ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ ОТОБРАЖЕНИЙ С ОГРАНИЧЕННЫМ ИСКАЖЕНИЕМ НА ГРУППЕ ГЕЙЗЕНБЕРГА И ТЕОРЕМА О ЛОКАЛЬНОМ ГОМЕОМОРФИЗМЕ

Н. С. Даирбеков

Аннотация: Доказаны теорема о пределе отображений с ограниченным искажением и теорема о локальном гомеоморфизме для отображений с малым коэффициентом искажения. Библиогр. 16

1. Предварительные сведения

В настоящей работе мы доказываем теорему о пределе последовательности отображений с ограниченным искажением на группе Гейзенберга, введенных в [1] и изучаемых в [2, 3]. В виде приложения доказана теорема о локальном гомеоморфизме для отображений с коэффициентом искажения, близким к единице.

Обозначения и понятия, используемые далее, могут быть найдены в [1, 2]. В нашей модели элементами группы Гейзенберга $\mathbb H$ являются точки $p=(x,y,t)\in\mathbb R^3$, а умножение задается по правилу

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2x'y - 2xy').$$

На Ш определена однородная норма

$$|p| = ((x^2 + y^2)^2 + t^2)^{1/4}$$

и однородная метрика

$$\rho(p,q) = |p^{-1}q|.$$

Однородное растяжение $\delta_r,\, r>0,$ действует на $\mathbb H$ по формуле

$$\delta_r(x, y, t) = (rx, ry, r^2 t), \quad (x, y, t) \in \mathbb{H}.$$

Результат растяжения часто записывается следующим образом:

$$\delta_r(q) = rq, \quad \delta_{1/r}(q) = q/r.$$

Напомним, что δ_r является гомоморфизмом группы Ли \mathbb{H} , причем для однородной нормы имеем $|\delta_r(q)| = r|q|$.

Работа выполнена при финансовой поддержке Межвузовской НГП «Университеты России. Фундаментальные исследования» (код проекта №1797, финансирование осуществляется через Новосибирский госуниверситет).

Обозначим через $B_R(p)$ ($S_R(p)$) шар (сферу) в однородной метрике с центром $p \in \mathbb{H}$ и радиусом R > 0. Шар (сферу) с центром 0 обозначим через $B_R(S_R)$.

Как обычно, для множества $A \subset \mathbb{H}$ обозначим через int A, \overline{A} и |A| внутренность, замыкание и меру A (если последняя определена).

Векторные поля

$$X = \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial t}, \quad Y = \frac{\partial}{\partial y} - 2x \frac{\partial}{\partial t}, \quad T = \frac{\partial}{\partial t}$$

составляют базис левоинвариантных векторных полей на Н.

Пространство горизонтальных касательных векторов HT (= $HT\mathbb{H}$) натянуто на X,Y, и слои HT снабжены скалярным произведением, в котором векторы X(p) и Y(p) составляют ортонормированный базис над каждой точкой $p \in \mathbb{H}$.

Дифференциальные формы

$$dx$$
, dy , $\tau = 2x dy - 2y dx + dt$

задают базис кокасательного расслоения $T'\mathbb{H}$, двойственный базису X,Y,T над каждой точкой $p=(x,y,t)\in\mathbb{H}$. Форма τ задает контактную структуру на \mathbb{H} : касательный вектор V является горизонтальным тогда и только тогда, когда $\tau(V)=0$.

Горизонтальное соболевское пространство $HW^{1,s}(U)$ $(HW^{1,s}_{loc}(U))$, где U — открытое множество в $\mathbb H$ и $1 \leq s < \infty$, состоит из функций $u: U \to \mathbb R$ таких, что $u \in L^s(U)$ и слабые производные Xu, Yu принадлежат $L^s(U)$ $(u, Xu, Yu \in L^s_{loc}(U))$. Горизонтальный градиент функции $u \in HW^{1,1}_{loc}(U)$ определен почти всюду в U и равен $\nabla u(q) = (Xu(q), Yu(q))$. Сопряженный оператор к ∇ обозначается через div. На гладких функциях u, v имеем $\mathrm{div}(u, v) = -(Xu + Yv)$.

Будем говорить, что отображение $f:U\to \mathbb{H},\ f=(f_1,f_2,f_3)$, принадлежит классу $HW^{1,s}(U)$ $(HW^{1,s}_{\mathrm{loc}}(U))$, если каждая компонента $f_i,\ i=1,2,3$, принадлежит $HW^{1,s}(U)$ $(HW^{1,s}_{\mathrm{loc}}(U))$. Почти всюду в U определены векторы

$$Xf(q) = (Xf_1(q), Xf_2(q), Xf_3(q)), \quad Yf(q) = (Yf_1(q), Yf_2(q), Yf_3(q)),$$

рассматриваемые как векторы над f(q): $Xf(q), Yf(q) \in T_{f(q)}\mathbb{H}$.

Отображение $f:U\to\mathbb{H}$ класса $HW^{1,1}_{\mathrm{loc}}(U)$ называется (слабо) контактным, если $Xf(q),Yf(q)\in HT_{f(q)}$ для почти всех точек $q\in U$. Отображение f является контактным тогда и только тогда, когда

$$\tau(Xf(q)) = 0, \quad \tau(Yf(q)) = 0$$

для почти всех $q \in U$. В развернутом виде эти равенства выглядят следующим образом:

$$2f_1(q)Xf_2(q) - 2f_2(q)Xf_1(q) + Xf_3(q) = 0,$$

$$2f_1(q)Yf_2(q) - 2f_2(q)Yf_1(q) + Yf_3(q) = 0.$$

Формальный горизонтальный дифференциал $Hf_*(q): HT_q \to HT_{f(q)}$ контактного отображения f определен почти всюду в U, причем для векторов базиса $Hf_*(q)X = Xf(q)$ и $Hf_*(q)Y = Yf(q)$. Матрица формального горизонтального дифференциала имеет вид

$$Hf_* = \begin{pmatrix} Xf_1 & Yf_1 \\ Xf_2 & Yf_2 \end{pmatrix}.$$

Горизонтальный якобиан HJ(q,f) — это определитель матрицы $Hf_*(q)$.

