ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 219 – 227

APPROXIMATIONS FOR UNIFORMLY CONTINUOUS FUNCTIONS ON GROUPOIDS

Mădălina Roxana Buneci

Abstract. The purpose of this paper is to prove an approximation/extension theorem for a family of partial functions on a groupoid satisfying a uniform compatibility condition. In the particular case of a trivial groupoid $G = X \times X$ and a singleton family we recover the well-known result of Katětov: every bounded uniformly continuous real-valued function f defined on a subspace of a uniform space X has a bounded uniformly continuous extension to X.

1 Introduction

The notion of groupoid generalizes the notion of group by replacing the binary operation with a partial function. More precise, a groupoid is a set G endowed with partial product operation $(x, y) \mapsto xy$ [: $G^{(2)} \to G$] (where $G^{(2)} \subset G \times G$) and an inversion operation $x \mapsto x^{-1}$ [: $G \to G$] satisfying appropriate versions of the group axioms:

- **G1** If $(x, y) \in G^{(2)}$ and $(y, z) \in G^{(2)}$, then $(xy, z) \in G^{(2)}$, $(x, yz) \in G^{(2)}$ and (xy) z = x (yz).
- **G2** $(x^{-1})^{-1} = x$ for all $x \in G$.

G3 For all $x \in G$, $(x, x^{-1}) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$, then $(zx) x^{-1} = z$.

G4 For all $x \in G$, $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$, then $x^{-1}(xy) = y$.

We use the same definition, notation and terminology concerning groupoids as in [2]: $r(x) = xx^{-1}$, $d(x) = x^{-1}x$, $G^{(0)} = r(G) = d(G)$, $G^u = r^{-1}(\{u\})$, $G_u = d^{-1}(\{u\})$, $G_v^u = G^u \cap G_v$.

Definition 1 ([2, Definition 2.1]). Let G be a groupoid. By a G-uniformity we mean a collection $\{W\}_{W \in \mathcal{W}}$ of subsets of G satisfying the following conditions:

²⁰¹⁰ Mathematics Subject Classification: 22A22; 54E15.

Keywords: groupoid, uniformity, extension theorem, approximation.

- 1. $G^{(0)} \subset W \subset G$ for all $W \in \mathcal{W}$.
- 2. If $W_1, W_2 \in \mathcal{W}$, then there is $W_3 \subset W_1 \cap W_2$ such that $W_3 \in \mathcal{W}$.
- 3. For every $W_1 \in \mathcal{W}$ there is $W_2 \in \mathcal{W}$ such that $W_2 W_2 \subset W_1$.
- 4. $W = W^{-1}$ for all $W \in \mathcal{W}$.

Let us remark that for $G = X \times X$ (viewed as a trivial groupoid under the operations: (x, y) (y, z) = (x, z) and $(x, y)^{-1} = (y, x)$) a *G*-uniformity is a fundamental system of symmetric entourages of a uniform structure on X.

Definition 2 ([2, Definition 3.2]). Let G be a groupoid endowed with a G-uniformity $W, A \subset G$ and E be a Banach space. A function $h : A \to E$ is said to be uniformly continuous on fibres if and only if for each $\varepsilon > 0$ there is $W_{\varepsilon} \in W$ such that:

 $\|h(x) - h(sxt)\| < \varepsilon$ for all $s, t \in W_{\varepsilon}$ and $x \in A \cap G_{r(t)}^{d(s)}$ such that $sxt \in A$.

Obviously, if $f, g: G \to \mathbb{R}$ are uniformly continuous on fibres, then $|f|, \overline{f}, f+g$ are uniformly continuous on fibres. If $f, g: G \to \mathbb{R}$ are bounded uniformly continuous on fibres functions, then fg is a bounded uniformly continuous on fibres function.

