APPROXIMATIONS FOR UNIFORMLY CONTINUOUS FUNCTIONS ON GROUPOIDS

Mădălina Roxana Buneci

Abstract

The purpose of this paper is to prove an approximation/extension theorem for a family of partial functions on a groupoid satisfying a uniform compatibility condition. In the particular case of a trivial groupoid $G=X \times X$ and a singleton family we recover the well-known result of Katětov: every bounded uniformly continuous real-valued function f defined on a subspace of a uniform space X has a bounded uniformly continuous extension to X.

1 Introduction

The notion of groupoid generalizes the notion of group by replacing the binary operation with a partial function. More precise, a groupoid is a set G endowed with partial product operation $(x, y) \mapsto x y\left[: G^{(2)} \rightarrow G\right]$ (where $\left.G^{(2)} \subset G \times G\right)$ and an inversion operation $x \mapsto x^{-1}[: G \rightarrow G]$ satisfying appropriate versions of the group axioms:

G1 If $(x, y) \in G^{(2)}$ and $(y, z) \in G^{(2)}$, then $(x y, z) \in G^{(2)},(x, y z) \in G^{(2)}$ and $(x y) z=x(y z)$.
G2 $\left(x^{-1}\right)^{-1}=x$ for all $x \in G$.
G3 For all $x \in G,\left(x, x^{-1}\right) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$, then $(z x) x^{-1}=z$.
G4 For all $x \in G,\left(x^{-1}, x\right) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$, then $x^{-1}(x y)=y$.
We use the same definition, notation and terminology concerning groupoids as in [2]: $r(x)=x x^{-1}, d(x)=x^{-1} x, G^{(0)}=r(G)=d(G), G^{u}=r^{-1}(\{u\}), G_{u}=$ $d^{-1}(\{u\}), G_{v}^{u}=G^{u} \cap G_{v}$.

Definition 1 ([2, Definition 2.1]). Let G be a groupoid. By a G-uniformity we mean a collection $\{W\}_{W \in \mathcal{W}}$ of subsets of G satisfying the following conditions:

[^0]Keywords: groupoid, uniformity, extension theorem, approximation.

1. $G^{(0)} \subset W \subset G$ for all $W \in \mathcal{W}$.
2. If $W_{1}, W_{2} \in \mathcal{W}$, then there is $W_{3} \subset W_{1} \cap W_{2}$ such that $W_{3} \in \mathcal{W}$.
3. For every $W_{1} \in \mathcal{W}$ there is $W_{2} \in \mathcal{W}$ such that $W_{2} W_{2} \subset W_{1}$.
4. $W=W^{-1}$ for all $W \in \mathcal{W}$.

Let us remark that for $G=X \times X$ (viewed as a trivial groupoid under the operations: $(x, y)(y, z)=(x, z)$ and $\left.(x, y)^{-1}=(y, x)\right)$ a G-uniformity is a fundamental system of symmetric entourages of a uniform structure on X.

Definition 2 ([2, Definition 3.2]). Let G be a groupoid endowed with a G-uniformity $\mathcal{W}, A \subset G$ and E be a Banach space. A function $h: A \rightarrow E$ is said to be uniformly continuous on fibres if and only if for each $\varepsilon>0$ there is $W_{\varepsilon} \in \mathcal{W}$ such that:

$$
\|h(x)-h(s x t)\|<\varepsilon \text { for all } s, t \in W_{\varepsilon} \text { and } x \in A \cap G_{r(t)}^{d(s)} \text { such that sxt } \in A \text {. }
$$

Obviously, if $f, g: G \rightarrow \mathbb{R}$ are uniformly continuous on fibres, then $|f|, \bar{f}, f+g$ are uniformly continuous on fibres. If $f, g: G \rightarrow \mathbb{R}$ are bounded uniformly continuous on fibres functions, then $f g$ is a bounded uniformly continuous on fibres function.

The purpose of this paper is to prove an approximation/extension theorem for a family of partial functions $\left\{f_{x}\right\}_{x \in H}$ satisfying a uniform compatibility condition ($f_{x}: S_{x} \rightarrow \mathbb{R}$, where $S_{x} \subset G$ for all $x \in H$ and G is a groupoid). As a particular case, we obtain that if S is a subspace of a groupoid G endowed with a G-uniformity, then every bounded uniformly continuous on fibres real-valued function $f: S \rightarrow \mathbb{R}$ has a bounded uniformly continuous on fibres extension to G. Furthermore if $G=X \times X$ (viewed as the trivial groupoid on X), we recover the well-known result of Katětov [3, Theorem 3].