Отображение $Hf_*(q)$ единственным образом продолжается до гомоморфизма алгебры Ли группы \mathbb{H} , называемого формальным \mathscr{P} -дифференциалом отображения f и имеющего матрицу

$$f_*(q) = \begin{pmatrix} Hf_*(q) & 0 \\ 0 & HJ(q, f) \end{pmatrix}.$$

Якобиан J(q, f) контактного отображения f — это определитель матрицы $f_*(q)$.

- 1.1. Определение. Отображение $f: U \to \mathbb{H}$ открытого множества $U \subset \mathbb{H}$ в \mathbb{H} называется отображением c ограниченным искажением (квазирегулярным отображением), если
 - (a) f непрерывно,
 - (b) $f \in HW^{1,4}_{loc}(U)$,
 - (c) f контактное отображение,
 - (d) существует постоянная $K < \infty$ такая, что неравенство

$$||Hf_*(q)||^4 \le KJ(q, f) \tag{1.1}$$

выполняется почти всюду в U. Здесь

$$||Hf_*(q)|| = \max_{\xi \in HT_q, |\xi|=1} |Hf_*(q)\xi|$$

— операторная норма линейного отображения $Hf_*(q)$.

Наименьшая постоянная K в последнем неравенстве называется коэффициентом искажения K(f) отображения f. Если $K(f) \leq K$, то f называется отображением c искажением K.

2. Ассоциированные субэллиптические уравнения

Пусть U — открытое подмножество \mathbb{H} . Назовем $\mathscr{A}: U \times \mathbb{R}^2 \to \mathbb{R}^2$ ядром в U, если выполнены следующие условия (ср. [4]).

- (A) Для каждого открытого $D\subset\subset U$ и $\varepsilon>0$ существует компактное множество $C\subset D$ такое, что $|D\setminus C|<\varepsilon$ и сужение $\mathscr{A}|C\times\mathbb{R}^2$ непрерывно.
- (В) Существует $\nu>0$ такое, что $\langle \mathscr{A}(p,\xi),\xi\rangle\geq \nu^{-1}|\xi|^4$ и $|\mathscr{A}(p,\xi)|\leq \nu|\xi|^3$ для почти всех $p\in U$ и $\xi\in\mathbb{R}^2$.
 - (С) Для почти всех $p \in U$

$$\langle \mathscr{A}(p,\xi_1) - \mathscr{A}(p,\xi_2), \xi_1 - \xi_2 \rangle > 0,$$

если $\xi_1 \neq \xi_2$, и

$$\mathscr{A}(p,\lambda\xi) = \lambda|\lambda|^2 \mathscr{A}(p,\xi)$$

для $\lambda \in \mathbb{R} \setminus \{0\}$.

Простейшим примером является ядро $\mathcal{A}(p,\xi) = |\xi|^2 \xi$.

Для изучения отображений с ограниченным искажением важен случай, когда ядро описывается следующим образом.

Пусть $f:U\to \mathbb{H}$ — отображение с ограниченным искажением. Определим в U матричную функцию $\theta=\theta_f$, полагая

$$\theta(p) = J(p, f)^{1/2} (Hf_*(p))^{-1} [(Hf_*(p))^{-1}]^T,$$

если $J(p,f) \neq 0$ (заметим, что в этом случае матрица $Hf_*(p)$ невырожденная), и $\theta(p) = \mathrm{Id}$ (тождественная матрица), если J(p,f) = 0. Определим ассоциированное ядро $\mathscr{A}(p,\xi) = \mathscr{A}_f(p,\xi)$, полагая

$$\mathscr{A}(p,\xi) = \langle \theta(p)\xi, \xi \rangle \theta(p)\xi.$$

Нетрудно проверить, что $\mathscr{A}(p,\xi)$ удовлетворяет условиям (A)–(C), причем $\nu=K(f)$.

Пусть $\mathscr{A}(p,\xi)$ — ядро в U. Рассмотрим уравнение

$$\operatorname{div} \mathscr{A}(p, \nabla u) = 0. \tag{2.1}$$

Функция $u:U\to\mathbb{R}$ класса $HW^{1,4}_{\mathrm{loc}}(U)$ называется *слабым решением* уравнения (2.1), если

$$\int_{U} \mathscr{A}(p, \nabla u(p)) \cdot \nabla \varphi(p) = 0$$

для любой функции $\varphi \in C_0^{\infty}(U)$.

Взаимосвязь между отображениями с ограниченным искажением и ассоциированными субэллиптическими уравнениями дается следующим утверждением из [1], являющимся аналогом соответствующего результата Ю. Г. Решетняка, который установлен им в евклидовой ситуации и играет фундаментальную роль в теории отображений с ограниченным искажением [5].

2.1. Предложение. Пусть $f:U\to V$ — отображение c ограниченным искажением открытого множества $U\subset \mathbb{H}$ в открытое множество $V\subset \mathbb{H}$. Предположим, что $w:V\to \mathbb{R}-C^2$ -гладкое решение уравнения

$$\operatorname{div}(|\nabla w(p)|^2 \nabla w(p)) = 0 \tag{2.2}$$

в V. Тогда функция $w_f = w \circ f$ есть слабое решение уравнения (2.1), в котором $\mathscr{A}(p,\xi)$ — ядро, ассоциированное c f.

Так как координатные функции и функция $\ln |p|$ представляют собой частные решения уравнения (2.2), для каждого отображения f с ограниченным искажением компоненты f_i , i=1,2,3, и функция $\ln |f|$ являются решениями уравнения (2.1). Этот факт имеем многочисленные следствия (см. [2]).