The purpose of this paper is to prove an approximation/extension theorem for a family of partial functions $\{f_x\}_{x\in H}$ satisfying a uniform compatibility condition $(f_x: S_x \to \mathbb{R}, \text{ where } S_x \subset G \text{ for all } x \in H \text{ and } G \text{ is a groupoid})$. As a particular case, we obtain that if S is a subspace of a groupoid G endowed with a G-uniformity, then every bounded uniformly continuous on fibres real-valued function $f: S \to \mathbb{R}$ has a bounded uniformly continuous on fibres extension to G. Furthermore if $G = X \times X$ (viewed as the trivial groupoid on X), we recover the well-known result of Katětov [3, Theorem 3].

2 Approximations for uniformly continuous on fibres functions

We shall use a consequence of the following theorem proved in [2]:

Theorem 3 ([2, Theorem 2.5]). Let G be a groupoid, \mathcal{W} be a G-uniformity (in the sense of Definition 1) and let

$$I = \left\{ \frac{1}{2^n}, \ n \in \mathbb{N} \right\}.$$

Let us consider an I-indexed family $\{W_i\}_{i \in I}$ satisfying the following properties:

1. $W_i \in \mathcal{W}$ for all $i \in I$.

2. $W_i W_i \subset W_{2i}$ for all $i \in I$, $i \leq \frac{1}{2}$.

Then for every subset A of G there is a function $f = f_{A,W_I} : G \to [0, 1]$ satisfying the following conditions:

- 1. If $n \in \mathbb{N}$, $n \geq 2$, $x \in G$ and $y \in W_{1/2^n} x W_{1/2^n}$, then $|f(x) f(y)| < \frac{1}{2^{n-2}}$. Consequently, f is uniformly continuous on fibres (in the sense of Definition 2).
- 2. f(x) = 0 for all $x \in A$.
- 3. f(x) = 1 for all $x \notin WAW$.
- 4. If $A = A^{-1}$, then $f(x) = f(x^{-1})$ for all $x \in G$.
- 5. If G is endowed with a topology such that $W_{i_k}W_{i_{k-1}}...W_{i_1}A W_{i_1}...W_{i_{k-1}}W_{i_k}$ is open for all $i_1, i_2, ..., i_k \in I$, $i_k < i_{k-1} < ... < i_1 < 1$, then f is upper semi-continuous.
- 6. For all $n \in \mathbb{N}$, $n \geq 2$, we have $W_{1/2^{n+1}}AW_{1/2^{n+1}} \subset \left\{x: f(x) < \frac{1}{2^n}\right\} \subset W_{1/2^{n-1}}AW_{1/2^{n-1}}$.
- 7. If $A = G^{(0)}$, then $f(xy) \leq 3f(x) + f(y)$ for all $(x, y) \in G^{(2)}$.
- 8. If $A = G^{(0)}$, then $f(xy) \le 2(f(x) + f(y))$ for all $(x, y) \in G^{(2)}$.
- 9. If $A = G^{(0)}$, then $f(x_1x_2...x_n) \le 3(f(x_1) + f(x_2) + ... + f(x_n))$ for all $n \in \mathbb{N}$ and $x_1, x_2, ..., x_n \in G$ such that $d(x_i) = r(x_{i+1})$ for all $i \in \{1, 2, ..., n-1\}$.
- 10. If $A = G^{(0)}$ and for every $x \in G \setminus G^{(0)}$ there is $i_x \in I$ such that $x \notin W_{i_x}$ (or equivalently, $\bigcap_n W_{1/2^n} = G^{(0)}$), then $f^{-1}(\{0\}) = G^{(0)}$.

Corollary 4. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). If A and B are two subsets of G with the property that there is $W \in \mathcal{W}$ such that $WAW \subset B$, then there is a uniformly continuous on fibres function $f: G \to [0, 1]$ such that f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \notin B$.

Proof. Let $C = G \setminus B$ and notice that $C \subset G \setminus WAW$. By Theorem 3 there is a uniformly continuous on fibres function $f : G \to [0,1]$ such that f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \notin WAW$ and thus for all $x \in C$.