2 Approximations for uniformly continuous on fibres functions

We shall use a consequence of the following theorem proved in [2]:
Theorem 3 ([2, Theorem 2.5]). Let G be a groupoid, \mathcal{W} be a G-uniformity (in the sense of Definition 1) and let

$$
I=\left\{\frac{1}{2^{n}}, n \in \mathbb{N}\right\} .
$$

Let us consider an I-indexed family $\left\{W_{i}\right\}_{i \in I}$ satisfying the following properties:

1. $W_{i} \in \mathcal{W}$ for all $i \in I$.
2. $W_{i} W_{i} \subset W_{2 i}$ for all $i \in I, i \leq \frac{1}{2}$.

Then for every subset A of G there is a function $f=f_{A, \mathcal{W}_{I}}: G \rightarrow[0,1]$ satisfying the following conditions:

1. If $n \in \mathbb{N}, n \geq 2, x \in G$ and $y \in W_{1 / 2^{n}} x W_{1 / 2^{n}}$, then $|f(x)-f(y)|<\frac{1}{2^{n-2}}$. Consequently, f is uniformly continuous on fibres (in the sense of Definition 2).
2. $f(x)=0$ for all $x \in A$.
3. $f(x)=1$ for all $x \notin W A W$.
4. If $A=A^{-1}$, then $f(x)=f\left(x^{-1}\right)$ for all $x \in G$.
5. If G is endowed with a topology such that $W_{i_{k}} W_{i_{k-1}} \ldots W_{i_{1}} A W_{i_{1}} \ldots W_{i_{k-1}} W_{i_{k}}$ is open for all $i_{1}, i_{2}, \ldots, i_{k} \in I, i_{k}<i_{k-1}<\ldots<i_{1}<1$, then f is upper semi-continuous.
6. For all $n \in \mathbb{N}$, $n \geq 2$, we have $W_{1 / 2^{n+1}} A W_{1 / 2^{n+1}} \subset\left\{x: f(x)<\frac{1}{2^{n}}\right\} \subset$ $W_{1 / 2^{n-1}} A W_{1 / 2^{n-1}}$.
7. If $A=G^{(0)}$, then $f(x y) \leq 3 f(x)+f(y)$ for all $(x, y) \in G^{(2)}$.
8. If $A=G^{(0)}$, then $f(x y) \leq 2(f(x)+f(y))$ for all $(x, y) \in G^{(2)}$.
9. If $A=G^{(0)}$, then $f\left(x_{1} x_{2} \ldots x_{n}\right) \leq 3\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right)$ for all $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n} \in G$ such that $d\left(x_{i}\right)=r\left(x_{i+1}\right)$ for all $i \in\{1,2, \ldots, n-1\}$.
10. If $A=G^{(0)}$ and for every $x \in G \backslash G^{(0)}$ there is $i_{x} \in I$ such that $x \notin W_{i_{x}}$ (or equivalently, $\left.\bigcap_{n} W_{1 / 2^{n}}=G^{(0)}\right)$, then $f^{-1}(\{0\})=G^{(0)}$.

Corollary 4. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). If A and B are two subsets of G with the property that there is $W \in \mathcal{W}$ such that $W A W \subset B$, then there is a uniformly continuous on fibres function $f: G \rightarrow[0,1]$ such that $f(x)=1$ for all $x \in A$ and $f(x)=0$ for all $x \notin B$.

Proof. Let $C=G \backslash B$ and notice that $C \subset G \backslash W A W$. By Theorem 3 there is a uniformly continuous on fibres function $f: G \rightarrow[0,1]$ such that $f(x)=1$ for all $x \in A$ and $f(x)=0$ for all $x \notin W A W$ and thus for all $x \in C$.

