =
0 i.e.

∂

∂x2
(xp11 x

p2
2 . . . (1− x1 − x2 − · · · − xm−1)

pm) = 0

xp11 p2x
p2−1
2 . . . (1− x1 − x2 − · · · − xm−1)

pm −
xp11 x

p2
2 . . . pm(1− x1 − x2 − · · · − xm−1)

pm−1 = 0

xp11 x
p2−1
2 . . . (1− x1 − x2 − · · · − xm−1)

pm−1(p2(1− x1 − x2 . . . xm−1)− x2pm) = 0

p2(1− x1 − x2 . . . xm−1)− x2pm = 0

p2xm − x2pm = 0

x2pm = p2xm

x2 =
p2
pm

xm.

Continuing in this way, by applying partial derivative with respect to xm−1 and then
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put ∂
∂xm−1

(ϕ(x)) = 0 i.e.

∂

∂xm−1
(xp11 x

p2
2 . . . x

pm−1

m−1 (1− x1 − x2 − · · · − xm−1)
pm) =

⇒ xp11 x
p2
2 . . . pm−1x

pm−1−1
m−1 (1− x1 − x2 − . . . −

xm−1)
pm − xp11 x

p2
2 . . . x

pm−1

m−1 pm(1− x1 − x2 − · · · − xm−1)
pm−1 = 0

⇒ xp11 x
p2
2 . . . x

pm−1

m−1 (1− x1 − x2 − . . . −
xm−1)

pm−1(pm−1(1− x1 − x2 · · · − xm−1)− xm−1pm) = 0

⇒ pm−1(1− x1 − x2 . . . xm−1)− xm−1pm = 0

⇒ pm−1xm − xm−1pm = 0

⇒ xm−1pm = pm−1xm

⇒ xm−1 =
pm−1

pm
xm.

As we know that

m∑
i=1

xi = 1

⇒ x1 + x2 + · · ·+ xm−1 + xm = 1

⇒ p1
pm

xm +
p2
pm

xm + · · ·+ pm−1

pm
xm + xm = 1

⇒
(
p1 + p2 + · · ·+ pm−1 + pm

pm

)
xm = 1

⇒ xm
pm

= 1

⇒ xm = pm.

So

x1 =
p1
pm

xm

⇒ x1 =
p1
pm

pm

⇒ x1 = p1.

Similarly

x2 =
p2
pm

xm

⇒ x2 =
p2
pm

pm

⇒ x2 = p2.
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Continuing in this way, we will get

xm−1 =
pm−1

pm
xm

⇒ =
pm−1

pm
pm

⇒ xm−1 = pm−1.

So x = (x1, x2, . . . , xm−1, xm) = (p1, p2, . . . , pm−1, pm) = p i.e. x = p is the
critical point of ϕ(x) for each m. Hence

max
x∈Sm−1

ϕ(x) = ϕ(p).

5 l-volterra Quadratics Stochastic Operators

Now we shall give a new class of non-Volterra operators.
ℓ-Volterra QSO. Fix ℓ ∈ {1, ...,m} and assume that elements Pij,k of the matrix

P satisfy

Pij,k = 0 if k ̸∈ {i, j} for any k ∈ {1, ..., ℓ}, i, j ∈ E; (5.1)

Pij,k > 0 for at least one pair (i, j), i ̸= k, j ̸= k for any k ∈ {ℓ+1, ...,m}. (5.2)

Definition 27. For any fixed ℓ ∈ {1, ...,m}, the QSO defined by (2.1), (2.2), (5.1)
and (5.2) is called ℓ-Volterra QSO.

Denote by Vℓ the set of all ℓ-Volterra QSOs.

Remark 28. 1. The condition (5.2) guarantees that Vℓ1

⋂
Vℓ2 = ∅ for any ℓ1 ̸=

ℓ2.

2. Note that ℓ-Volterra QSO is Volterra if and only if ℓ = m.

3. Quasi-Volterra operators (introduce above) are particular case of ℓ-Volterra
operators.

4. The class of ℓ-Volterra QSO for a given ℓ does not coincide with a class of
non-Volterra QSOs mention above.

We shall use the following notations.

Definition 29. ([1], p. 215 )A fixed point P for F : Rm → Rm is called hyperbolic
if the Jacobian matrix J of the map F at the point P has no eigenvalues on the unit
circle.
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There are three types of hyperbolic fixed points :

1. P is an attracting fixed point if all of the eigenvalues of J(P ) are less than one
in absolute value.

2. P is a repelling fixed point if all of the eigenvalues of J(P ) are greater than
one in absolute value.

3. P is a saddle point otherwise.

The following theorem is also very useful.

Theorem 30. ([1], p.217) Suppose F has a saddle fixed point P . There exist ε > 0
and a smooth curve γ : (−ε, ε) → R2 such that γ(0) = P ; γ′(t) ̸= 0; γ′(0) is an
unstable eigenvector for J(P ); γ is F−1− invariant; F−n(γ(t)) → P as n → ∞; if
|F−n(q)− P | < ε for all n ≥ 0 then q = γ(t) for some t.

The curve γ is called the (local) unstable manifold at P . The theorem is true
for stable sets as well as with the obvious modification. On the local manifold, all
points tend to the fixed point under iteration of F .

5.1 Canonical form of l-Volterra QSO.

By definition for k = 1, ..., ℓ we have

x′k =

m∑
i,j=1

Pij,kxixj = Pkk,kx
2
k + 2

m∑
i=1
i ̸=k

Pik,kxixk =

xk

⎛⎜⎝Pkk,kxk + 2
m∑
i=1
i̸=k

Pik,kxi

⎞⎟⎠ .

Using xk = 1−
∑m

i=1
i ̸=k

xi we get

x′k = xk

⎛⎜⎝Pkk,k +
m∑
i=1
i ̸=k

(2Pik,k − Pkk,k)xi

⎞⎟⎠ , k = 1, ..., ℓ.

For k = ℓ+ 1, ...,m we have

x′k = xk

⎛⎜⎝Pkk,k +
m∑
i=1
i ̸=k

(2Pik,k − Pkk,k)xi

⎞⎟⎠+
m∑

i,j=1
i̸=k
j ̸=k

Pij,kxixj .
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Denote aki = 2Pik,k − Pkk,k then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′k = xk

(
akk +

∑m
i=1
i̸=k

akixi

)
, k = 1, ..., ℓ

x′k = xk

(
akk +

∑m
i=1
i̸=k

akixi

)
+
∑m

i,j=1
i ̸=k
j ̸=k

Pij,kxixj , k = ℓ+ 1, ...,m.
(5.3)

Note that 0 ≤ akk ≤ 1 and −akk ≤ aki ≤ 2− akk, i ̸= k, 0 ≤ Pij,k ≤ 1.
For any I ⊂ E = {1, 2, ...,m} we define the face of the simplex Sm−1:

ΓI =
{
x ∈ Sm−1 : xi = 0 for any i ∈ I

}
.

Proposition 31. Let V be a ℓ-Volterra QSO. Then the following are true

1. Any face ΓI with I ⊆ {1, ..., ℓ} is invariant set with respect to V.

2. Let Aℓ = {i ∈ {1, ..., ℓ} : aii > 0}. For any I ⊂ Aℓ ∪ {ℓ + 1, ...,m} the set
TI = {x ∈ Sm−1 : xi > 0,∀i ∈ I} is invariant with respect to V .

Proof. 1. From (5.3) it follows that if xi = 0 then x′i = 0 for any i ∈ {1, ..., ℓ}.
Hence V (ΓI) ⊂ ΓI if I ⊂ {1, ..., ℓ}.

2. Take I ⊂ Aℓ ∪ {ℓ + 1, ...,m}. For k ∈ I ∩ Aℓ by (5.3) and inequality −akk ≤
akj , j = 1, ...,m we get

x′k = xk

⎛⎜⎝akk + m∑
j=1
j ̸=k

akjxj

⎞⎟⎠ ≥

xk

⎛⎜⎝akk − akk

m∑
j=1
j ̸=k

xj

⎞⎟⎠ = akkx
2
k > 0, since xk > 0 for k ∈ I ∩Aℓ.

