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THE FUNDAMENTAL AND WEAKLY
CONTINUOUS PROPERTIES IN COMPLEMENTED

TOPOLOGICAL ALGEBRAS

Marina Haralampidou and Konstantinos Tzironis

Abstract. We give conditions so that a certain left complemented algebra turns to be a

fundamental one. In the case when the only minimal closed right ideals of a certain complemented

algebra (E,⊥) are axial, namely they have the form eE with e a special element and its vector

complementor is continuous, then ⊥ is weakly continuous. Moreover, conditions are supplied so

that a left precomplemented locally m-convex algebra turns to be a complemented one.

1 Introduction and preliminaries

In [4], we introduced the notion of a fundamental complemented linear space, through
continuous projections. This notion is hereditary, in the sense that, if a certain
topological algebra is fundamental, then a concrete subspace is fundamental too
[ibid. Theorem 19]. Moreover, for a fundamental complemented linear space, we
defined the notion of continuity of the complementor. In some cases, we employ a
generalized notion of complementation, that of (left) precomplementation. Relative
to this, the continuity of the complementor for a certain fundamental complemented
(topological) algebra is inherited to the induced vector complementor of the underly-
ing linear space of a certain right ideal [ibid. Theorem 20]. Our concern here is
to face, somehow, the reversed implications. Namely, we investigate under what
conditions the properties “fundamental” and “continuous vector complementor”
of a substructure of a certain complemented algebra led to the fundamentality
of the topological algebra concerned and to a kind of continuity, characterized
as weak continuity, of the complementor (Definition 13) in the initial topological
algebra (Theorems 7 and 14). The notion of fundamentality, in complemented
topological algebras and in complemented linear spaces, was also employed in [5],
in connection with the complementarity of subalgebras in topological algebras of
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continuous operators.

All vector spaces and algebras, employed below, are taken over the field C
of complexes. A topological algebra is an associative algebra E endowed with a
Hausdorff topological vector space topology for which the ring multiplication is
separately continuous (see e.g., [6]). If, in particular, the topology is defined by a
family (pα)α∈A of submultiplicative seminorms, then E is named a locally m−convex
algebra and is denoted by (E, (pα)α∈A). We also employ the notation S for the
(topological) closure of a subset S of a topological algebra E.

The following definition refers to some types of complemented topological vector
spaces, which we deal with in the sequel.

By VX we denote the set of all closed subspaces of a topological vector space
X. For M,N ∈ VX satisfying X = M ⊕ N , there is a unique (linear mapping)
T = T (M,N) on X such that Im(T ) = M , ker(T ) = N and T 2 = T . Note that for
a fixed M , there may be more than one such N and for different N , there will be
different T . Thus T heavily depends on N .

Definition 1. A topological vector space X is called a complemented space if there
is a mapping p : VX → VX : M ↦→ Mp, satisfying the following conditions:

1. if M1,M2 ∈ VX with M1 ⊆ M2, then M2
p ⊆ M1

p;

2. if M ∈ VX , then Mpp = M ; and

3. if M ∈ VX , then X = M ⊕Mp.

The map p is called a (vector) complementor, and Mp a complement of M .

In what follows, (X, p) stands for a complemented space X with a complementor
p.

For a topological algebra E, Ll(E) ≡ Ll (resp. Lr(E) ≡ Lr,L(E) ≡ L) stands
for the set of all closed left (right, two-sided) ideals of E.

For the next notion, we refer to [3, p. 3723, Definition 2.1]. See also [1].

A topological algebra E is called left complemented if there exists a mapping
⊥ : Ll −→ Ll : I ↦→ I⊥, such that the following hold.

