КОНТИНУУМЫ С ОГРАНИЧЕННЫМ ИСКРИВЛЕНИЕМ: УСЛОВИЯ ЦЕПЕЙ И ИНФИНИТЕЗИМАЛЬНОЙ СВЯЗНОСТИ В. В. Асеев, Д. Г. Кузин

Аннотация: Установлен критерий ограниченности искривления (в смыслу Тукиа — Вяйсяля) континуумов в полном метрическом пространстве, выраженный более слабым условием, чем псевдовыпуклость, который применен к изучению метрических свойств графиков функций. В терминах инфинитезимальной связности дано полное описание свойства континуума быть жордановой дугой (или кривой) с ограниченным искривлением. Библиогр. 15.

Введение

В [1] введено понятие псевдовыпуклости метрического пространства и установлено (теорема 2.9, с. 100), что все континуумы с ограниченным искривлением в \mathbb{R}^n обладают этим свойством. Мы показываем, что верно и обратное утверждение: все псевдовыпуклые (в смысле Тукиа — Вяйсяля) континуумы в \mathbb{R}^n имеют ограниченное искривление (следствие 1.4). Условие цепей, введенное нами в § 1, формально более слабое, чем условие псевдовыпуклости в [1], является достаточным для ограниченности искривления в любом полном метрическом пространстве (теорема 1.2) и равносильно условию псевдовыпуклости (в смысле Тукиа — Вяйсяля) для подмножеств пространства \mathbb{R}^n (теорема 1.3, следствие 1.4). Применение условия цепей в § 2 позволяет получить (лемма 2.1, теорема 2.3) критерий ограниченности искривления графика вещественной функции в терминах условия середин, введенного в [2]. В § 3, 4 рассматривается свойство инфинитезимальной связности континуума $F \subset \mathbb{R}^n$, означающее, что для любой последовательности растяжений $\{\mu_k(x) = a_k + r_k(x - a_k)\}$ с центрами $a_k \in F, \ a_k \to a \in F, \ и$ коэффициентами $r_k \to \infty$ при $k \to \infty$ предел F' последовательности компактных множеств $\mu_k(F)$ в $\overline{\mathbb{R}}^n$, если таковой существует, не разделяется точкой ∞ , т. е. множество $F'\setminus\{\infty\}$ связно. Если при этом всякий такой предел является жордановой дугой или жордановой кривой в $\overline{\mathbb{R}}^n$, то континуум F называем инфинитезимально жордановым. В теореме 3.3 доказана эквивалентность ограниченности искривления континуума его инфинитезимальной связности, а в теореме 4.5 установлено, что континуум инфинитезимально жорданов в том и только в том случае, когда он является жордановой дугой (или жордановой кривой) с ограниченным искривлением. В доказательстве теоремы 4.5 существенно использован основной результат из [3].

Часть результатов, приведенных в статье, анонсирована в [4,5]. В тексте статьи символом |x-y| всюду обозначается расстояние между точками x и y, diam A — диаметр множества A, d(x,A) — расстояние (удаление) от точки

a до множества A, $\operatorname{dist}(A,B)$ — хаусдорфово расстояние между ограниченными замкнутыми множествами, $\operatorname{Lim} A_k$ — предел последовательности компактных подмножеств $\{A_k\}$ относительно хаусдорфова расстояния. В § 1 эти обозначения применяются для произвольного метрического пространства, в § 2 — для евклидова пространства \mathbb{R}^n , в § 3, 4 все эти обозначения (кроме $\operatorname{Lim} A_k$) рассматриваются относительно евклидова расстояния в \mathbb{R}^n , а предел $\operatorname{Lim} A_k$ последовательности компактных множеств в $\overline{\mathbb{R}}^n$ понимается относительно хаусдорфова расстояния, построенного на основе хордовой метрики в пространстве $\overline{\mathbb{R}}^n$. Жордановой дугой мы называем гомеоморфный образ отрезка, а жордановой кривой — гомеоморфный образ окружности. Все остальные термины и символы поясняются в тексте статьи.

§ 1. Ограниченность искривления и условие цепей

В [1, определение 2.7, с. 100] подмножество A метрического пространства $\mathscr X$ называется nceedobunyknum, если для каждого $r \in (0,1)$ существует натуральное C(r) такое, что для любой пары точек $a,b \in A$ имеется конечная цепь $a=a_0,a_1,\ldots,a_s=b$ в A, удовлетворяющая условиям $s \leq C(r)$ и $|a_s-a_{s-1}| \leq \cdots \leq |a_1-a_0| \leq r|a-b|$. При этом множество $\mathscr A$ также называется C-nceedobunyknum. Эти термины будут использоваться только в данном параграфе.

Определение 1.1. Подмножество A метрического пространства $\mathscr X$ удовлетворяет условию (N,r)-цепей с натуральным N и положительным r<1, если для любой пары точек $a,b\in A$ существует цепь $a=a_0,a_1,\ldots,a_m=b$ точек в A такая, что $m\leq N$ и $|a_j-a_{j-1}|\leq r|a-b|$ для всех $j=1,\ldots,m$.

Очевидно, что при этом в A возможен процесс (N,r)-уплотнения цепей: в заданной (N_1,r_1) -цепи каждую пару соседних точек (т. е. звено цепи) x_j,x_{j+1} можно соединить (N,r)-цепью $x_j,y_{j1},\ldots,y_{jN'},x_{j+1}$ с N'< N и получить таким образом (N_1N,r_1r) -цепь, соединяющую те же точки a,b. Непосредственно из определений усматривается, что C-псевдовыпуклость влечет условие (N,r)-цепей с N=N(r)=C(r) при любом $r\in(0,1)$. Возможно, в общем случае условие (N,r)-цепей не обеспечивает псевдовыпуклости.

Напомним [1, определение 2.7, с. 100], что метрический континуум A имеет ограниченное искривление, если существует $c \ge 1$ такое, что любую пару точек $a,b \in A$ можно соединить континуумом $\gamma \subset A$ с диаметром $\le c|a-b|$. Эта же ситуация выражается в форме принадлежности A классу c-BT.

Теорема 1.2. Любое замкнутое подмножество A полного метрического пространства \mathcal{X} , удовлетворяющее условию (N,r)-цепей c некоторыми N и $r \in (0,1)$, является континуумом c ограниченным искривлением, r. e. $A \in c$ -BT, rде c зависит лишь от r и N.