Lemma 5. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $S \subset G$ and $f: S \to \mathbb{R}$ be a function that is uniformly continuous on fibres. Let a < b be two real constants and let

$$A = \{x \in S : f(x) \le a\} \\ B = \{x \in S : f(x) \ge b\}.$$

Then there is $W \in \mathcal{W}$ such that $WAW \cap B = \emptyset$.

Proof. Since f is uniformly continuous on fibres, there is $W \in W$ such that

$$|f(x) - f(sxt)| < (b-a)$$
 for all $s, t \in W$ and $x \in A \cap G_{r(t)}^{d(s)}$.

Thus if $s, t \in W$ and $x \in A \cap G_{r(t)}^{d(s)}$, then

$$f(sxt) = f(sxt) - f(x) + f(x) < b - a + a = b.$$

Consequently, $sxt \notin B$.

Theorem 6. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $\{S_x\}_{x\in H}$ be a family of subsets of G and $\{f_x\}_{x\in H}$ be a family of functions $f_x: S_x \to \mathbb{R}$ satisfying the following conditions:

- **c1.** $\sup_{x\in H} \sup_{z\in S_x} |f_x(z)| < \infty$.
- **c2.** There is a family $\{H_{\varepsilon}\}_{\varepsilon>0}$ of subsets of H and there is a family $\{W_{\varepsilon}^{H}\}_{\varepsilon>0} \subset \mathcal{W}$ such that $\bigcap_{\varepsilon>0} H_{\varepsilon} \neq \emptyset$ and

$$\left|f_{y}\left(szt\right) - f_{x}\left(z\right)\right| < \varepsilon$$

for all $x, y \in H_{\varepsilon}$, $s, t \in W_{\varepsilon}^{H}$ and $z \in G_{r(t)}^{d(s)} \cap S_{x}$ with the property that $szt \in S_{y}$.

If c > 0 is such that $c \ge \sup_{x \in H} \sup_{z \in S_c} |f(z)|$, then there is a bounded uniformly continuous on fibres function $h: G \to \mathbb{R}$ such that

- 1. $|h| \le c \text{ on } G$.
- 2. For all positive integers n and all $x \in \bigcap_{i=1}^{n+1} H_{2^i c/3^i}$, $|f_x h| \leq \frac{2^{n+2}c}{3^{n+1}}$ on S_x .
- 3. For all $x_0 \in \bigcap_{\varepsilon > 0} H_{\varepsilon}$, $h = f_{x_0}$ on S_{x_0} .

Proof. We use a similar reasoning as in the proof of Tietze Extension Theorem (see https://proofwiki.org/wiki/Tietze_Extension_Theorem for instance). Let c > 0 be such that $c \ge \sup_{x \in H} \sup_{z \in S_c} |f(z)|$. Let us denote $J_0 = H_{2c/3}$ and let

$$A_{0} = \bigcup_{x \in J_{0}} \left\{ z \in S_{x} : f_{x}(z) \leq -\frac{c}{3} \right\}$$
$$B_{0} = \bigcup_{x \in J_{0}} \left\{ z \in S_{x} : f_{x}(z) \geq \frac{c}{3} \right\}.$$

There is $W_0 = W_{2c/3}^H \in \mathcal{W}$ such that

$$\left|f_{y}\left(szt\right) - f_{x}\left(z\right)\right| < \frac{2c}{3}$$

for all $s, t \in W_0, x, y \in J_0$ and $z \in S_x \cap G_{r(t)}^{d(s)}$ such that $szt \in S_y$. Thus if $x, y \in J_0$, $s, t \in W_0$ and $z \in A_0 \cap G_{r(t)}^{d(s)} \cap S_x$ is such that $szt \in S_y$, then

$$f_y(szt) = f_y(szt) - f_x(z) + f_x(z) < \frac{2c}{3} - \frac{c}{3} = \frac{c}{3}.$$

