УСТОЙЧИВОСТЬ В ТЕОРЕМАХ КОШИ И МОРЕРЫ ДЛЯ ГОЛОМОРФНЫХ ФУНКЦИЙ И ИХ ПРОСТРАНСТВЕННЫЕ АНАЛОГИ

А. П. Копылов, М. В. Коробков, С. П. Пономарев

Аннотация: Получены критерии ограниченности искажения отображения через интегральную оценку его функции кратности без каких-либо априорных предположений о дифференциальных свойствах этого отображения. Наиболее ясную и в некотором роде окончательную форму имеет результат для комплексных функций $f:\Delta\subset\mathbb{C}\to\mathbb{C}$ одной комплексной переменной. Найденные результаты распространены на случай многомерных систем уравнений Бельтрами.

Ключевые слова: устойчивость в теоремах Коши и Мореры, голоморфные функции, системы типа Бельтрами, отображения с ограниченным искажением

Полученные в настоящей работе интегральные критерии ограниченности коэффициента искажения отображения усиливают и обобщают результаты работ [1-4].

Наиболее ясную и в некотором роде окончательную форму имеет результат для комплексных функций $f:\Delta\subset\mathbb{C}\to\mathbb{C}$ одной комплексной переменной, т. е. для ситуации, когда класс отображений с ограниченным искажением совпадает с классом решений уравнений Бельтрами

$$f_{\bar{z}}(z) = q(z)f_z(z),\tag{1}$$

где

$$\operatorname{ess\,sup}_{z\in\Delta}|q(z)|=q_0<1\tag{2}$$

(см. теорему 3). При этом особое значение имеет то обстоятельство, что теорему 3 естественно рассматривать как утверждение об устойчивости в классических теоремах Коши и Мореры о голоморфных функциях.

Нами установлены также теоремы типа Коши и Мореры для решений многомерных систем Бельтрами.

Всюду в дальнейшем Δ — область (открытое связное множество) в вещественном арифметическом евклидовом пространстве $\mathbb{R}^n,\ n\geq 2$. Поле $\mathbb C$ комплексных чисел будем естественным образом отождествлять с $\mathbb R^2$. Напомним, что непрерывное отображение $f=(f_1,\ldots,f_n):\Delta\to\mathbb R^n$ называется *отображением* c *ограниченным искажением* [5], если оно удовлетворяет следующим условиям:

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 02–01–01009, 02–01–06030), INTAS (код проекта 97–10170), гранта № 8 конкурса-экспертизы РАН для молодых ученых и гранта государственной поддержки ведущих научных школ Российской Федерации (код проекта 00–15–96165).

- (i) $f \in W_{n,\text{loc}}^1(\Delta)$;
- (ii) $J(f,x) = \det\left(\frac{\partial f_k}{\partial x_l}\right) \geq 0$ п. в. в Δ ;

(iii) существует постоянная
$$K \ge 1$$
 такая, что $|f'(x)|^n \le K n^{n/2} J(f,x)$ п. в. в Δ , где $|f'(x)| = \left(\sum\limits_{k,l=1}^n (\frac{\partial f_k}{\partial x_l})^2\right)^{1/2}$ — гильбертова норма производной $f'(x)$.

Наименьшая из всех возможных постоянная K называется $\kappa o = \phi \phi u u u e + mom u c - u e$ $\kappa a \varkappa c e u u s^{1)}$ отображения f [5].

Хорошо известно (см. там же), что если $f:\Delta\to\mathbb{R}^n$ — непостоянное отображение с ограниченным искажением, то f является открытым (т. е. переводит открытые множества в открытые), изолированным (т. е. прообраз $f^{-1}(y)$ любой точки $y \in \mathbb{R}^n$ состоит из изолированных точек) и сохраняет ориентацию. Напомним, что непрерывное отображение *f сохраняет ориентацию*, если для каждой подобласти $\Delta_1 \subseteq \Delta$ и точки $y \notin f(\partial \Delta_1)$ выполнено неравенство

$$\deg(y, f, \Delta_1) \ge 0,\tag{3}$$

где через $\deg(y, f, \Delta_1)$ обозначена топологическая степень сужения $f|_{\Delta_1}$ в точке y (определение и свойства топологической степени см., например, в [5,6]).

Ham понадобятся еще следующие обозначения. Всюду в дальнейшем Q=Q(x,r) есть n-мерный куб $[x_1-r,x_1+r] \times \cdots \times [x_n-r,x_n+r], \ \partial Q$ — граница куба Q, ориентированная по внешней нормали, |E| — мера Лебега множества $E, N(f|_E, \cdot)$ — функция кратности отображения $f|_E$, т. е. $N(f|_E, y)$ $\operatorname{card}(f^{-1}(y)\cap E)$. Как показано в [6, с. 216], функция $N(f|_{E},\cdot)$ измерима для любых непрерывного отображения $f:\Delta \to \mathbb{R}^n$ и борелевского множества $E\subset \Delta,$ оых непрерывного отооражения f . — поэтому определена функция множества $\Phi(E) = \int\limits_{\mathbb{D}^n} N(f|_E, y) \, dy$.