1. If I ∈ Ll, then E = I ⊕ I⊥;

2. if I, J ∈ Ll, I ⊆ J , then J⊥ ⊆ I⊥;

3. if I ∈ Ll, then (I⊥)⊥ = I;

where ⊥ is called a left complementor on E and I⊥ is called a complement of
I. In what follows, we denote by (E,⊥) a left complemented algebra with a left
complementor ⊥.
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The fundamental and weakly continuous properties 221

A topological algebra E is called left precomplemented, if for every I ∈ Ll, there
exists I ′ ∈ Ll such that E = I ⊕ I ′. Analogous notions are defined on “the right”
and on “both sides” (see [3, p. 3725, Definition 2.7]).

All the results in this paper hold true by interchanging “left” by “right”. Through-
out the paper, (0) denotes either the zero ideal of an algebra or the zero linear
subspace of a linear space.

If for I ∈ L in a topological algebra E, the relation I2 = (0) implies I = (0), then
E is called topologically semiprime, while E is topologically simple, if it has no proper
closed two-sided ideals. An idempotent element 0 ̸= e = e2 is called minimal, if the
algebra eEe is a division one. On the other hand, if e is a minimal (idempotent)
element, then Ee is a minimal left ideal and eE is a minimal right ideal of E (see [7,
p. 45, Lemma 2.1.8]). We remind that a left topological zero divisor of a topological
algebra E is an element (0 ̸=)x ∈ E, such that there is a net (xδ)δ∈∆ in E with
xδ 9 0 but xxδ → 0.

For the sake of completeness, we refer some notions as in [4, Definitions 1, 2, 3,
5, 17 and 18].

Definition 2. A left precomplemented algebra E is called fundamental left precomple-
mented if for every I ∈ Ll there is I ′ ∈ Ll such that E = I ⊕ I ′ and T (I, I ′)
is continuous. A left complemented algebra (E,⊥) is called fundamental left
complemented if for every I ∈ Ll, T (I, I

⊥) is continuous.
The corresponding “right” and “two sided” versions could be defined analogously.

Definition 3. Let (E,⊥) be a fundamental left complemented algebra. A net
(Iδ)δ∈∆ of minimal closed left ideals of E is said to be ⊥-convergent to I0 ∈ Ll, if
Tδ −→ T0 uniformly on every minimal right ideal of E, where Tδ = Tδ(Iδ, I

⊥
δ ) and

T0 = T0(I0, I
⊥
0 ).

Closedness of minimal left ideals, in the previous definition, is redundant when
we consider certain left complemented algebras (see [1, p. 969, Theorem 3.2]).

Definition 4. An element x in a topological algebra E is said to be axially closed
if the left ideal Ex is minimal closed.

In particular, a subset of E is named axially closed if each of its elements is
axially closed.

Concerning the previous notion, we note that if x ∈ E is a primitive idempotent
and the (closed) left ideal Ex is a left precomplemented algebra, then, in view of [1,
p. 964, Theorem 2.1], the ideal concerned is minimal closed (namely, the element x
is axially closed). We remind that, an element of an algebra E is called primitive, if
it can not be expressed as the sum of two orthogonal idempotents; namely, of some
idempotents elements y, z of E with yz = zy = 0.

In the same spirit, we introduce the “fundamental” and “continuous complement-
or” properties in the context of topological complemented linear spaces.
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Definition 5. A complemented (topological) linear space (X, p) is called fundamental
complemented if, for every closed linear subspace S of X, there is a continuous linear
mapping T : X → X such that T 2 = T , Im(T ) = S and ker(T ) = Sp.

In the rest of the paper, if E is a topological algebra, [x] will stand for the
(closed) subspace of E, generated by x.

Definition 6. Let (X, p) be a fundamental complemented linear space. The mapping
p is said to be continuous if for every net (xδ)δ∈∆ of elements of X with lim

δ
xδ =

x0 ∈ X and x0 ̸= 0, the net (Tδ([xδ], [xδ]
p))δ∈∆ converges to T0([x0], [x0]

p) uniformly.

2 The properties “fundamental” and “continuity of a
complementor” from the partial to the global

In this section, we attempt to carry the fundamental property from a complemented
vector subspace X to a certain (one-)sided complemented algebra E that contains
X. The importance of topological zero divisors is evident from the results below.