Hence $sxt \notin B_0$. Consequently, $W_0A_0W_0 \cap B_0 = \emptyset$. By Corollary 4 there is a uniformly continuous on fibres function $f_0: G \to [0,1]$ such that $f_0(x) = 0$ for all $x \in A_0$ and $f_0(x) = 1$ for all $x \in B_0$. Let $g_0: G \to \mathbb{R}$ be defined by $g_0(x) = \frac{2c}{3}f_0(x) - \frac{c}{3}$ for all $x \in G$. Then $-\frac{c}{3} \leq g_0 \leq \frac{c}{3}$, $g(x) = -\frac{c}{3}$ for $x \in A_0$ and $g_0(x) = \frac{c}{3}$ for $x \in B_0$. Hence

$$|g_0| \leq \frac{c}{3}$$
 on G
 $|f_x - g_0| \leq \frac{2c}{3}$ on S_x for all $x \in J_0$.

Since g_0 is uniformly continuous on fibres, there is $W_{g,\varepsilon} \in \mathcal{W}$ such that

$$|g_0(szt) - g_0(z)| < \frac{\varepsilon}{3}$$

for all $s, t \in W_{g,\varepsilon}$ and $z \in G_{r(t)}^{d(s)}$. Thus if $x, y \in H_{2\varepsilon/3} \cap J_0$, $s, t \in W_{2\varepsilon/3}^H \cap W_{g,\varepsilon}$ and $z \in A_0 \cap G_{r(t)}^{d(s)} \cap S_x$ is such that $szt \in S_y$, then we have

$$\begin{aligned} \left| f_y\left(szt\right) - g_0\left(szt\right) - \left(f_x\left(z\right) - g_0\left(z\right)\right) \right| &\leq \left| f_y\left(szt\right) - f_x\left(z\right) \right| + \left| g_0\left(szt\right) - g_0\left(z\right) \right| \\ &< \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

Hence the family $\{f_x - g_0\}_{x \in J_0}$ satisfies the hypotheses of the theorem. Let us repeat

the procedure with the family $\{f_x - g_0\}_{x \in J_0}$ instead of $\{f_x\}_{x \in H}$, $\{H_{2\varepsilon/3} \cap J_0\}_{\varepsilon}$ instead of $\{H_{\varepsilon}\}_{\varepsilon}$ and $\frac{2c}{3}$ instead of c. We obtain a function $g_1 : G \to \mathbb{R}$ such that

$$|g_1| \le \frac{2c}{9}$$
 on G
 $|f_x - g_0 - g_1| \le \frac{4c}{9}$ on S_x for all $x \in J_1 = H_{4c/9} \cap J_0$.

Thus we can inductively generate functions $g_0, g_1, ..., g_n, ...$ such that

$$|g_n| \leq \frac{2^n c}{3^{n+1}} \text{ on } G$$

$$|f_x - g_0 - g_1 - \dots - g_n| \leq \frac{2^{n+1} c}{3^{n+1}} \text{ on } S_x \text{ for all } x \in H_{2^{n+1}c/3^{n+1}} \cap J_n.$$

Since $|g_n| \leq \frac{2^n}{3^n} \frac{c}{3}$ for all n, it follows that the series $\sum_{n\geq 0} g_n$ converges absolutely and uniformly on G to a real-valued function h satisfying $|h| \leq c$ on G. Since all g_n are uniformly continuous on fibres, h is uniformly continuous on fibres. For all $x \in H_{2^{n+1}c/3^{n+1}} \cap J_n$ we have

$$|f_x - h| \le |f_x - g_0 - g_1 - \dots - g_n| + \sum_{k=n+1}^{\infty} |g_k| \le \frac{2^{n+1}c}{3^{n+1}} + \frac{2^{n+1}c}{3^{n+1}} = \frac{2^{n+2}c}{3^{n+1}}$$

and consequently, $f_{x_0} = h$ on S_{x_0} for all $x_0 \in \bigcap_{\varepsilon > 0} H_{\varepsilon}$. Moreover

$$\sup_{x \in G} |h(x)| \le c.$$

Corollary 7. Let G be a groupoid endowed with a G-uniformity \mathcal{W} (in the sense of Definition 1). Let $S \subset G$ and $f : S \to \mathbb{R}$ be a bounded function that is uniformly continuous on fibres. Then there is a bounded uniformly continuous on fibres function $h: G \to \mathbb{R}$ such that h(x) = f(x) for all $x \in S$. Moreover h can be chosen such that $\sup_{x \in S} f(x) = \sup_{x \in G} |h(x)|$.

