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ON THEORETICAL ASPECTS OF MIXTURE
PROBLEMS

François Dubeau

Abstract. Mixture problems are basic but important problems in Operations Research. In

this paper we consider variants of the basic linear mixture problem and indicate mathematical links

between them.

1 Introduction

Mixture problems play an important role in Operations Research [2]. The basic
mixture problem is a standard linear programming problem encountered in different
fields like nutrition, metallurgy, milling, and others [3, 4, 6, 7, 8, 9, 10, 12]. After a
short presentation of the basic problem in Section 2, we extend it in Section 3 by
considering the problem of adding a correction to a free (no cost) given unfeasible
mixture, called a premix. We consider least cost or least weight correction, so we
are lead to consider a bi-criteria linear programming problem. In Section 4 we
observe that we can obtain a single formulation which include the preceding two
problems in terms of a bi-criteria linear program. In Section 5 we shortly recall
the general form of a bi-criteria linear program together with the introduction of
the efficient set or Pareto set. In section 6 we present mathematical links between
feasible sets and efficient sets of the different formulations already presented in the
preceding sections. We pay some attention to a specific geometric transformation
and its effect on feasable sets, efficiency sets, and cones. In Section 7, we consider
a correction to a non-free given unfeasible mixture to get a least unit cost corrected
mixture, which is obtained by adding together the premix and the correction. It
is solved by considering a linear-fractional program. Using the Charnes-Cooper’s
transformation we obtain an equivalent linear program to solve. The criteria of this
linear program can be seen as a weighted-sum of two criteria of a linear problem. It
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180 F. Dubeau

follows that the variation of the unit cost of the corrected mixture in terms of the
cost of the given premix is obtained from the Pareto set of a bi-criteria problem. A
conclusion follows at the end of the paper.

2 Basic mixture problem

A mixture is an aggregate of two or more different ingredients. Each ingredient is
characterized by components which are present in specific and fixed proportions.
The basic mixture problem that we consider is to find a least unit cost mixture
under conditions on components. These conditions are also called specifications on
the components.

Let xo = (xo1, . . . , x
o
n)

t be the column vector where xoi is the quantity of the i-
th ingredients included in the mixture. Let us introduce two row vectors: c =
(c1, . . . , cn), where ci ≥ 0 is usually called the unit cost of the i-th ingredient, and
u = (1, . . . , 1), a vector of unit entries. Let

z(xo) = cxo =
n∑

i=1

cix
o
i

be the cost of a mixture of weight

w(xo) = uxo =
n∑

i=1

xoi .

The ratio
z(xo)

w(xo)
=

cxo

uxo
is the unit cost of the mixture, which is the cost of a unit

weight of the mixture.

To take into account of the constraints, the specifications and relations on specifications,
we introduce the matrices Bs, B, et Bg, that are respectively a (ms, n)-matrix,
(m,n)-matrix, and (mg, n)-matrix, and the corresponding colomn vectors βs, le β,
and βg, of dimension respectively equal to ms, m and mg. The constraints are
written as follows ⎧⎨⎩

Bsx
o ≤ βs,

Bxo = β,
Bgx

o ≥ βg.

The set of unit weight feasible mixtures for the basic problem is

So =

⎧⎨⎩xo ∈ Rn

⏐⏐⏐⏐⏐⏐
Bsx

o ≤ βs,
Bxo = β,
Bgx

o ≥ βg,
uxo = 1 and xo ≥ 0

⎫⎬⎭ .
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Mixture Problems 181

The mathematical formulation of the least unit cost mixture problem is given by

(P o)

⎧⎨⎩
min z(xo) = cxo

subject to
xo ∈ So.

Throughout the paper we assume that all components of vectors and matrices of
data, or technical coefficients of the problem, are non negative.

Let us remark the following facts about this problem. When So is nonempty, it is
a compact subset (closed and bounded) of Rn

+ = [0,+∞)n. The set of values taken
by the criteria for feasible solutions is given by

So
c = { z(xo) = cxo |xo ∈ So } ,

hence if So
c is nonempty it is a closed and bounded interval

[min {ci|i = 1, . . . , n} ,max {ci|i = 1, . . . , n}] ⊆ R+ = [0,+∞).

3 A first correction problem

The first extension to (P o) concern the addition to a given non-feasible mixture,
called a premix, of and amount of ingredients, called a correction, in such a way that
the specifications of the corrected mixture, obtained by adding the premix and the
correction together, satisfy all the constraints. In this first correction problem we
do not consider the cost of the premix, we consider only the weight and the cost of
the correction.