ДОКАЗАТЕЛЬСТВО. Пусть a,b — произвольная пара различных точек в A. Положим |a-b|=d. По условию теоремы в A имеется (N,r)-цепь \mathscr{C}^1 , соединяющая точки a,b. Выполняя на каждом шаге процесс (N,r)-уплотнения, мы получаем последовательность цепей

$$\mathscr{C}^1 \subset \mathscr{C}^2 \subset \cdots \subset \mathscr{C}^j \subset \cdots$$

где каждая цепь \mathscr{C}^j является (N^j,r^j) -цепью, соединяющей точки a и b. Если точка $x\in\mathscr{C}^{j+1}$ не содержится в цепи \mathscr{C}^j , то она содержится в подцепи

 $\mathscr{C}'\subset\mathscr{C}^{j+1}$, соединяющей две последовательные точки $a',b'\in\mathscr{C}^j$ и являющейся (N,r)-цепью. Так как

$$|x - a'| \le \operatorname{diam} \mathscr{C}' \le Nr|a' - b'| \le Nr \cdot r^j d = \delta_j,$$

множество \mathscr{C}^{j+1} содержится в δ_j -окрестности своего подмножества \mathscr{C}^j . Поэтому (см. [6, т. 1, 21.7, (2), с. 224]) для хаусдорфова расстояния имеем оценку $\operatorname{dist}(\mathscr{C}^j,\mathscr{C}^{j+1}) \leq \delta_j$. Поскольку

$$\operatorname{dist}(\mathscr{C}^{j},\mathscr{C}^{j+s}) \leq \sum_{k=j}^{j+s-1} \operatorname{dist}(\mathscr{C}^{k},\mathscr{C}^{k+1}) \leq \sum_{k=j}^{j+s-1} \delta_{k}$$
$$= Ndr^{j+1} \sum_{k=0}^{s-1} r^{k} \leq (Nd/(1-r))r^{j+1}$$

для любых натуральных j и s, компактные множества $\{\mathcal{C}^j\}$ образуют последовательность Коши в метрическом пространстве Clos \mathscr{X} всех непустых ограниченных замкнутых подмножеств пространства \mathscr{X} , наделенном хаусдорфовой метрикой. Из полноты пространства \mathscr{X} следует полнота Clos \mathscr{X} (см. [6, т. 1, гл. 3, 33.4, с. 417]) и, следовательно, существование предела $\gamma = \text{Lim}\,\mathscr{C}^j$ при $j \to \infty$, являющегося ограниченным замкнутым множеством в A (в силу замкнутости A). Так как для каждого j > 1 выполняется оценка

$$\operatorname{dist}(\mathscr{C}^j,\{a\}) \leq \operatorname{dist}(\mathscr{C}^j,\mathscr{C}^1) + \operatorname{diam}\mathscr{C}^1 \leq Ndr^2/(1-r) + Ndr = Ndr/(1-r),$$

то

$$\operatorname{diam} \gamma \le c|a-b|,\tag{1}$$

где c=1+Nr/(1-r). Пространство γ как предел возрастающей последовательности конечных множеств является вполне ограниченным (см. [6, т. 1, гл. 2, 21.8, теорема 1, с. 224]) и в силу теоремы Хаусдорфа (см. [7, гл. 3, 3.6, теорема 3.25, с. 242]) компактно. Для произвольно заданного $\varepsilon>0$ и пары точек $x,y\in\gamma$ найдется номер k такой, что $r^kd<\varepsilon$ и $\mathscr C^k$ содержит пару точек x_k,y_k , для которых $|x-x_k|<\varepsilon$, $|y-y_k|<\varepsilon$. В цепи $\mathscr C^k$ точки x_k,y_k можно соединить цепью $x_k=z_0,z_1,\ldots,z_m=y_k$, в которой $|z_{j+1}-z_j|\leq r^kd<\varepsilon$. Тогда x,z_0,\ldots,z_m,y является конечной ε -цепью в γ . Значит, компактное пространство γ является ε -сцепленным в смысле Хаусдорфа [8, 30.2, с. 172] при любом $\varepsilon>0$. В силу [8, 30, теорема 7, с. 173] это равносильно связности γ . Таким образом, произвольно заданная пара точек $a,b\in A$ соединяется континуумом $\gamma\subset A$ с диаметром $\leq c|a-b|$, где c определено в (1) и зависит лишь от N и r. Следовательно, $A\in c$ -ВТ, что и утверждалось.

Напомним, что принадлежность метрического пространства классу k-HTB, где $k:[1/2,\infty)\to [1,\infty)$, означает, что при любом $\alpha\ge 1/2$ любой замкнутый шар радиуса r можно покрыть не более чем $k(\alpha)$ множествами диаметра $\le r/\alpha$ (см. [1, c. 100]). Пространства \mathbb{R}^n и $\overline{\mathbb{R}}^n$ принадлежат классу k-HTB с $k(\alpha)=2^n(\alpha\sqrt{n}+1)^n$ (см. [1, 2.8, c. 100]).

Теорема 1.3. Континуум A в полном метрическом пространстве класса k-HTB имеет ограниченное искривление, т. е. $A \in c$ -BT, тогда и только тогда, когда он удовлетворяет условию (N,r)-цепей c некоторыми N и $r \in (0,1)$. При этом параметры c и (N,r) имеют взаимные оценки.

Доказательство. Если $A \in c$ -ВТ, то A является C-псевдовыпуклым (см. [1, теорема 2.9, с. 100]) с C(r), зависящим лишь от k и c. Но тогда, как отмечено

выше, при любом $r \in (0,1)$ множество A удовлетворяет условию (N(r),r)-цепей с N(r) = C(r). Обратная импликация установлена в теореме 1.2. Теорема доказана.

Теорема 1.2 дает обращение теоремы 2.9 в [1, с. 100] и приводит к следующему критерию ограниченности искривления континуумов.

Следствие 1.4. Для континуумов в полных метрических пространствах класса HTB условия псевдовыпуклости и ограниченности искривления эквивалентны.

Доказательство. Псевдовыпуклость влечет условие цепей, из которого в силу теоремы 1.2 вытекает ограниченность искривления. Обратная импликация доказана в [1, теорема 2.9, с. 100].

§ 2. Ограниченность искривления графика функции

В качестве приложения теоремы 1.2 установим критерий ограниченности искривления графика непрерывной вещественной функции, определенной на интервале $J \subset \mathbb{R}^1$. Для гомеоморфного вложения $f: J \to \mathbb{R}^m$ выпуклого множества $J \subset \mathbb{R}^n$ выполнение условия середин УС(H) означает (см. [2, определение 0.2, с. 1225]), что $|f((x+y)/2) - f(x)| \leq H|f(x) - f(y)|$ для любых $x,y \in J$.

Лемма 2.1. Пусть непрерывная вещественная функция $\varphi: J \to \mathbb{R}^1$, заданная на интервале $J \subset \mathbb{R}^1$, имеет график $\Gamma \subset \mathbb{R}^2$. Гомеоморфное вложение $f(t) = (t, \varphi(t)): J \to \Gamma$ удовлетворяет условию середин $\mathrm{VC}(H)$ тогда и только тогда, когда $\Gamma \in c$ -BT, где c и H имеют взаимные оценки.

