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EXISTENCE AND ATTRACTIVITY OF SOLUTIONS
OF SEMILINEAR VOLTERRA TYPE
INTEGRO-DIFFERENTIAL EVOLUTION
EQUATIONS

Mouffak Benchohra and Noreddine Rezoug

Abstract. In this paper, we prove a result on the existence and local attractivity of solutions of
second order semilinear evolution equation. Our investigations will be situated on the Banach space
of functions which are defined, continuous and bounded on the nonnegative real axis. The results
are obtained by using the Monch fixed point and the Kuratowski measure of noncompactness. An

example is provided to illustrate the main result.

1 Introduction

In this paper, we investigate the existence and local attractivity of the mild solution,
defined on a semi-infinite positive real interval J = [0,00), for non-autonomous
semilinear second order evolution equation of mixed type in a real Banach space.
More precisely, we will consider the following problem

y/(1) — AWy(t) = f (t,y@), / K(t,s,y<s>>ds) ted (L.1)

y(0) = yo, ¥'(0) = w1, (1.2)

where {A(t) }o<t<+oo is a family of linear closed operators from E into E, f : J x
FE x E — FE is a Carathéodory function, K : A x E — E is a continuous function,
A:={(t,s) e JxJ:s<t}, yo,y1 € E and (E,|-|) is a real Banach space.
Evolution equations arise in many areas of applied mathematics [2, 40]. This type
of equations have received much attention in recent years [1]. Integro-differential
equations on infinite intervals have attracted great interest due to their applications
in characterizing many problems in physics, fluid dynamics, biological models and
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chemical kinetics see [5, 6, 15, 16, 36]. Qualitative properties such as the existence,
uniqueness and stability for various functional differential and integro-differential
equations have been extensively studied by many researchers (see, for instance, [7,
9, 11, 19, 25, 30)).

There are many results concerning the second-order differential equations, see
for example [10, 18, 23, 26, 37, 38]. For the study of abstract second order equations,
the existence of an evolution system U (t, s) for the homogenous equation

y'(t) = At)y(t), for t =0,

is useful. For this purpose there are many techniques to show the existence of U (t, s)
which has been developed by Kozak [29].

On the other hand, recently there has been an increasing interest in studying
the abstract non-autonomous second order initial value problem

y'(t) — A()y(t) = f(t,y(t)), t € [0,T] or t € [0,00) (1.3)

y(0) = o, ¥'(0) = y1. (1.4)

The reader is referred to [14, 17, 22, 27] and the references therein.

In this paper we use the technique of measures of noncompactness. It is well
known that this method provides an excellent tool for obtaining existence of solutions
of nonlinear differential equation. This technique works fruitfully for both integral
and differential equations. More details are found in Akhmerov et al. [3], Alvares
[4], Aissani and Benchohra [8], Banas and Goebel [12], Guo et al. [28], Olszowy and
Wedrychowicz [32, 33|, Zhang and Chen [41] and the references therein.

Motivated by the above-mentioned works, we derive some sufficient conditions
for the existence of solutions of the system (1.1)-(1.2) by means of the Kuratowski
measure of noncompactness and the fixed point theory.

This work is organized of as follows. In Section 2, we recall some definitions
and facts about evolution systems. In Section 3, we give the existence of mild
solutions to the problem (1.1)-(1.2). Section 4 is devoted to the attractivity of the
solution of problem (1.1)-(1.2). An example is presented in Section 5 to illustrate
the application of our results.

2 Preliminaries

In this section, we mention notations, definitions, lemmas and preliminary facts
needed to establish our main results. Throughout this paper, we denote by F a
Banach space with the norm |- |. Let BC(J, E) be the Banach space of all bounded
and continuous functions y mapping J into F with the usual supremum norm

lyll = sup |y(t)].
teJ
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We set
Br={yeC(J,E):|lyl <R},Br={y € C(J,E) : ||yl < R}

(R > 0 is a constant).
In what follows, let {A(t), ¢ > 0} be a family of closed linear operators on the
Banach space E with domain D(A(t)) which is dense in F and independent of t.