In particular, Theorem 7 is a kind of converse of Theorem 19 in [4, p. 102]. To
fix the notation, we recall the following from [4, p. 101, relation (3.9)].

Let (E,⊥) be a topologically simple left complemented locally m-convex algebra
and e a minimal element in E. Consider the (minimal closed right) ideal R = eE of
E. There exists a map p : VR → VR, S ↦→ Sp, satisfying 1., 2. and 3. of Definition
1 (see [4, p. 100, Theorem 14]). In this context, the mapping

s : Ll(E) → VR : I ↦→ s(I) := I ∩R

is well defined, and in view of [4, p. 98, Corollary 12, (b)], it is 1 − 1. Besides, by
the proof of [4, p. 100, Theorem 14], s(Ll(E)) = VR. Moreover,

j : VR → Ll(E) : S ↦→ j(S) := ES

is a well defined map, and since ES ∩ R = S, is the inverse of s. Now, we consider
the map

p : VR → VR : S ↦→ Sp := s((j(S))⊥) = (s ◦ ⊥ ◦ j)(S). (2.1)

The preceding discussion assures that, R, as a linear space, is complemented with
an (induced) vector complementor p as in (2.1) (see [4, p. 100, Theorem 14]). Now,
we are ready to state the following.

Theorem 7. Let (E,⊥) be a topologically simple, left complemented locally m−convex
algebra. Let e be a minimal element in E, which is not a left topological zero divisor
and such that the complemented vector space (R = eE, p) is fundamental. Then E
is fundamental, as well.
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The fundamental and weakly continuous properties 223

Proof. Let I be a closed left ideal in E. Then, according to [8, Remark 2.4], there
exists a unique linear mapping T : E → E with T 2 = T , Im(T ) = I and ker(T ) = I⊥.
To show that E is fundamental, it is sufficient to show that T is continuous. We
put S = R∩ I. Then, S ∈ VR and Sp = R∩ I⊥. Let g : R → R be the unique linear
mapping with g2 = g, Im(g) = S and ker(g) = Sp. Then T |R = g (see also the proof
of Theorem 19 in [4]). Since the complemented vector space (R, p) is fundamental,
g is continuous.

Now, take x ∈ E and a net (xδ)δ∈∆ in E with lim
δ
xδ = x. Since E = I ⊕ I⊥,

there are unique y ∈ I and z ∈ I⊥ such that x = y + z. For every δ ∈ ∆, there are
unique yδ ∈ I, zδ ∈ I⊥, with xδ = yδ + zδ. Since T (xδ) = yδ, for the continuity of
T to x, namely, in order to prove that lim

δ
T (xδ) = T (x), it is enough to show that

lim
δ
yδ = y. We have ex = ey+ez with ex ∈ R, ey ∈ S and ez ∈ Sp. For every δ ∈ ∆,

exδ = eyδ + ezδ with exδ ∈ R, eyδ ∈ S and ezδ ∈ Sp. Moreover, lim
δ
(exδ) = ex.

Therefore, lim
δ
g(exδ) = g(ex). Thus, lim

δ
eyδ = ey and lim

δ
(e(yδ − y)) = 0. Since

e is not a left topological zero divisor, lim
δ
(yδ − y) = 0, and this completes the

assertion.

Now, we are interested in finding conditions that lead to ⊥-convergence of a
certain net (Exδ)δ∈∆ (see Proposition 11 and Definition 3), which in turn leads to
the weak continuity of a complementor (Theorem 14). For that, we present two
lemmas that are useful in the proof of Proposition 11.

For the next, we also refer to [4, Proposition 13].

Lemma 8. Let E be a topologically simple, locally m-convex algebra. Consider a
minimal element e ∈ E and the (minimal closed right) ideal R = eE. If S is a closed
subspace of R, then S = ES ∩R, where ES stands for the left ideal of E, generated
by S.