ДОКАЗАТЕЛЬСТВО. Пусть f удовлетворяет $\mathrm{YC}(H), \ a < b$ — произвольная пара точек из J и $A = (a, \varphi(a)), B = (b, \varphi(b)).$

Случай 1. Пусть $\varphi(a)=\varphi(b)=h$ и c=(a+b)/2. Не ограничивая общности, можно считать, что $\varphi(c)\geq h$. Положим q=|A-B|=|a-b|, $N_1=[2H+1]\geq 1,$ $\delta=(\varphi(c)-h)/N_1$ и заметим, что прямые $L_k=\{\operatorname{Im} z=h+k\delta\},$ $k=0,\ldots,N_1$, пересекают дуги f([a,c]) и f([c,b]) в некоторых точках A_k и B_k соответственно, причем можно положить $A_0=A,B_0=B$ и $A_{N_1}=B_{N_1}=f(c)$. Цепь $A=A_0,\ldots,A_{N_1},B_{N_1-1},\ldots,B_0=B$ имеет $2N_1$ звеньев и соединяет в Γ точки A,B. Из неравенства $|\varphi(c)-h|\leq |f(c)-f(a)|\leq Hq$ следует, что

$$|A_{k+1} - A_k|^2 \le |a - c|^2 + \delta^2 \le q^2/4 + q^2(H/N_1)^2 \le q^2/2,$$

и поэтому $|A_{k+1}-A_k| \leq (1/\sqrt{2})|A-B|$ для всех $k=0,\ldots,N_1-1$. Аналогично $|B_{k+1}-B_k| \leq (1/\sqrt{2})|A-B|$ для всех $k=0,\ldots,N_1-1$. Это означает, что построенная цепь является $(2N_1,1/\sqrt{2})$ -цепью с N_1 , зависящим лишь от H.

Случай 2. Пусть $\varphi(a) \neq \varphi(b)$ и дуга f((a,b)) не пересекает прямые $\{\operatorname{Im} z = \varphi(a)\}$, $\{\operatorname{Im} z = \varphi(b)\}$. Не нарушая общности, можно считать, что $\varphi(a) < \varphi(b)$. Положим $h = |\varphi(b) - \varphi(a)|$. Если $h \geq |a - b|$, то возьмем произвольно точку C в пересечении дуги f((a,b)) с прямой $\{\operatorname{Im} z = (\varphi(a) + \varphi(b))/2\}$. Так как

$$|A-C|^2 \leq (h^2 + |a-b|^2)/4 + 3(h^2 + |a-b|^2)/8 = (5/8)|A-B|^2$$

и аналогично $|B-C|^2 \le (5/8)|A-B|^2$, то A,C,B является $(2,\sqrt{5/8})$ -цепью. Если же $h \le |a-b|$, то положим c = (a+b)/2 и C = f(c). Поскольку

$$|A - C|^2 = |a - b|^2 / 4 + |\varphi(c) - \varphi(a)|^2$$

$$\leq (|a - b|^2 + |\varphi(c) - \varphi(a)|^2) / 4 + 3(|a - b|^2 + |\varphi(c) - \varphi(a)|^2) / 8 \leq (5/8)|A - B|^2$$

и аналогично $|B-C|^2 \leq (5/8)|A-B|^2$, то A,C,B и в этом случае является $(2,\sqrt{5/8})$ -цепью.

Обший случай. Положим

$$d = \min\{x \in [a, b] : \varphi(x) = \varphi(b)\}, \quad c = \max\{x \in [a, d] : \varphi(x) = \varphi(a)\}$$

и покажем, что точки A,B можно соединить (N_2,r_0) -цепью по f([a,b]) с $N_2=4N_1+2,r_0=\sqrt{5/8}$. Если c=d, то $\varphi(a)=\varphi(b)$, и реализуется случай 1. Поэтому можно считать, что c<d. Для пары точек C=f(c),D=f(d) реализуется случай 2, дающий нам $(2,r_0)$ -цепь C,C',D, у которой

$$\max\{|C - C'|, |C' - D|\} \le r_0|C - D| \le r_0|A - B|. \tag{2}$$

Если c=a, то полагаем $A_0=A, A_1=C, k_1=1$. Если же a< c, то для пары точек A,C реализуется случай 1, который дает нам (k_1,r_0) -цепь $A_0=A,A_1,\ldots,A_{k_1}=C,$ с $k_1\leq 2N_1.$ При этом для всех $j=1,\ldots,k_1$

$$|A_j - A_{j-1}| \le r_0|C - A| \le r_0|A - B|. \tag{3}$$

Если d=b, то полагаем $B_0=D, B_1=B, k_2=1$. Если же d< b, то для D,B реализуется случай 1, который дает нам (k_2,r_0) -цепь $B_0=D,B_1,\ldots,B_{k_2}=B$ с $k_2\leq 2N_1$. Для всех $j=1,\ldots,k_2$

$$|B_j - B_{j-1}| \le r_0 |B - D| \le r_0 |A - B|. \tag{4}$$

В силу (2)–(4) цепь $A_0, \ldots, A_{k_1}, C', B_0, \ldots, B_{k_2}$ является (2 + 4 N_1, r_0)-цепью, соединяющей точки A, B. Таким образом, континуум $\Gamma = f(J)$ удовлетворяет условию (2 + 4 N_1, r_0)-цепей и вследствие теоремы 1.2 принадлежит классу c-ВТ, где c зависит лишь от N_1 , которое зависит лишь от H.

Обратная импликация ($\Gamma \in c\text{-BT}$) $\Rightarrow \text{VC}(H)$ вытекает из оценки

$$|f((x+y)/2) - f(x)| < \text{diam } f([x,y]) < c|f(x) - f(y)|,$$

справедливой при любых $x, y \in J$. Лемма доказана.

Отметим, что условия леммы 2.1 не гарантируют квазисимметричности f; в качестве контрпримера достаточно взять функцию $\varphi(x)=\operatorname{tg}(x)$ на интервале $J=(-\pi/2,\pi/2)$. Соответствующее отображение $f(x)=(x,\operatorname{tg}(x))$ переводит ограниченное множество в неограниченное, что исключено при квазисимметрических вложениях (см. [1, следствие 2.6, с. 100]), однако f удовлетворяет УС(1) вследствие монотонности функции φ . В общем случае для квазисимметричности f необходимо выполнение условия Келингоса УК(H'): $|f(x)-f(z)| \leq H'|f(y)-f(z)|$ для всех $x,y,z \in J$ таких, что |x-z|=|y-z| (см. [2, (1), с. 1225]).

Утверждение 2.2. Пусть непрерывная вещественная функция $\varphi(x)$ задана на интервале $J \subset \mathbb{R}^1$. Для η -квазисимметричности вложения $f(x) = (x, \varphi(x)) : J \to \mathbb{R}^2$ необходимо и достаточно, чтобы f удовлетворяло $\mathrm{YC}(H)$ и $\mathrm{YK}(H')$. При этом функция искажения η и пара констант H, H' имеют взаимные оценки.