In this work the existence of solutions the problem (1.1)-(1.2) is related to the
existence of an evolution operator U(t, s) for the following homogeneous problem,

Y1) = At(t),  te . (2.1)
This concept of evolution operator has been developed by Kozak [29].

Definition 1. A family U of bounded operators U(t,s) : E — E,
(t,s) € A:={(t,s) € J x J:s <t} is called an evolution operator of the equation
(2.1) if the following conditions hold:

(e1) For any x € E the map (t,s) — U(t, s)z is continuously differentiable and
(a) foranyte J, U(t,t) =0.

(b) forall(t,s) € A and for anyz € E, %U(t, s)x‘tzs =z and %U(t, s)x‘tzs =

—Z.

2U(t, s)x € D(A(t)), the map

(e2) For all (t,s) € A, if x € D(A(t)), then 3
s

(t,s) — U(t,s)z is of class C? and

82
(a) ﬁU(t, s)xr =AU (¢, s)x,

82
(b) T30t s)e = Ult,2)A(s)e,

82
(c) @U(t,s)ﬂt:s =0.

A 0 A ' i
(e3) F0;3all (t,s) € A, then %U(t, s)x € D(A(t)), there exist mU(t,s)w,

mU(t,s)w and
() 55Ut )z = Al) (DU
Y zas 0 PT T W g o

Moreover, the map (t,s) — A(t)%(t)U(t,s):r is continuous,
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83
b
(b) 0820t

Ul(t,s)x = %U(t, s)A(s)x.

Throughout this paper, we will use the following definition of the concept of
Kuratowski measure of noncompactness [12].

Definition 2. The Kuratowski measure of noncompactness « is defined by
a(D) =inf{r > 0: D has a finite cover by sets of diameter < r},
for a bounded set D in any Banach space X.

Let us recall the basic properties of Kuratowski measure of noncompactness.

Lemma 3. [12] Let X be a Banach space and C,D C X be bounded, then the
following properties hold:

Q

) < a(D) when C C D,

aD) = |a|la(D) for any a € R,

) o
) af
) o
i1) a(C+ D) <a(C)+ a(D) where C+D ={x |z =y+ z;y € C;z € D},
) o
) a(ConvD) = (D), where ConvD is the convex hull of D,

) o

) o

Denote by w? (y,e) the modulus of continuity of ¥ on the interval [0, 7] i.e.

w(y,€) = sup {|y(t) = y(s)|st,5 € [0, T, [t — s| < e} .

Moreover, let us put

wl(D,e) = sup {wT (y,¢);y € D},

T(D) — Tim o7
wy (D) = ;1_r>1(1)w (D,¢).
Lemma 4. [26] If H = {u,}>>, C LY([0;T], E) is uniformly integrable, then the
function s — a(H(s)) is measurable and

t 00 t
a{/ un(s))ds} < 2/ a(H(s))ds, t € [0;T].
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Second order evolution equations in Banach space 219

We recall that a subset B C LY([0;T); E) is uniformly integrable if there erists
€€ LY([0;T);IR™T) such that

|z(s)|| < &(s) for x € B and a.e. s € [0;T].

Lemma 5. [34],([35], p. 35). Letu(t), h(t), p(t) and q(t) be real valued nonnegative
integrable functions defined on IR™, for which the inequality

u(t) < h(t) + /Otp(s) [u(s) + /08 q(T)u(T)dT:| ds,

holds for all t € IR™, then

) <bi0)+ [ 566) [1s) + [ W00 + atr e |

0
for allt € IRT.

We introduce now the concept of attractivity (stability) of solutions of operator
equations in the space BC(J, E). To this end, assume that £ is a nonempty subset
of the space BC(J, E). Moreover, let Q be an operator defined on £ with values in
BC(J, E). Let us consider the operator equation of the form

y(t) = (Qy)() (2.2)
Definition 6. [20] We say that solutions of (2.2) are locally attractive if there exists
a ball B(y*,r) in the space BC(J, E) such that B(y*,7) N E # 0, and for arbitrary
solutions y1 and yo of (2.2) belonging to B(y*,r) N E we have

Jim (y2(t) = 1(2)) = 0.