Lemma 5. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $S \subset G$ and $f: S \rightarrow \mathbb{R}$ be a function that is uniformly continuous on fibres. Let $a<b$ be two real constants and let

$$
\begin{aligned}
& A=\{x \in S: f(x) \leq a\} \\
& B=\{x \in S: f(x) \geq b\}
\end{aligned}
$$

Then there is $W \in \mathcal{W}$ such that $W A W \cap B=\emptyset$.
Proof. Since f is uniformly continuous on fibres, there is $W \in \mathcal{W}$ such that

$$
|f(x)-f(s x t)|<(b-a) \text { for all } s, t \in W \text { and } x \in A \cap G_{r(t)}^{d(s)}
$$

Thus if $s, t \in W$ and $x \in A \cap G_{r(t)}^{d(s)}$, then

$$
f(s x t)=f(s x t)-f(x)+f(x)<b-a+a=b .
$$

Consequently, sxt $\notin B$.
Theorem 6. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $\left\{S_{x}\right\}_{x \in H}$ be a family of subsets of G and $\left\{f_{x}\right\}_{x \in H}$ be a family of functions $f_{x}: S_{x} \rightarrow \mathbb{R}$ satisfying the following conditions:
c1. $\sup _{x \in H} \sup _{z \in S_{x}}\left|f_{x}(z)\right|<\infty$.
c2. There is a family $\left\{H_{\varepsilon}\right\}_{\varepsilon>0}$ of subsets of H and there is a family $\left\{W_{\varepsilon}^{H}\right\}_{\varepsilon>0} \subset \mathcal{W}$ such that $\bigcap_{\varepsilon>0} H_{\varepsilon} \neq \emptyset$ and

$$
\left|f_{y}(s z t)-f_{x}(z)\right|<\varepsilon
$$

for all $x, y \in H_{\varepsilon}, s, t \in W_{\varepsilon}^{H}$ and $z \in G_{r(t)}^{d(s)} \cap S_{x}$ with the property that $s z t \in S_{y}$.
If $c>0$ is such that $c \geq \sup _{x \in H} \sup _{z \in S_{c}}|f(z)|$, then there is a bounded uniformly continuous on fibres function $h: G \rightarrow \mathbb{R}$ such that

1. $|h| \leq c$ on G.
2. For all positive integers n and all $x \in \bigcap_{i=1}^{n+1} H_{2^{i} c / 3^{i}},\left|f_{x}-h\right| \leq \frac{2^{n+2} c}{3^{n+1}}$ on S_{x}.
3. For all $x_{0} \in \bigcap_{\varepsilon>0} H_{\varepsilon}, h=f_{x_{0}}$ on $S_{x_{0}}$.

Proof. We use a similar reasoning as in the proof of Tietze Extension Theorem (see https://proofwiki.org/wiki/Tietze_Extension_Theorem for instance). Let $c>0$ be such that $c \geq \sup _{x \in H} \sup _{z \in S_{c}}|f(z)|$. Let us denote $J_{0}=H_{2 c / 3}$ and let

$$
\begin{aligned}
& A_{0}=\bigcup_{x \in J_{0}}\left\{z \in S_{x}: f_{x}(z) \leq-\frac{c}{3}\right\} \\
& B_{0}=\bigcup_{x \in J_{0}}\left\{z \in S_{x}: f_{x}(z) \geq \frac{c}{3}\right\} .
\end{aligned}
$$

There is $W_{0}=W_{2 c / 3}^{H} \in \mathcal{W}$ such that

$$
\left|f_{y}(s z t)-f_{x}(z)\right|<\frac{2 c}{3}
$$

for all $s, t \in W_{0}, x, y \in J_{0}$ and $z \in S_{x} \cap G_{r(t)}^{d(s)}$ such that $s z t \in S_{y}$. Thus if $x, y \in J_{0}$, $s, t \in W_{0}$ and $z \in A_{0} \cap G_{r(t)}^{d(s)} \cap S_{x}$ is such that $s z t \in S_{y}$, then

$$
f_{y}(s z t)=f_{y}(s z t)-f_{x}(z)+f_{x}(z)<\frac{2 c}{3}-\frac{c}{3}=\frac{c}{3} .
$$