Proof. Since e is idempotent, every element x ∈ R has the form x = ex. Since
S ⊂ R, S = eS. Therefore, S ⊆ ES ⊆ ES, and hence S ⊆ ES ∩ R. Actually, the
last relation is an equality. Indeed, take z ∈ ES ∩ R. Then z = lim

δ
zδ with (zδ)δ∈∆

a net in ES and z = ez. Thus,

z = ez = elim
δ
zδ = lim

δ
(ezδ).

But, ezδ ∈ ES ∩R and z ∈ ES ∩R. Therefore, ES ∩R ⊆ ES ∩R, and hence,

ES ∩R = ES ∩R. (2.2)

It is obvious that RES ⊆ ES ∩R. If x ∈ ES ∩R, then x ∈ ES and x = ex. Thus,
x = ex ∈ RES. The last argument leads to RES = ES ∩R. Since S = eS, we get

ES ∩R = eEES ⊆ eES = eEeS ≃ CS ≃ S
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(see also [6, p. 52, Lemma 3.1 and p. 62, Corollary 5.1] and [2, p. 155, Theorem
3.11]). Thus, ES ∩ R ⊆ S and ES ∩R ⊆ S. So, in view of (2.2), the proof is
complete.

Lemma 9. Let E be a topologically simple algebra. Consider a minimal element
e ∈ E and the (minimal closed right) ideal R = eE. Suppose that e is not a right
zero divisor of R. If x ∈ R with x ̸= 0, and S = [x] is the (closed) subspace of
E, generated by x, then ES = Ex = Eex, where ES stands for the left ideal of E,
generated by S. Furthermore, the ideal Ex is minimal closed.

Proof. We first note that since the element e is not a right zero divisor of R and
0 ̸= x ∈ R = eE, xe ̸= 0.

We have
ES = E[x] = {λx+ ax : λ ∈ C, a ∈ E}.

Since x = ex, we have ES = {yx : y ∈ E}, and ES = Ex = Eex. We prove that
the left ideal Ex is closed. Take a ∈ Ex. Then there is a net (aδx)δ∈∆ in Ex with
aδx →

δ
a. Since x = ex, aδxe = aδexe →

δ
ae. Since the algebra eEe is a division one,

and exe = xe ̸= 0, (exe)−1 exists. So, by the separate continuity of multiplication,
aδ(exe)(exe)

−1 →
δ

ae(exe)−1 and aδe →
δ

ae(exe)−1. Therefore, aδex →
δ

ae(exe)−1x

and thus,
aδx →

δ
ae(exe)−1x ∈ Ex or a = ae(exe)−1x ∈ Ex.

So, Ex is closed.
Now, we prove that Ex, as a closed left ideal, is minimal. So, let L be a closed

left ideal with (0) ̸= L ⊆ Ex. E, as topologically simple, is topologically semiprime.
Thus, L2 ̸= (0) (see [2, p. 149, Theorem 2.1]). Therefore, there are yex, zex ∈ L
such that yexzex ̸= 0 that yields exze ̸= 0. Since eEe is a division algebra, there
exists w ∈ eEe such that wexze = e. Since zex ∈ L and L is a left ideal of E, we
get Ezex ⊆ L. Therefore, Eex = Ewexzex ⊆ L ⊆ Eex, that yields L = Eex = Ex,
proving the minimality of Ex, as asserted.

Remark 10. Lemma 9 holds true, if we replace the assumption “e is not a right
zero divisor of R” with the stronger condition “R has no nilpotent elements of order
2”. Indeed, the only thing we have to prove is that xe ̸= 0. If xe = 0, then xex = 0,
and since x = ex, x2 = 0, so by hypothesis, x = 0, that is a contradiction.