Let xa = (xa1, . . . , x
a
n)

t be the column vector where xai is the quantity of the i-th
ingredients included in the correction. Let xa0 be the quantity of premix. For this
problem we set xa0 = 1 because we consider a correction to one unit weight of premix.

The cost of the correction is given by

za1(x
a) = z(xa) = cxa =

n∑
i=1

cix
a
i

and its weight by

za2(x
a) = w(xa) = uxa =

n∑
i=1

xai .

The ratio
za1(x

a)

za2(x
a)

=
z(xa)

w(xa)
=

cxa

uxa
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182 F. Dubeau

is the unit cost of the correction, which is the cost of one unit weight of correction.

To take into account of the components of a unit weight of the premix, we add the
following three column vectors : a ms-column vector bs, a m-column vector b, and
a mg-column vector bg. Using the fact that xa0 = 1, the set of feasible corrections to
a unit weight of premix is given by

Sa =

⎧⎨⎩xa ∈ Rn

⏐⏐⏐⏐⏐⏐
bs +Bsx

a ≤ βs (1 + uxa)
b+Bxa = β (1 + uxa)
bg +Bgx

a ≥ βg (1 + uxa)
and xa ≥ 0

⎫⎬⎭ .

We consider two criteria, the cost and the weight of the correction, that we would
like to minimize. The mathematical formulation as a bi-criteria linear programming
problem is then

(P a)

⎧⎪⎪⎨⎪⎪⎩
min za1(x

a) = cxa

min za2(x
a) = uxa

subject to
xa ∈ Sa.

It is important to point out that the total weight of the corrected mixture is
1 + uxa = 1 + w(xa) because we consider the correction of weight w(xa) = uxa

added to a unit weight xa0 = 1 of premix.

The feasible set Sa ⊆ Rn
+ is a closed subset Rn

+. If it is nonempty it might be
bounded, and hence compact, or unbounded.

Let us use

za(xa) =

(
za1(x

a)
za2(x

a)

)
=

(
cxa

uxa

)
=

(
c
u

)
xa = Cxa

where C is the cost matrix

C =

(
c
u

)
.

The set Sa
c of values taken by the criteria on the feasible set is

Sa
c = { za(xa) = Cxa |xa ∈ Sa } = za (Sa) .

Also Sa
c ⊆ R2

+.

4 A single formulation : (P o) and (P a) together

It is possible to write down a single formulation which allows us to get the information
about the two preceding problems (P o) and (P a). Let us consider a correction given
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Mixture Problems 183

by xs = (xs1, . . . , x
s
n)

t ∈ Rn
+ to an arbitrary weight xs0 ≥ 0 of premix. The total

weight of the corrected mixture is then given by xs0 + uxs = xs0 + w(xs).

The problem is formulated for a unit weight of corrected mixture, the correction and
the premix added together. The two criteria that we consider are the cost and the
weight of the correction. Hence we have the following bi-criteria linear programming
problem

(P s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min zs1(x
s
0, x

s) = z(xs) = cxs

min zs2(x
s
0, x

s) = w(xs) = uxs

subject to
bsx

s
0 +Bsx

s ≤ βs
bxs0 +Bxs = β
bgx

s
0 +Bgx

s ≥ βg
xs0 + uxs = 1
xs0 ≥ 0 and xs ≥ 0.

Let us note by Ss the set of feasible solutions (xs0, x
s) to this problem. It is a subset

of R+×Rn
+. In the case that Ss is nonempty it is a compact (closed and bounded) set.

In the decision space, let us use

zs(xs0, x
s) =

(
zs1(x

s
0, x

s)
zs2(x

s
0, x

s)

)
=

(
cxs

uxs

)
=

(
c
u

)
xs = Cxs

where C is the matrix

C =

(
c
u

)
.

Let Ss
c be the set of values taken by the criteria on the feasible solution set

Ss
c = { zs(xs0, xs) = Cxs | (xs0, xs) ∈ Ss } = zs (Ss) .

Since zs2(x
s
0, x

s) ∈ [0, 1], we have that Ss
c ⊆ R+ × [0, 1].

5 Bi-criteria problem

The general form of a bi-criteria linear problem is [11]

(P )

⎧⎪⎪⎨⎪⎪⎩
min z1(x)
min z2(x)

subject to
x ∈ S
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184 F. Dubeau

where z1(x) and z2(x) are linear functions, and S is the set of feasible solutions of
the problem as a polyhedral subset of RN for an appropriate dimension N .