Hence sxt $\notin B_{0}$. Consequently, $W_{0} A_{0} W_{0} \cap B_{0}=\emptyset$. By Corollary 4 there is a uniformly continuous on fibres function $f_{0}: G \rightarrow[0,1]$ such that $f_{0}(x)=0$ for all $x \in A_{0}$ and $f_{0}(x)=1$ for all $x \in B_{0}$. Let $g_{0}: G \rightarrow \mathbb{R}$ be defined by $g_{0}(x)=$ $\frac{2 c}{3} f_{0}(x)-\frac{c}{3}$ for all $x \in G$. Then $-\frac{c}{3} \leq g_{0} \leq \frac{c}{3}, g(x)=-\frac{c}{3}$ for $x \in A_{0}$ and $g_{0}(x)=\frac{c}{3}$ for $x \in B_{0}$. Hence

$$
\begin{aligned}
\left|g_{0}\right| & \leq \frac{c}{3} \text { on } G \\
\left|f_{x}-g_{0}\right| & \leq \frac{2 c}{3} \text { on } S_{x} \text { for all } x \in J_{0}
\end{aligned}
$$

Since g_{0} is uniformly continuous on fibres, there is $W_{g, \varepsilon} \in \mathcal{W}$ such that

$$
\left|g_{0}(s z t)-g_{0}(z)\right|<\frac{\varepsilon}{3}
$$

for all $s, t \in W_{g, \varepsilon}$ and $z \in G_{r(t)}^{d(s)}$. Thus if $x, y \in H_{2 \varepsilon / 3} \cap J_{0}, s, t \in W_{2 \varepsilon / 3}^{H} \cap W_{g, \varepsilon}$ and $z \in A_{0} \cap G_{r(t)}^{d(s)} \cap S_{x}$ is such that $s z t \in S_{y}$, then we have

$$
\begin{aligned}
\left|f_{y}(s z t)-g_{0}(s z t)-\left(f_{x}(z)-g_{0}(z)\right)\right| & \leq\left|f_{y}(s z t)-f_{x}(z)\right|+\left|g_{0}(s z t)-g_{0}(z)\right| \\
& <\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Hence the family $\left\{f_{x}-g_{0}\right\}_{x \in J_{0}}$ satisfies the hypotheses of the theorem. Let us repeat the procedure with the family $\left\{f_{x}-g_{0}\right\}_{x \in J_{0}}$ instead of $\left\{f_{x}\right\}_{x \in H},\left\{H_{2 \varepsilon / 3} \cap J_{0}\right\}_{\varepsilon}$ instead of $\left\{H_{\varepsilon}\right\}_{\varepsilon}$ and $\frac{2 c}{3}$ instead of c. We obtain a function $g_{1}: G \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\left|g_{1}\right| & \leq \frac{2 c}{9} \text { on } G \\
\left|f_{x}-g_{0}-g_{1}\right| & \leq \frac{4 c}{9} \text { on } S_{x} \text { for all } x \in J_{1}=H_{4 c / 9} \cap J_{0} .
\end{aligned}
$$

Thus we can inductively generate functions $g_{0}, g_{1}, \ldots, g_{n}, \ldots$. such that

$$
\begin{aligned}
\left|g_{n}\right| & \leq \frac{2^{n} c}{3^{n+1}} \text { on } G \\
\left|f_{x}-g_{0}-g_{1}-\ldots-g_{n}\right| & \leq \frac{2^{n+1} c}{3^{n+1}} \text { on } S_{x} \text { for all } x \in H_{2^{n+1} c / 3^{n+1}} \cap J_{n}
\end{aligned}
$$

Since $\left|g_{n}\right| \leq \frac{2^{n}}{3^{n}} \frac{c}{3}$ for all n, it follows that the series $\sum_{n \geq 0} g_{n}$ converges absolutely and uniformly on G to a real-valued function h satisfying $|h| \leq c$ on G. Since all g_{n} are uniformly continuous on fibres, h is uniformly continuous on fibres. For all $x \in H_{2^{n+1} c / 3^{n+1}} \cap J_{n}$ we have

$$
\left|f_{x}-h\right| \leq\left|f_{x}-g_{0}-g_{1}-\ldots-g_{n}\right|+\sum_{k=n+1}^{\infty}\left|g_{k}\right| \leq \frac{2^{n+1} c}{3^{n+1}}+\frac{2^{n+1} c}{3^{n+1}}=\frac{2^{n+2} c}{3^{n+1}}
$$