Proposition 11. Let (E,⊥) be a topologically simple left complemented locally
m−convex algebra. Consider a minimal element e ∈ E, which is not a left topological
zero divisor and it is not a right zero divisor of R. Suppose that the complementor
p of the complemented linear space (R, p) (see (2.1)) is continuous. Let (xδ)δ∈∆ be
a net in E, axially closed, with lim

δ
xδ = x0, x0 ̸= 0, such that the ideal Ex0 in E

is minimal closed. Then Tδ(Exδ, (Exδ)
⊥) −→ T0(Ex0, (Ex0)

⊥) uniformly on the
minimal (closed) right ideal R.
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The fundamental and weakly continuous properties 225

Proof. We first note that the continuity of the complementor p of the complemented
topological linear space (R, p), presupposes that (R, p) is fundamental. This is due
to the fact that the very definition of the continuity, is given in terms of the existence
of continuous mappings on one-dimensional (closed) subspaces (see Definitions 5 and
6). Thus, by Theorem 7, the left complemented algebra (E,⊥) is fundamental.

Since the net (xδ)δ∈∆ is axially closed, for every δ ∈ ∆, the left ideal Exδ
is minimal closed. We have Eexδ ⊆ Exδ. Since e is not a left topological zero
divisor, it is not left zero divisor either, so, since xδ ̸= 0, we get exδ ̸= 0 that yields
Eexδ ̸= (0). From Lemma 9, the left ideal Eexδ of E is closed. So, since Exδ is
minimal, we get Eexδ = Exδ. In analogy, we get Eex0 = Ex0. Denote by Sδ = [exδ]
the linear subspace of E, generated by exδ. Then ESδ = Eexδ (see Lemma 9) and
R ∩ ESδ = Sδ = [exδ] (see Lemma 8).

Moreover, exδ ̸= 0. Similarly, if S0 = [ex0], then

ES0 = Eex0 and R ∩ ES0 = S0 = [ex0].

Put Tδ = Tδ(Exδ, (Exδ)
⊥), δ ∈ ∆ and T0 = T0(Ex0, (Ex0)

⊥), which are the continu-
ous mappings on E with T 2

δ = Tδ, Im(Tδ) = Exδ, ker(Tδ) = (Exδ)
⊥ and T 2

0 = T0,
Im(T0) = Ex0, ker(T0) = (Ex0)

⊥. Take also the continuous linear mappings
gδ = gδ([exδ], [exδ]

p), δ ∈ ∆ and g0 = g0([ex0], [ex0]
p) on R that satisfy g2δ = gδ,

Im(gδ) = [exδ], ker(gδ) = [exδ]
p, and g20 = g0, Im(g0) = [ex0], ker(g0) = [ex0]

p.
Then Tδ|R = gδ for every δ ∈ ∆, and T0|R = g0 due to the uniqueness of the
projections (see [8, p. 265, Remark 2.4]). Since the complementor p is continuous,
gδ converges to g0 uniformly. Namely, Tδ|R(Exδ, (Exδ)

⊥) −→ T0|R(Ex0, (Ex0)
⊥)

uniformly or Tδ −→ T0 uniformly on the minimal (closed) right ideal R.

Comment 12. Proposition 11 is the key in obtaining one of our main results,
Theorem 14. It is based on a certain element e which is rich in properties and lead
to information about certain complemented algebras. For instance, by the minimality
of e, the form of the closed subspaces S of the minimal right ideal R = eE is explicitly
described via the closed left ideal of R, generated by S (Lemma 8). In the special
case, when e is not a right zero divisor on R, the one-dimensional (closed) subspaces
give rise to minimal closed ideals (Lemma 9). Moreover, if e is not a left topological
zero divisor on E, then ⊥-convergence on a certain closed left ideal of E is succeeded
(Proposition 11) which, in turn, leads to the weak continuity of the complementor
(Theorem 14).

We now introduce the concept of the weak continuity of the complementor ⊥ in
the context which we are interested in.