Нам понадобится следующий аналог леммы 3.11 из [6, глава VI] для решений уравнения (2.1).

2.2. Лемма. Пусть U — область в \mathbb{H} , \mathscr{A} — ядро в U, $u \in C(\overline{U}) \cap HW^{1,4}(U)$ — неотрицательное слабое решение уравнения (2.1) в U, $p_0 \in \mathbb{H}$, R > 0 и 0 < t < R/7. Положим $U_s = U \cap B_s(p_0)$ для s > 0. Если $u|\partial U \cap B_R(p_0) = 0$ и $S_s(p_0) \cap \partial U \neq \varnothing$ для t < s < R/7, то

$$\sup_{U_t} u \le C \left(\ln \frac{R}{t} \right)^{-1} \sup_{U} u,$$

где постоянная C зависит только от ν .

Доказательство. Мы можем считать, что $p_0=0$. Возьмем произвольное $r,\ t< r< R/7$, и пусть $\varphi\in C_0^\infty(B_R)$ такова, что $0\leq \varphi\leq 1$ и $\varphi|B_{7r}=1$. Рассуждая по аналогии с доказательством леммы 3.11 в [6, глава VI], выводим следующее неравенство типа Каччиопполи:

$$\int_{U_R} \varphi^4 |\nabla u|^4 \le C \int_{U_R} u^4 |\nabla \varphi|^4,$$

где постоянная C зависит только от ν . Так как $\varphi|B_{7r}=1$, взяв инфимум по φ и используя оценку для емкости сферического кольца [7, предложение 10], получаем

$$\int_{U_r} |\nabla u|^4 \le C(\sup_U u)^4 \left(\ln \frac{R}{7r}\right)^{-3}.$$
 (2.3)

Продолжим u из $U \cap B_R$ нулем на весь шар B_R и обозначим результат продолжения через \bar{u} . Так как $u \in HW^{1,4}(U) \cap C(\overline{U})$ и $u|\partial U \cap B_R = 0$, то $u \in HW^{1,4}(B_R) \cap C(B_R)$.

Поскольку U — область, $S_s \cap U \neq \varnothing$ для $s \in (t,r)$. Для каждого $s \in (t,r)$ выберем точку $p_s \in S_s \cap U$ такую, что $u(p_s) = \bar{u}(p_s) = \max\{u(p): p \in S_s \cap U\} = \max\{\bar{u}(p): p \in S_s\}$. В силу того, что u, будучи решением уравнения (2.1), монотонна, имеем $\bar{u}(p_s) = u(p_s) \geq u(p_{s'}) = \bar{u}(p_{s'})$ для $s \geq s'$. По условию $S_s \cap \partial U \neq \varnothing$ для $s \in (t,r)$. Следовательно, для колебания

$$\operatorname*{osc}_{S_{s}}\bar{u}=\operatorname*{max}_{S_{s}}\bar{u}-\operatorname*{min}_{S_{s}}\bar{u}$$

функции \bar{u} на сфере S_s имеем $\underset{S_s}{\operatorname{osc}}\,\bar{u}=u(p_s)$ при всех $s\in(t,r).$ Поэтому

$$(\sup_{U_t} u)^4 = u(p_t)^4 \le \left(\ln \frac{r}{t}\right)^{-1} \int_t^r \frac{u(p_s)^4}{s} \, ds \le \left(\ln \frac{r}{t}\right)^{-1} \int_t^r s^{-1} (\operatorname{osc}_{S_s} \bar{u})^4 \, ds. \tag{2.4}$$

Для оценки колебания функции \bar{u} воспользуемся следующим аналогом леммы Геринга, вытекающим из [8, следствие 1].

2.3. Предложение. Пусть $v:B_R\to\mathbb{R}$ — непрерывное отображение класса $HW^{1,4}_{\mathrm{loc}}(B_R)$. Тогда для почти всех $s\in(0,R/7)$ справедлива оценка

$$(\operatorname*{osc}_{S_s} v)^4 \le Cs \int\limits_{S} (M_{6s}(|\nabla v|)(p))^4 d\sigma_s(p),$$

где постоянная C не зависит от выбора функции u и радиуса s.

Здесь $d\sigma_s$ — индуцированная борелевская мера на сфере S_s (см. [8, предложение 1]) и

$$M_{\delta}g(p) = \sup \left\{ \frac{1}{|B_r(p)|} \int_{B_r(p)} |g(q)| dq : r \le \delta \right\}$$

— максимальная функция для *q*.

Интегрируя оценку предложения 2.3 и используя неравенство для максимальной функции, из (2.4) выводим

$$(\sup_{U_t} u)^4 \le C \left(\ln \frac{r}{t} \right)^{-1} \int_{B_{7r}} |\nabla \bar{u}(p)|^4 dp = C \left(\ln \frac{r}{t} \right)^{-1} \int_{U_{7r}} |\nabla u(p)|^4 dp. \tag{2.5}$$

Применяя (2.3), из (2.5) получаем

$$(\sup_{U_t} u)^4 \le C(\sup_{U} u)^4 \left(\ln \frac{r}{t}\right)^{-1} \left(\ln \frac{R}{7r}\right)^{-3}.$$

Неравенство леммы получается в результате подстановки $r = \sqrt{tR/7}$.

3. Предел последовательности отображений с ограниченным искажением

3.1. Теорема. Пусть U — область в \mathbb{H} и $f_j: U \to \mathbb{H}, j = 1, 2, \ldots, —$ последовательность отображений с искажением К, сходящаяся локально равномерно в U к отображению $f:U\to\mathbb{H}$. Тогда f является отображением c ограниченным искажением, причем $K(f) \leq K$.