ДОКАЗАТЕЛЬСТВО. Непосредственно из определения квазисимметричности (см. [1, с. 97]) следует, что если f является η -квазисимметрическим, то оно удовлетворяет УК $(\eta(1))$ и УС $(\eta(1/2))$. Обратно, из УС(H) получаем в силу леммы 2.1 ограниченность искривления жордановой дуги f(J). Следовательно,

существует ω -квазисимметрический гомеоморфизм $\psi: f(J) \to \mathbb{R}^1$ (см. [1, следствие 4.11, с. 113]) с функцией искажения ω , зависящей лишь от H. Из УК(H') для f вытекает, что $g = \psi \circ f: J \to \mathbb{R}^1$ удовлетворяет УК($\omega(H')$) и является ω_1 -квазисимметрическим отображением (см. [2, с. 1226]) с функцией искажения ω_1 , зависящей в итоге лишь от H, H'. Требуемая квазисимметричность вложения f следует из представления $f = \psi^{-1} \circ g$ и ω_2 -квазисимметричности вложения ψ^{-1} с функцией искажения $\omega_2(t) = 1/\omega^{-1}(1/t)$ (см. [1, теорема 2.2, с. 99]). Утверждение доказано.

В [2, теорема 2.3, с. 1228] доказана квазисимметричность гомеоморфного вложения $f: J \to \mathbb{R}^n$, удовлетворяющего условию середин с константой H < 1. В частном случае, рассмотренном в утверждении 2.2, ограничения на константу H не потребовалось. Вопрос о существенности ограничения H < 1 в общем случае (но при выполнении условия Келингоса) в [2, теорема 2.3, с. 1228] остается открытым.

Теорема 2.3. Пусть непрерывная вещественная функция $\varphi(x)$, заданная на выпуклом множестве $J \subset \mathbb{R}^n$, имеет график $\Gamma \subset \mathbb{R}^{n+1}$. Если гомеоморфное вложение $f(x) = (x, \varphi(x)) : J \to \Gamma$ удовлетворяет условию середин $\mathrm{VC}(H)$, то Γ имеет ограниченное искривление, т. е. $\Gamma \in c\text{-BT}$, где константа c зависит лишь от H.

Доказательство. Для произвольной пары точек $A,B\in\Gamma$ построим прямую L, проходящую через $a=f^{-1}(A)\in J$ и $b=f^{-1}(B)\in J$. В силу выпуклости J пересечение $J'=J\cap L$ является интервалом. Так как ограничение f|J' удовлетворяет $\mathrm{VC}(H)$, то по лемме 2.1 континуум f(J') принадлежит классу c-BT, где c зависит лишь от H. Поэтому существует континуум $\gamma\subset f(J')\subset\Gamma$, соединяющий точки A и B и имеющий диаметр $\leq c|A-B|$. В силу произвольности выбора $A,B\in\Gamma$ это и означает, что $\Gamma\in c$ -BT. Теорема доказана.

Заметим, что в отличие от одномерного случая, рассмотренного в лемме 2.1, условие $\mathrm{YC}(H)$ для f не следует из ограниченности искривления графика функции φ . В качестве примера можно взять функцию $\varphi(x_1,x_2)=\sqrt[4]{x_1^2+x_2^2}$ на плоскости \mathbb{R}^2 . В общем случае условие квазисимметричности вложения f сильнее, чем одновременное выполнение YC и YK для f, что, в свою очередь, сильнее, чем ограниченность искривления графика функции φ .

Утверждение 2.4. Пусть $F = (F_1, \ldots, F_n) : D \to D' - \eta$ -квазисимметрический гомеоморфизм области $D \subset \mathbb{R}^n$ на выпуклую область $D' \subset \mathbb{R}^n$. Тогда графики $\Gamma F_j \subset \mathbb{R}^{n+1}$ координатных функций $F_j : D \to \mathbb{R}^1, \ j = 1, \ldots, n$, имеют ограниченное искривление, $\Gamma F_j \in c$ -BT, где $c = 2/\eta^{-1}(1)$.

ДОКАЗАТЕЛЬСТВО. Пусть $A=(a,F_j(a)),\ B=(b,F_j(b))$ — две точки на графике $\Gamma F_j,\ a,b\in D,\ F_j(a)\le F_j(b).$ Так как обратное отображение F^{-1} является η' -квазисимметрическим с функцией искажения $\eta'(t)=1/\eta^{-1}(1/t)$ (см. [1, теорема 2.2, с. 99]), континуум $\gamma_0=F^{-1}(L)\subset D,$ где L — отрезок с концами в точках F(a) и F(b), является дугой с ограниченным искривлением, $\gamma_0\in c$ -ВТ, где $c=2\eta'(1)$ (см. [1, теорема 2.10, с. 101]). Следовательно, diam $\gamma_0\le c|a-b|$ и при этом $F_j(x)\in [F_j(a),F_j(b)]$ для всех $x\in\gamma_0.$ Поэтому для континуума $\gamma=\{(x,F_j(x)):x\in\gamma_0\}\subset\Gamma F_j,$ соединяющего точки A и B, получаем оценку

$$(\operatorname{diam} \gamma)^2 \le (c^2|a-b|^2 + |F_j(a) - F_j(b)|^2) \le c^2|A-B|^2.$$

Это и означает, что ΓF_i принадлежит классу c-BT. Утверждение доказано.

Таким образом, ограниченность искривления графика можно рассматривать как некоторое геометрическое условие регулярности вещественной функции, необходимое (наряду с другими условиями) для «достройки» этой функции до квазиконформного отображения (проблема, поставленная В. А. Зоричем в [9, с. 47]). Однако более сильное требование квазисимметричности первой проекции графика в рамках этой проблемы излишне жестко.

Утверждение 2.5. Пусть непрерывная вещественная функция f задана в области $D \subset \mathbb{R}^n$ (n > 1) и имеет график $\Gamma \subset \mathbb{R}^{n+1}$. Отображение $F : D \to \Gamma$, F(x) = (x, f(x)), является локально η -квазисимметрическим тогда и только тогда, когда функция f локально L-липшицева. При этом $L \leq 4\eta(1)\eta(1/2)$ и отображение F локально $(L^2 + 1)^{1/2}$ -билипшицево.

ДОКАЗАТЕЛЬСТВО. НЕОБХОДИМОСТЬ. Пусть $x_0 \in D$ и вложение F является η -квазисимметрическим в шаре $B = B(x_0, r_0) \subset D$. Для $\delta < r_0$ положим

$$M = \max\{|f(x) - f(x_0)| : x \in S\} = |f(x_1) - f(x_0)|,$$

где $x_1 \in S = \{x : |x-x_0| = \delta\}$, и $K = M/\delta$. Для точки $x_2 = 2x_0 - x_1$ рассмотрим какую-нибудь окружность $S' \subset S$, проходящую через точки x_1, x_2 . В силу η -квазисимметричности вложения F имеем оценку

$$K\delta \le |F(x_1) - F(x_0)| \le \eta(1/2)|F(x_1) - F(x_2)|.$$

Точки x_1, x_2 разбивают окружность S' на две дуги γ_1 и γ_2 . Найдутся точки $x_3 \in \gamma_1$ и $x_4 \in \gamma_2$ такие, что $f(x_3) = f(x_4) = (f(x_1) + f(x_2))/2$. Так как $S' \in 1$ -BT, то F(S') имеет ограниченное искривление, $F(S') \in 2\eta(1)$ -BT (см. [1, теорема 2.11, с. 101]). Следовательно,

$$K\delta/\eta(1/2) < |F(x_1) - F(x_2)| < 2\eta(1)|F(x_3) - F(x_4)| = 2\eta(1)|x_3 - x_4| < 4\eta(1)\delta.$$

Таким образом, $K \leq 4\eta(1)\eta(1/2)$ и, значит, для всех $x \in B$ выполняется неравенство $|f(x)-f(x_0)| \leq L|x-x_0|$ с константой $L=4\eta(1)\eta(1/2)$, что и дает локальную L-липшицевость функции f.