and consequently, $f_{x_{0}}=h$ on $S_{x_{0}}$ for all $x_{0} \in \bigcap_{\varepsilon>0} H_{\varepsilon}$. Moreover

$$
\sup _{x \in G}|h(x)| \leq c .
$$

Corollary 7. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $S \subset G$ and $f: S \rightarrow \mathbb{R}$ be a bounded function that is uniformly continuous on fibres. Then there is a bounded uniformly continuous on fibres function $h: G \rightarrow \mathbb{R}$ such that $h(x)=f(x)$ for all $x \in S$. Moreover h can be chosen such that $\sup _{x \in S} f(x)=\sup _{x \in G}|h(x)|$.
Proof. The family for which the only one element is $\{f: S \rightarrow \mathbb{R}\}$ satisfies the hypotheses of Theorem 6.

Corollary 8. Let X be a uniform space and let \mathcal{U} be a fundamental system of symmetric entourages of the uniformity on X. Let $\left\{g_{j}\right\}_{j \in J}$ be a family of functions $g_{j}: S_{j} \rightarrow \mathbb{R}$, where $S_{j} \subset X$ for all $j \in J$. Let us assume that the family $\left\{g_{j}\right\}_{j \in J}$ satisfies the following conditions:
c1. $\sup _{j \in J} \sup _{j \in S_{j}}\left|g_{j}(z)\right|<\infty$.
c2. There is a family $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ of subsets of J and there is a family $\left\{U_{\varepsilon}^{J}\right\}_{\varepsilon>0} \subset \mathcal{U}$ such that $\bigcap_{\varepsilon>0} J_{\varepsilon} \neq \emptyset$ and

$$
\left|g_{j}(x)-g_{k}(y)\right|<\varepsilon
$$

for all $j, k \in J_{\varepsilon}$ and $(x, y) \in U_{\varepsilon}^{J}$ with the property that $x \in S_{j}$ and $y \in S_{k}$.
If $c>0$ is such that $c \geq \sup _{x \in H} \sup _{z \in S_{c}}|f(z)|$, then there is a bounded uniformly continuous on fibres function $h: X \rightarrow \mathbb{R}$ such that

1. $|h| \leq c$ on X.
2. For all positive integers n and all $j \in \bigcap_{i=1}^{n+1} J_{2^{i} c / 3^{i}},\left|g_{j}-h\right| \leq \frac{2^{n+2} c}{3^{n+1}}$ on S_{j}.
3. For all $j_{0} \in \bigcap_{\varepsilon>0} J_{\varepsilon}, h=g_{j_{0}}$ on $S_{j_{0}}$.

Proof. Let us consider the trivial groupoid $G=X \times X$. Then \mathcal{U} satisfies conditions $1-4$ from Definition 1. Thus \mathcal{U} is G-uniformity on the groupoid $G=X \times X$. Let $x \in X$.

For each $j \in J$, let $f_{j}:\{x\} \times S_{j} \rightarrow \mathbb{R}$ be defined by $f_{j}(x, y)=g_{j}(y)$ for all $(x, y) \in\{x\} \times S_{j}$. Then

$$
\left|f_{j}((x, x)(x, z)(z, y))-f_{k}(x, z)\right|=\left|g_{j}(y)-g_{k}(z)\right|<\varepsilon
$$

for all $j, k \in J_{\varepsilon}$ and $(z, y) \in U_{\varepsilon}^{J}$ with the property that $y \in S_{j}$ and $z \in S_{k}$. Thus the family $\left\{f_{j}\right\}_{j \in J}$ satisfies the hypotheses of Theorem 6.

Remark 9. If X is a uniform space and $g: S \rightarrow \mathbb{R}$ is a bounded uniformly continuous function, where $S \subset X$ is endowed with the uniform structure coming from X, then, applying the preceding corollary to the singleton family $\{g\}$, there is a bounded uniformly continuous function $h: X \rightarrow \mathbb{R}$ such that $h(x)=f(x)$ for all $x \in S$. Moreover h can be chosen such that $\sup _{x \in S}|f(x)|=\sup _{x \in G}|h(x)|$. Thus we obtain [3, Theorem 3].