1. Утверждения этого пункта справедливы как для плоских (n=2), так и для пространственных $(n \ge 3)$ отображений.

Теорема 1. Пусть непрерывное отображение $f = (f_1, \ldots, f_n) : \Delta \to \mathbb{R}^n$, $\Delta \subset \mathbb{R}^n$, сохраняет ориентацию. Предположим, далее, что $\Phi(E) < \infty$ для любого компактного множества $E\subset \Delta$. Тогда f является отображением cограниченным искажением в том и только том случае, если существует константа M>0 такая, что для любого куба $Q\subset \Delta$ и произвольной пары номеров $k, l = 1, 2, \ldots, n$ справедливо неравенство

$$\left| \int\limits_{\partial Q} f_k \, dx_1 \wedge \ldots \wedge \widehat{dx_l} \wedge \ldots \wedge dx_n \right| \le M(\Phi(Q))^{\frac{1}{n}} |Q|^{\frac{n-1}{n}}. \tag{4}$$

Дифференциальную форму $f_k dx_1 \wedge \ldots \wedge \widehat{dx_l} \wedge \ldots \wedge dx_n$, фигурирующую в левой части неравенств (4), будем обозначать символом ω_{kl} .

При дополнительном предположении, что отображение f является псевдомонотонным²⁾, сформулированный критерий был установлен в теореме 4 работы [3] третьим из авторов настоящей статьи. Тем самым теорема 1 существенно усиливает указанный результат из [3].

¹⁾В [5] дано несколько иное, хотя и качественно эквивалентное определение коэффициискажения с помощью операторной (а не гильбертовой) нормы f'.

 $^{^{2)}}$ Согласно понятиям, введенным в [3], отображение f называется псевдомонотонным, если существует константа C>0 такая, что diam f(Q)< C diam $f(\partial Q)$ для любого $Q\subset \Delta$. Всякое отображение с ограниченным искажением псевдомонотонно, так как оно является открытым, см. выше.

В работе [2] было получено похожее утверждение, но при еще больших априорных ограничениях на f. А именно, в [2] доказано, что непрерывное изолированное открытое отображение f является отображением с ограниченным искажением в том и только том случае, когда для для любого куба $Q \subset \Delta$ и произвольной пары номеров $k, l = 1, 2, \ldots, n$ справедливо неравенство

$$\left| \int_{\partial Q} \omega_{kl} \right| \le M(\|N(f|_Q)\||f(Q)|)^{\frac{1}{n}}|Q|^{\frac{n-1}{n}},\tag{5}$$

где $||N(f|_Q)|| = \sup_{y \in \mathbb{R}^n} N(f|_Q, y)$. Здесь нужно учесть ту (несущественную) техническую особенность, что, в отличие от терминологии, принятой в данной работе, в [2] (как, впрочем, и в [1, 3, 5]) рассматриваются отображения с ограниченным искажением, удовлетворяющие вместо (ii) условию

(ii') J(f,x) не меняет знака в Δ .

Такие отображения в зависимости от знака якобиана J(f,x) либо сохраняют, либо обращают ориентацию (последнее означает, что неравенство (3) для этих отображений выполняется с обратным знаком). Отметим, что всякое непрерывное изолированное открытое отображение $f: \Delta \to \mathbb{R}^n, \ \Delta \subset \mathbb{R}^n$, либо сохраняет, либо обращает ориентацию, причем $\|N(f|_Q)\|_C < \infty$ для $Q \subset \Delta$ (это следует, например, из результатов работ [5, 7], см. также [2]).

Доказательство теоремы 1. В силу упомянутой теоремы 4 из [3] и сделанных замечаний требуется доказать только достаточность условия нашей теоремы.

Итак, пусть отображение $f:\Delta\to\mathbb{R}^n$ удовлетворяет соответствующим предположениям теоремы 1. Используя аппроксимацию куба Q кубами Q_j изнутри и совершая предельный переход в (4), как это сделано в начале доказательства теоремы 2 работы [2] (см. [2, с. 177]), получаем, что для каждого куба $Q\subset\Delta$ выполняются неравенства

$$\left| \int_{\partial Q} \omega_{kl} \right| \le M(\Phi(\operatorname{int} Q))^{\frac{1}{n}} |Q|^{\frac{n-1}{n}} < \infty, \quad k, l \in \{1, \dots, n\}, \tag{4'}$$

где через int Q обозначена внутренность куба Q. Тогда из теоремы 1 статьи [3] следует, что $f \in W^1_{n,\text{loc}}(\Delta)$. Так как по условию доказываемой теоремы отображение f непрерывно и сохраняет ориентацию, то по теореме 2.5 из [8, с. 225] для f выполнено условие (ii) неотрицательности якобиана

$$J(f,x) \ge 0$$
 п. в. в Δ . (6)

Это свойство можно вывести также и из теоремы 5.1 из [8, с. 116] о W_n^1 -дифференцируемости f почти всюду в Δ .