Достаточность. В любом шаре $B\subset D$, где f L-липшицева, выполняются оценки

$$|F(x_0) - F(x_1)|^2 = |f(x_0) - f(x_1)|^2 + |x_0 - x_1|^2 \le (L^2 + 1)|x_0 - x_1|^2$$

и $|F(x_0)-F(x_2)|\geq |x_0-x_2|$, из которых следует, что вложение $F:B\to \Gamma$ является $(L^2+1)^{1/2}$ -билипшицевым. Утверждение доказано.

§ 3. Ограниченность искривления и инфинитезимальная связность

Пусть F — компактное множество в \mathbb{R}^n . Микроскопом на F назовем любую последовательность растяжений $\{\mu_k(x) = a_k + r_k(x - a_k)\}$ с центрами $a_k \in F \subset \mathbb{R}^n$ и коэффициентами $r_k \to \infty$ при $k \to \infty$. Микроскоп $\{\mu_k\}$ называем сходящимся в точке $a \in F$, если $a_k \to a$ при $k \to \infty$ и последовательность компактных множеств $F_k = \mu_k(F)$ сходится в пространстве $\operatorname{Comp} \overline{\mathbb{R}}^n$. Предел $dF = \operatorname{Lim} F_k$ называем инфинитезимальным элементом множества F в точке a. (Отметим, что любой инфинитезимальный элемент невырожденного континуума является невырожденным континуумом в $\overline{\mathbb{R}}^n$, содержащим точку ∞ .) Тем самым каждой точке a множества F сопоставляется семейство DF(a) его

инфинитезимальных элементов в этой точке, которое непусто, так как в силу компактности пространства $\operatorname{Comp} \overline{\mathbb{R}}^n$ в любом микроскопе μ_k на F с $a_k \to a$ можно выделить подпоследовательность μ_{k_j} , являющуюся сходящимся микроскопом.

В частности, *невыпрямляемые* (incorrigible) дуги, рассмотренные Терстоном в [10, определение 4.2, с. 194], можно определить как дуги, у которых семейство инфинитезимальных элементов не содержит окружностей в $\overline{\mathbb{R}}^n$.

Утверждение 3.1. Пусть $F \subset \mathbb{R}^n$ — компактное множество и $p \in F \cap \mathbb{R}^n$ не является его изолированной точкой. Тогда для любой замкнутой окрестности U точки p выполняется равенство DF(p) = DF'(p), где $F' = F \cap U$.

Доказательство. Достаточно рассмотреть случай, когда $G = F \setminus U \neq \emptyset$. Для любого микроскопа $\{\mu_k(x) = p_k + r_k(x - p_k)\}$ на F с $p_k \to p$ найдется $\varepsilon > 0$ такое, что для всех достаточно больших k выполняются оценки $d(p_k, G) \ge \varepsilon$ и $|p - p_k| < 1$. Если $x \in G$, то

$$|\mu_k(x) - p| = |r_k(x - p_k) + p_k - p| \ge r_k \varepsilon - 1 \to +\infty, \quad k \to \infty.$$

Следовательно, $\lim \mu_k(G) = \{\infty\}$ при $k \to \infty$. В случае сходящегося микроскопа $\infty \in \lim \mu_k(F \cap U)$, используя свойства топологического предела [6, т. 1, § 29, (3), с. 347], получаем равенство

$$\operatorname{Lim} \mu_k(F) = \operatorname{Lim} \mu_k(F \cap U) \cup \operatorname{Lim} \mu_k(G) = \operatorname{Lim} \mu_k(F').$$

Утверждение доказано.

Определение 3.2. Континуум $F \subset \mathbb{R}^n$ называется инфинитезимально связным в точке $a \in F$, если для любого его инфинитезимального элемента $dF \in DF(a)$ множество $dF \setminus \{\infty\}$ связно.

Теорема 3.3. Континуум $F \subset \mathbb{R}^n$ имеет ограниченное искривление тогда и только тогда, когда он инфинитезимально связен во всех своих точках.

Доказательство. Необходимость. Пусть $F \in c$ -ВТ. Допустим, что для точки $a \in F$ имеется микроскоп $\{\mu_k(x) = a_k + r_k(x - a_k)\}$ такой, что $dF = \operatorname{Lim} \mu_k(F)$ и $dF \setminus \{\infty\}$ имеет по меньшей мере две различные компоненты связности. Возьмем точки p_0 и p_1 , лежащие в разных компонентах связности множества $dF \cap \mathbb{R}^n$. В силу сходимости $F_k = \mu_k(F) \to dF$ для каждого k найдутся точки $p_{0k}, p_{1k} \in F_k$ такие, что $p_{0k} \to p_0$ и $p_{1k} \to p_1$ при $k \to \infty$. Так как $F \in c$ -ВТ, для каждого k существует континуум $\gamma_k \subset F$, соединяющий точки $\mu_k^{-1}(p_{0k})$ и $\mu_k^{-1}(p_{1k})$, для которого

$$\operatorname{diam} \gamma_k \le c \big| \mu_k^{-1}(p_{0k}) - \mu_k^{-1}(p_{1k}) \big| = c r_k^{-1} |p_{0k} - p_{1k}|.$$

Переходя при необходимости к подпоследовательности в μ_k , можем считать, что имеет место сходимость $\mu_k(\gamma_k) \to \gamma$ при $k \to \infty$. Предельный континуум $\gamma \subset dF$ соединяет точки p_0 и p_1 , и при этом

$$\operatorname{diam} \gamma \le \limsup_{k \to \infty} \{ r_k \operatorname{diam} \gamma_k \} \le c |p_0 - p_1|.$$

Следовательно, γ лежит в шаре $\{x: |x-a| \leq |p_0-a|+c|p_0-p_1|\}$, что противоречит выбору точек p_0, p_1 .