For k ∈ I ∩ {ℓ+ 1, ...,m} by (5.3) and condition (5.2) we have

x′k = xk

⎛⎜⎝akk + m∑
j=1
j ̸=k

akjxj

⎞⎟⎠+
m∑

i,j=1
i ̸=k
j ̸=k

Pij,kxixj ≥

xk

⎛⎜⎝akk − akk

m∑
j=1
j ̸=k

xj

⎞⎟⎠+
∑
i,j∈I
i ̸=k
j ̸=k

Pij,kxixj > akkx
2
k ≥ 0,
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here we used
∑

i,j∈I
i ̸=k
j ̸=k

Pij,kxixj > 0 which follows from condition (5.2) and

xi > 0, xj > 0, ∀i, j ∈ I. Thus V (TI) ⊂ TI if I ⊂ Aℓ ∪ {ℓ + 1, ...,m}. The
proposition is proved.

Denote ei = (δ1i, ..., δmi) ∈ Sm−1, i = 1, ...,m the vertices of the simplex Sm−1,
where δij is the Kronecker’s symbol.

Proposition 32. 1. The vertex ei is a fixed point for a ℓ-Volterra QSO iff Pii,i =
1, (i = 1, ...,m).

2. For any collection Is = {ei1 , ..., eis} ⊂ {eℓ+1, ..., em}, (s ≤ m − ℓ) there exist
a family Vℓ(Is) ⊂ Vℓ such that {ei1 , ..., eis} is a s-cycle for each V ∈ Vℓ(Is).

Proof. 1. It is easy to see that if i ∈ {1, ..., ℓ} then

V (ei) = (0, ..., 0, Pii,i, 0, ..., 0, Pii,ℓ+1, ..., Pii,m) with Pii,i +
m∑

j=ℓ+1

Pii,j = 1

and if i ∈ {ℓ+ 1, ...,m} then

V (ei) = (0, ..., 0, Pii,ℓ+1, ..., Pii,m) with
m∑

j=ℓ+1

Pii,j = 1. (5.4)

Thus V (ei) = ei iff Pii,i = 1.

2. By (5.4) we have

V (eij ) =
(
0, ..., 0, Pijij ,ℓ+1, ..., Pijij ,m

)
for any j = 1, ..., s. In order to get V (ei1) = ei2 we assume

Pi1i1,i2 = 1, Pi1i1,j = 0, j ̸= i2. (5.5)

Then to get V (ei2) = ei3 we assume

Pi2i2,i3 = 1, Pi2i2,j = 0, j ̸= i3. (5.6)

Similarly to get V (eis−1) = eis we assume

Pis−1is−1,is = 1, Pis−1is−1,j = 0, j ̸= is. (5.7)

The last assumption follows from V (eis) = ei1 i.e

Pisis,i1 = 1, Pisis,j = 0, j ̸= i1. (5.8)

Hence Vℓ(Is) = {V ∈ Vℓ : the coefficients of V satisfy (5.4) − (5.8)}. The
proposition is proved.
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For any set A denote by |A| its cardinality.
The next proposition gives a set of periodic orbits of ℓ-Volterra QSOs.

Proposition 33. For any I1, ..., Iq ⊂ {ℓ + 1, ...,m} such that Ii
⋂
Ij = ∅ (i ̸=

j, i, j = 1, ..., q). There exists a family Vℓ(I1, ..., Iq) ⊂ Vℓ such that each collection
{ei, i ∈ Ij}, j = 1, ..., q is a |Ij |− cycle for every V ∈ Vℓ(I1, ..., Iq).

Proof. Since Ii
⋂
Ij = ∅, i ̸= j the family can be constructed using Proposition 3.2

i.e. Vℓ(I1, ..., Iq) =
⋂q

i=1 Vℓ(Ii).

Remark 34. 1. There is not any ℓ-Volterra operator with a periodic orbit {ei1 , ..., eis} ⊂
{e1, ..., eℓ}, 1 < s ≤ ℓ.

2. Propositions 5.8 and 5.10 show that ℓ-Volterra operators have quite different
behavior from the behavior of Volterra operators, since Volterra operators have
no cyclic trajectories.

Recall that Vℓ is the set of all ℓ-Volterra operators defined on Sm−1.

Proposition 35. 1. The set Vℓ is a convex, compact subset of R
m(m−1)(m−ℓ+1)

2 .

2. The extremal points of Vℓ are ℓ-Volterra operators with Pij,k = 0 or 1 for any
i, j, k i.e.

Extr(Vℓ) = {V ∈ Vℓ : the matrix P of V contains only 0 and 1} .

3. If ℓ = m then |Extr(Vℓ)| = 2
1
2
m(m−1); if ℓ ≤ m− 1 then

|Extr(Vℓ)| =
(
m− ℓ

) 1
2
(m−ℓ)(m−ℓ+1)(

m− ℓ+ 1
)(m−ℓ+1)ℓ(

m− ℓ+ 2
) 1

2
ℓ(ℓ−1)

.

Proof. 1. Since we have one-to-one correspondence between the set of all QSOs
and the set of all cubic matrices P, we can consider a QSO V as a point of
Rm(m2−1). The number m(m−1)(m−ℓ+1)

2 is the number of independent elements
of the matrix P with the condition (5.1). Let V1, V2 be two ℓ-Volterra QSO i.e
V1, V2 ∈ Vℓ. We shall prove that V = λV1 + (1− λ)V2 ∈ Vℓ for any λ ∈ [0, 1].

Let P
(1)
ij,k (resp. P

(2)
ij,k) be coefficients of V1 (resp. V2). Then coefficients of V

has the form

Pij,k = λP
(1)
ij,k + (1− λ)P

(2)
ij,k. (5.9)

By definition coefficients P
(1)
ij,k and P

(2)
ij,k satisfy conditions (5.1) and (5.2). Using

(5.9) it is easy to check that Pij,k also satisfy the condition (5.1) and (5.2).
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2. Assume V ∈ Vℓ with Pi0j0,k0 = α ̸= 0 and 1 for some i0, j0, k0. Construct two

operators Vq with coefficients P
(q)
ij,k, q = 1, 2 as following

P
(1)
ij,k =

⎧⎨⎩
Pij,k if (i, j) ̸= (i0, j0),
1 if (i, j, k) = (i0, j0, k0),
0 if (i, j, k) = (i0, j0, k), k ̸= k0,

P
(2)
ij,k =

⎧⎨⎩
Pij,k if (i, j) ̸= (i0, j0),
0 if (i, j, k) = (i0, j0, k0),
Pij,k

1−α if (i, j, k) = (i0, j0, k), k ̸= k0.

Then

αP
(1)
ij,k + (1− α)P

(2)
ij,k =

⎧⎨⎩
Pij,k if (i, j) ̸= (i0, j0),
α = Pi0j0,k0 if (i, j, k) = (i0, j0, k0) = Pij,k,
Pij,k if (i, j, k) = (i0, j0, k), k ̸= k0.

(5.10)

Since α > 0, from (5.10) we get Pij,k = 0 if and only if P
(1)
ij,k = 0 and P

(2)
ij,k = 0.

This means that V1 and V2 are ℓ-Volterra operators. Hence V = αV1+(1−α)V2.
Thus if Pij,k ∈ (0, 1) for some (i, j, k) then V is not an extremal point. Finally,
if Pij,k = 0 or 1 for any (i, j, k) then the representation V = λV1 + (1− λ)V2,
0 < λ < 1 is possible only if V1 = V2 = V .

3. In order to compute cardinality of Extr(Vℓ) we have to know which elements
of the matrix P can be 1.

Denote Pij = (Pij,1, ..., Pij,m)t the (i, j)th column of P, where (i, j) ∈ K =
{(i, j) : 1 ≤ i ≤ j ≤ m}.
Let n0(Pij) be the number of elements of Pij which must be zero by conditions
(2.2), (5.1), (5.2).

Put for ℓ ∈ {1, ...,m} :

A ≡ Aem = {(i, j) ∈ K : i ≤ ℓ, j ∈ {i} ∪ {ℓ+ 1, ...,m}} ,

B ≡ Bem = {(i, j) ∈ K : i ≤ ℓ, j ≤ ℓ, i < j} ,

C ≡ Cem = {(i, j) ∈ K : ℓ < i ≤ j} .

Note that K = A ∪ B ∪ C. If ℓ = m then C = ∅.
It is easy to see that

n0(Pij) =

⎧⎨⎩
ℓ− 1 if (i, j) ∈ A
ℓ− 2 if (i, j) ∈ B
ℓ if (i, j) ∈ C
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By condition (2.2) each column contains unique ”1”. We have m − n0(Pij)
possibilities to write 1 in the column (i, j) ∈ K. Thus

|Extr(Vℓ)| =
∏

(i,j)∈K

(m− n0(Pij)) = (m− ℓ+ 1)|A|(m− ℓ+ 2)|B|(m− ℓ)|C|.