S

(p(d) + q(é)dd)) dT:| ds,

In the case when this limit (2.2) is uniform with respect to the set B(y*,r) N & i.e.
when for each € > 0 there exists a T > 0 such that

ly2(t) — 1 (t)| < e

for all y2,y1 € B(y*,r) NE being solutions of equation (2.2)and for t > T, we will
say that solutions of equation (2.2) are uniformly locally attractive.

The concept of uniform local attractivity of solutions is equivalent to the concept
of asymptotic stability of solutions (introduced in the paper [13]).

Theorem 7 ( Ménch fixed point theorem). [21] Let X be a Banach space, €2 is
bounded open subset of X with 0 € Q. Let F' : Q@ — X be a continuous operator
satisfying

(2) If H C Q is countable and H C Conv({0} U F(H)); then H is relatively
compact.

() y # AFy; VX € [0;1];y € 09,
Then F has a fized point in Q.
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3 Existence of solutions

Definition 8. A function y € BC(J,E) is called a mild solution to the problem
(1.1)-(1.2) if y satisfies the integral equation

y(t) = —%U(t, 0)yo + U(t,0)y1 + /0 Ul(t,s)f <s,y(s), /08 K(s, T,y(T))dT) ds.
(3.1)

For the forthcoming analysis, we need the following assumptions:

(H1) There exist constants M > 1 and w > 0, such that

1UllpE) < Me %) for any (t,s) € A.

(Hs) There exist constants M > 1 and @ > 0, such that:
9 o1 —w(t—s)
Ha—U(t, s)lpE) < Me for any (¢,s) € A.
s

(H3) The function f: J x E x E — E is Carathéodory and satisfies the following;:

@ t
lim e 3| £(5,0,0)|ds = 0,

t——+o0 0

(b) There exists an integrable function p : J — R*, such that:
| f(t,uz,v2) = f(t,ur,v1)| < p(t)(1 + |ug —wi| + vz — v1])

for a.e t € J and each u;,v; € E, (i = 1,2),

and
t

: —w(t—s) _
t£+moo ; e p(s)ds = 0.

(c) There exist locally integrable functions o; : J — R, (i = 1,2) such that:
a(f(t,D1,D32)) < o1(t)a(D1)+02(t)a(D2) for a.e t € J and Dy, Dy C E.
(H4) The function K : A x E — E satisfies the following:
(a) There exists an integrable function ¢ : J — R, such that:
|K(t,s,u) — K(t,s,v)] < q(t)|u—v| for a.e (t,s) € A and each u,v € E.
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(b) There exist constants K > 0 and v > 0, such that:

|K(t,5,0)| < Ke ") for any (t,s) € A.

(c) There exists a constant K* > 0, such that

a(K(t,s,D)) < K*a(D) for a.e (t,s) € Aand D C E.

Remark 9. Notice that if the hypothesis (Hs) holds, then there exist constants
f*,p* > 0 such that:

t t
fr=suwp [ 00y =sup [ eI,
teJ JO teJ JO

Theorem 10. Assume that the hypotheses (Hy) — (Hy4) are satisfied. Then the
problem (1.1)-(1.2) admits at least one mild solution, which is uniformly locally
asymptotically attractive.

Proof. Consider the operator N : BC(J, E) — BC(J, E) defined by

(V)0 = - 0O+ U0 + [ Us)s (s, [ Klsrp(rar ) .

We notice that the fixed points of the operator N are mild solutions of the problem
(1.1)-(1.2).

Step 1. N(y) € BC(J, E) for any y € BC(J, E).