Применяя формулу Стокса к левой части неравенств (4'), можем переписать их в виде

$$\left| \int_{Q} \frac{\partial f_k}{\partial x_l} \, dx \right| \le M(\Phi(\text{int } Q))^{\frac{1}{n}} |Q|^{\frac{n-1}{n}} < \infty, \quad k, l \in \{1, \dots, n\}.$$
 (7)

Исходя из того, что свойство быть отображением с коэффициентом искажения, не превосходящим K, является локальным, зафиксируем произвольную

область $D \subset \Delta$, замыкание которой компактно и содержится в Δ . Тогда в силу условия теоремы 1 имеем

$$\Phi(D) < \infty. \tag{8}$$

Пусть $U\subset D$ — непустое открытое множество. Докажем, что справедливы неравенства

$$\left| \int_{U} \frac{\partial f_k}{\partial x_l} dx \right| \le M(\Phi(U))^{\frac{1}{n}} |U|^{\frac{n-1}{n}} < \infty, \quad k, l \in \{1, \dots, n\}.$$
 (9)

 ${\bf C}$ этой целью представим U в виде суммы кубов:

$$U = igcup_{j=1}^\infty Q_j, \;\; ext{int}\, Q_{j_1} \cap ext{int}\, Q_{j_2} = arnothing \; ext{при} \; j_1
eq j_2.$$

Вследствие (7) имеем для каждого номера $m \in \mathbb{N}$

$$\left| \int_{\bigcup_{i=1}^{m} Q_j} \frac{\partial f_k}{\partial x_l} dx \right| \le M \sum_{j=1}^{m} \left(\int_{\mathbb{R}^n} N(f|_{\operatorname{int} Q_j}, y) dy \right)^{\frac{1}{n}} |Q_j|^{\frac{n-1}{n}}, \quad k, l \in \{1, \dots, n\}.$$

Применяя к правой части неравенство Гёльдера для конечных сумм, получаем

$$\left| \int\limits_{\bigcup Q_j} \frac{\partial f_k}{\partial x_l} \, dx \right| \le M \left(\int\limits_{\mathbb{R}^n} \sum_{j=1}^m N(f|_{\operatorname{int} Q_j}, y) \, dy \right)^{\frac{1}{n}} \left(\sum_{j=1}^m |Q_j| \right)^{\frac{n-1}{n}}$$

$$= \left(\int_{\mathbb{R}^n} N(f|_{(\bigcup_{j=1}^m \text{ int } Q_j)}, y) \, dy \right)^{\frac{1}{n}} \left(\sum_{j=1}^m |Q_j| \right)^{\frac{n-1}{n}}, \quad k, l \in \{1, \dots, n\}. \quad (10)$$

Так как производная $\frac{\partial f_k}{\partial x_l}$ суммируема на $D \supset U$, а правая часть (10) монотонна (по m), то законен предельный переход в неравенствах (10) при $m \to \infty$, который и дает нам искомое соотношение (9).

Пусть теперь E — произвольное компактное подмножество D. Установим справедливость неравенств

$$\left| \int_{E} \frac{\partial f_k}{\partial x_l} \, dx \right| \le M(\Phi(E))^{\frac{1}{n}} |E|^{\frac{n-1}{n}} < \infty, \quad k, l \in \{1, \dots, n\}.$$
 (11)

С этой целью представим E в виде убывающей последовательности открытых множеств

$$E = igcap_{j=1}^{\infty} U_j, \ \ U_{j+1} \subset U_j \subset D.$$

Вследствие уже доказанных неравенств (9) для каждого номера $i \in \mathbb{N}$ имеем

$$\left| \int_{U_{\delta}} \frac{\partial f_k}{\partial x_l} \, dx \right| \le M \left(\int_{\mathbb{R}^n} N(f|_{U_j}, y) \, dy \right)^{\frac{1}{n}} |U_j|^{\frac{n-1}{n}}, \quad k, l \in \{1, \dots, n\}.$$
 (12)

Конечность величины $\Phi(D)$ (см. (8)) влечет конечность $N(f|_D,y)$ для п. в. $y\in \mathbb{R}^n$. Если $N(f|_D,y)<\infty$, то, как нетрудно показать, $f^{-1}(y)\cap U_j=f^{-1}(y)\cap E$

при достаточно больших j. Поэтому $N(f|_{U_j},y) \to N(f|_E,y)$ для п. в. $y \in \mathbb{R}^n$. Последнее вместе с неравенством (8) позволяет нам применить теорему Лебега о предельном переходе к обеим частям неравенств (12), откуда, в свою очередь, получаем нужные нам неравенства (11).