Доказательство. В виду следствий 2.5 и 2.6 из [2] последовательность $\{f_j\}$ равномерно ограничена в $HW^{1,s}_{\mathrm{loc}}(U)$ для некоторого s>4. Так как последовательность $\{f_j\}$ сходится локально равномерно в U к отображению f, этот факт влечет принадлежность f классу $HW^{1,s}_{\mathrm{loc}}(U)$. Проверим контактность отображения f. Поскольку каждое отображение

 f_j контактно, для почти всех $p \in U$ имеем

$$\tau(Xf_j)(p) = 2f_{j,1}(p)Xf_{j,2}(p) - 2f_{j,2}(p)Xf_{j,1}(p) + Xf_{j,3}(p) = 0,$$
(3.1)

где $f_{j,i}$ обозначает *i*-ю компоненту отображения f_j . Умножим обе части (3.1) на произвольную функцию $\varphi \in C_0^\infty(U)$ и проинтегрируем по области U:

$$0 = \int_{U} \varphi(p)\tau(Xf_{j})(p) dp = \int_{U} \varphi(p)(2f_{j,1}(p)Xf_{j,2}(p) - 2f_{j,2}(p)Xf_{j,1}(p) + Xf_{j,3}(p)) dp$$

$$= \int_{U} \varphi(p)(2[f_{j,1}(p) - f_{1}(p)]Xf_{j,2}(p) - 2[f_{j,2}(p) - f_{2}(p)]Xf_{j,1}(p)$$

$$+ 2f_{1}(p)Xf_{j,2}(p) - 2f_{2}(p)Xf_{j,1}(p) + Xf_{j,3}(p)) dp$$

$$= 2\int_{U} \varphi(p)([f_{j,1}(p) - f_{1}(p)]Xf_{j,2}(p) - [f_{j,2}(p) - f_{2}(p)]Xf_{j,1}(p)) dp$$

$$+ \int_{U} \varphi(p)(2f_{1}(p)Xf_{j,2}(p) - 2f_{2}(p)Xf_{j,1}(p) + Xf_{j,3}(p)) dp = 2(I_{1}^{j} + I_{2}^{j}). \quad (3.2)$$

Заметим, что $I_1^j \to 0$ при $j \to \infty$. Для I_2^j при $j \to \infty$ имеем

$$\begin{split} I_2^j &= \int\limits_U \varphi(p) (2f_1(p) X f_{j,2}(p) - 2f_2(p) X f_{j,1}(p) + X f_{j,3}(p)) \, dp \\ &= \int\limits_U (-2X (\varphi(p) f_1(p)) f_{j,2}(p) + 2X (\varphi(p) f_2(p)) f_{j,1}(p) - X \varphi(p) f_{j,3}(p)) \, dp \\ &\to \int\limits_U (-2X (\varphi(p) f_1(p)) f_2(p) + 2X (\varphi(p) f_2(p)) f_1(p) - X \varphi(p) f_3(p)) \, dp \\ &= \int\limits_U \varphi(p) (2f_1(p) X f_2(p) - 2f_2(p) X f_1(p) + X f_3(p)) \, dp = \int\limits_U \tau(X f) (p) \varphi(p) \, dp. \end{split}$$

Переходя к пределу при $j \to \infty$ в (3.2), получаем

$$\int\limits_{U} \tau(Xf)(p)\varphi(p)\,dp=0.$$

Ввиду произвола в выборе φ заключаем, что $\tau(Xf)(p) = 0$ для почти всех $p \in U$.

Аналогичная выкладка показывает, что $\tau(Yf)(p)=0$ для почти всех $p\in U$ и тем самым отображение f контактно.

Таким образом, f непрерывно, принадлежит классу $HW_{loc}^{1,s}(U)$, где s>4, и контактно. Нам осталось проверить выполнение неравенства (1.1).

Если f постоянно в U, то все доказано. Поэтому мы далее считаем, что f — непостоянное отображение.

3.2. Лемма. Пусть $q \in \mathbb{H}$. Тогда для каждой точки $p \in f^{-1}(q)$ существует r > 0 такое, что $S_r(p) \cap f^{-1}(q) = \emptyset$.

Чтобы не разрывать изложения, продолжим доказательство теоремы, откладывая доказательство леммы 3.2 до конца параграфа.

Так как каждое отображение f_j имеет искажение K, для почти всех $p \in U$ имеем

$$||H(f_i)_*(p)||^4 \le KJ(p, f_i). \tag{3.3}$$

Пусть a — произвольная точка в U. По лемме 3.2 найдется $r_0 > 0$ такое, что шар $B_{r_0}(a)$ лежит в U вместе со своим замыканием и $f(a) \notin f(S_{r_0}(a))$.

Пользуясь непрерывностью f, выберем r_1 , $0 < r_1 < r_0$, так, что $f(B_{r_1}(a))$ вместе со своим замыканием лежит в некотором шаре $B_R(f(a))$, который, в свою очередь, компактно содержится в компоненте связности множества $\mathbb{H} \setminus f(S_{r_0}(a))$, содержащей f(a). Тогда $\mu(q,f,B_{r_0}(a)) = \mu(f(a),f,B_{r_0}(a))$ для всех $q \in B_R(f(a))$, где $\mu(q,f,G)$ — степень отображения f в точке q относительно компактной области $G \subset U$ (см., например, [5,6]).

Используя равномерную сходимость последовательности $\{f_j\}$ к f на шаре $B_{r_0}(a)$, выберем N так, что для всех j>N образ $f_j(B_{r_1})$ лежит в $B_R(f(a))$ и $\mu(q,f_j,B_{r_0}(a))=\mu(f(a),f,B_{r_0}(a))$ для всех $q\in B_R(f(a))$, где μ , как и выше, обозначает степень отображения.