This with

|A| = (m− ℓ+ 1)ℓ, |B| = 1

2
(ℓ− 1)ℓ, |C| = 1

2
(m− ℓ+ 1)(m− ℓ),

would yield the formula. The proposition is proved.

For the set V of all QSOs we have V ⊂ R
m(m2−1)

2 . Note that V also is a convex,
compact set. Its extremal points also are operators with Pij,k = 0 or 1 only. It is
easy to see that

|Extr(Vm)| < |Extr(Vm−1)| < ... < |Extr(V1)| < |Extr(V)| = m
1
2
m(m+1).

For example, if m = 3 then

|Extr(V3)| = 8, |Extr(V2)| = 48, |Extr(V1)| = 216, |Extr(V)| = 729.

The set V can be written as V =
⋃m

ℓ=0 Vℓ. Here V0 is the set of ” 0-Volterra
QSO”s i.e for any k ∈ {1, ...,m} there is at least one pair (i, j) with i ̸= k and j ̸= k
such that Pij,k > 0.

As it was mentioned above: Vm is the set of all Volterra operators and Vℓ1

⋂
Vℓ2 =

∅ for any ℓ1 ̸= ℓ2 ∈ {0, ...,m}.
Thus to study dynamics of QSOs from V it is enough to study the problem for

each Vℓ , ℓ = 0, ...,m.

In general, the problem of study the behavior of V ∈ Vℓ (for fixed ℓ) is also
a difficult problem. So in the next sections we consider the problem for small
dimensions (i.e m = 2, 3) and ℓ = 1, 2.

5.2 Dynamics of l-Volterra operators

In this section we discuss the dynamics of l-Volterra operators for m = 2 and m = 3.

Case m = 2: In the case m = 2 we have only

1-Volterra operator V : S1 → S1 such that{
x′ = ax2 + 2cxy
y′ = bx2 + 2dxy + y2,

(5.11)
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where a, b, c, d ∈ [0, 1) (the case a = 1 corresponds to Volterra operator), a + b =
c + d = 1. Using x + y = 1 from (5.11) we get a dynamical system generated by
function f(x) = (a − 2c)x2 + 2cx, x ∈ [0, 1], a ∈ [0, 1), c ∈ [0, 1]. By properties of
f(x) one can prove the following

Proposition 36. 1. If c ≤ 1
2 , ∀a ∈ [0, 1) the operator (5.11) has unique fixed

point λ0 = (0, 1) and for any initial point λ0 = (x0, y0) ∈ S1 the trajectory
λ(n) goes to λ0 as n→ ∞.

2. If c > 1
2 , ∀a ∈ [0, 1) then (5.11) has two fixed points λ0 = (0, 1) and λ∗ =

( 2c−1
2c−a ,

1−a
2c−a) the point λ0 is repeller. For any initial point λ0 ∈ S1 \ {λ0} the

trajectory λ(n) tends to λ∗ as n→ ∞.

Case m = 3: In case m = 3 one has two ℓ-Volterra operators (for ℓ = 2 and
1). Note that the case ℓ = 1 i.e the 1-Volterra QSO is complicated: for example, it
is not easy to describe all fixed points of the operator. Here for simplicity we shall
study the 2-Volterra operators.

Arbitrary 2-Volterra operator (for m = 3) has the form :⎧⎨⎩
x′ = x(a1x+ 2b1y + 2c1z)
y′ = y(2b2x+ d1y + 2e1z)
z′ = z(2c2x+ 2e2y + z) + a2x

2 + 2b3xy + d2y2,
(5.12)

where
a1 = P11,1, a2 = P11,3; bi = P12,i, i = 1, 2, 3; c1 = P13,1,

c2 = P13,3; di = P22,i, i = 2, 3; ei = P23,i, i = 2, 3. (5.13)

To avoid many special cases and complicated formulas we consider the case

P11,1 = P22,2, P13,1 = P23,2, P12,1 = P12,2. (5.14)

This corresponds to a symmetric (with respect to permutations of 1 and 2) model.
Using x+ y + z = 1 and condition (5.14) the operator (5.12) can be written as{

x′ = x(2c+ (a− 2c)x+ 2(b− c)y)
y′ = y(2c+ 2(b− c)x+ (a− 2c)y),

(5.15)

where a = P11,1 ∈ [0, 1), b = P12,1 ∈ [0, 12 ], c = P13,1 ∈ [0, 1], and x, y ∈ [0, 1] such
that x+ y ≤ 1.

Remark 37. The case a = P11,1 = P22,2 = 1 corresponds to the Volterra case, so
we consider only a ̸= 1.

Theorem 38. 1. For c ≤ 1
2 the operator (5.15) has unique fixed point λ0 = (0, 0)

which is global attractive point.
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2. Sets M0 = {λ = (x, y) : x = 0}, M1 = {λ = (x, y) : y = 0}, M= = {λ =
(x, y) : x = y}, M> = {λ = (x, y) : x > y}, M< = {λ = (x, y) : x < y} are
invariant with respect to the operator (5.15).

3. For c > 1
2 , a ̸= 2b the operator (5.15) has four fixed points λ0 = (0, 0),

λ1 =
(
0, 2c−1

2c−a

)
, λ2 =

(
2c−1
2c−a , 0

)
, λ3 =

(
1−2c

a+b−4c ,
1−2c

a+2b−4c

)
. Moreover λ0 is

repeller and

λ1 and λ2 are

{
attractive, if a > 2b
saddle, if a < 2b

λ3 is

{
attractive, if a < 2b
saddle, if a > 2b.

4. For c > 1
2 , a = 2b the operator (5.15) has a repeller fixed point λ0 = (0, 0) and

continuum set of fixed points F = {λ = (x, y) : x+ y = 2c−1
2(c−b)}. The following

line

Iν = {λ = (x, y) : y = νx, x ∈ [0, 1]}

is an invariant set for any ν ∈ [0,∞). If λ0 = (x0, y0) is an initial point with
y0

x0 = ν, (x0 ̸= 0) then its trajectory λ(n) goes to λν =
(

2c−1
2(c−b)(1+ν) ,

(2c−1)ν
2(c−b)(1+ν)

)
∈

Iν
⋂
F as n → ∞, ν ∈ [0,∞), (if x0 = 0 then on invariant set M0 we have

λ(n) → λ1).

5. If a < 2b then M0 (resp. M1) is the stable manifold of the saddle point λ1
(resp. λ2). If a > 2b then M= is the stable manifold of saddle point λ3. There
is an invariant curve γ passing through λ1, λ2, λ3 which is unstable manifold
for the saddle points.

Proof. 1. Clearly λ0 = (0, 0) is a fixed point for (5.15). Note that the Jacobian
of (5.15) at (0,0) has the form

J =

(
2c 0

0 2c

)
,

so λ0 is an attractive if c < 1
2 and non-hyperbolic if c = 1

2 .

Now we shall prove (for c ≤ 1
2) its global attractiveness. From the first equation

of (5.15) we have

x′ = x(ax+ 2by + 2cz) ≤ qx, (5.16)

where q = max{a, 2b, 2c}. By definition of the operator (5.15) and condition
c ≤ 1

2 we have q ≤ 1. Consider two cases:
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Case q < 1. In this case from (5.16) we get xn+1 ≤ qxn ≤ qnx0, where xn
is the first coordinate of the trajectory λ(n) = V n(l0) = (xn, yn) with initial
point λ0 = (x0, y0). Thus xn → 0 as n→ ∞. By symmetry of x and y we get
yn → 0 as n→ ∞.

Case q = 1. In this case we get xn+1 ≤ xn, hence

lim
n→∞

xn = α ≥ 0 exists.

Similarly,
lim
n→∞

yn = β also exists.

Thus the point (α, β) must be a fixed point for the operator (5.15). Since
λ0 = (0, 0) is unique fixed point for c ≤ 1

2 (we shall prove uniqueness in section
(iii) of this proof), we get (α, β) = (0, 0).

Remark 39. The argument used in the case q = 1 also works for the case
q < 1. But in the case q < 1 we proved that the rate of convergence to λ0 is
faster than qn.

2. Invariance of M0,M=,M1 are straightforward. Invariance of M<, M> follow
from the following equality

x′ − y′ = (x− y)(2cz + a(x+ y)), where z = 1− x− y ≥ 0

which can be obtained from (5.15).