Из свойств отображений класса $W^1_{n,\text{loc}}(D)$ вытекает существование последовательности компактных множеств E_j таких, что

$$\left| D \setminus \bigcup_{j=1}^{\infty} E_j \right| = \varnothing, \tag{13}$$

и сужение $f|_{E_j}$ удовлетворяет условию Липшица относительно множества E_j , $j=1,2,\ldots$ В силу (6) и теоремы 1.6 из [8, с. 217] для каждого номера j и произвольного компактного подмножества $E\subset E_j$ справедливо равенство

$$\Phi(E)\bigg(=\int\limits_{\mathbb{R}^n}N(f|_E,y)\,dy\bigg)=\int\limits_EJ(f,x)\,dx.$$

Объединяя последнее равенство с (11), получаем, что при $E\subset E_j,\ |E|\neq 0,$ выполнены неравенства

$$\frac{\left|\int\limits_{E} \frac{\partial f_{k}}{\partial x_{l}} dx\right|}{|E|} \le M \left(\frac{\int\limits_{E} J(f, x) dx}{|E|}\right)^{\frac{1}{n}}, \quad k, l \in \{1, \dots, n\}.$$

$$(14)$$

Рассматривая далее точки Лебега сужений $\frac{\partial f_k}{\partial x_l}|_{E_j}$ и $J(f,\cdot)|_{E_j}$, нетрудно вывести из соотношений (14) неравенства

$$\left| \frac{\partial f_k}{\partial x_l} \right| \leq M(J(f,x))^{\frac{1}{n}}$$
 для п. в. $x \in E_j, \ k,l \in \{1,\dots,n\}.$

Учитывая еще (13), заключаем, что

$$\left| \frac{\partial f_k}{\partial x_l} \right| \le M(J(f,x))^{\frac{1}{n}}$$
 для п. в. $x \in D, k, l \in \{1,\dots,n\}.$ (15)

Налицо выполнение всех условий из определения отображения с ограниченным искажением. Теорема 1 доказана. \square

Ввиду теоремы 1 возникает вопрос о том, как зависит коэффициент искажения K от постоянной M в неравенствах (4). Однако, как следует из соотношений (15) приведенного доказательства, выполнение неравенств (4) дает лишь весьма грубую оценку $K \leq M^n n^{n/2}$ (ср. с [2, с. 180]), не носящую к тому же характера устойчивого явления. Чтобы устранить этот недостаток, модифицируем формулировку теоремы 1 следующим образом.

Теорема 1'. Пусть непрерывное отображение $f: \Delta \to \mathbb{R}^n$ $(\Delta \subset \mathbb{R}^n)$ сохраняет ориентацию, и пусть $\Phi(E) < \infty$ для любого компактного множества $E \subset \Delta$. Тогда f является отображением c коэффициентом искажения $\leq K$ в том и только том случае, если $K \geq 1$ и для любого куба $Q \subset \Delta$ справедливы неравенства

$$\left(\sum_{k,l=1}^{n} \left| \int_{\partial Q} \omega_{kl} \right|^{2}\right)^{\frac{1}{2}} \leq n^{\frac{1}{2}} \left(K \int_{\mathbb{R}^{n}} N(f|_{Q}, y) \, dy\right)^{\frac{1}{n}} |Q|^{\frac{n-1}{n}}. \tag{16}$$

Отметим, что из теоремы 1' можно легко вывести теорему 1.

Замечание. Теорема 1' содержит в частном случае K=1 новый признак конформности отображения f, не содержащий (как и классическая теорема Мореры) никаких априорных предположений о дифференциальных свойствах f.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 1'. Установим необходимость условия (16). Пусть f — отображение с ограниченным искажением, причем

$$\left(\sum_{k,l=1}^n \left(\frac{\partial f_k}{\partial x_l}\right)^2\right)^{\frac{n}{2}} \le K n^{\frac{n}{2}} J(f,x) \quad \text{п. в. в } \Delta, \quad K \ge 1.$$

Тогда, возводя обе части последнего неравенства в степень $\frac{2}{n}$ и интегрируя их, имеем

$$\sum_{k,l=1}^{n} \int_{O} \left(\frac{\partial f_k}{\partial x_l}\right)^2 dx \le K^{\frac{2}{n}} n \int_{O} J(f,x)^{\frac{2}{n}} dx \tag{17}$$