Для любого $r, \ 0 < r < r_1, \$ и j > N проинтегрируем неравенство (3.3) по тару $B_r(a)$:

$$\int_{B_r(a)} \|H(f_j)_*(p)\|^4 dp \le K \int_{B_r(a)} J(p, f_j) dp.$$
(3.4)

Теорема 3.1 из [5, гл. 3] о полунепрерывности функционалов вариационного исчисления стандартным образом (ср. [5, гл. 3, теорема 3.3]) влечет неравенство

$$\int_{B_r(a)} \|Hf_*(p)\|^4 dp \le \lim_{j \to \infty} \int_{B_r(a)} \|H(f_j)_*(p)\|^4 dp.$$
 (3.5)

По формуле замены переменной в интеграле Лебега для отображений с ограниченным искажением [2, теорема 4.3] имеем

$$\int_{B_r(a)} J(p, f_j) \, dp = \int_{\mathbb{H}} \mu(q, f_j, B_r(a)) \, dq. \tag{3.6}$$

Заметим, что $\lim_{j\to\infty}\mu(q,f_j,B_r(a))=\mu(q,f,B_r(a))$ для $q\in\mathbb{H}\setminus f(S_r(a))$ (в частности, для почти всех $q\in\mathbb{H}$, так как $|f(S_r(a))|=0$). При этом $\mu(q,f_j,B_r(a))=0$ для $q\in\mathbb{H}\setminus B_R(f(a))$, поскольку $f_j(B_r(a))\subset B_R(f(a))$, и $0\leq \mu(q,f_j,B_r(a))\leq \mu(q,f_j,B_{r_0}(a))=\mu(f(a),f,B_{r_0}(a))$ для $q\in B_R(f(a))$. Иными словами, последовательность $\{\mu(q,f_j,B_r(a))\}$ сходится почти всюду в \mathbb{H} при $j\to\infty$ и имеет

интегрируемую мажоранту. Из теоремы Лебега о предельном переходе в интеграле Лебега выводим, что

$$\lim_{j \to \infty} \int_{\mathbb{H}} \mu(q, f_j, B_r(a)) dq = \int_{\mathbb{H}} \mu(q, f, B_r(a)) dq.$$
 (3.7)

Каждое отображение f_j имеет компонентами монотонные функции [2, следствие 2.2]. Так как последовательность $\{f_j\}$ сходится к f локально равномерно в U, компоненты отображения f также монотонные функции. Из результатов работы [8] следует, что любое непрерывное контактное отображение класса $HW^{1,4}_{\mathrm{loc}}(U)$ открытого множества $U \subset \mathbb{H}$ в \mathbb{H} с монотонными компонентами обладает \mathscr{N} -свойством. Таким образом, f обладает \mathscr{N} -свойством.

По теореме 3.2 из [2] любое непрерывное контактное отображение класса $HW^{1,s}_{\mathrm{loc}}(U)$ с s>4 открытого множества $U\subset\mathbb{H}$ в \mathbb{H} является \mathscr{P} -дифференцируемым почти всюду в U. Значит, f является \mathscr{P} -дифференцируемым почти всюду в U.

Теперь из результатов статьи [9] (см. также [2, предложение 4.2]) вытекает, что для f верна формула замены переменной в интеграле Лебега. По этой формуле получаем

$$\int_{\mathbb{H}} \mu(q, f, B_r(a)) dq = \int_{B_r(a)} J(p, f) dp.$$
(3.8)

Из (3.4)–(3.8) заключаем, что

$$\int_{B_{r}(a)} \|H(f)_{*}(p)\|^{4} dp \le K \int_{B_{r}(a)} J(p, f) dp$$
(3.9)

для всех $r < r_1$. Ввиду произвола в выборе точки $a \in U$ из (3.9) и теоремы Лебега о точках Лебега выводим, что

$$||H(f)_*(a)||^4 \le KJ(a, f)$$

для почти всех точек $a \in U$. Теорема доказана.

Теперь приведем доказательство леммы 3.2. В основном оно следует доказательству леммы 5.3 из [6, гл. VI].

Доказательство леммы 3.2. Не теряя общности рассуждений мы можем считать, что q=0. Докажем сначала, что внутренность int $f^{-1}(0)$ пуста. Допустим, что это не так, и пусть X — компонента связности множества int $f^{-1}(0)$. Так как f непостоянно, $X \neq U$ и найдется точка $p_0 \in \partial X \cap U$. Тогда $p_0 \in \partial (U \setminus f^{-1}(0))$. Выберем R > 0 так, что $\overline{B}_R(p_0) \subset U$ и $X \setminus B_R(p_0) \neq \emptyset$.

Рассмотрим функции $u(p) = \ln |f(p)|$ и $u_j(p) = \ln |f_j(p)|, j = 1, 2, \ldots$, считая, что $\ln 0 = -\infty$. Для $s, 0 < s \le R$, положим $M_s = \max\{u(p): p \in \overline{B}_s(p_0)\}$ и $M_{j,s} = \max\{u_j(p): p \in \overline{B}_s(p_0)\}, j = 1, 2, \ldots$

Выберем теперь число t, 0 < t < R/7, так, чтобы выполнялось неравенство $C(\ln R/t)^{-1} < 1/2$, где C — постоянная из леммы 2.2. Возьмем такую точку a в $\overline{B}_t(p_0)$, что $u(a) = M_t$. Пусть число M таково, что $-\infty < M < 2M_t - M_R \le M_t$. Пользуясь равномерной сходимостью последовательности отображений f_j к f на $\overline{B}_R(p_0)$, выберем такое N, что для j > N выполнены неравенства $u_j(p) < M$ для $p \in X \cap \overline{B}_R(p_0)$ и $u_j(a) > M$. Для j > N пусть U_j — компонента связности

открытого множества $\{p \in U : u_j(p) > M\} \cap B_R(p_0)$, содержащая a. Так как u_j монотонна [2, следствие 2.2], имеем $\overline{U} \cap S_R(p_0) \neq \emptyset$. Функция $v_j = u_j - M$ удовлетворяет в U_j всем условиям леммы 2.2. Применяя эту лемму, получаем

$$u_j(a) - M \le \sup_{U_{j,t}} v_j < \frac{1}{2} \sup_{U_j} v_j \le \frac{1}{2} (M_{j,R} - M).$$

При $j \to \infty$ это дает

$$M_t - M = u(a) - M = \lim_{j \to \infty} (u_j(a) - M) \le \frac{1}{2} \lim_{j \to \infty} (M_{j,R} - M) = \frac{1}{2} (M_R - M).$$

Следовательно, $2M_t - M_R \le M$, что противоречит выбору числа M. Значит, int $f^{-1}(0) = \emptyset$.