Definition 13. Let (E,⊥) be a fundamental left complemented algebra. The
mapping ⊥ is said to be weakly continuous, if for any convergent axially closed net
(aδ)δ∈∆ with aδ →

δ
a0 ∈ E, a0 ̸= 0, and such that Ea0 is a minimal closed left ideal of
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E, the net (Eaδ)δ∈∆ is ⊥-convergent to Ea0. Namely, Tδ −→ T0 uniformly on every
minimal right ideal of E, where Tδ = Tδ(Exδ, (Exδ)

⊥) and T0 = T0(Ex0, (Ex0)
⊥).

Theorem 14. Let (E,⊥) be a topologically simple left complemented locally m−con-
vex algebra. Suppose that all minimal closed right ideals of E are of the form Rk =
ekE, k ∈ K, with ek a minimal element of E which is not a left topological zero
divisor on E, and it is not a right zero divisor on Rk. Let pk be the respective vector
complementor on Vk (the set of all closed linear subspaces of Rk; see (2.1)). If, for
each k ∈ K, pk is continuous, then ⊥ is weakly continuous.

Proof. Consider k0 ∈ K. Since the complementor pk0 is continuous, the complement-
ed linear space (Rk0 , pk0) is fundamental. So, since ek0 is not a left topological zero
divisor, E turns to be fundamental (see Theorem 7). Let (xδ)δ∈∆ be an axially closed
net in E with lim

δ
xδ = x0, x0 ̸= 0, and Ex0 a minimal closed left ideal in E. Then,

in view of Proposition 11, Tδ(Exδ, (Exδ)
⊥) −→ T0(Ex0, (Ex0)

⊥) uniformly on the
minimal (closed) right ideal Rk, for every k ∈ K. Provided that every minimal right
ideal of E is of the form Rk = ekE, we get the assertion (see also Definition 13).

In the next result, we give conditions so that a left precomplemented locally m-
convex algebra becomes a complemented one. This has to do with the complementari-
ty (as a linear space) of a certain right ideal in the algebra concerned. This result
is important not only by its own right. Indeed, as we saw in Theorem 14, the
complementarity of a certain minimal right ideal R is a key stone to get weak
continuity of the complementor. As a matter of fact, in Corollary 17, we get the
equivalence of complementarity in R and E, respectively. Concerning the next proof,
by Ar(S) we denote the right annihilator of an ∅ ̸= S ⊆ E. This is a right ideal,
which, in particular, is a 2-sided ideal, if S is a right ideal.

Theorem 15. Let E be a topologically simple left precomplemented locally m-convex
algebra. Consider a minimal element e ∈ E and the (minimal closed right) ideal R =
eE, which we suppose that, as a linear space, is complemented with complementor p.
Then there is defined an 1−1 and onto mapping ⊥ on the set of all closed left ideals
of E, which reverses the inclusion, is reflexive and satisfies the relation I ∩ I⊥ = (0)
for all I ∈ Ll(E). If, moreover, e is not a left zero divisor, then E = I ⊕ I⊥ for all
I ∈ Ll(E). Namely, E is a left complemented algebra.

Proof. According to [4, p. 98, Corollary 12, b)], the mapping

s : Ll(E) → VR : I ↦→ s(I) := I ∩R

is 1− 1. Moreover, by the proof of Theorem 14 in [ibid. p. 100], s is onto. So, the
inverse mapping s−1 : VR → Ll(E) is defined, and since ES ∩R = S (see the proof
of [4, p. 100, Theorem 14]), we get s−1(S) := ES. Put s−1 = j and consider the
mapping

⊥ : Ll(E) → Ll(E) : I ↦→ I⊥ := j((s(I))p) = (j ◦ p ◦ s)(I) = E(R ∩ I)p.
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It is easily seen that ⊥ is well defined. Moreover, it is 1−1 and onto, as a composition
of 1−1 and onto maps. Now, take I, J ∈ Ll(E) with I ⊆ J . We have R∩I ⊆ R∩J ,
whence (R ∩ J)p ⊆ (R ∩ I)p. Therefore, E(R ∩ J)p ⊆ E(R ∩ I)p, which means
J⊥ ⊆ I⊥. Moreover, ⊥ is reflexive. Indeed, if I ∈ Ll(E), then in view of s◦j = id|VR

,
j ◦ s = id|Ll(E) and p ◦ p = id|VR

, we have

(I⊥)⊥ = (j ◦ p ◦ s)(I⊥) = (j ◦ p ◦ id|VR
◦ p ◦ s)(I) = (j ◦ s)(I) = I.