для каждого куба $Q\subset \Delta$. Из формулы Стокса и интегрального неравенства Гёльдера вытекают соотношения

$$\sum_{k,l=1}^{n} \left(\int\limits_{\partial Q} \omega_{kl} \right)^{2} = \sum_{k,l=1}^{n} \left(\int\limits_{Q} \frac{\partial f_{k}}{\partial x_{l}} \, dx \right)^{2} \leq \left(\sum_{k,l=1}^{n} \int\limits_{Q} \left(\frac{\partial f_{k}}{\partial x_{l}} \right)^{2} dx \right) |Q| \tag{18}$$

И

$$\int_{Q} J(f,x)^{\frac{2}{n}} dx \le \left(\int_{Q} J(f,x) dx \right)^{\frac{2}{n}} |Q|^{\frac{n-2}{n}}.$$
 (19)

Преобразуя неравенство (17) с помощью соотношений (18)–(19), получаем

$$\sum_{k,l=1}^{n} \left(\int_{\partial O} \omega_{kl} \right)^{2} \le K^{\frac{2}{n}} n \left(\int_{O} J(f,x) \, dx \right)^{\frac{2}{n}} |Q|^{\frac{2n-2}{n}}. \tag{20}$$

Принимая во внимание еще и то обстоятельство, что для отображений с ограниченным искажением справедливо равенство

$$\int_{\mathbb{R}^n} N(f|_Q, y) \, dy = \int_Q J(f, x) \, dx, \tag{21}$$

мы в силу (20) приходим к искомому неравенству (16).

Докажем достаточность условия (16). Если непрерывное сохраняющее ориентацию отображение f удовлетворяет (16) для каждого куба $Q \subset \Delta$, то по доказанной выше теореме 1 f является отображением с ограниченным искажением. Утверждение о том, что коэффициент искажения отображения f не превосходит параметра K из (16), легко получается, если преобразовать (16) с помощью формулы Стокса (см. левое равенство в (18)) и равенства (21) и рассмотреть затем точки Лебега производных $\frac{\partial f_k}{\partial x_l}$ и якобиана J(f,x). Подробности обсуждения деталей проверки этого факта мы опускаем.

Замечание. Теореме 1' можно придать более наглядную форму. С этой целью введем следующие обозначения. Для каждого куба $Q\subset \Delta$ рассмотрим числовую $(n\times n)$ -матрицу

$$\Omega(Q) = \left(\int\limits_{\partial Q} \omega_{kl}, \ 1 \leq k, l \leq n \right).$$

Если в пространстве \mathcal{M}_n всех $(n \times n)$ -матриц ввести гильбертову норму

$$|(a_{kl})|=\Bigl(\sum_{k.l}a_{kl}^2\Bigr)^{rac{1}{2}},$$

то левая часть (16) превратится в $|\Omega(Q)|$, а само неравенство (16) примет следующий вид:

$$\left(\frac{|\Omega(Q)|}{|Q|}\right)^n \le M \frac{\Phi(Q)}{|Q|},\tag{22}$$

где $M=n^{n/2}K^n$. Используя (22), для сохраняющих ориентацию отображений f теорему 1' можно схематически записать так:

$$\left(f \in W_{n,\text{loc}}^{1} \wedge |f'|^{n} \le MJ(f)\right) \Leftrightarrow \left(\forall Q : \left(\frac{|\Omega(Q)|}{|Q|}\right)^{n} \le M\frac{\Phi(Q)}{|Q|}\right). \tag{23}$$

Отправляясь от схематической записи (23) теоремы 1', ниже мы установим одно «локальное» обобщение теорем 1, 1'. Для этого нам потребуется следующее понятие.

Определение. Непрерывное отображение $f:\Delta\to\mathbb{R}^n$ обладает *свой-ством* LBD (local bounded distortion), если существует константа M>0 такая, что

$$\forall x \in \Delta \ \exists \rho(x) \ \forall Q \subset \Delta, x \in Q \left\{ \operatorname{diam} Q < \rho(x) \Rightarrow \left(\frac{|\Omega(Q)|}{|Q|} \right)^n \le M \frac{\Phi(Q)}{|Q|} \right\}. \tag{24}$$

Замечание. Обращаем внимание читателя на то, что в (24) при фиксировании точки $x\in \Delta$ рассматриваются только те кубы Q, которые содержат точку x.

Теорема 2. Пусть $f:\Delta\to\mathbb{R}^n$ ($\Delta\subset\mathbb{R}^n$) — непрерывное сохраняющее ориентацию отображение, и пусть $\Phi(E)<\infty$ для каждого компактного $E\subset\Delta$. Тогда f является отображением c ограниченным искажением c том cлучае, если f обладает свойством LBD.