Пусть $q \in f^{-1}(0)$, и предположим, что для некоторого R > 0 имеем $\overline{B}(q,R) \subset U$ и $f^{-1}(0) \cap S_t(q) \neq \emptyset$ при всех $t \in (0,R)$. Так как $q \in \partial(U \setminus f^{-1}(0)) \cap U$, мы можем применить те же самые рассуждения, что и выше, приходя снова к противоречию. Лемма доказана.

Приведем два непосредственных следствия теоремы 3.1.

3.3. Следствие (о полунепрерывности коэффициента искажения). Если $f_j: U \to \mathbb{H}, \ j=1,2,\ldots,$ — последовательность отображений c искажением K, сходящаяся локально равномерно в U к отображению $f: U \to \mathbb{H}$, то $K(f) \le \lim_{j \to \infty} K(f_j)$.

ДОКАЗАТЕЛЬСТВО. Пусть $K_0=\varinjlim_{j\to\infty}K(f_j)$. Зададим $\varepsilon>0$ и из последовательности $\{f_j\}$ извлечем подпоследовательность $\{f_{j_m}\},\ m_1< m_2<\dots$, такую, что $K(f_{j_m})\leq K_0+\varepsilon$. Тогда по теореме 3.1 получим $K(f)\leq K_0+\varepsilon$. Так как $\varepsilon>0$ произвольно, заключаем, что $K(f)\leq K_0$.

3.4. Следствие (достаточное условие предкомпактности). Из каждой локально равномерно ограниченной последовательности $\{f_j\}$ отображений c искажением K области $U \subset \mathbb{H}$ в \mathbb{H} можно извлечь подпоследовательность, сходящуюся локально равномерно в U к отображению c искажением K.

ДОКАЗАТЕЛЬСТВО. Из [2, следствия 2.5 и 2.7] выводим, что последовательность $\{f_j\}$ равностепенно непрерывна на каждом компактном подмножестве U. Применяя теорему Арцела — Асколи, мы можем извлечь подпоследовательность, сходящуюся локально равномерно в U к некоторому отображению f. Теперь теорема 3.1 позволяет заключить, что f — отображение с ограниченным искажением и $K(f) \leq K$.

4. Теорема о локальном гомеоморфизме

Теорема о локальном гомеоморфизме, доказанная В. М. Гольдштейном [10] и О. Мартио, С. Рикманом и Ю. Вяйсяля [11], утверждает, что каждое непостоянное отображение с ограниченным искажением области в \mathbb{R}^n , $n \geq 3$, имеющее коэффициент искажения, достаточно близкий к единице, является локальным гомеоморфизмом. Доказательство в [10,11] опирается на глубокие результаты теории отображений с ограниченным искажением евклидовых пространств. Т. Иванец [12] дал элементарное доказательство этой теоремы, попутно установив некоторую оценку для «радиуса инъективности». Доказательство в [12] опирается исключительно на слабую форму теоремы устойчивости в теореме

Лиувилля и на сохранение двойного отношения мёбиусовыми преобразованиями. В этом параграфе мы покажем, что оба этих факта имеют место на группе Гейзенберга и, повторяя рассуждения Т. Иванеца, докажем следующий аналог теоремы о локальном гомеоморфизме для отображений с ограниченным искажением на группе Гейзенберга.

4.1. Теорема. Существует $K_0 > 1$ такое, что каждое непостоянное отображение с искажением K_0 , определенное на области U группы Гейзенберга, является инъективным на каждом шаре $B = B_R(a)$ таком, что шар $B_{9R}(a)$ в девять раз большего радиуса содержится в U.

Теорема 4.1, в частности, влечет, что теорема Лаврентьева — Зорича [13] и теорема о радиусе инъективности [11] верны на группе Гейзенберга для отображений с коэффициентом искажения, достаточно близким к единице.

Далее нам понадобится сферическая модель группы Гейзенберга [14]. Отождествим точки $p=(x,y,t)\in\mathbb{H}$ с элементами $[z,t]\in\mathbb{C}\times\mathbb{R}$, полагая z=x+iy. В этих обозначениях произведение, (однородная) норма, метрика и растяжения на \mathbb{H} записываются следующим образом:

$$\begin{split} [z,t]\cdot[z',t'] &= [z+z',t+t'+2\operatorname{Im}(z\bar{z}')], \quad |[z,t]| = ||z|^2 + it|^{1/2} = (|z|^4 + t^2|^{1/4},\\ \rho([z,t],[z',t']) &= ||z|^2 - 2z\bar{z}' + |z'|^2 + i(t'-t)|^{1/2}, \quad \delta_r[z,t] = [rz,r^2t]. \end{split}$$

Рассмотрим единичную сферу пространства \mathbb{C}^2 :

$$\mathbb{S} = \{ (w_1, w_2) \in \mathbb{C}^2 : |w_1|^2 + |w_2|^2 = 1 \}$$

и снабдим ее следующей метрикой (наше определение ρ_S отличается от соответствующего определения в [14] коэффициентом $\frac{1}{2}$ и от соответствующего определения в [15] коэффициентом $\frac{1}{\sqrt{2}}$):

$$\rho_S(u, w) = \sqrt{\frac{1}{2}|1 - \langle u, w \rangle|}, \tag{4.1}$$

где $\langle u, w \rangle = u_1 \operatorname{Im} w_1 + u_2 \operatorname{Im} w_2$.