Proof. The family for which the only one element is $\{f : S \to \mathbb{R}\}$ satisfies the hypotheses of Theorem 6.

Corollary 8. Let X be a uniform space and let \mathcal{U} be a fundamental system of symmetric entourages of the uniformity on X. Let $\{g_j\}_{j\in J}$ be a family of functions $g_j : S_j \to \mathbb{R}$, where $S_j \subset X$ for all $j \in J$. Let us assume that the family $\{g_j\}_{j\in J}$ satisfies the following conditions:

- **c1.** $\sup_{j\in J} \sup_{j\in S_i} |g_j(z)| < \infty.$
- **c2.** There is a family $\{J_{\varepsilon}\}_{\varepsilon>0}$ of subsets of J and there is a family $\{U_{\varepsilon}^{J}\}_{\varepsilon>0} \subset \mathcal{U}$ such that $\bigcap_{\varepsilon>0} J_{\varepsilon} \neq \emptyset$ and

$$\left|g_{j}\left(x\right)-g_{k}\left(y\right)\right|<\varepsilon$$

for all $j, k \in J_{\varepsilon}$ and $(x, y) \in U_{\varepsilon}^{J}$ with the property that $x \in S_{j}$ and $y \in S_{k}$.

If c > 0 is such that $c \ge \sup_{x \in H} \sup_{z \in S_c} |f(z)|$, then there is a bounded uniformly continuous on fibres function $h: X \to \mathbb{R}$ such that

1. $|h| \leq c \text{ on } X$.

2. For all positive integers n and all $j \in \bigcap_{i=1}^{n+1} J_{2^i c/3^i}, |g_j - h| \leq \frac{2^{n+2}c}{3^{n+1}}$ on S_j .

Surveys in Mathematics and its Applications 12 (2017), 219 – 227 http://www.utgjiu.ro/math/sma 3. For all $j_0 \in \bigcap_{\varepsilon > 0} J_{\varepsilon}$, $h = g_{j_0}$ on S_{j_0} .

Proof. Let us consider the trivial groupoid $G = X \times X$. Then \mathcal{U} satisfies conditions 1 - 4 from Definition 1. Thus \mathcal{U} is G-uniformity on the groupoid $G = X \times X$. Let $x \in X$.

For each $j \in J$, let $f_j : \{x\} \times S_j \to \mathbb{R}$ be defined by $f_j(x,y) = g_j(y)$ for all $(x,y) \in \{x\} \times S_j$. Then

$$|f_{j}((x,x)(x,z)(z,y)) - f_{k}(x,z)| = |g_{j}(y) - g_{k}(z)| < \varepsilon$$

for all $j, k \in J_{\varepsilon}$ and $(z, y) \in U_{\varepsilon}^{J}$ with the property that $y \in S_{j}$ and $z \in S_{k}$. Thus the family $\{f_{j}\}_{j \in J}$ satisfies the hypotheses of Theorem 6.

Remark 9. If X is a uniform space and $g : S \to \mathbb{R}$ is a bounded uniformly continuous function, where $S \subset X$ is endowed with the uniform structure coming from X, then, applying the preceding corollary to the singleton family $\{g\}$, there is a bounded uniformly continuous function $h : X \to \mathbb{R}$ such that h(x) = f(x) for all $x \in S$. Moreover h can be chosen such that $\sup_{x \in S} |f(x)| = \sup_{x \in G} |h(x)|$. Thus we obtain [3, Theorem 3].