A topological groupoid is a groupoid G together with a topology on G such that the product operation $(x, y) \mapsto x y\left[: G^{(2)} \rightarrow G\right]$ (where $G^{(2)} \subset G \times G$ is endowed with the topology induced by the product topology on $G \times G$) and the inversion operation $x \mapsto x^{-1}[: G \rightarrow G]$ are continuous functions.

Lemma 10. Let G be a topological groupoid and \mathcal{W} be a family of neighborhoods of $G^{(0)}$. Let us assume that topology on G has the property that for each $x \in G$ and each neighborhood V of x there is $W \in \mathcal{W}$ and there is a neighborhood U of x such that $W U W \subset V$. Then for each $W_{1} \in \mathcal{W}$ and each $x \in G$, there is $W_{2} \in \mathcal{W}$ and there is a neighborhood V of x such that $V^{-1} W_{2} V \subset W_{1}$.
Proof. For each $W_{1} \in \mathcal{W}$ and each $x \in G$, there is a neighborhood V_{1} of x such that $V_{1}^{-1} V_{1} \subset W_{1}$. Furthermore there is $W_{2} \in \mathcal{W}$ and there is a neighborhood V of x such that $W_{2} V W_{2} \subset V_{1}$. Hence $\left(W_{2} V W_{2}\right)^{-1} W_{2} V W_{2} \subset V_{1}^{-1} V_{1} \subset W_{1}$. Consequently, $V^{-1} W_{2} V \subset W_{2}^{-1} V^{-1} W_{2}^{-1} W_{2} V W_{2} \subset V_{1}^{-1} V_{1} \subset W_{1}$.

Remark 11. Every locally Hausdorff, locally compact groupoid G (in the sense of [4, p. 6]) satisfies the hypothesis of the preceding lemma ([4, Lemma 2.10],[4, Lemma 2.14]) with \mathcal{W} a fundamental system of diagonally compact ([4, p. 10]) neighborhoods of $G^{(0)}$.

Proposition 12. Let G be a topological groupoid and \mathcal{W} be a family of neighborhoods of $G^{(0)}$ satisfying conditions $1-4$ in Definition 1. Let us assume that the topology of G has the property that for each $x \in G$ and each neighborhood V of x there is $W \in \mathcal{W}$ and there is a neighborhood U of x such that $W U W \subset V$. Let $x_{0} \in G$,
let V_{0} be a neighborhood of x_{0} and let $f: G^{d\left(V_{0}\right)} \rightarrow \mathbb{R}$ be a bounded function that is uniformly continuous on fibres with respect to the G-uniformity \mathcal{W}. For each $x \in V_{0}$, let us define $f_{x}: G^{r(x)} \rightarrow \mathbb{R}, f_{x}(y)=f\left(x^{-1} y\right)$ for all $y \in G^{r(x)}$. Then there is a bounded uniformly continuous on fibres function $h: G \rightarrow \mathbb{R}$ (with respect to the G-uniformity \mathcal{W}) such that

1. $\sup _{z \in G}|h(z)| \leq \sup _{z \in G^{d\left(V_{0}\right)}}|f(z)|$.
2. $h=f_{x_{0}}$ on $G^{r\left(x_{0}\right)}$.
3. For each $\varepsilon>0$ there is a neighborhood $U_{\varepsilon} \subset V_{0}$ of x_{0} such that for all $x \in U_{\varepsilon}$, $\left|f_{x}-h\right|<\varepsilon$ on $G^{r(x)}$.

Proof. Since f is uniformly continuous on fibres, it follows that for each $\varepsilon>0$, there is $W_{f, \varepsilon} \in \mathcal{W}$ such that $|f(s z t)-f(z)|<\varepsilon$ for all $s, t \in W_{f, \varepsilon}$ and $z \in G_{r(t)}^{d(s)} \cap G^{d\left(V_{0}\right)}$. Furthermore there is $W_{f, \varepsilon, x_{0}} \in \mathcal{W}\left(W_{f, \varepsilon, x_{0}} \subset W_{f, \varepsilon}\right)$ and there is a neighborhood $V_{\varepsilon} \subset V_{0}$ of x_{0} such that $V_{\varepsilon}^{-1} W_{f, \varepsilon, x_{0}} V_{\varepsilon} \subset W_{f, \varepsilon}$. For all $x, y \in V_{\varepsilon}, s, t \in W_{f, \varepsilon, x_{0}}$ and $z \in G_{r(t)}^{d(s)} \cap G^{r(x)}$ with the property that $s z t \in G^{r(y)}$, we have