Доказать
только достаточность условия LBD. Для каждого натурального m рассмотрим множество

$$F_m = \{x \in \Delta \mid \text{условие LBD выполняется при } \rho(x) \ge 1/m\}.$$
 (25)

Легко проверить, что F_m замкнуто в Δ . В самом деле, пусть $x_k \to x_0 \in \Delta$, $x_k \in F_m$. Фиксируем $Q \subset \Delta$, $x_0 \in Q$, diam Q < 1/m. Предположим сначала, что $x_0 \in \text{int } Q$. Тогда существует k_0 такое, что $x_k \in \text{int } Q \subset Q$ при $k \geq k_0$. Так как $x_k \in F_m$, то очевидно, что

$$|\Omega(Q)|^n \le M\Phi(Q)|Q|^{n-1}. (26)$$

Итак, (26) выполняется для любого $Q \subset \Delta$, $x_0 \in \operatorname{int} Q$, $\operatorname{diam} Q < 1/m$. Теперь предположим, что $x_0 \in \partial Q$, $\operatorname{diam} Q < 1/m$. Возьмем последовательность кубов $\{Q_s\}$ такую, что $Q \subset \operatorname{int} Q_s \subset Q_{s-1}$, $\operatorname{diam} Q_s < 1/m$, $Q = \bigcap_{s=1}^{\infty} Q_s$. Очевидно, что $x_0 \in Q_s$ и что в силу (26) мы имеем

$$\forall s: \ |\Omega(Q_s)|^n \le M\Phi(Q_s)|Q_s|^{n-1}. \tag{27}$$

Поскольку $Q_s \downarrow Q$, то $\Phi(Q_s) \to \Phi(Q)$. Поэтому, переходя к пределу в (27) при $s \to \infty$, получаем, что (26) выполняется для любого $Q \ni x_0$, diam Q < 1/m, откуда и следует замкнутость F_m .

Далее имеем

$$\Delta = \bigcup_{m=1}^{\infty} F_m. \tag{28}$$

По теореме Бэра о категории существуют индекс m_0 и непустое открытое множество $G \subset \Delta$ такие, что $F_{m_0} \cap G$ плотно в G, поэтому замкнутость F_{m_0} влечет соотношение $G \subset F_{m_0}$. Но тогда в силу (25) для $f|_G$ выполняются условия теоремы 1' (в теореме 1' достаточно рассматривать кубы, диаметры которых ограничены сверху некоторым числом). Поэтому $f|_G$ является отображением с ограниченным искажением с параметром M. В нашем рассуждении нет необходимости вводить параметр K. Главное здесь то, что параметр M одинаков в левой и правой частях соотношения (23).

Дальнейшее рассуждение, очевидно, можно провести по-разному. Мы воспользуемся леммой Цорна.

Обозначим через $\mathscr{D} = \{D_t \mid t \in T\}$ семейство всех непустых открытых множеств $D_t \subset \Delta$, на каждом из которых f есть отображение с ограниченным искажением с заданным в условии LBD параметром M. Частично упорядочим \mathscr{D} отношением включения множеств. Тогда для каждой цепи $\mathscr{C} \subset \mathscr{D}$ (т. е. линейно упорядоченного подсемейства семейства \mathscr{D}) имеется верхняя грань $B = \bigcup \mathscr{C}$, на которой f есть отображение с ограниченным искажением с тем же параметром M.

Пусть W — максимальный элемент семейства \mathscr{D} . Мы утверждаем, что $W=\Delta$. Допуская противное, рассмотрим непустое замкнутое в Δ подмножество $P=\Delta\setminus W$, которое можно считать совершенным, так как изолированные точки устранимы для отображений с ограниченным искажением. Представим это множество в виде

$$P = \bigcup_{i=1}^{\infty} P_i, \tag{29}$$

где $P_i=P\cap F_i$. Используя замкнутость множеств P_i и еще раз теорему Бэра о категории, мы убеждаемся в существовании открытого множества $U\subset \Delta$ и индекса i_0 таких, что

$$P \cap U = P_{i_0} \cap U \neq \varnothing. \tag{30}$$

Можно считать, что U является областью. Поскольку f есть отображение с ограниченным искажением на W с параметром M, то (26) выполняется для любого куба $Q \subset W$. Если же $Q \cap P_{i_0} \neq \varnothing$, то (26) справедливо, если $\operatorname{diam} Q < 1/i_0$. Отсюда заключаем, что в области U отображение f удовлетворяет условиям теоремы 1' (по крайней мере для всех $Q \subset U$ с $\operatorname{diam} Q < 1/i_0$). Следовательно, f — отображение с ограниченным искажением в области U, что влечет соотношение $W \neq W \cup U \in \mathscr{D}$. Но последнее соотношение не может иметь места, так как W — максимальный элемент. Из полученного противоречия следует равенство $W = \Delta$, что и завершает доказательство теоремы 2. \square

2. Этот пункт посвящен плоским отображениям (n=2). Хорошо известно, что в этом случае отображение $f:\Delta\subset\mathbb{R}^2\to\mathbb{R}^2$ является отображением с коэффициентом искажения $\leq K$ тогда и только тогда, когда $f\in W^1_{2,\mathrm{loc}}(\Delta)$ и f — решение системы Бельтрами (1), причем параметр q_0 в (2) не превосходит $((K-1)/(K+1))^{1/2}$.