We now prove that, if I ∈ Ll(E), then I ∩ I⊥ = (0). We have

j−1(I⊥) = j−1((j ◦ p ◦ s)(I)).

Namely, s(I⊥) = s((j ◦ p ◦ s)(I)) = (p ◦ s)(I). Therefore, R ∩ I⊥ = (R ∩ I)p.
According to [4, p. 99, Proposition 13], R ∩ I = RI = RI for any closed left ideal

of E. Hence, we also have RI⊥ = RI⊥. The previous argumentation leads to
(RI)p = (R ∩ I)p = R ∩ I⊥ = RI⊥ = RI⊥. Namely, RI⊥ = (RI)p.

Put K = I ∩ I⊥. Then K ∈ Ll(E). We have

RK ⊆ RI = R ∩ I and RK ⊆ RI⊥ = R ∩ I⊥ = (R ∩ I)p

(see also [4, p. 99, Proposition 13]). Thus, RK ⊆ (R ∩ I) ∩ (R ∩ I)p = (0), which
yields K ⊆ Ar(eE). We prove that the ideal Ar(eE) is closed. To this end, take
a ∈ Ar(eE). Then there is a net (aδ)δ∈∆ in Ar(eE) with aδ →

δ
a. Then, for any

x ∈ E, we get exa = exlim
δ
aδ = lim

δ
(exaδ) = 0. Thus, a ∈ Ar(eE) that proves

the assertion. Since E is topologically simple, either Ar(eE) = (0) or Ar(eE) = E.
The latter can not be true, since e2 = e ̸= 0. Therefore, Ar(eE) = (0), and hence
K = (0). Namely, I ∩ I⊥ = (0). Let x ∈ E. Then ex ∈ R. By hypothesis, R is
complemented. So, since

R = (R ∩ I)⊕ (R ∩ I)p = (R ∩ I)⊕ (R ∩ I⊥)

and R ∩ I = RI,R ∩ I⊥ = RI⊥ (see also [4, p. 99, Proposition 13]), there are
y1, y2 ∈ R, z1 ∈ I and z2 ∈ I⊥, such that ex = y1z1 + y2z2. Since y1, y2 ∈ R,
y1 = ey1 and y2 = ey2. Hence, ex = ey1z1 + ey2z2 and thus, e(x− y1z1 − y2z2) = 0.
Therefore, since e is not a left zero divisor, we have x = y1z1 + y2z2, and since
y1z1 ∈ I and y2z2 ∈ I⊥, we get E = I + I⊥ that completes the proof.

Proposition 16. Let E be a topologically simple locally m-convex algebra. Let e ∈ E
be a minimal element and the (minimal closed right) ideal R = eE. Consider the
assertions:

1) E is a left complemented algebra.
2) R is complemented as a linear space.
Then 1) ⇒ 2). If moreover, e is not a left zero divisor and E is a left precomple-

mented algebra, then 2) ⇒ 1).
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Proof. 1) ⇒ 2). See [4, p. 100, Theorem 14].

2) ⇒ 1). Apply Theorem 15.

Gathering the last result, we get the next.

Corollary 17. Let E be a topologically simple, left precomplemented locally m−con-
vex algebra and e a minimal element in E, which is not a left zero divisor. Consider
the (minimal closed right) ideal R = eE. Then the following are equivalent.

1) E is a left complemented algebra.

2) R is complemented as a linear space.
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