3. Clearly λ0 = (0, 0) is a fixed point independently on parameters a, b, c. To get
other fixed points consider several cases:

Case x = 0, y ̸= 0: From the second equation one gets y = 2c−1
2c−a which is

between 0 and 1 iff c > 1
2 . Thus λ1 =

(
0, 2c−1

2c−a

)
is a fixed point.

Case x ̸= 0, y = 0 is similar to the previous case and gives λ2 =
(
2c−1
2c−a , 0

)
.

Case x ̸= 0, y ̸= 0: From (5.15) one gets a system of linear equations, which

has unique solution λ4 =
(

2c−1
4c−a−2b ,

2c−1
4c−a−2b

)
(for c > 1

2 , a ̸= 2b). Note that if

c ≤ 1
2 then there is only λ0.

To check the type of fixed points consider Jacobian at λ = (x, y)

J(λ) = J(x, y) =

(
2c+ 2(a− 2c)x+ 2(b− c)y 2(b− c)x

2(b− c)y 2c+ 2(a− 2c)y + 2(b− c)x

)
.

(5.17)
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It is easy to see that the eigenvalues µ1(λ), µ2(λ) of (5.17) at fixed points are

µ1(λ2) = µ2(λ1) = µ2(λ3) = 2(1− c) < 1,

|µ1(λ1)| = |µ2(λ2)| =
⏐⏐⏐⏐2c(1− a) + 2b(c− 1)

2c− a

⏐⏐⏐⏐ = { < 1 if a > 2b
> 1 if a < 2b

|µ1(λ3)| =
⏐⏐⏐⏐4c(b− 1) + 2a(c− 1)

a+ 2b− 4c

⏐⏐⏐⏐ = { < 1 if a < 2b
> 1 if a > 2b

This completes the proof of (iii).

4. For a = 2b the operator (5.15) has the following form{
x′ = x(2c+ 2(b− c)(x+ y))
y′ = y(2c+ 2(b− c)(x+ y)).

(5.18)

It is easy to see that λ0 = (0, 0) and any point of F =
{
λ = (x, y) : x+ y = 2c−1

2(c−b)

}
is fixed point if c > 1

2 . Invariance of Iν follows easily from the following

relation y′

x′ = y
x = ν. To check λ(n) → λν for λ0 ∈ Iν , consider restriction

of operator (5.19) shown in Figures 1 − 4. on Iν which is x′ = ϕ(x) =
x
(
2c + 2(b − c)(1 + ν)x

)
. The function ϕ has two fixed points x = 0 and

x = 1−2c
2(b−c)(1+ν) . The point x = 0 is repeller and x is attractive independently

on ν since ϕ′(x) = 2(1 − c) < 1 for c > 1
2 . One can see that x∗ ≥ x where

x∗ is the critical point i.e ϕ′(x∗) = 0. Now we shall take arbitrary x0 ∈ (0, 1]
and prove that xn = ϕ(xn−1), n ≥ 1 converges to x as n → ∞. Consider the
following partition [0, 1] = {0}∪ (0, x)∪{x}∪ (x, x∗]∪ (x∗, 1]. For x ∈ (0, x) we
have x < ϕ(x) < x, consequently x0 < xn < xn+1 ≤ x i.e xn converges and its
limit is a fixed point of ϕ, since ϕ has unique fixed point x in (0, 1] we conclude
that the limit is x. For x ∈ (x, x∗] we have x > ϕ(x) > x, consequently
x0 > xn > xn+1 ≥ x i.e xn converges and its limit is x. If x0 ∈ (x∗, 1] then
it is easy to see that x1 = ϕ(x0) ∈ [0, x∗) so by above mentioned reasons we
again have xn → x. Hence x is the global attractive point on Iν .

5. The existence of γ follows from Theorem 5.4. Other statements of 5 are
straightforward. The theorem is proved.

Note that 2-Volterra operator corresponding to (5.15) has the following form⎧⎨⎩
x′ = x(ax+ 2by + 2cz)
y′ = y(2bx+ ay + 2cz)
z′ = 1− 2c(x+ y)− (a− 2c)(x2 + y2)− 4(b− c)xy

(5.19)

Using Theorem 5.2 we get phase portraits of the trajectories of (5.19) shown in
Figures 1− 4.
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Remark 40. One of the main goal by introducing the notion of ℓ-Volterra operators
was to give an example of QSO which has more rich dynamics than Volterra QSO.
It is well known [2] that for Volterra operators if aij ̸= 0 (i ̸= j) then for any
non-fixed initial point λ0 the set ω(λ0) of all limit points of the trajectory {λ(n)} is
subset of the boundary of simplex. But in our case Fig.3 and 4 show that the limit
set is not subset of the boundary of S2.

6 Separable Quadratic Stochastic Operators (SQSOs)

Separable Quadratic Stochastic Operators (SQSOs) were introduced in 2009 by U.
A. Rozikov and S. Nazir. From the definition of Quadratic Stochastic Operator
(QSO), we know that

x
′
k =

m∑
i,j=1

pij,kxixj , pij,k = pji,k, 0 ≤ pij,k ≤ 1,
m∑
k=1

pij,k = 1.

U. A. Rozikov and S. Nazir supposed that if pij,k = aikbjk such that

0 ≤ aikbjk ≤ 1,
m∑
k=1

aikbjk = 1, ∀ i, j ∈ {1, . . . , m}. So

x
′
k =

m∑
i,j=1

aikbjkxixj ∀ k ∈ {1, . . . , m}

⇒ x
′
k =

m∑
i=1

aikxi

m∑
j=1

bjkxj ,

where 0 ≤ aikbjk ≤ 1,
m∑
k=1

aikbjk = 1, ∀ i, j ∈ {1, . . . , m}.

Definition 41. The Separable Quadratic Stochastic Operator (SQSO) is defined as

x
′
k =

m∑
i=1

aikxi

m∑
j=1

bjkxj , (6.1)

where 0 ≤ aikbjk ≤ 1,
m∑
k=1

aikbjk = 1, ∀ i, j ∈ {1, . . . , m}.

The Quadratic Stochastic Operator defined in (6.1) is called Separable Quadratic
Stochastic Operator (SQSO).

From the conditions pij,k ≥ 0 and
m∑
k=1

pij,k = 1 ∀ i, j it follows the condition on

matrices A and B that aikbjk ≥ 0,

ABT = 1, (6.2)
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where BT is the transpose of matrix B and 1 is a matrix with all entries 1. Let a(i)

denote the ith row of matrix A and b(j) denote the jth row of matrix B or the jth
column of BT . Then from (6.2), we get

a(i)b(j) = 1, ∀ i, j ∈ {1, 2, . . . , m}.

For a fixed j, (6.2) implies that

Ab(j)
T
= (1, 1, . . . , 1)T , (6.3)

where (1, 1, . . . , 1)T is a column vector. Now if determinant of matrix A is non-zero
i.e. det(A) ̸= 0, then (6.3) implies that

b(j)
T
= A−1(1, 1, . . . , 1)T , ∀ j ∈ {1, 2, . . . , m}. (6.4)

From (6.4) we will get the identical rows of matrix B. It means that if det(A) ̸= 0,
then the rows of matrix B will be the same. Similarly if det(B) ̸= 0, then the rows
of matrix A will be the same. So here, we will discuss three cases.

Case-1 : If det(A) = det(B) = 0, then both A and B have identical rows.
Case-2 : If det(A) ̸= 0, then the matrix B has identical rows. Similarly if det(B) ̸= 0,
then the matrix A has identical rows.
Case-3 : If det(A) = det(B) = 0 but both A and B have non-identical rows.

Now if we want to find a Separable Quadratic Stochastic Operator (SQSO) for
case-1, then consider

x
′
k =

m∑
i=1

aikxi

m∑
j=1

bjkxj

= (a1kx1 + a2kx2 + · · ·+ amkxm)(b1kx1 + b2kx2 + · · ·+ bmkxm)

= (a1kx1 + a1kx2 + · · ·+ a1kxm)(b1kx1 + b1kx2 + · · ·+ b1kxm)

= a1kb1k(x1 + x2 + · · ·+ xm)(x1 + x2 + · · ·+ xm)

= a1kb1k(1)(1)

x
′
k = a1kb1k.