Обобщенная стереографическая проекция $\pi: \mathbb{S} \setminus \{-e_2\} \to \mathbb{H}$ определяется как композиция преобразование Кэли

$$z_1 = \frac{iw_1}{1+w_2}, \quad z_2 = i\frac{1-w_2}{1+w_2}$$

и проекции $z_1 \mapsto z_1, z_2 \mapsto \operatorname{Re} z_2$. Стереографическая проекция π продолжается до отображения \mathbb{S} на одноточечную компактификацию $\widehat{\mathbb{H}} = \mathbb{H} \cup \{\infty\}$ группы Гейзенберга. Обратное отображение π^{-1} задается следующими формулами:

$$w_1 = \frac{-2iz}{1+|z|^2-it}, \quad w_2 = \frac{1-|z|^2+it}{1+|z|^2-it}.$$

Стереографическая проекция является конформным отображением метрического пространства (\mathbb{S}, ρ_S) на метрическое пространство $(\widehat{\mathbb{H}}, \rho)$ [14, следствие теоремы 4].

Группа SU(1,2) линейных отображений $g:\mathbb{C}^3\to\mathbb{C}^3$ с определителем 1, сохраняющих квадратичную форму

$$\langle y, y \rangle = y_0 \bar{y}_0 - y_1 \bar{y}_1 - y_2 \bar{y}_2,$$

действует как группа преобразований на единичной сфере S. Если $g \in SU(1,2)$ представлена своей матрицей коэффициентов (g_{ij}) , то преобразование w' = gw на S имеет вид

$$w'_{j} = \frac{g_{j0} + g_{j1}w_{1} + g_{j2}w_{2}}{g_{00} + g_{01}w_{1} + g_{02}w_{2}}, \quad j = 1, 2.$$

Обозначим через $I:\mathbb{S}\to\mathbb{S}$ комплексное сопряжение на \mathbb{S} :

$$I(w_1, w_2) = (\operatorname{Im} w_1, \operatorname{Im} w_2),$$

и положим

$$SU(1,2)I = \{g \circ I : g \in SU(1,2)\}.$$

Тогда $G = SU(1,2) \cup SU(1,2)I$ является группой, которую мы назовем *груп*пой мёбиусовых преобразований $\mathbb S$. Посредством стереографической проекции действие группы G переносится на $\widehat{\mathbb H}$. Если $\phi \in G$, то $p = \phi^{-1}(\infty)$ называется полюсом мёбиусова преобразования ϕ .

Имеет место следующий аналог теоремы Лиувилля.

4.2. Предложение. Если $f: U \to \mathbb{H}$ — отображение c искажением 1 области $U \subset \mathbb{H}$, то f либо постоянно, либо есть сужение на U некоторого мёбиусова преобразования.

Данное утверждение было доказано в [14] для C^4 -гладких 1-квазиконформных отображений и в [16] для 1-квазиконформных отображений без дополнительных условий гладкости. Для отображений с ограниченным искажением предложение 4.2 доказано в [2].

Характеристическим свойством мёбиусовых преобразований пространства \mathbb{R}^n является сохранение двойного отношения четверок точек. Напомним, что если (x_1,x_2,x_3,x_4) — четверка различных точек в \mathbb{R}^n , то их двойное отношение — это число

$$\frac{|x_1 - x_3||x_2 - x_4|}{|x_1 - x_2||x_3 - x_4|}.$$

По аналогии мы определяем двойное отношение относительно метрики Гейзенберга для четверки (q_1, q_2, q_3, q_4) различных точек в \mathbb{H} :

$$\frac{\rho(q_1, q_3)\rho(q_2, q_4)}{\rho(q_1, q_2)\rho(q_3, q_4)}.$$

Отождествляя точки $\widehat{\mathbb{H}}$ и \mathbb{S} посредством стереографической проекции, определим сферическое расстояние $\rho_S(p,q)$ на $\widehat{\mathbb{H}}$ как расстояние в метрике (4.1) между прообразами точек p и q относительно стереографической проекции π . Определим двойное отношение относительно сферической метрики, используя сферическое расстояние:

$$\frac{\rho_S(q_1, q_3)\rho_S(q_2, q_4)}{\rho_S(q_1, q_2)\rho_S(q_3, q_4)}.$$

4.3. Лемма. Если p = [z,t] и q = [z',t'] — точки из \mathbb{H} , то

$$\rho_S(p,q) = \frac{\rho(p,q)}{((1+|z|^2)^2 + t^2)^{1/4}((1+|z'|^2)^2 + t'^2)^{1/4}}.$$

B частности, двойное отношение четверок точек в \mathbb{H} относительно метрики Гейзенберга совпадает с двойным отношением относительно сферической метрики.

Доказательство проводится прямым вычислением:

$$\begin{split} \rho_S(p,q)^2 &= \rho_S(\pi^{-1}(p),\pi^{-1}(q))^2 \\ &= \frac{1}{2} \left| 1 - \frac{-2iz}{1+|z|^2 - it} \cdot \frac{2i\bar{z}'}{1+|z'|^2 + it'} - \frac{1-|z|^2 + it}{1+|z|^2 - it} \cdot \frac{1-|z'|^2 - it'}{1+|z'|^2 + it'} \right| \\ &= \frac{1}{2} \cdot \frac{(1+|z|^2 - it)(1+|z'|^2 + it') - 4z\bar{z}' - (1-|z|^2 + it)(1-|z'|^2 - it')}{|1+|z|^2 - it||1+|z'|^2 + it'|} \\ &= \frac{\left| |z|^2 - 2z\bar{z}' + |z'|^2 + i(t'-t) \right|}{|1+|z|^2 - it||1+|z'|^2 + it'|} = \frac{\rho(p,q)^2}{((1+|z|^2)^2 + t^2)^{1/2}((1+|z'|^2)^2 + t'^2)^{1/2}}. \end{split}$$

4.4. Лемма. Мёбиусовы преобразования сохраняют двойное отношение четверок точек.