$$
\begin{aligned}
\left|f_{y}(s z t)-f_{x}(z)\right| & =\left|f\left(y^{-1} s z t\right)-f\left(x^{-1} z\right)\right|=\left|f\left(y^{-1} s x x^{-1} z t\right)-f\left(x^{-1} z\right)\right|= \\
& =\left|f\left(s^{\prime} x^{-1} z t\right)-f\left(x^{-1} z\right)\right|<\varepsilon
\end{aligned}
$$

because $s^{\prime}=y^{-1} s x \in V_{\varepsilon}^{-1} W_{f, \varepsilon, x_{0}} V_{\varepsilon} \subset W_{f, \varepsilon}$ and $t \in W_{f, \varepsilon, x_{0}} \subset W_{f, \varepsilon}$. Thus $\left\{f_{x}\right\}_{x \in V_{0}}$ satisfies the hypotheses of Theorem 6 with $H=V_{0}, H_{\varepsilon}=V_{\varepsilon}, W_{\varepsilon}^{H}=W_{f, \varepsilon, x_{0}}$ and $c=\sup _{\left.z \in G^{d(V} V_{0}\right)}|f(z)|$. Consequently, there is a bounded uniformly continuous on fibres function $h: G \rightarrow \mathbb{R}$ such that
i) $|h| \leq c$ on G.
ii) For all positive integers n and all $x \in \bigcap_{i=1}^{n+1} V_{2^{i} c / 3^{i}},\left|f_{x}-h\right| \leq \frac{2^{n+2} c}{3^{n+1}}$ on $G^{r(x)}$.
iii) For all $x \in \bigcap_{\varepsilon>0} V_{\varepsilon}, h=f_{x}$ on $G^{r(x)}$.

Since $x_{0} \in \bigcap_{\varepsilon>0} V_{\varepsilon}$, it follows that $h=f_{x_{0}}$ on $G^{r\left(x_{0}\right)}$. Let $\varepsilon>0$ and let n_{ε} be a positive integer such that $\frac{2^{n_{\varepsilon}+2} c}{3^{n_{\varepsilon}+1}}<\varepsilon$. If $x \in U_{\varepsilon}=\bigcap_{i=1}^{n_{\varepsilon}+1} V_{2^{i} c / 3^{i}}$ then $\left|f_{x}-h\right|<\varepsilon$ on $G^{r(x)}$.

Remark 13. Any topological groupoid that is paracompact admits a fundamental system \mathcal{W} of neighborhoods that is a G-uniformity compatible with the topology of fibres [5]. The same is true for a topological groupoid with paracompact unit space [1].

References

[1] M. Buneci, Various notions of amenability for not necessarily locally compact groupoids, Surveys in Mathematics and its Applications, 9 (2014), 55-78. MR3262174.
[2] M. Buneci, A Urysohn type lemma for groupoids, Theory and Applications of Categories 32 (2017), Paper No. 28, 970-994. MR3684727. Zbl 06785327.
[3] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91; MR0050264. Zbl 0045.25704. Correction to "On real-valued functions in topological spaces", Fund. Math. 40 (1953) 203-205. MR0060211. Zbl 0053.12304.
[4] P. Muhly and D. Williams, Renault's Equivalence Theorem for groupoid crossed products, NYJM Monographs 3, 2008. MR2547343. Zbl 1191.46055.
[5] A. Ramsay, The Mackey-Glimm dichotomy for foliations and other Polish groupoids, J. Funct. Anal. 94(1990), 358-374. MR1081649(93a:46124). Zbl 0717.57016.

Mădălina Buneci
University Constantin Brâncuşi,
Calea Eroilor No.30, 210135 Târgu-Jiu, Romania.
e-mail: ada@utgjiu.ro, mbuneci@yahoo.com
http://www.utgjiu.ro/math/mbuneci/

License

This work is licensed under a Creative Commons Attribution 4.0 International License.

[^0]: 2010 Mathematics Subject Classification: 22A22; 54E15.