Let y € BC(J, E), then for t € J, we have
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|Ny(t)]
< \ Ouwo)| 1ol + 10 s Ion
>~ 0 1
68 B(E B(E
+ | <3y /KST, dT)’dS
< M |yo| +M|y1|
t S
oM / eme(t=9) f<s,y<s>, / K(S,T,y(f))df>—f(s,0,0)+f(s,0,0) ds
0 0
< M |yo| + M ||
t S
o [ ey (1+|y<s>\+ / |K<s,r,y<f>>\dr) s
0 0
t
+ M / e™(=%)| £(5,0,0)|ds
0
< Mlyo| + M |y
t S
+ M/ e =) p(s) <1+\y(s)\+/ |K(8,T,y(7'))—K(S,T,O)-FK(S,T,O)’CZT) ds
0 0
< Mlyo| + M |y|

s | eelt=p(s) (1+ 1w+ [ atnluto) as

t
+ oM / =(t=5)| £(5,0,0)|ds
+ M/ / wt=5)p(5)|k(s, 7, 0)|drds

- . ) K\ .
< N fyol + M lyr |+ Mp*(1+ flallx) supy(t) + M " + M <1 + 7) »
€
< Ho0.
Consequently, N(y) € BC(J, E).

Step 2. N is continuous.
Let (yn)nen be a sequence in BC(J, E) such that y, — y in BC(J, E).
Case 1. If t € [0,T]; T > 0, then, we have

((Nyn) (1) = (Ny)(0)]

<u | ‘f(s,yn(S), | s mnman) = £s.90). [ Ks.my(yan)| ds.

Hence, since the functions f is Carathéodory and K is continuous function, the
Lebesgue dominated convergence theorem implies that

(3.2)

|INy, — Ny|| =0 as  n — +o00.
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Case 2. If t € (T, 0), T > 0.
Since y, — y as n — 00, we conclude that for € > 0, there is a real number T > 0

such that

lyn(t) — y(t)|| <e, for any ¢ > T.

We choose T' > T, then (3.2) and the hypotheses imply that

[Nyn(t) — Ny(t)]
car [ ooy <1+,yn(>_y<s>|+ [ e ontr) - stmar) s g

< M(1+e(1+ [lallp)) / e~ (=) p(5)ds.
0

Since (Hs), then the inequality (3.3) reduces to
IN(yn) = N(y)|l =0 asn — oo.

So N is continuous.
Step 3: N(Bpg) is equicontinuous.
Let t1,ty € [0,T] with to > t; and y € Bg. Then, we have

(Vy)(t2) ~ (Vo)1) s
_ ' [ @it - veer9s (s, [ KGs.matrar ) as

/j S Ultr)f <s,y<s>, /0 K57, y(T))dT> ds

< / U (t,7) — Uty )| ) (7) (1 + ly(s)| + / sq<f>|y<f>|df) ds
n / U (t2,7) = Ut1,7) | 3y | £ (5, 0, 0)|ds (3.4)

/1/ |U(t2,7) = U(tr, 7)) p(s)| K (5,7, 0)|drds
+M [ p(s)e Y ( +|y(5)|+/03q(7')|y(7-)|d7—> ds

t
t

+M e (=3 £(5,0,0)|ds

—+

/ wt=s)p(s)|K (s,7,0)|drds.
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We get

(V9)(t2) - (V)0 8
< [M 10t n) - Ut Dllseptr) (1 g qmm) s

t1
4 / U (t2s7) — U2, ) ey |1/ (5,0, 0) ds
t1
/ / 10t ) — Ut 1) | ypls) K (s, 7, 0)ds

/ =) p(s)ds
t1
to S
+MR/ p(s)e wt=9) <1 +/ q(T)dT) ds
t1 0
t2
+M —w(t=9)| £(5,0,0)|ds

/ $)| K (s, 7,0)|drds.

The right-hand side of the above inequality tends to zero as to — t; — 0, which
implies that N(Bpg) is equicontinuous.