Let

z(x) =

(
z1(x)
z2(x)

)
and let us note Sc the set of values taken by the criteria on the feasible set

Sc = { z(x) |x ∈ S } = z (S) .

A feasible solution x ∈ S of this bicriteria problem is efficient if and only if there
exists no other feasible solution x̄ ∈ S such that (i) zi(x̄) ≤ zi(x) for each i ∈ {1, 2},
and (ii) zj(x̄) < zj(x) for at least one j ∈ {1, 2}. In other words, there is no other
solution which can improve one criteria without deteriorare the other. The set of
efficient feasible solutions in the decision space is called efficiency set or Pareto set
and is noted E . The efficiency set, or Pareto set, in the criteria spaces is the set

Ec = { z(x) |x ∈ E } = z (E) .

Moreover we have the following characterization for Ec:

z ∈ Ec if and only if
[
z − R2

+

]
∩ Sc = {z} .

By considering the weighted-sum of the two criteria using a parameter λ ∈ [0, 1],
and the problem

(Pλ)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min zλ(x) = (1− λ)z1(x) + λz2(x)

subjet to

x ∈ S,
we can use the following relation for the Pareto set E [11]

E =
⋃

λ∈(0,1)

argmin {zλ(x) | x ∈ S} .

The efficient set E being a union of a finite number of faces of S, it follows that Ec is
of the same form since it is the image of E by a linear transformation. As a subset
of R2, Ec is formed by a finite number of pairewise segments connected by their
endpoints, also called efficient vertices or efficient extreme points. It is a polygonal
line. See [5] for a complete description of Ec.

Let us remark that for the mixture problems we consider S ⊆ RN
+ , z(x) ≥ 0 for all

x ∈ RN
+ , and consequently Sc ⊆ R2

+.
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Mixture Problems 185

6 Links between (P o), (P a) and (P s)

6.1 Links between So, Sa and Ss

There exists a simple relation between the feasible sets of the two problems So and
Sa. These sets are two closed subsets of RN . When So is nonempty, it is a bounded
(and compact) set because

uxo =
N∑

n=1

xon = 1 and xon ≥ 0 for n = 1, . . . , N.

When Sa is nonempty, it can be bounded (and hence compact) or unbounded. The
next result indicates a link between these situations. All situations are reported in
Table 1.

Theorem 1. [Link between So and Sa]. If Sa is nonempty, we have

• Sa is bounded (hence compact) if and only if si So is empty, or

• Sa is unbounded (hence not compact) if and only if si So is nonempty.

Proof. If Sa is nonempty, take 0 ̸= xo ∈ So and also xa ∈ Sa. For t ≥ 0 set
xa(t) = xa + txo. We verify directly that xa(t) ∈ Sa and hence Sa is unbounded.
Conversely, if Sa is unbounded, there are xa ∈ Sa and xo ∈ Rn such that uxo = 1
and xa(t) = xa + txo ∈ Sa (for all t ≥ 0). Then we verify that xo ∈ So by direct
substitution of xa(t) in the constraints of (P a), dividing by t, and letting t going to
infinity.

Theorem 2. [Link between So and Ss]. We have

{0} × So = Ss ∩
[
{0} × Rn

+

]
.

Proof. Because x ∈ So if and only if (0, x) ∈ Ss.

To obtain the link between Sa and Ss we use a geometric transformation between
Rn
+ and (0,+∞)× Rn

+ which is analyzed in the next two results.

Theorem 3. [Link between Sa and Ss].
(A) Consider the following transformation

T a→s : Sa → Ss ∩
[
(0,+∞)× Rn

+

]
defined by

T a→s(xa) =

(
1

1 + uxa
,

xa

1 + uxa

)
= (xs0, x

s) ∈ Ss
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186 F. Dubeau

for xa ∈ Sa. We have

T a→s (Sa) = Ss ∩
[
(0,+∞)× Rn

+

]
.

(B) Conversely, consider the following transformation

T s→a : Ss ∩
[
(0,+∞)× Rn

+

]
→ Sa

well defined by

T s→a(xs0, x
s) =

xs

xs0
= xa ∈ Sa

because xs0 > 0. We have

T s→a
(
Ss ∩

[
(0,+∞)× Rn

+

])
= Sa.

Proof. The two functions are well defined. A direct verification leads to

T s→a ◦ T a→s(xa) = xa for any xa ∈ Sa,

and

T a→s ◦ T s→a(xs0, x
s) = (xs0, x

s) for any (xs0, x
s) ∈ Ss ∩

[
(0,+∞)× Rn

+

]
.