A topological groupoid is a groupoid G together with a topology on G such that the product operation $(x, y) \mapsto xy$ [: $G^{(2)} \to G$] (where $G^{(2)} \subset G \times G$ is endowed with the topology induced by the product topology on $G \times G$) and the inversion operation $x \mapsto x^{-1}$ [: $G \to G$] are continuous functions.

Lemma 10. Let G be a topological groupoid and \mathcal{W} be a family of neighborhoods of $G^{(0)}$. Let us assume that topology on G has the property that for each $x \in G$ and each neighborhood V of x there is $W \in \mathcal{W}$ and there is a neighborhood U of x such that $WUW \subset V$. Then for each $W_1 \in \mathcal{W}$ and each $x \in G$, there is $W_2 \in \mathcal{W}$ and there is a neighborhood V of x such that $V^{-1}W_2V \subset W_1$.

Proof. For each $W_1 \in \mathcal{W}$ and each $x \in G$, there is a neighborhood V_1 of x such that $V_1^{-1}V_1 \subset W_1$. Furthermore there is $W_2 \in \mathcal{W}$ and there is a neighborhood V of x such that $W_2VW_2 \subset V_1$. Hence $(W_2VW_2)^{-1}W_2VW_2 \subset V_1^{-1}V_1 \subset W_1$. Consequently, $V^{-1}W_2V \subset W_2^{-1}V^{-1}W_2^{-1}W_2VW_2 \subset V_1^{-1}V_1 \subset W_1$.

Remark 11. Every locally Hausdorff, locally compact groupoid G (in the sense of [4, p. 6]) satisfies the hypothesis of the preceding lemma ([4, Lemma 2.10],[4, Lemma 2.14]) with W a fundamental system of diagonally compact ([4, p. 10]) neighborhoods of $G^{(0)}$.

Proposition 12. Let G be a topological groupoid and \mathcal{W} be a family of neighborhoods of $G^{(0)}$ satisfying conditions 1 - 4 in Definition 1. Let us assume that the topology of G has the property that for each $x \in G$ and each neighborhood V of x there is $W \in \mathcal{W}$ and there is a neighborhood U of x such that $WUW \subset V$. Let $x_0 \in G$,

let V_0 be a neighborhood of x_0 and let $f: G^{d(V_0)} \to \mathbb{R}$ be a bounded function that is uniformly continuous on fibres with respect to the G-uniformity \mathcal{W} . For each $x \in V_0$, let us define $f_x: G^{r(x)} \to \mathbb{R}$, $f_x(y) = f(x^{-1}y)$ for all $y \in G^{r(x)}$. Then there is a bounded uniformly continuous on fibres function $h: G \to \mathbb{R}$ (with respect to the G-uniformity \mathcal{W}) such that

- 1. $\sup_{z \in G} |h(z)| \le \sup_{z \in G^{d(V_0)}} |f(z)|.$
- 2. $h = f_{x_0}$ on $G^{r(x_0)}$.
- 3. For each $\varepsilon > 0$ there is a neighborhood $U_{\varepsilon} \subset V_0$ of x_0 such that for all $x \in U_{\varepsilon}$, $|f_x - h| < \varepsilon$ on $G^{r(x)}$.

Proof. Since f is uniformly continuous on fibres, it follows that for each $\varepsilon > 0$, there is $W_{f,\varepsilon} \in \mathcal{W}$ such that $|f(szt) - f(z)| < \varepsilon$ for all $s, t \in W_{f,\varepsilon}$ and $z \in G_{r(t)}^{d(s)} \cap G^{d(V_0)}$. Furthermore there is $W_{f,\varepsilon,x_0} \in \mathcal{W}$ $(W_{f,\varepsilon,x_0} \subset W_{f,\varepsilon})$ and there is a neighborhood $V_{\varepsilon} \subset V_0$ of x_0 such that $V_{\varepsilon}^{-1}W_{f,\varepsilon,x_0}V_{\varepsilon} \subset W_{f,\varepsilon}$. For all $x, y \in V_{\varepsilon}$, $s, t \in W_{f,\varepsilon,x_0}$ and $z \in G_{r(t)}^{d(s)} \cap G^{r(x)}$ with the property that $szt \in G^{r(y)}$, we have