Достаточность. Если F не принадлежит классу BT, то по теореме 1.3 найдется последовательность пар точек $p_k, q_k \in F$, которые нельзя соединить

(k,1/2)-цепью в F. Перейдя при необходимости к подпоследовательности, можно считать, что $p_k \to p \in F$ и $q_k \to q \in F$. Допустив, что $|p-q| = \delta > 0$, построим покрытие $\mathscr B$ множества F открытыми шарами радиуса $\delta/8$ с центрами на F. В силу связности множества F найдется цепь $\{B_1,\ldots,B_N\}\subset \mathscr B$ шаров с центрами $a_1,\ldots,a_N\in F$ такая, что $p\in B_1,q\in B_N$ и $B_i\cap B_j\neq \varnothing$ в том и только в том случае, когда $|i-j|\leq 1$ (см. [11, гл. 6, задача 6.3.1, с. 546]). Тогда для любого достаточно большого номера k цепь $p_k,p,a_1,\ldots,a_N,q,q_k$ соединяет точки p_k и q_k , и при этом $|p_k-q_k|\geq |p-q|/2$. Следовательно, эта цепь является (N+3,1/2)-цепью. Так как N не зависит от k, это противоречит выбору последовательности p_k,q_k . Тем самым доказано, что q=p и $|p_k-q_k|\to 0$ при $k\to\infty$. Построим микроскоп $\{\mu_k(x)=p_k+|q_k-p_k|^{-1}(x-p_k)\}$. Перейдя при необходимости к подпоследовательности, можно считать, что $\mu_k(F)=F_k\to F_0\subset\overline{\mathbb R}^n$ и, значит, $F_0\in dF(p)$. Ввиду инфинитезимальной связности F множество $F_0\setminus\{\infty\}$ связно. Перейдя при необходимости к подпоследовательности, можно считать, что имеет место сходимость $\mu_k(q_k)\to Q\in F_0$. При этом

$$|Q - p| = \lim_{k \to \infty} |\mu_k(q_k) - p_k| = \lim_{k \to \infty} |q_k - p_k|^{-1} |q_k - p_k| = 1.$$

Воспользовавшись связностью множества $F_0 \setminus \{\infty\}$, построим на нем какую-нибудь (N',1/4)-цепь $Q=c_0,c_1,\ldots,c_{N'}=p$ (повторив те же рассуждения, что и выше, для точек p,Q). В силу сходимости $F_k\to F_0$ для всех достаточно больших k найдутся точки $\{\mu_k(q_k)=c_{k0},\ldots,c_{kN'}=p_k\}\in F_k$ такие, что $|c_j-c_{kj}|\leq 1/8$. Тогда цепь $c_{k0},\ldots,c_{kN'}$ соединяет точки $\mu_k(q_k),p_k$ в F_k и является (N',1/2)-цепью. Следовательно, для любого достаточно большого k мы имеем (N',1/2)-цепь $\mu_k^{-1}(c_{k0}),\ldots,\mu_k^{-1}(c_{kN'})$ в F, соединяющую точки q_k и p_k . Так как N' не зависит от k, это противоречит выбору последовательности точек p_k,q_k . Полученное противоречие означает, что F имеет ограниченное искривление. Теорема доказана.

§ 4. Случай жордановых кривых с ограниченным искривлением

Теорема 4.1. Пусть $F \subset \mathbb{R}^n$ — жорданова дуга класса c-BT c концами в точках a,b. Тогда для любого сходящегося микроскопа $\{\mu_j(x)=x_j+r_j(x-x_j)\}$ такого, что

$$r_i \min\{|x_i - a|, |x_i - b|\} \to +\infty,\tag{5}$$

инфинитезимальный элемент $dF = \operatorname{Lim} \mu_j(F)$ является жордановой кривой в $\overline{\mathbb{R}}^n$.

Доказательство. Пусть $x_j \to p \in F$. Условие теоремы позволяет для каждого достаточно большого номера j построить точки $a_j, b_j \in F$, находящиеся в разных компонентах связности множества $F\backslash\{x_j\}$, такие, что $|a_j-x_j|=|b_j-x_j|=1/r_j$. В силу [1, теорема 4.9, с. 113] для каждого номера j существует η -квазисимметрический гомеоморфизм $f_j:J_j\to F$ отрезка $[A_j,B_j]=J_j\subset\mathbb{R}^1$ такой, что $-1,0,1\in J_j$ и $f(A_j)=a,$ $f(B_j)=b,$ $f_j(-1)=a_j,$ $f_j(0)=x_j,$ $f_j(1)=b_j.$ Используя квазисимметричность, получаем оценку $\eta(|A_j|)\geq |a-x_j|/|a_j-x_j|\to +\infty$, из которой следует, что $A_j\to -\infty$ при $j\to \infty$. Аналогично $B_j\to +\infty$ при $j\to \infty$. Следовательно, $J_j\to \overline{\mathbb{R}}^1$. Так как любое квазисимметрическое вложение является квазимёбиусовым (см. [12, теорема 3.4, с. 222] или [13, теорема 2.6, с. 33]), все f_j представляют собой ω -квазимёбиусовы вложения с функцией искажения ω , зависящей лишь от η . Абсолютное двойное отношение не меняется при

переходе от евклидовой метрики к хордовой, поэтому $\varphi_j = \mu_j \circ f_j : J_j \to \mu_j(F)$ — последовательность ω -квазимёбиусовых вложений подмножеств $J_j \subset \overline{\mathbb{R}}^1$ в $\overline{\mathbb{R}}^n$. При этом $|\varphi_j(0) - \varphi_j(1)| = 1$, $|\varphi_j(0)| \to p$ и $|\varphi_j(B_j)| \to \infty$. Следовательно, $|\varphi_j|$ является нормируемым семейством ω -квазимёбиусовых вложений (см. [14, с. 26] или [15, 2.1.3, с. 34]). В силу принципа компактности нормируемых семейств квазимёбиусовых вложений [14, теорема 6.4, с. 26] в последовательности $|\varphi_j|$ можно выделить подпоследовательность, графически сходящуюся к $|\varphi_j|$ но $|\varphi_j(J_j)| = |\varphi_j(J_j)| = |\varphi_j(J_j)$

Следствие 4.2. Пусть жорданова дуга $F \subset \mathbb{R}^n$ с концами a,b имеет ограниченное искривление. Тогда любой инфинитезимальный элемент в точке $p \in F$, отличной от a,b, является жордановой кривой в $\overline{\mathbb{R}}^n$.

Доказательство. Так как для любого сходящегося микроскопа $\{\mu_j(x) = x_j + r_j(x - x_j)\}$ с $x_j \to p$ свойство (5) выполняется при всех достаточно больших j, применима теорема 4.1, которая и дает требуемый результат.

Следствие 4.3. Если жорданова кривая F имеет ограниченное искривление, то любой ее инфинитезимальный элемент является жордановой кривой в $\overline{\mathbb{R}}^n$.

Доказательство. Для любой точки $p \in F$ можно построить ее замкнутую окрестность U так, что $\gamma = U \cap F$ — жорданова дуга с концами a,b. В силу утверждения 3.1 множество инфинитезимальных элементов DF(p) совпадает с $D\gamma(p)$ и согласно следствию 4.2 состоит лишь из жордановых кривых в $\overline{\mathbb{R}}^n$.

Определение 4.4. Континуум $F \subset \mathbb{R}^n$ назовем *инфинитезимально жор-дановым*, если любой его инфинитезимальный элемент — жорданова кривая в $\overline{\mathbb{R}}^n$.