So V (x) = (x
′
) = (x

′
1, x

′
2, . . . , x

′
m) = (a11b11, a12b12, . . . , a1mb1m) i.e. in case-1,

we have a constant Separable Quadratic Stochastic Operator (SQSO). Similarly in
case-2 if B has identical rows, then we have a linear Separable Quadratic Stochastic
Operator (SQSO) i.e.

x
′
k = b1k(a1kx1 + a2kx2 + · · ·+ amkxm).

Example 42. For the system E = {1, 2}, find the corresponding Separable Quadratic
Stochastic Operator (SQSO).
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Solution: Given that E = {1, 2} then the corresponding SQSO is given by
V (x1, x2) = (x

′
1, x

′
2). Now by definition, we can find x

′
1 and x

′
2 as:

x
′
1 =

2∑
i,j=1

(ai1bj1)xixj

=
2∑

i=1

ai1xi

2∑
j=1

bj1xj

= (a11x1 + a21x2)(b11x1 + b21x2)

= a11b11x
2
1 + a11b21x1x2 + a21b11x1x2 + a21b21x

2
2.

Similarly

x
′
2 =

2∑
i,j=1

(ai2bj2xixj)

=

2∑
i=1

ai2xi

2∑
j=1

bj2xj

= (a12x1 + a22x2)(b12x1 + b22x2)

= a12b12x
2
1 + a12b22x1x2 + a22b12x1x2 + a22b22x

2
2.

So

V (x1) = a11b11x
2
1 + a11b21x1x2 + a21b11x1x2 + a21b21x

2
2,

and

V (x2) = a12b12x
2
1 + a12b22x1x2 + a22b12x1x2 + a22b22x

2
2.

Example 43. For the system E = {1, 2, 3}, find the corresponding Separable
Quadratic Stochastic Operator (SQSO).

Solution: Given that E = {1, 2, 3} then the corresponding SQSO is given by
V (x1, x2) = (x

′
1, x

′
2). Now by definition, we can find x

′
1, x

′
2 and x

′
3 as:

x
′
1 =

3∑
i,j=1

(ai1bj1)xixj

=

3∑
i=1

ai1xi

3∑
j=1

bj1xj

= (a11x1 + a21x2 + a31x3)(b11x1 + b21x2 + b31x3)

x
′
1 = a11b11x

2
1 + a11b21x1x2 + a11b31x1x3 + a21b11x1x2

+ a21b21x
2
2 + a21b31x2x3 + a31b11x1x3 + a31b21x2x3 + a31b31x

2
3.
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Similarly

x
′
2 =

3∑
i,j=1

(ai2bj2)xixj

=
3∑

i=1

ai2xi

3∑
j=1

bj2xj

= (a12x1 + a22x2 + a32x3)(b12x1 + b22x2 + b32x3)

x
′
2 = a12b12x

2
1 + a12b22x1x2 + a12b32x1x3 + a22b12x1x2

+ a22b22x
2
2 + a22b32x2x3 + a32b12x1x3 + a32b22x2x3 + a32b32x

2
3,

and

x
′
3 =

3∑
i,j=1

(ai3bj3)xixj

=
3∑

i=1

ai3xi

3∑
j=1

bj3xj

= (a13x1 + a23x2 + a33x3)(b13x1 + b23x2 + b33x3)

x
′
3 = a13b13x

2
1 + a13b23x1x2 + a13b33x1x3 + a23b13x1x2

+ a23b23x
2
2 + a23b33x2x3 + a33b13x1x3 + a33b23x2x3 + a33b33x

2
3.

So

V (x1) = x
′
1 = a11b11x

2
1 + a11b21x1x2 + a11b31x1x3 + a21b11x1x2

+ a21b21x
2
2 + a21b31x2x3 + a31b11x1x3 + a31b21x2x3 + a31b31x

2
3,

V (x2) = x
′
2 = a12b12x

2
1 + a12b22x1x2 + a12b32x1x3 + a22b12x1x2

+ a22b22x
2
2 + a22b32x2x3 + a32b12x1x3 + a32b22x2x3 + a32b32x

2
3,

and

V (x3) = x
′
3 = a13b13x

2
1 + a13b23x1x2 + a13b33x1x3 + a23b13x1x2

+ a23b23x
2
2 + a23b33x2x3 + a33b13x1x3 + a33b23x2x3 + a33b33x

2
3.

6.1 Lyapunov Function of SQSOs

In this Section we will discuss about the Lyapunov function of Separable Quadratic
Stochastic Operators (SQSOs). By using this Lyapunov function we will be able
to describe the upper estimates for the set of limit points of Separable Quadratic
Stochastic Operators (SQSOs).
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Theorem 44. [11], Let V is Separable Quadratic Stochastic Operator (SQSO), then

the function ϕc : S
m−1 → R defined by ϕc(x) =

m∑
k=1

ckxk is a Lyapunov function if

c = (c1, c2, . . . , cm)T satisfies ci ≥ 0 ∀ i ∈ {1, . . . , m} and either Ac ≤ Ic or Bc ≤
Ic, where A = (aij)

m
i,j=1, B = (bij)

m
i,j=1, 0 ≤ aij , bij ≤ 1.

Proof. Since we know that

ϕc(x
′
) =

m∑
k=1

ckx
′
k

=
m∑
k=1

ck

(
m∑
i=1

aikxi

)⎛⎝ m∑
j=1

bjkxj

⎞⎠
=

m∑
k=1

ck

m∑
i,j=1

(aikbjk)xixj

≤
m∑
k=1

ck

⎛⎝ m∑
i=1

aikxi

m∑
j=1

xj

⎞⎠
=

m∑
i=1

(
xi

m∑
k=1

ckaik

)

=
m∑
i=1

(
m∑
k=1

ckaik

)
xi

≤
m∑
i=1

cixi

= ϕc(x)

⇒ ϕc(x
′
) ≤ ϕc(x).

Continuing in this way, we will get

ϕc(x
n+1) ≤ ϕc(x

n),

which is a non-increasing monotonic and bounded sequence. So it means that ϕc(x)
is a Lyapunov function.

6.2 Properties of z(A)

In this Section we will discuss some properties of the particular set z(A) = {B =
(bjk)

m
j,k=1 : 0 ≤ aikbjk ≤ 1, ABT = 1}.
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Theorem 45. [14], Let A = (aik)
m
i,k=1 is a fixed matrix, consider the set z(A) =

{B = (bjk)
m
j,k=1 : 0 ≤ aikbjk ≤ 1, ABT = 1}. The set z(A) has the following

properties
1. z(A) is convex.
2. The extremal points of z(A) are those matrices B whose entries are either zeroes
or ones.
3. If z(A) is non-empty then at least one of the entry of each row of matrix A must
be non-zero.
4. z(A) is not closed with respect to addition. If B = (bjk)

m
j,k=1 and C = (blk)

m
l,k=1

are contained in z(A) then BC is also contained in z(A) if

m∑
k=1

bjk = 1 and
m∑
r=1

aikbjrcrk ≥ 0, ∀ i, j, k ∈ {1, . . . , m}.

5. B ∈ z(A) ⇔ A ∈ z(B).

Proof. 1. Let X, Y ∈ z(A) such that X = (b
′
jk)

m
j,k=1, Y = (b

′′
jk)

m
j,k=1. Let α ∈ [0, 1]

and consider B = (bjk)
m
j,k=1 such that

α(b
′
jk) + (1− α)(b

′′
jk) = bjk, (6.5)

multiplying both sides of (6.5) by aik, we get

αaikb
′
jk + (1− α)aikb

′′
jk = aikbjk.

By definition we know that 0 ≤ aikb
′
jk ≤ 1, 0 ≤ aikb

′′
jk ≤ 1, thus 0 ≤ aikbjk ≤ 1

holds. Let a(i) = (ai1, ai2, . . . , aim) be the ith row of A, b(j)
′
= (b

′
j1, b

′
j2, . . . , b

′
jm)

be the jth row of X and b(j)
′′

= (b
′′
j1, b

′′
j2, . . . , b

′′
jm) be the jth row of Y. Then

a(i)b(j)
′
= 1, ∀ i, j and a(i)b(j)

′′
= 1, ∀ i, j. Let b(j) be the jth row of B, then (6.5)

implies that

αb(j)
′
+ (1− α)b(j)

′′
= b(j), ∀ j. (6.6)

Again by multiplying both sides of (6.6) by a(i), we get

a(i)b(j) = αa(i)b(j)
′
+ (1− α)a(i)b(j)

′′

= α(1) + (1− α)(1)

= α+ 1− α

= 1

⇒ a(i)b(j) = 1.
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Thus B = (bjk)
m
j,k=1 ∈ z(A). Hence z(A) is a convex set.