Доказательство. Сохранение двойного отношения относительно сферической метрики при действии элементов группы SU(1,2) на $\mathbb S$ является прямым следствием теоремы 2.2.5 из [15]. Так как сопряжение I является изометрией относительно сферической метрики, сохранение двойного отношения под действием I на S очевидно. Теперь нужное утверждение следует из леммы 4.3.

Пусть U — область в \mathbb{H} . Обозначим через F(U) множество всех отображений $\phi: U \to \mathbb{H}$ с искажением 1. Ввиду предложения 4.2 $\phi \in F(U)$, если ϕ либо тождественно постоянно, либо является сужением на U мёбиусова преобразования, действующего на $\widehat{\mathbb{H}}$ (при этом полюс ϕ не принадлежит U). Положим

$$F = \bigcup_{U} F(U),$$

где объединение строится по всем областям $U \subset \mathbb{H}$.

Предположим, что для всех достаточно малых $\epsilon \geq 0$ и каждой области $U \subset \mathbb{H}$ определено некоторое семейство $F_{\epsilon}(U)$ непрерывных отображений $f:U \to \mathbb{H},$ причем для

$$F_{\epsilon} = \bigcup_{U} F_{\epsilon}(U),$$

где объединение строится по всем областям $U \subset \mathbb{H}$, выполнены следующие условия (см. [12]):

- (i) замкнутость относительно локализации: если $f \in F_{\epsilon}(U)$, то $f|V \in F_{\epsilon}(V)$ для каждой подобласти $V \subset U$,
- (ii) инвариантность относительно сдвигов и растяжений: если отображение y=f(x) принадлежит F_{ϵ} , то отображения $y=f(px), \ y=qf(x), \ y=f(\delta_{\lambda}(x))$ и $y=\delta_{\lambda}(f(x)),$ где $p,q\in\mathbb{H}$ и $\lambda>0$, также принадлежат F_{ϵ} .

Следуя [12], назовем семейство $\mathscr{F}=\{F_\epsilon\}_{\epsilon>0}$ с-равномерной вариацией F, если выполнены следующие условия:

- $(*) F_0 = F,$
- (**) из любой ограниченной последовательности $\{f_k\}$, где $f_k \in F_{\epsilon_k}(U)$ и $\epsilon_k \to 0$, можно извлечь подпоследовательность, сходящуюся равномерно на каждом компактном подмножестве U к некоторому отображению из F(U).

4.5. Лемма. Семейство отображений с искажением $1+\epsilon$ является с-равномерной вариацией F.

Доказательство. Утверждение вытекает из следствий 3.3 и 3.4.

Доказательство теоремы 4.1. Ввиду лемм 4.4 и 4.5 мы можем теперь дословно повторить рассуждения из [12], заменяя евклидовы расстояния и растяжения их аналогами на группе Гейзенберга, однородной метрикой и однородным растяжением.

ЛИТЕРАТУРА

- Даирбеков Н. С. Свойство морфизма для отображений с ограниченным искажением на группе Гейзенберга // Сиб. мат. журн. 1999. Т. 40, № 4. С. 810–822.
- Даирбеков Н. С. Об отображениях с ограниченным искажением на группе Гейзенберга // Сиб. мат. журн. 2000. Т. 41, № 1. С. 50–60.
- 3. Даирбеков Н. С. Отображения с ограниченным искажением на группе Гейзенберга // Докл. РАН 1999. Т. 369, № 1. С. 7–9.
- Heinonen J., Holopainen I. Quasiregular maps on Carnot groups // J. Geom. Anal. 1997.
 V. 7, N 1. P. 109–148.
- Решетняк Ю. Г. Пространственные отображения с ограниченным искажением. Новосибирск: Наука, 1982.
- 6. Rickman S. Quasiregular Mappings. Berlin, Heidelberg: Springer-Verl., 1993.
- Korányi A., Reimann H. M. Foundations for the theory of quasiconformal mappings on the Heisenberg group // Adv. Math. 1995. V. 111, N 1. P. 1–87.
- Водопьянов С. К. Монотонные функции и квазиконформные отображения на группах Карно // Сиб. мат. журн. 1996. Т. 37, № 6. С. 1269–1295.
- Водопьянов С. К., Ухлов А. Д. Аппроксимативно дифференцируемые преобразования и замена переменных на нильпотентных группах // Сиб. мат. журн. 1996. Т. 37, № 1. С. 70–89.
- 10. Гольдштейн В. М. О поведении отображений с ограниченным искажением при коэффициенте искажения, близком к единице // Сиб. мат. журн. 1971. Т. 12, № 6. С. 1250–1258.
- Martio O., Rickman S., Väisälä J. Topological and metric properties of quasiregular mappings // Ann. Acad. Sci. Fenn. Ser. A I Math. 1971. V. 488. P. 1–31.
- Iwaniec T. Stability property of Möbius mappings // Proc. Amer. Math. Soc. 1987. V. 100, N 1. P. 61–69.
- 13. Зорич В. А. Теорема Лаврентьева о квазиконформных отображениях пространства // Мат. сб. 1967. Т. 74, № 3. С. 417–433.
- Korányi A., Reimann H. M. Quasiconformal mappings on the Heisenberg group // Invent. Math. 1985. V. 80. P. 309–338.
- **15.** *Рудин У.* Теория функций в единичном шаре из \mathbb{C}^n . М.: Мир, 1984.
- Capogna L. Regularity of quasi-linear equations in the Heisenberg group // Comm. Pure Appl. Math. 1997. V. 50. P. 867–889.

Статья поступила 4 ноября 1998 г.

г. Новосибирск Институт математики им. С. Л. Соболева СО РАН dair@math.nsc.ru