В теоремах 1, 1' (которые охватывают и плоский случай n=2) от отображения f требуется помимо выполнения интегральных соотношений (4) или (16) еще и выполнение априорного условия сохранения ориентации. В этом теоремы 1, 1' уступают классической теореме Мореры, которая не содержит никаких условий на отображение f (кроме непрерывности и равенства нулю соответствующего интеграла). Следующая теорема восполняет этот пробел в случае плоских отображений, представляя собой интегральный критерий ограниченности искажения, единственными условиями в котором являются непрерывность рассматриваемого отображения и интегральное неравенство (31).

Теорема 3. Пусть $f:\Delta\subset\mathbb{C}\to\mathbb{C}$ — непрерывное отображение. Предположим, что существует константа $M,\ 0\leq M<2$, такая, что для каждого замкнутого квадрата $Q\subset\Delta$ со сторонами, параллельными осям координат, справедливы неравенства

$$\left| \int\limits_{\partial Q} f \, dz \right| \le M \left(\int\limits_{\mathbb{R}^2} N(f|_Q, y) \, dy \right)^{\frac{1}{2}} |Q|^{\frac{1}{2}} < \infty. \tag{31}$$

Тогда f есть $W^1_{2,\text{loc}}$ -решение системы Бельтрами (1), (2) c параметром

$$q_0 \le q_0(M) = \frac{M}{(4+M^2)^{\frac{1}{2}}}.$$
 (32)

Обратно, если $f:\Delta\subset\mathbb{C}\to\mathbb{C}$ — непрерывное $W^1_{2,\mathrm{loc}}$ -решение системы Бельтрами (1), (2), то для каждой подобласти $D\in\Delta$ с ориентированной гладкой (кусочно-гладкой, спрямляемой) границей ∂D справедливы неравенства (31), в которых Q заменяется на D, c

$$M = M(q_0) = \frac{2q_0}{(1 - q_0^2)^{\frac{1}{2}}},\tag{33}$$

где q_0 — параметр в (2).

Ввиду того, что оценки (32)–(33) параметров $q_0(M)$ и $M(q_0)$ носят устойчивый характер, и в предельном случае первое утверждение теоремы 3 (при M=0) переходит в теорему Мореры, а второе (при $q_0=0$) — в теорему Коши, теорему 3 естественно рассматривать как утверждение об устойчивости в теоремах Коши и Мореры.

Заметим, что второе утверждение теоремы 3 настоящей работы совпадает с первым из утверждений теоремы 3 из [4]. При дополнительном требовании, что $\sup N(f|_Q,y)<\infty$ при $Q\subset \Delta$, первое утверждение обсуждаемой сейчас теоремы — это второе утверждение упомянутой теоремы 3 работы [4]. Снятие этого условия ограниченности функции кратности $N(f|_Q,\cdot)$ дает положительный ответ на вопрос, поставленный первым из авторов в конце статьи [4].

Для случая, когда отображение f — гомеоморфизм, теорема 3 представляет собой критерий квазиконформности. Впервые он был получен третьим автором (в несколько отличной форме) в статье [1].

Интересно сравнить интегральные условия (31) с условиями (4) или (16). Последние условия являются более жесткими: выполнение (4) или (16) в случае плоского отображения f эквивалентно (с точностью до значений соответствующих констант) выполнению условия (31) как для дифференциальной формы f dz, так и для формы $f d\bar{z}$.

Доказательство теоремы 3. Доказательство представляет собой комбинацию рассуждений из работ [1–3] и п. 1 настоящей статьи. Мы остановимся только на ключевых моментах.

Как уже было отмечено, второе утверждение теоремы 3 — это первое из утверждений теоремы с тем же номером из статьи [4]. Для удобства читателя заметим, что оно доказывается применением формулы Стокса, равенства (21) и очевидного соотношения

$$J(f,z) = |f_z|^2 - |f_{\bar{z}}|^2. \tag{34}$$

Докажем первую часть теоремы 3 (обобщение теоремы Мореры). Согласно выкладкам работ [2, 3] (см. также начало доказательства теоремы 1 настоящей статьи) справедливость неравенств (31) влечет выполнение неравенств

$$\left| \int_{\partial Q} f \, dz \right| \le M \left(\int_{\mathbb{R}^2} N(f|_{\text{int } Q}, y) \, dy \right)^{\frac{1}{2}} |Q|^{\frac{1}{2}} < \infty \tag{35}$$