Consider the measure of noncompacteness p(B) defined on the family of bounded
subsets of the space BC(J, E) by

w(B) = wl (B) +supe " Wa(B(t)) + lim sup|y(t)],
ted l=+00 ey

where

t
o(t) = 4M/ (01(s) + 2K soa(s))ds, 7 > 1, a(B(t)) = sup «a(B(s)).
0 s€[0,t]

Now, we will show that the operator N satisfies the conditions (z) and (22) of M6nch’s
fixed point theorem. Suppose B C BC(J, E) is countable and B C Conv({0} U
N(B)).

Step 4. B is relatively compact.

Claim 1. wl(B) =0

Using the properties of wl (-)( see [31]), and N(Bg) is equicontinuous, we get

wy (B) < wi (Conv({0} UN(B))) = wg (N(B)) = 0.

So we deduce wl (B) = 0.
Claim 2. supe "Wa(B(t)) = 0.
teJ
3 Sk Sk Sk Sk Sk Sk Sk Sk kR SRR KK R KR 3R 3R R 3R 3k sk sk Sk Sk sk sk Sk Sk sk sk sk sk sk sk skok sk sk R SR R R R R R R R sk sk sk sk sk sk sk sk sk sk sk sk sk skok kR SkoR KRR R R Rk kk
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Using the properties of «, Lemma 4 and assumptions (H;), (H3) and (Hy), we get

a(B(t)
< a(Conv({0} UN(B)(t))) = a(NB(t))

(/Ot Ult,s)f <S,B(S),/OS K(S,T,B(s))d7> ds>

§2M/0ta(f (S,B( ), / K(s, 7, B(r ))d7> ds> ds

<2 | (al(s)a(B( +oals </ K(s,7. B dT> >d

< oM ) (Ul(s)a(B( )) + 2K s (s )/Osa(B( P)dr )ds.
<2M o1(s)a(B(s)) + 2K*02(5)/0 a(B(T)dT) ds.

0
t

<2M o1(s) sup a(B(s)) +2K*o2(s)s sup a(B(7)) | ds.
0 s€0,t] T7€0,s]

IN
Q

<2M o1(s) sup a(B(s)) + 2K*02(s)s sup a(B(s)) | ds.
0 s€[0,4] s€[0,]
t

< 2M/ (01(s) + 2K*02(s)s) sup «(B(s))ds.
0 s€[0,t]

Therefore, we have

a(B(t) < 2M /Ot(al(s)—|—2K*302(s))em(s)e_m(s)a(B(s))ds,

then
e Va(B(1) < - supe T OF(B().
T teJ
hence
=70 supa(B(t)) < = supe T Va(B(1)).
tGJ T tEJ
Since
e sup a(B(s)) < e supa(B(t)),
se0,4] teJ
we get
— 1 —To(t)5
e sup a(B(s)) < —supe™""Va(B(t)).

s€[0,t] T teJ
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Then

sup e OF(B()) < L sup e Da(B(L)).
teJ T teJ

Since 7 > 1 and inequality (3.5), we obtain

supe " Wa(B(t)) = 0.
ted

Claim 3. hm sup |y(t)| = 0.

t0oo ey
We have

()] < Mlyole ™" + My|e "

+—M/ () (14l + [ amlatear] ds

4 M/ (=) £(s,0,0)|ds

4 M/ / §)|K (s, 7, 0)|drds

< Mlyole ™" + +Mlyi|e™

t
Y / <=9 £(5,0,0)|ds
0

+ M<1+K)/te W(t=5) p(5)ds
*‘M/ B WUHAZMMMWPS

By Lemma 5, we have

/Me‘”ts s)

X [h(S) /0 h(r)(Me™""p(r) + (7)) exp (/S(Me‘”(”)p(5)+Q(5)d5)

T

where

h(t) = Mlyole ™" + Mlyi|e "

+M/ w(t=5)| £(s,0,0)|ds

¢
+ M(l—l—K)/ e =) p(s)ds.
7/ Jo

(3.5)

) dT] ds,
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Then

W] < h(t)+€ /0 e~ p(5)ds,

where
v * K * * * *
§=|Mlyo| + M |y1| + Mf*+ M 1+; p| [L+p"(Mp* + [lgllp1)] exp (Mp* + [|q||z1)-

It follows immediately by assumptions (H1) — (H4) that

I =0.
i sup [y (t)]

From Claims 1, 2, 3, we obtain
n(B) = 0.