2. Let 0 < α < 1 and B ∈ z(A) such that B = (bjk)
m
j,k=1 with bjk = α for some

j = j0, k = k0. Consider two matrices B1 = (b
(1)
jk )

m
j,k=1 and B2 = (b

(2)
jk )

m
j,k=1with

b
(1)
jk =

{
bjk, if (j, k) ̸= (j0, k0)

1, if (j, k) = (j0, k0).

b
(2)
jk =

{
bjk, if (j, k) ̸= (j0, k0)

0, if (j, k) = (j0, k0).

If (j, k) ̸= (j0, k0), then

αb
(1)
jk + (1− α)b

(2)
jk = αbjk + (1− α)bjk

⇒ αb
(1)
jk + (1− α)b

(2)
jk = bjk.

If (j, k) = (j0, k0), then

αb
(1)
jk + (1− α)b

(2)
jk = α+ (1− α)(0)

⇒ αb
(1)
jk + (1− α)b

(2)
jk = α

⇒ αb
(1)
jk + (1− α)b

(2)
jk = bjk.

As α ∈ (0, 1), hence B = αB1+(1−α)B2 i.e. B is not an extremal point which is a
contradiction. Hence the extremal points of z(A) are those matrices whose entries
are either zeros or ones.
3. If all the entries of matrix A are zero, then the condition ABT = 1 does not hold.
So if the set z(A) is non empty then at least one of the entry of each row of matrix
A must be non-zero such that the condition ABT = 1 holds.
4. Let X = (b

(1)
jk )

m
j,k=1, Y = (b

(2)
jk )

m
j,k=1 ∈ z(A) such that AXT = 1 and BY T = 1.

Then

A(X + Y )T = A(XT + Y T )

= AXT +AY T

= 1+ 1

⇒ A(X + Y )T ̸= 1.

So X + Y /∈ z(A) i.e. z(A) is not closed with respect to addition.
Now

A(XY )T = A(Y TXT )

= (AY T )XT

= 1.XT .
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Now 1XT = 1 implies that
m∑
k=1

(b
(1)
jk ) = 1, ∀ j ∈ {1, 2, . . . , m}. Also we know that

each entry (XY )j,k of product matrix XY is given by (XY )j,k =
m∑
r=1

b
(1)
jr b

(2)
rk . Thus

XY ∈ z(A) if the following properties are satisfied:

m∑
k=1

(b
(1)
jk ) = 1 and

m∑
r=1

aikb
(1)
jr b

(2)
rk ≥ 0, ∀ i, j, k ∈ {1, 2, . . . , m}.

5. Let B ∈ z(A), then

ABT = 1

⇔ (ABT )
T

= 1T

⇔ (BT )
T
AT = 1T

⇔ BAT = 1

⇔ A ∈ z(B).

So B ∈ z(A) if and only if A ∈ z(B).

6.3 Skew-Symmetric Matrix and SQSO

In this Section we will discuss about the realtion between Skew-Symmetric Matrix
and Separable Quadratic Stochastic Operator (SQSO).

Proposition 46. [14], If A = (aik)
3
i,k=1 is a skew symmetric matrix with aii = 0.

Then the solution of the system

A(b(j))
T
= (1, 1, 1); j = 1, 2, 3

exists if and only if a23 = a13 − a12. Moreover, the solution is

(b(j))
T
=

(
b1j ,

1 + a13b1j
a12 − a13

,
1 + a12b1j
a13 − a12

)
∀ j = 1, 2, 3,

where b(j) is a row of matrix B = (bjk)
3
j,k=1. In each case show that

A =

⎛⎝ 0 a12 a13
−a12 0 a13 − a12
−a13 −(a13 − a12) 0

⎞⎠ .

Proof. Since

A =

⎛⎝ 0 a12 a13
−a12 0 a23
−a13 −a23 0

⎞⎠ , B =

⎛⎝ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞⎠ .
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Let a12 = a, a13 = b, a23 = c, b11 = α, b12 = β, b13 = γ, b21 = ξ, b22 = ζ, b23 =
η, b31 = x, b32 = y and b33 = z. So the above matrices A, B will become

A =

⎛⎝ 0 a b
−a 0 c
−b −c 0

⎞⎠ , B =

⎛⎝ α β γ
ξ ζ η
x y z

⎞⎠ .

And we know that

ABT = 1

⇒

⎛⎝ 0 a b
−a 0 c
−b −c 0

⎞⎠⎛⎝ α ξ x
β ζ y
γ η z

⎞⎠ =

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ ,

by multiplying and comparing, we get

aβ + bγ = 1, −aα+ cγ = 1, −bα− cβ = 1 (6.7)

aξ + bη = 1, −aξ + cη = 1, −bξ − cζ = 1 (6.8)

ay + bz = 1, −ax+ cz = 1, −bx− cy = 1. (6.9)

From (6.7), we get

β =
1− bγ

a
, α =

cγ − 1

a
, β =

1 + bα

−c
. (6.10)

From (6.10), it is clear that

1− bγ

a
=

1 + bα

−c

⇒ 1− bγ

a
=

1 + b(cγ−1)
a

−c

⇒ −c(1− bγ) = a

(
1 +

b(cγ − 1)

a

)
⇒ −c+ cbγ = a+ bcγ − b

⇒ −c = a− b

⇒ c = b− a

⇒ a23 = a13 − a12.

Now from (6.8), we get

ζ =
1− bη

a
, ξ =

cη − 1

a
, ζ =

1 + bξ

−c
. (6.11)
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And it is clear from (6.11) that

1− bη

a
=

1 + bξ

−c

⇒ 1− bη

a
=

1 + b(cη−1)
a

−c
⇒ −c(1− bη) = a+ b(cη − 1)

⇒ −c+ cbη = a+ bcη − b

⇒ −c = a− b

⇒ c = b− a

⇒ a23 = a13 − a12.

Now from (6.9), we get

y =
1− bz

a
, x =

cz − 1

a
, y =

1 + bx

−c
. (6.12)

And again it is clear from (6.12) that

1− bz

a
=

1 + bx

−c

⇒ 1− bz

a
=

1 + b(cz−1)
a

−c
⇒ −c(1− bz) = a+ b(cz − 1)

⇒ −c+ cbz = a+ bcz − b

⇒ −c = a− b

⇒ c = b− a

⇒ a23 = a13 − a12.

So in each and every case

a23 = a13 − a12

i.e.

A =

⎛⎝ 0 a12 a13
−a12 0 a13 − a12
−a13 −(a13 − a12) 0

⎞⎠ .

Now as given that

A(b(j))
T
=

⎛⎝ 1
1
1

⎞⎠ , j = 1, 2, 3, (6.13)
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where b(j) is a row of matrix B = (bjk)
3
j,k=1. Now for j = 1, (6.13) implies that⎛⎝ 0 a12 a13

−a12 0 a23
−a13 −a23 0

⎞⎠⎛⎝ b11
b12
b13

⎞⎠ =

⎛⎝ 1
1
1

⎞⎠ . (6.14)

So (6.14) implies that

a12b12 + a13b13 = 1 (6.15)

−a12b11 + (a13 − a12)b13 = 1 (6.16)

−a13b11 + (a12 − a13)b12 = 1. (6.17)

Now from (6.16) and (6.17), we get

b12 =
1 + a13b11
a12 − a13

, b13 =
1 + a12b11
a13 − a12

,

by putting the values of b12 and b13 in (6.15), we get

b11 = b11.

Hence for j = 1, the solution is

(b(1))
T
=

(
b11,

1 + a13b11
a12 − a13

,
1 + a12b11
a13 − a12

)
.

In the similar way, for j = 2 and j = 3, the solution is

(b(2))
T
=

(
b12,

1 + a13b12
a12 − a13

,
1 + a12b12
a13 − a12

)
, for j = 2,

(b(3))
T
=

(
b13,

1 + a13b13
a12 − a13

,
1 + a12b13
a13 − a12

)
, for j = 3.

So in general, the solution is

(b(j))
T
=

(
b1j ,

1 + a13b1j
a12 − a13

,
1 + a12b1j
a13 − a12

)
∀ j = 1, 2, 3.

This completes the proof.

Proposition 47. [14], If the matrix A is same as in Proposition 6.11 then show
that Separable Quadratic Stochastic Operator (SQSO) is a linear operator.