6.2 Links between So
c , Sa

c and Ss
c

Theorem 4. [Link between So
c and Ss

c ]. We have

So
c × {1} = Ss

c ∩ [R+ × {1}] .

Proof. Direct consequence of Theorem 2.

A second geometric transformation is now used to analyze the link between the
efficient sets. For xa ∈ Sa and (xs0, x

s) = T a→s(xa) we have

zs1(x
s
0, x

s) = zs1 (T
a→s(xa)) =

cxa

1 + uxa
=

za1(x
a)

1 + za2(x
a)

and

zs2(x
s
0, x

s) = zs2 (T
a→s(xa)) =

uxa

1 + uxa
=

za2(x
a)

1 + za2(x
a)
.

Conversely, for (xs0, x
s) ∈ Ss ∩

[
(0,+∞)× Rn

+

]
and xa = T s→a(xs0, x

s), we have

za1(x
a) = za1 (T

s→a(xs0, x
s)) =

cxs

1− uxs
=

zs1(x
s
0, x

s)

1− zs2(x
s
0, x

s)
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and

za2(x
a) = za2 (T

s→a(xs0, x
s)) =

uxs

1− uxs
=

zs2(x
s
0, x

s)

1− zs2(x
s
0, x

s)
.

It follows we have the bijections

Tc : R2
+ → R+ × [0, 1)

defined by

Tc(z1, z2) =

(
z1

1 + z2
,

z2
1 + z2

)
.

and its inverse

T−1
c : R+ × [0, 1) → R2

+

given by

T−1
c (z1, z2) =

(
z1

1− z2
,

z2
1− z2

)
.

As a consequence we have the next result.

Theorem 5. [Link between Sa
c and Ss

c ]. We have Tc (Sa
c ) = Ss

c ∩ [R+ × [0, 1)] .

6.3 Links between Ea
c and Es

c

To establish a correspondance between the efficiency sets Ea
c and Es

c we use the next
lemma which relate the preference cones of the two problems.

Lemma 6. Restricted to R2
+, the transformation by Tc of the translated preference

cone given by

(z1, z2)− R2
+

is

Tc

(
(z1, z2)− R2

+

)
= Tc (z1, z2)− C

(
(1, 0), (0, 1)− Tc (z1, z2)

)
.

Using this lemma, we obtain the next result.

Theorem 7. The sets Ea
c and Es

c are related by the following expressions

Tc(Ea
c ) =

{
(z1, z2) ∈ Es

c |
[
(z1, z2)− C

(
(1, 0), (0, 1)− Tc (z1, z2)

)]
∩ Ss

c = {(z1, z2)}
}
.

and

Ea
c = T−1

c

({
(z1, z2) ∈ Es

c |
[
(z1, z2)− C

(
(1, 0), (0, 1)− Tc (z1, z2)

)]
∩ Ss

c = {(z1, z2)}
})

.
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188 F. Dubeau

So Sa = Sf Ss = S̃f

empty empty empty

empty
nonempty

closed and bounded (compact)

nonempty
closed and bounded (compact)
̸ ∃(xs0, xs) ∈ Ss such that xs0 = 0

nonempty
closed and bounded (compact)

empty
nonempty

closed and bounded (compact)
∀(xs0, xs) ∈ Ss we have xs0 = 0

nonempty
closed and bounded (compact)

nonempty
closed and unbounded

nonempty
closed and bounded (compact)
∃(xs0, xs) ∈ Ss such that xs0 = 0
∃(xs0, xs) ∈ Ss such that xs0 > 0

Table 1: Relations between the feasible sets So, Sa, and Ss.

7 A second correction problem

7.1 Problem formulation : a linear-fractional program

As for the first correction problem we consider a correction given by xf = (xf1 , . . . , x
f
n) ∈

Rn
+ to a quantity of premix of weight xf0 . For the problem we consider, it is a unit

weight xf0 = 1 of premix that we want to correct, and now the premix might have a
nonzero unit cost c0 ≥ 0.

Because we consider a correction to one unit weight of premix xf0 = 1, the cost of
the corrected mixture is

zf1 (x
f ) = c0x

f
0 + cxf = c0 + z(xf ),

and the weight of this corrected mixture is given by

zf2 (x
f ) = xf0 + uxf = 1 + w(xf ).

Then the ratio zf (xf ) =
zf1 (x

f )

zf2 (x
f )

is the unit cost of the corrected mixture.