$$\begin{aligned} |f_y(szt) - f_x(z)| &= |f(y^{-1}szt) - f(x^{-1}z)| = |f(y^{-1}sxx^{-1}zt) - f(x^{-1}z)| = \\ &= |f(s'x^{-1}zt) - f(x^{-1}z)| < \varepsilon \end{aligned}$$

because $s' = y^{-1}sx \in V_{\varepsilon}^{-1}W_{f,\varepsilon,x_0}V_{\varepsilon} \subset W_{f,\varepsilon}$ and $t \in W_{f,\varepsilon,x_0} \subset W_{f,\varepsilon}$. Thus $\{f_x\}_{x \in V_0}$ satisfies the hypotheses of Theorem 6 with $H = V_0$, $H_{\varepsilon} = V_{\varepsilon}$, $W_{\varepsilon}^H = W_{f,\varepsilon,x_0}$ and $c = \sup_{z \in G^{d(V_0)}} |f(z)|$. Consequently, there is a bounded uniformly continuous on fibres function $h: G \to \mathbb{R}$ such that

- i) $|h| \leq c$ on G.
- ii) For all positive integers n and all $x \in \bigcap_{i=1}^{n+1} V_{2^i c/3^i}$, $|f_x h| \leq \frac{2^{n+2}c}{3^{n+1}}$ on $G^{r(x)}$.
- iii) For all $x \in \bigcap_{\varepsilon > 0} V_{\varepsilon}$, $h = f_x$ on $G^{r(x)}$.

Since $x_0 \in \bigcap_{\varepsilon > 0} V_{\varepsilon}$, it follows that $h = f_{x_0}$ on $G^{r(x_0)}$. Let $\varepsilon > 0$ and let n_{ε} be a positive integer such that $\frac{2^{n_{\varepsilon}+2}c}{3^{n_{\varepsilon}+1}} < \varepsilon$. If $x \in U_{\varepsilon} = \bigcap_{i=1}^{n_{\varepsilon}+1} V_{2^i c/3^i}$ then $|f_x - h| < \varepsilon$ on $G^{r(x)}$.

Remark 13. Any topological groupoid that is paracompact admits a fundamental system \mathcal{W} of neighborhoods that is a G-uniformity compatible with the topology of fibres [5]. The same is true for a topological groupoid with paracompact unit space [1].

References

- M. Buneci, Various notions of amenability for not necessarily locally compact groupoids, Surveys in Mathematics and its Applications, 9 (2014), 55-78. MR3262174.
- [2] M. Buneci, A Urysohn type lemma for groupoids, Theory and Applications of Categories 32 (2017), Paper No. 28, 970-994. MR3684727. Zbl 06785327.
- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91; MR0050264. Zbl 0045.25704. Correction to "On real-valued functions in topological spaces", Fund. Math. 40 (1953) 203-205. MR0060211. Zbl 0053.12304.
- [4] P. Muhly and D. Williams, Renault's Equivalence Theorem for groupoid crossed products, NYJM Monographs 3, 2008. MR2547343. Zbl 1191.46055.
- [5] A. Ramsay, The Mackey-Glimm dichotomy for foliations and other Polish groupoids, J. Funct. Anal. 94(1990), 358-374. MR1081649(93a:46124). Zbl 0717.57016.

Mădălina Buneci University Constantin Brâncuşi, Calea Eroilor No.30, 210135 Târgu-Jiu, Romania. e-mail: ada@utgjiu.ro, mbuneci@yahoo.com http://www.utgjiu.ro/math/mbuneci/

License

This work is licensed under a Creative Commons Attribution 4.0 International License.