Thus, we find that B is relatively compact.

Step 5. A priori bounds.

We now show there exists an open set Y C B with y # AN(y), for A € (0,1) and
y €Y. Let y € B and y = AN (y) for some 0 < A < 1. Then

y(t) = —)\iU(t7O)yo + AU (t,0)y1 + )\/0 U(t,s)f (s,y(s), /OS K(S,T,y(T))dT> ds.

This implies by (H1) — (H4) that, for each ¢t € J, we have

ly(®)]

IN

U(t,0)

0
s 90l + 10t 8)lL sy

0s

B(E)

0, | p(s)e =) (1+|y<s>|+ / 8q<¢>|y<¢>|>df) s
4 M/ “(1=9)| £(5,0,0)|ds
4 M// ~wlt=)p(5)[k(s, 7, 0)|dsdt

" * K *
M |yo| + M [y1| + M f +M<1+7)p

+ M/Otp(S)e“’(”) <|y(5) +/OSQ(T)\y(T)IdT> ds.
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By Lemma 5, we have

()| < h(t)-i-f/o e =) p(s)ds.

Y K
My0|+M|3/1’+Mf*+M<1+7+§>p*:A‘

IA

Set

Y={ye BC(JLE):|yl|l<A+1}.

By the choice of Y, there is no y € 9Y such that y = AN(y), for A € (0,1). Thus by
Monch fixed point theorem, the operator N : Y — BC(J, E) has at least one fixed
point which is a mild solution of problem (1.1)-(1.2).

4 Attractivity of solutions

Now we investigate the uniform local attractivity for solutions of problem (1.1)-(1.2).
Mp*

‘ — M (L + Tl

the closed ball in BC(J, E). Then, for y € B(y*,ro) by (H1)-(H4) , we have

Let 3* be a solution to problem (1.1)-(1.2) and B(y*, ro) with rg > T

[Ny(t) —y*(t)] = [Ny(t) — Ny*(2)]

<[ t||ztf<t,s ||B<E>\f<s s / K(s,mafeir ) = 1 (5.7, [ KGsimar e ) |as

SM/ e wlt=s (1+ ly2(s) — y1(s \+/ K (s,7,y2(7)) —K(s,T,yl(T))DdT) ds
< U ) e /0 Ip(e) (141066 =@+ [ ar)ot) - ()har ) s

t
§M/ e “t=)p(s)ds
0

+Mrq / t e =) p(s) <1+ /0 sq(’l')d’i') ds

0
< Mp* + Mp*(1+ |lql[1)ro
<70.
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Therefore, we get N(B(y*,70)) C B(y*,70).
So, for any solution y1,ys € B(y*,70) to problem (1.1)-(1.2) and ¢ € .J, we have

\Ny2() Ny (t)] .
/ |U(t,s ”B(E)||f(37y2( s), / K(s,7,y2(7))dr) — f(s,11 8),/0 K(SyT,yl(T))dT)‘ds

<M/ 5) (1 2(6) = @)+ [ (s, oamr) = K s, o (7)) s
SMA Q+m w1+ [ ao) (o) = e ) ds
<Moe( p

t s
—l—Mm/ e*‘“(tfs)p(s) [1+/ q(’T)dT:| ds
0 0
t

ﬂM+Muwwmm/ka%@m
0

Hence, from (H3), we conclude that for € > 0, there are real numbers 7" > 0 such

that

3

t
—w(t=5)(s)ds < for all t > T
e s)as , 10T a i
/ P < TR+ el

Then from the above inequality it follows that

lya(t) — y1(t)| < e for all t > T.