Proof. From Proposition 6.11 we have a result

(b(j))
T
=

(
b1j ,

1 + a13b1j
a12 − a13

,
1 + a12b1j
a13 − a12

)
∀ j = 1, 2, 3.

By the definition of Separable Quadratic Stochastic Operator (SQSO), we know that
0 ≤ aikbjk ≤ 1, ∀ i, j, k ∈ {1, . . . , m}. So we will consider the following cases.

******************************************************************************
Surveys in Mathematics and its Applications 12 (2017), 117 – 164

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma


Quadratic Stochastic Operators (QSOs) 159

Case-1:-

If a12 > 0, a13 > 0 such that a13 < a12, then

0 ≤ a13b13

⇒ 0 ≤ a13

(
1 + a12b11
a13 − a12

)
⇒ b11 ≤ −1

a12
.

Similarly from a13b23 ≥ 0 and a13b33 ≥ 0, we will get b21 ≤ −1
a12

and b31 ≤ −1
a12

respectively. So we have a result

b11 ≤
−1

a12
, b21 ≤

−1

a12
, b31 ≤

−1

a12
. (6.18)

In a similar way from a23b13 ≥ 0, a23b23 ≥ 0 and a23b33 ≥ 0, we have a result

b11 ≥
−1

a12
, b21 ≥

−1

a12
, b31 ≥

−1

a12
. (6.19)

So from (6.18) and (6.19), we have a result

b11 = b21 = b31 =
−1

a12
.

Hence

(b(1))
T
=

(
−1

a12
,

1

a12
, 0

)
.

Also (b(1))
T
= (b(2))

T
= (b(3))

T
. Hence the matrix B has identical rows. So in this

case, Separable Quadratic Stochastic Operator (SQSO) is a linear operator.

Case-2:-

We can easily check that for a12 > 0 and a13 > 0 with a13 > a12. We get

(b(1))
T
= (b(2))

T
= (b(3))

T
=

(
−1

a13
, 0,

1

a13

)
.

So again in this case Separable Quadratic Stochastic Operator (SQSO) is a linear
operator. Similarly all the remaining cases will give the same result i.e. matrix B has
identical rows. So in each and every case Separable Quadratic Stochastic Operator
(SQSO) is a linear operator.
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Remark 48. The general form of m×m skew symmetric matrix A with the same
conditions as in Proposition 6.11 is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a2 a3 a4 · · · · · · am
−a2 0 a3 − a2 a4 − a2 · · · · · · am − a2
−a3 a2 − a3 0 a4 − a3 · · · · · · am − a3
−a4 a2 − a4 a3 − a4 0 · · · · · · am − a4
...

...
...

... · · · · · ·
...

...
...

...
... · · · · · ·

...
−am a2 − am a3 − am a4 − am · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.20)

Theorem 49. Let A, B be two matrices satisfying Pij,k = aikbjk. If A is a skew
symmetric matrix which has the form (6.20). Then B is a matrix with identical rows.
Moreover, each row of B contains at most two non zero elements, one of which is
positive and second one is negative.

Proof. Since we know that

aikbjk ≥ 0, ∀ i, j, k ∈ E. (6.21)

This implies that
akibji ≥ 0, k ̸= i ∀ i, j, k ∈ E. (6.22)

(6.21) and (6.22) implies that

aikakibjkbji ≥ 0, ∀ i, j, k ∈ E, (6.23)

but aikaki < 0, i ̸= k, so from (6.23) we get

bjkbji ≤ 0, ∀ i, j, k ∈ E. (6.24)

It follows from (6.24) that for a fixed j, there exist k0, i0 such that bjk0 ≥ 0, bji0 <
0 and bjp = 0 for p ̸= i0, k0. Also if aik < 0 ∀ i, i ̸= k then bjk ≤ 0 ∀ j ̸= k.
Moreover if aik > 0 ∀ i, i ̸= k then bjk ≥ 0 ∀ j ̸= k. If there exist i0, i

′
such that

ai0k > 0 and ai′k < 0 then bjk = 0 ∀ j ∈ E.
Let us suppose that

ai0k = min
2≤i≤m

{ai}, ai′k = max
2≤i≤m

{ai}.

Then column i0 of A contains all non-positive numbers and column i
′
of A contains

all non-negative elements. By above mentioned property B has the following form:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 α1 0 · · · 0 β1 0 · · · 0
0 0 · · · 0 α2 0 · · · 0 β2 0 · · · 0
0 0 · · · 0 α3 0 · · · 0 β3 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 αm 0 · · · 0 βm 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where for column (α1, α2, ..., αm) all αi ≤ 0 for any i ∈ E and for column
(β1, β2, ..., βm) all βi ≥ 0 for any i ∈ E. Thus B is a matrix with identical rows.
From condition ABT = 1 (where A is given in (6.20)) we must have the following
system:

ai0αi + ai′βi = 1, for any i ∈ E,

(ai0 − aj)αi + (ai′ − aj)βi = 1, for any i, j ∈ E.

From above system it is easy to obtained that aj(αi + βi) = 0 i.e. αi = −βi, from
ai0αi+ai′βi = 1, we have αi(ai0 −ai′ ) = 1. Hence αi =

1
ai0−a

i
′
and βi =

1
a
i
′−ai0

.

Lemma 50. Any skew symmetric matrix A with aij ̸= 0 for i ̸= j has at most one
positive and at most one negative column. Moreover one of the following holds
(i) The matrix A has no positive and no negative column.
(ii) The matrix A has a positive column but has no negative one.
(iii) The matrix A has a negative column but has no positive column.
(iv) The matrix A has one negative column and one positive column.

Theorem 51. If for a skew symmetric matrix A one of the conditions (i) to (iii)

of Lemma 6.18. holds. Then there is no matrix B satisfying Ab(j)
T
= (1, 1, . . . , 1).

In case (iv) of Lemma 6.18. there is a solution B satisfying Ab(j)
T
= (1, 1, . . . , 1)

if and only if the positive column a(k0) and the negative column a(k1) of the matrix
A satisfy the condition

aik1 − aik0 = ak0k1 , ∀ i ∈ E.

Moreover, B has all identical rows.

Proof. As we know that the condition aikbjk ≥ 0 implies that if column a(k) of A
has a positive element as well as a negative element then b(k) column of B contains
only zeros. Thus condition (i) of Lemma 6.18. gives B = 0, which does not satisfy
the properties of Separable Quadratic Stochastic Operator (SQSO). In condition
(ii) of Lemma 6.18. B has unique non-zero column which is positive too. If a(k)

is a positive column for A then b(k) is positive for B and ABT = 1 implies that∑
p
aipbjp = 1, ∀ i, j ∈ E i.e. aikbjk = 1 ∀ i, j ∈ E. For i = k we have 0bjk = 1

which is not possible, thus in this case there exists no B. Condition (iii) of Lemma
6.18. is also similar to condition (ii) of Lemma 6.18. i.e. also here, there exists no B.
Now let us consider Condition (iv) of Lemma 6.18. Assume that a(k0) is positive and
a(k1) is negative column of A. Then b(k0) and b(k1) are positive and negative columns
in B respectively, all other columns of B are zeros. Also we have

aik0bjk0 + aik1bjk1 = 1, ∀ i, j ∈ E, (6.25)

which for i = k0 gives that ak0k1bjk1 = 1 ⇒ bjk1 = 1
ak0k1

∀ j and for i = k1 gives

that ak1k0bjk0 = 1 ⇒ bjk0 = − 1
ak0k1

∀ j. So from (6.25) we get

ak0i + aik1 = ak0k1 . (6.26)
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From (6.26), A has the form⎛⎜⎜⎜⎝
a11 · · · a1k0−1 a1k0 a1k0+1 · · · (ak0k1 + a1k0) · · · a1m
a21 · · · a2k0−1 a2k0 a1k0+1 · · · (ak0k1 + a2k0) · · · a2m
...

...
...

...
...

...
...

...
...

am1 · · · amK0−1 amk0 a1k0+1 · · · (ak0k1 + amk0) · · · amm

⎞⎟⎟⎟⎠
where all the elements of column (a1k0 , a2k0 , . . . , amk0) are positive and all the
elements of column (ak0k1 + a1k0 , ak0k1 + a2k0 , . . . , ak0k1 + amk0) are negative.
Consequently, rows of matrix B are identical and are equal to(

0, . . . , 0,
−1

ak0k1
, 0, . . . , 0,

1

ak0k1
, 0, . . . , 0

)
.