Теорема 4.5. Континуум $F \subset \mathbb{R}^n$ инфинитезимально жорданов в том и только в том случае, когда он является жордановой дугой (или жордановой кривой) с ограниченным искривлением.

Доказательство. Достаточность установлена в следствии 4.3. Докажем необходимость. Инфинитезимальная жордановость континуума F влечет его инфинитезимальную связность и вследствие теоремы 3.3 F имеет ограниченное искривление, $F \in c_0$ -ВТ. Дальнейшее доказательство разобьем на ряд этапов.

(а) Покажем, что если $\gamma \subset F$ — жорданова дуга с ограниченным искривлением, то для любой точки $q \in \gamma$, отличной от концов, существует окрестность U такая, что $U \cap F = U \cap \gamma$. Допустим противное. Тогда найдется последовательность $q_j \in F \backslash \gamma$, сходящаяся к точке q. Для каждого номера j построим точку $p_j \in \gamma$ так, что $r_j = |q_j - p_j| = d(q_j, \gamma)$. Так как $p_j \to p$ и $r_j \to 0$ при $j \to \infty$, последовательность $\{\mu_j(x) = p_j + r_j^{-1}(x - p_j)\}$ является микроскопом на F и на γ . Перейдя при необходимости к подпоследовательности, можно считать этот микроскоп сходящимся как на F, так и на γ . Тогда в силу следствия 4.2 соответствующий инфинитезимальный элемент $d\gamma$ есть жорданова кривая в \mathbb{R}^n и ввиду условия теоремы $d\gamma = dF$. Последовательность $\mu_j(B_j)$, где $B_j = \{x : |x - q_j| \le r_j\}$, является последовательностью замкнутых шаров радиуса 1, внутренность которых не пересекается с $\mu_j(\gamma)$, но $\mu_j(q_j) \in \mu_j(F)$. Перейдя, если нужно, еще раз к подпоследовательности, можно считать, что

- $\mu_j(B_j)$ сходится при $j\to\infty$ к замкнутому шару B, внутренность которого не пересекается с $d\gamma$, но его центр $q=\lim_{j\to\infty}\mu_j(q_j)$ лежит в dF. Это противоречит равенству $dF=d\gamma$, что и доказывает утверждение (a).
- (b) Если F содержит замкнутую жорданову кривую γ класса BT, то $F=\gamma$. Действительно, в силу (a) множество $F\backslash\gamma$ замкнуто и ввиду связности F должно быть пустым. Поэтому в дальнейшем рассуждении можно считать, что F не содержит замкнутых жордановых кривых с ограниченным искривлением.
- (c) Покажем, что для любых двух жордановых дуг $\gamma_1, \gamma_2 \subset F$ класса c-BT таких, что $\gamma_1 \cap \gamma_2 = \{p\}$, множество $\gamma = \gamma_1 \cup \gamma_2$ является жордановой дугой с ограниченным искривлением. Допустим, что это не так. Тогда найдется последовательность $x_j, y_j \in \gamma$ пар точек такая, что для поддуги $\tau_j \subset \gamma$ с концами в точках x_j, y_j выполняется оценка $\dim \tau_j > j|x_j y_j|$. Перейдя при необходимости к подпоследовательности, можно считать, что $x_j \to x_0$ и $y_j \to y_0$. Так как $j|x_j y_j|$ ограничено, то $x_0 = y_0 = p$. В силу ограниченности искривления дуг γ_1 и γ_2 точки x_j, y_j разделяются точкой p для бесконечного числа индексов j. Поэтому без нарушения общности можно считать, что $x_j \in \gamma_1$ и $y_j \in \gamma_2$ для весх j. Поскольку $j|x_j y_j| < \text{diam } \tau_j \leq c(|x_j p| + |y_j p|)$, одно из неравенств $|x_j p| \geq (j/2c)|x_j y_j|$ или $|y_j p| \geq (j/2c)|x_j y_j|$ реализуется для бесконечного числа индексов j. Перейдя при необходимости к подпоследовательности, можем считать, что

$$|x_j - p| \ge (j/2c)|x_j - y_j| \tag{6}$$

при всех j. Найдутся точки $z_j \in \gamma_2$ такие, что $|x_j - z_j| = d(x_j, \gamma_2) = \delta_j$. Построим микроскоп $\{\mu_j(x) = z_j + \delta_j^{-1}(x - z_j)\}$ на F, который можно считать сходящимся, выделив при необходимости подпоследовательность. По условию теоремы множество $dF = \lim \mu_j(F)$ есть жорданова кривая в $\overline{\mathbb{R}}^n$. Перейдя при необходимости к подпоследовательности, можно также считать, что имеет место сходимость $\mu_j(\gamma_2) \to L \subset dF$ и $\mu_j(x_j) \to a \in dF$. Так так γ_2 лежит вне шара $B_j(x_j,\delta_j)$ при всех j, то L лежит вне шара B(a,1) и, следовательно,

$$a \in dF \setminus L.$$
 (7)

Однако в силу оценки (6) микроскоп $\{\mu_j\}$ на γ_2 удовлетворяет условию (5) теоремы 4.1, в силу которой континуум L является жордановой кривой в $\overline{\mathbb{R}}^n$. Следовательно, L = dF, что противоречит соотношению (7). Полученное противоречие и доказывает утверждение (c).

(d) Покажем, что для любых двух точек $a,b \in F$ существует единственная жорданова дуга $\gamma_{ab} \subset F$ с концами в этих точках, имеющая ограниченное искривление. При этом $\gamma_{ab} \in c'$ -BT, где c' зависит лишь от c_0 . Допустим, что $\gamma_1, \gamma_2 \subset F$ — различные жордановы дуги класса BT с концами в a,b. Пусть $G = \{x \in \gamma_0 = \gamma_1 \setminus \{a,b\} : x \in \gamma_2\}$. В силу (a), множество G открыто в γ_0 . Так как $G = \gamma_0 \cap \gamma_2$, то G замкнуто в γ_0 . В силу связности γ_0 это означает, что либо $G = \varnothing$, либо $G = \gamma_0$. В первом случае жордановы дуги γ_1 и γ_2 пересекаются лишь в точках a,b и, следовательно, ввиду (c) $\gamma_1 \cup \gamma_2$ — замкнутая жорданова кривая класса BT. Наличие таких кривых мы исключили из рассмотрения в п. (b). Поэтому $G = \varnothing$ и, значит, $\gamma_1 = \gamma_2$. Тем самым установлена единственность жордановой дуги класса BT с концами в a,b. По теореме Тукиа [3, теорема 1A, с. 559] любую пару точек в F можно соединить жордановой дугой класса c'-BT, где c' зависит лишь от c. Это завершает доказательство утверждения (d).