Consequently, the solutions of problem (1.1)-(1.2) are uniformly locally attractive.

5 Example

Let us consider the following class of partial differential equations;

0? 0? 0
@Z(t, 7') = ﬁZ(t, T) +U/(t)a2(t,7')
sin(t)e~1#T)I=vt
241
In(1 + 2e7"%))z(t, T)
(@ + 1)1 +2(t,7)[)
sin(e"?) /t In(e* + 2t) cos(z(s, 7))e Y (t=9) s

teJ, rel0,m],

(t241)2 (2+2t2 +5%)3
z(t,0) = =z(t,m) =0 teJ,
207 =ui) re o,

(5.1)
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where a : J — IR is a Holder continuous function and v is a positive constant such
that v > 1.

Let E = L?([0,7],R) be the space of 2-integrable functions from [0, 7] into R, and
let H2([0, 7], R) be the Sobolev space of functions z : [0,7] — R, such that 2" €
L?([0,7],R). We consider the operator A1y(7) = y”(7) with domain D(A;) =
H?(R,C), infinitesimal generator of strongly continuous cosine function C(t) on E.
Moreover, we take As(t)y(s) = a(t)y'(s), defined on H'([0,7],R), and consider the
closed linear operator A(t) = A; + Aa(t) which, generates an evolution operator U,
defined by

Ult,s) = Z zn(t, 8) (2, Wy )wn,

ne”L

where z, is a solution to the following scalar initial value problem,

Z'(t) = —n2z(t) + ina(t)z(t)
z(0) =0, 2'(0) = 1.

It follows from this representation that

U, )l Be) < e =9 for every (t,s) € A.

Set

2(t) (1) = w(t)(1), t >0, 7 €[0,7],

sin(t)e MO (1 4 2e7))u(t,7)  sin(e™
R G [(Earoe IR CES I
_ In(2t 4 e7*) cos(u(t, 5))e v (t=9)
k(t,S,U)(T) - (1 +t2 4 82)3 )

and

0 20)(7) = Lw(O)(r), 7€ 0.7

572 (0)(7) = Zw(0)(r), 7 , 7.
Moreover, applying the inequalities

In(1+2z) <ua, sinx <z,

We have

|f(t7u2702)(7—) - f(t’ uy, Ul)(T)‘

et In(l+e )

< t - t
211 (t2+ 1) |u2( 7T) ul( >T)|
t

lva(t, 7) — vi(t, 7)|

~
no

+

—_
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and
In(1+ 2t)
|K(t,s,u)(T) — K(t,s,v)(1)] < Wm(tﬂ') —(t, )| (5.3)
Hence conditions (H3)(a) and (H4)(a) are satisfied with
e ! In(1+ 2¢
PO =g o) = e,

Also, we have

t t —VUS o}
(9| (5. 0.0)lds  — / (-5 sin(s) ,
[ et = [ ettt

t
1

:e_t/2 ds
08+1

< e tarctan(t) — 0 as t — oo,

t (s tef(tfs)efus
/06 (t )p(S)dS = AMdS

< e tarctan(t) — 0 as t — oo,

and
In(2t + e=%)e (¢
k(t,s,0
kes0)] < HEECC
In(1 4 2t)e=v(t=%)
<
- (12 +1)3
_ 2t6—1/(t—s)
— (t2 + 1)3
< 25\/56_1,@—3)‘
- 108
By (5.2), for any bounded sets Dy, Dy C E, we get
In(1 + e™*) sin(e™")
O[(f(t, Dl,DQ)) < W@(Dl) + WQ(DQ) for a.et € J.

By (5.3), for any bounded sets D C E, we get

25v/5
108
Hence (H3)(c) and (H4)(c) are satisfied.

a(K(t,s,D)) < a(D) for aet € J.

Consequently, (5.1) can be written in the abstract form (1.1)-(1.2). The existence
of a mild solutions can be deduced from an application of Theorem 10. Moreover,
these solutions are uniformly locally attractive.
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