6.4 Limit Points of SQSO

In this Section we will discuss about the limit points of Separable Quadratic Stochastic
Operators (SQSOs).

If the Separable Quadratic Stochastic Operator (SQSO) is constant, then the set
of limit points for all x0 ∈ Sm−1 will be

ω(x0) = {(b11a11, . . . , b1ma1m)}.

Now if Separable Quadratic Stochastic Operator (SQSO) is a linear operator, then
the set of limit points(ω(x0)) becomes dependent on x0 and on the properties of
matrix A. For ergodic case, the set ω(x0) is a singleton set but for periodic case, the
set ω(x0) can be a finite set. Let us denote

Λ = {d ∈ Rm : 0 ≤ di,
m∑
i=1

di > 0, Ac ≤ Ic or Bc ≤ Ic}.

We know by Theorem 6.5 that ψd is a Lyapunov function for any d ∈ Λ i.e. by
definition of Lyapunov functions, for any initial point x0 ∈ Sm−1, we get

limn→∞ψd(x
n) = λd(x

0), d ∈ Λ.

Thus we can say that ω(x0) ⊆ {x ∈ Sm−1 : ψd(x
n) = λd(x

0)} for any d ∈ Λ and this
implies that

ω(x0) ⊆
⋂
d∈Λ

{x ∈ Sm−1 : ψd(x) = λd(x
0)}. (6.27)

Let us suppose that there are m distinct vectors d(1), . . . , d(m) in Λ such that the
determinant of Λ is non-zero and Λ is a m×m matrix with rows d(j), j = 1, . . . , m .
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Then the system of equations ψd(j)(x) = λd(j)(x
0), j = 1, . . . , m has a unique

solution x = x and from (6.27), we have ω(x0) = {x}. Let us suppose that

G =
⋂
d∈Λ

{x ∈ Sm−1 : ψd(x) = λd(x
0)}.

If we have no collection of m distinct vectors d(1), . . . , d(m) in Λ with determinant
of Λ non-zero, then G is an uncountable set. Keep in mind that G is always a non
empty set, since ω(x0) is a non-empty set because {x(n)}∞n=0 ⊆ S(m−1) and as we
know that S(m−1) is a compact set.

References

[1] R. L. Devaney, An introduction to chaotic dynamical system, Westview Press,
(2003). MR1979140.

[2] R. N. Ganikhodzhaev, Map of Fixed Points and Lyapunov Functions for a Class
Of Discrete Dynamical Systems, Math. Notes, Vol. 56, No.5, (1994), 40–49.
MR1330390. Zbl 0838.93062.

[3] R. N. Ganikhodzhaev, Family of Quadratic Stochastic Operators that act in S2,
Dokl. Akad. Nauk UzSSR., No. 1, (1989), 3–5. MR1000448.

[4] R. N. Ganikhodzhaev, Quadratic Stochastic Operators, Lyapunov Functions And
Tournaments, Russian Acad. Sci. Sb. Math., Vol. 76, No. 2, (1993). MR1187251.
Zbl 0766.47037.

[5] R. N. Ganikhodzhaev and A. I. Eshniyazov, Bistochastic quadratic operators,
Uzbek. Mat. Zh., No.3, (2004), 29–34. MR2173944.

[6] R. N. Ganikhodzhaev, F. Mukhamedov and U. A. Rozikov, Quadratic Stochastic
Operators And Processes: Results And Open Problems, Infinite Dimensional
Analysis, Quantum Probability and Related Topics, Vol. 14, No. 2, (2011), 279–
335. MR2813492. Zbl 1242.60067.

[7] N. N. Ganikhodjaev and R. T. Mukhitdinov, On a class of non-Volterra quadratic
operators, Uzbek Math. Jour., No. 3-4, (2003), 65–69. MR2178882.

[8] N. N. Ganikhodjaev and U. A. Rozikov , On Quadratic Stochastic Operators
Generated By Gibbs distributions, Regular and Chaotic Dynamics, Vol. 11,
No.4 (2006), 467–473. MR2292205. Zbl 1164.37309.

[9] U. U. Jamilov, Linear Lyapunov Functions For Volterra Quadratic Stochastic
Operators, TWMS Jour. Pure Appl. Math., Vol. 3, No. 1, (2012), 28–34.
MR2962052. Zbl 1253.37083.

******************************************************************************
Surveys in Mathematics and its Applications 12 (2017), 117 – 164

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1979140
http://www.ams.org/mathscinet-getitem?mr=1330390
https://zbmath.org/?q=an:0838.93062
http://www.ams.org/mathscinet-getitem?mr=1000448
http://www.ams.org/mathscinet-getitem?mr=1187251
https://zbmath.org/?q=an:04217182
http://www.ams.org/mathscinet-getitem?mr=2173944
http://www.ams.org/mathscinet-getitem?mr=2813492
https://zbmath.org/?t=&s=0&q=Quadratic+Stochastic+Operators+And+Processes 3A+Results+And+Open+Problems
http://www.ams.org/mathscinet-getitem?mr=2178882
http://www.ams.org/mathscinet-getitem?mr=2292205
https://zbmath.org/?q=an:05383349
http://www.ams.org/mathscinet-getitem?mr=2962052
https://zbmath.org/?q=an:06121755
http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma


164 A. Zada and S. O. Shah

[10] U. A. Rozikov and U. U. Jamilov, On Trajectories of Strictly non-Volterra
Operators defined on two dimensional simplex, To appear in Sbornik Math.

[11] U. A. Rozikov and S. Nazir, Separable Quadratic Stochastic Operators,
Lobachevskii Journal of Mathematics, Vol. 31, No. 3, (2010), 215–221.
MR2720642.

[12] U. A. Rozikov and N. B. Shamsiddinov, On non-Volterra Quadratic Stochastic
Operators generated by a Product Measure, Stoch, Anal. Appl., Vol. 27, No. 2,
(2009), 9 pages, arXiv:math/0608201. MR2503298. Zbl 1161.37365.

[13] U. A. Rozikov and A. Zada, On dynamics of ℓ- Volterra Quadratic Stochastic
Operators, International Journal of Biomathematics, Vol. 3, No. 2, (2010), 143–
159. MR2658072. Zbl 1263.47073.

[14] U. A. Rozikov and A. Zada, On a Class of Separable Quadratic Stochastic
Operators, Lobachevskii Journal of Mathematics, Vol. 32, No. 4, (2011), 385–
394. MR2887064. Zbl 1267.37057.

[15] U. A. Rozikov and A. Zada, ℓ- Volterra Quadratic Stochastic Operators
Lyapunov Functions, Trajectories, Appl. Math. Inf. Sci., Vol. 6, No. 2, (2012),
329–335. MR2914096.

[16] U. A. Rozikov and U. U. Zhamilov, On F-quadratic Stochastic Operators, Math.
Notes, Vol. 83, No. 3–4, (2008), 554–559. MR2432745. Zbl 1167.92023.

Akbar Zada,

Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.

e-mail: zadababo@yahoo.com, akbarzada@uop.edu.pk

Syed Omar Shah (Corresponding Author),

Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.

e-mail: omarshah89@yahoo.com, omarshahstd@uop.edu.pk

License

This work is licensed under a Creative Commons Attribution 4.0 International
License.

******************************************************************************
Surveys in Mathematics and its Applications 12 (2017), 117 – 164

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=2720642
http://www.ams.org/mathscinet-getitem?mr=2503298
https://zbmath.org/?t=&s=0&q=On+non-Volterra+Quadratic+Stochastic+Operators+generated+by+a+Product+Measure
http://www.ams.org/mathscinet-getitem?mr=2658072
https://zbmath.org/?q=an:06106378
http://www.ams.org/mathscinet-getitem?mr=2887064
https://zbmath.org/?q=an:06115202
http://www.ams.org/mathscinet-getitem?mr=2914096
http://www.ams.org/mathscinet-getitem?mr=2432745
https://zbmath.org/?q=an:1167.92023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma

	Introduction
	 Preliminaries
	Simplex and Quadratic Stochastic Operators

	Volterra Operators
	Canonical form of Volterra's discrete model
	Face of the Simplex

	Lyapunov Functions of Volterra Operators
	l-volterra Quadratics Stochastic Operators
	Canonical form of l-Volterra QSO.
	Dynamics of l-Volterra operators

	Separable Quadratic Stochastic Operators (SQSOs)
	Lyapunov Function of SQSOs
	Properties of (A)
	Skew-Symmetric Matrix and SQSO
	Limit Points of SQSO