- (e) Покажем, что объединение любых двух жордановых дуг $\gamma = \gamma_1 \cup \gamma_2 \subset F$ класса BT есть жорданова дуга класса c'-BT, где c' определено в п. (d). Пусть a_1, b_1 — концы γ_1 . Упорядочим множество точек на кривой γ_1 в направлении от a_1 к b_1 и положим $G=\gamma_1\cap\gamma_2\neq\varnothing$. Для любой пары точек в G поддуга на γ_1 с концами в этих точках содержится в G вследствие п. (d). Поэтому Gявляется поддугой в γ_1 с некоторыми концами $p,q,\ a_1 \leq p < q \leq b_1$. Пусть a_2, b_2 — концы дуги γ_2 , точки которой упорядочены так, что $a_2 \le p < q \le b_2$. В силу утверждения (с) точка р не может быть внутренней одновременно для обеих дуг γ_1 и γ_2 . Поэтому либо $p=a_1$, либо $p=a_2$. Аналогично для точки qсправедливо либо $q=b_1$, либо $q=b_2$. Если $p=a_1$ и $q=b_1$, то $\gamma_1=G\subset\gamma_2$, $\gamma = \gamma_2 \in \mathrm{BT}$. Если $p = a_1$ и $q = b_2$, то $\gamma = \gamma_{a_2p} \cup G \cup \gamma_{qb_1}$ является в силу (c) жордановой дугой класса ВТ. Если $p=a_2$ и $q=b_1$, то $\gamma=\gamma_{a_1p}\cup G\cup \gamma_{qb_2}$ есть жорданова дуга с ограниченным искривлением согласно (с). И, наконец, если $p=a_2$ и $q=b_2$, то $\gamma_2=G$ и $\gamma=\gamma_1\in \mathrm{BT}$. Таким образом, во всех возможных случаях γ является жордановой дугой класса ВТ. В силу (d) $\gamma \in c'$ -ВТ, что и утверждалось.
- (f) Любое конечное подмножество $P = \{p_1, \ldots, p_N\} \subset F$ содержится в некоторой жордановой дуге $\gamma \subset F$ класса c'-BT. Воспользовавшись утверждением (d), построим дуги γ_j класса c'-BT с концами $p_j, p_{j+1}, j = 1, \ldots, N-1$, и возьмем их объединение, которое будет жордановой дугой класса c'-BT в силу п. (e).
- (g) Возьмем какую-нибудь последовательность конечных множеств $F_1 \subset F_2 \subset \ldots$ такую, что $\bigcup_{j=1}^{\infty} F_j$ плотно в F. Воспользовавшись (f) и (e), построим последовательность γ_j жордановых дуг класса c'-ВТ такую, что $F_j \subset \gamma_j$ и $\gamma_j \subset \gamma_{j+1}$ для всех $j=1,2,\ldots$ Тогда $F= \operatorname{Lim} \gamma_j$. В силу $[1, \operatorname{следствие} 4.11, \operatorname{c.} 113]$ каждая дуга γ_j является образом отрезка $[0,1] \subset \mathbb{R}^1$ при η -квазисимметрическом вложении φ_j , где функция искажения η зависит лишь от c'. Так как diam $F<+\infty$, семейство $\{\varphi_j\}$ вложений равностепенно непрерывно (см. $[1, \operatorname{теорема} 3.5, \operatorname{c.} 105]$) и, перейдя при необходимости к подпоследовательности, мы можем считать, что имеет место равномерная сходимость $\varphi_j \to \varphi: [0,1] \to F$ к отображению, являющемуся η -квазисимметрическим вложением (см. $[1, \operatorname{теорема} 3.7, \operatorname{c.} 106]$). Следовательно $[1, \operatorname{теорема} 2.11, \operatorname{c.} 101]$, F есть жорданова дуга с ограниченным искривлением, что и завершает доказательство теоремы.

ПРИМЕЧАНИЕ. Теорема 4.5 дает полное решение задачи, поставленной первым автором в 1988 г. в более слабой форме: доказать, что если любой инфинитезимальный элемент жордановой кривой $\gamma \subset \mathbb{R}^n$ является окружностью в $\overline{\mathbb{R}}^n$, то γ имеет ограниченное искривление. Эта задача обсуждалась с О. Мартио в 1995 г. в Хельсинки, который сделал ряд весьма ценных замечаний относительно возможных применений этой теоремы.

ЛИТЕРАТУРА

- Tukia P., Väisälä J. Quasisymmetric embeddings of metric spaces // Ann. Acad. Sci. Fenn. Ser. A1 Math. 1980. V. 5, N 1. P. 97–114.
- Асеев В. В., Кузин Д. Г. Достаточные условия квазисимметричности отображений прямой и плоскости // Сиб. мат. журн. 1998. Т. 39, № 6. С. 1225–1235.
- Tukia P. Spaces and arcs of bounded turning // Michigan Math. J. 1996. V. 43, N 3. P. 559–584.
- Кузин Д. Г. О критериях квазисимметричности отображения прямой в плоскость // Материалы 34-й Междунар. студ. конф. НГУ. Новосибирск, 1996. С. 43–44.

- Асеев В. В. Инфинитезимально жордановы континуумы // 3-й Сибирский конгресс по прикладной и индустриальной математике, посвященный памяти С. Л. Соболева. Тез. докл. Новосибирск: Изд-во Ин-та математики СО РАН, 1998. Ч. 1. С. 55–56.
- **6.** Куратовский К. Топология. М.: Мир, 1966, Т. 1; 1969, Т. 2.
- 7. Александрян З.А., Мирзаханян Э.А. Общая топология. М.: Высш. шк., 1979.
- 8. Хаусдорф Ф. Теория множеств. М.: ОНТИ НКТП СССР, 1937.
- Зорич В. А. О некоторых открытых вопросах теории пространственных квазиконформных отображений // Метрические вопросы теории функций и отображений. Киев: Наук. думка, 1971. Вып. 3. С. 46–50.
- 10. Thurston W. P. Zippers and univalent functions // The Bieberbach conjecture. Proc. of the Sympos. on the Occasion of the Proof (Math. surveys and monogr., No 21). Amer. Math. Soc., 1986. P. 185–197.
- 11. Энгелькинг Р. Общая топология. М.: Мир, 1986.
- 12. Väisälä J. Quasimöbius maps // J. Anal. Math. 1984/1985. V. 44. P. 218–234.
- 13. Aсеев В. В., Троценко Д. А. Квазисимметрические вложения, четверки точек и искажение модулей // Сиб. мат. журн. 1987. Т. 28, N 4. С. 32–28.
- 14. Асеев В. В. Квазисимметрические вложения и отображения, ограниченно искажающие модули / Ред. «Сиб. мат. журн.». Новосибирск, 1984. 30 с. Деп. в ВИНИТИ 06.11.94, № 7190-84.
- **15.** Асеев В. В. Нормальные семейства топологических вложений // Динамика сплошной среды. Новосибирск: Ин-т гидродинамики СО АН СССР, 1986. Вып. 76. С. 32–42.

Статья поступила 10 сентября 1999 г.

г. Новосибирск

 $\mathit{Uncmumym}$ математики им. С. Л. Соболева СО PAH ase $\mathtt{Qmath.nsc.ru}$