Since we would like to minimize the unit cost of the corrected mixture, the formulation
is a linear problem with a fractional criteria given by
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(P f )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min zf (xf ) =
zf1 (x

f )

zf2 (x
f )

subject to

bs +Bsx
f ≤ βs

(
1 + uxf

)
b+Bxf = β

(
1 + uxf

)
bg +Bgx

f ≥ βg
(
1 + uxf

)
xf ≥ 0.

Sf will be the set of feasible solutions for this problem. We immediately observe
that Sf = Sa.

7.2 Transformed problem

The problem (P f ) is an example of a linear-fractional problem. Under the assumption
that Sf is nonempty and bounded (compact), the Charnes-Cooper’s transformation
[1]

ηf0 =
1

1 + uxf
,

and

ηf =
xf

1 + uxf

transforms the linear fractional problem (P f ) into an equivalent linear problem

(P̃ f )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min z̃f (ηf0 , η
f ) = c0η

f
0 + cηf

subject to

bsη
f
0 +Bsη

f ≤ βs
bηf0 +Bηf = β

bgη
f
0 +Bgη

f ≥ βg
ηf0 + uηf = 1

ηf0 ≥ 0 and ηf ≥ 0.

Let S̃f be the feasible set for this problem. Let us observe that S̃f = Ss. Also (P̃ f )

is of the same type as (P o), because the variable ηf0 can be considered as a variable
like the other n variables.

The assumption that Sf = Sa is a nonempty and bounded set implies, from Theorem 1,
that (P o) has no solution. Consequently (P f ) has a solution, and (P̃ f ) has no

solution (ηf0 , η
f ) with ηf0 = 0, because such a solution correspond to a solution

of (P o). It follows that any solution of (P̃ f ) is such that ηf0 > 0. Hence the
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190 F. Dubeau

corresponding solution of (P f ) is given by

xfi =
ηfi

ηf0
for i = 0, . . . , n.

In the case that the feasible set Sf = Sa is nonempty and unbounded, (P̃ f ) can

have a solution (ηf0 , η
f ) with ηf0 > 0. Then the solution of (P f ) is yet given by the

preceding formula. But it can also happend that (P̃ f ) has a solution (ηf0 , η
f ) with

ηf0 = 0, in that case xo = xf = ηf is a solution of the original problem (P o). In this

case we define xf0 = 0.

7.3 Parametric analysis

To obtain the variation of the criteria, the unit cost of the corrected mixture, with
respect to the unit cost c0 of the premix, we consider a parametric analysis of the
criteria with respect to the parameter c0. We use a decomposition of the criteria of
(P̃ f ) in two parts

z̃f (η) = z̃f1 (η) + c0z̃
f
2 (η) =

(
n∑

i=1

ciηi

)
+ c0η0,

and consider the following bi-criteria problem

(P̃ fs)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min z̃f1 (η) =

∑n
i=1 ciηi

min z̃f2 (η) = η0
subject to

η ∈ S̃f .

The Pareto curve of this problem, obtained from the weighted-sum criterion

z̃fλ(η) = (1− λ)z̃f1 (η) + λz̃f2 (η),

and the correspondance

λ =
c0

1 + c0
or else c0 =

λ

1− λ

allow us to find an expression for the optimal value function zf∗ (c0) = minxf∈Sf zf (x
f )

which is an increasing continuous concave piecewise linear function with respect to
c0.

Since

z(xf ) = cxf =

n∑
i=1

cix
f
i =

⎧⎪⎨⎪⎩
1
η0

∑n
i=1 ciηi = 1

η0
z̃f1 (η) if η0 > 0 ( or xf0 = 1),

∑n
i=1 ciηi = z̃f1 (η) if η0 = 0 ( or xf0 = 0),
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and

w(xf ) = uxf =
N∑

n=1

xfn =

⎧⎪⎨⎪⎩
1
η0

∑n
i=1 ηi = 1

η0
(1− η0) if η0 > 0 ( or xf0 = 1),

∑n
i=1 ηi = 1 if η0 = 0 ( or xf0 = 0),

we have

zf∗ (c0) =
c0x

f
0 + z(xf )

xf0 + w(xf )

which is valid not only for xf0 = 1 but also for xf0 = 0.

8 Conclusion

In this short paper we have considered different mixtures problems and establish
links between them. We started from the basic mixture problem and considered
corrections to a premix, a non feasable mixture. Two situations were considered,
firstly for a free premix and secondly for a nonfree premix. Bi-criteria formulations
helped us to analyse these problems, and we have obtained the variation of the
unit cost of the corrected mixture via their Pareto sets. Finally the geometric
transformations introduced in this paper could be analyzed from a geometric point
of view.
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