для каждого квадрата $Q \subset \Delta$. Тогда из рассуждений в доказательстве теоремы 1 статьи [3] (см. также [1]) следует, что существует обобщенная производная $f_{\bar{z}} \in L_{2,\text{loc}}(\Delta)$. Отсюда в силу [9, с. 67] существует и обобщенная производная $f_z \in L_{2,\mathrm{loc}}(\Delta)$. Следовательно, $f \in W^1_{2,\mathrm{loc}}(\Delta)$. Используя формулу Стокса, перепишем неравенства (35) в виде

$$2\left|\int\limits_{Q} f_{\bar{z}} dx\right| \leq M\left(\int\limits_{\mathbb{R}^{2}} N(f|_{\operatorname{int} Q}, y) dy\right)^{\frac{1}{2}} |Q|^{\frac{1}{2}} < \infty,$$

где dx — дифференциальная форма, соответствующая евклидову объему в

Применяя метод, изложенный в доказательстве теоремы 1, получим, что для любого компактного множества $E \subset \Delta$ справедливы неравенства

$$2\left|\int\limits_{E} f_{\bar{z}} dx\right| \leq M\left(\int\limits_{\mathbb{R}^{2}} N(f|_{E}, y) dy\right)^{\frac{1}{2}} |E|^{\frac{1}{2}} < \infty.$$

Продолжая следовать этому методу, заключаем, что

$$2|f_{\bar{z}}| \le M|J(f,z)|^{\frac{1}{2}}$$
 п. в. в Δ . (36)

Подставляя в оценку (36) равенство (34), имеем

$$4|f_{\bar{z}}|^2 \leq M^2||f_z|^2 - |f_{\bar{z}}|^2|$$
 п. в. в Δ .

Последнее ввиду условия теоремы $M^2 < 4$ равносильно неравенству

$$|f_{\bar{z}}|^2 \le \frac{M^2}{4+M^2}|f_z|^2$$
 п. в. в Δ . (37)

Извлекая квадратный корень в обеих частях неравенства (37), заключаем, что теорема 3 полностью доказана.

Следующий простой пример показывает, что ограничение M < 2 в первом утверждении теоремы 3 (обобщении теоремы Мореры) не может быть опущено.

Пример. Определим отображение
$$f:\mathbb{C} \to \mathbb{C},$$
 полагая
$$f(z)=\left\{ egin{array}{ll} z,& {\rm Im}\,z\geq 0;\\ \bar{z},& {\rm Im}\,z<0. \end{array} \right.$$

Легко видеть, что f удовлетворяет (31) с M=2. Но в то же время f не является отображением с ограниченным искажением.

В заключение пункта отметим, что как функция $q_0(M)$ из (32), так и функция $M(q_0)$ в (33) суть наименьшие возможные.

3. Результаты предыдущего пункта можно распространить на случай многомерных систем Бельтрами. Изучение решений этих систем имеет непосредственное отношение к проблеме устойчивости многомерных голоморфных отображений, ранее исследованной первым из авторов (см. [10]). Следующая теорема содержит утверждение об устойчивости в многомерных вариантах теорем Коши и Мореры.

Теорема 4. Пусть $f:\Delta\subset\mathbb{C}^n\to\mathbb{C}^m$ — непрерывное отображение и существует постоянная $M,\ 0\leq M<2^n/(2n)^{\frac{1}{2}},$ такая, что для любого куба $Q\subset\Delta$ и номера $s=1,\ldots,n$ справедливы неравенства

$$\left| \int_{\partial Q} f(z) \, d\bar{z}_1 \wedge dz_1 \wedge \dots \wedge d\bar{z}_s \wedge dz_s \wedge \dots \wedge dz_n \right|$$

$$\leq M \left(\sum_{k=1}^n \sum_{l=1}^m \int_{Z} dv \int_{\mathbb{T}^2} N_{kl}(y) \, dy \right)^{\frac{1}{2}} |Q|^{\frac{1}{2}} < \infty, \quad (38)$$

где $S_k = \{(z_1,\ldots,\widehat{z_k},\ldots,z_n) \mid (z_1,\ldots,z_k,\ldots,z_n) \in Q\}, N_{kl}$ — функция кратности отображения $f_l(z_1,\ldots,z_{k-1},\cdot,z_{k+1},\ldots,z_n)|_{Q_k}, \ Q_k = \{z_k \mid (z_1,\ldots,z_k,\ldots,z_n) \in Q\}$ и dv — дифференциальная форма, соответствующая евклидову объему в \mathbb{C}^{n-1} . Тогда f есть решение многомерной системы Бельтрами

$$f_{\bar{z}}(z) = q(z)f_z(z)$$
 п. в. в Δ , $q_0 = \operatorname{ess\,sup} \|q(z)\| < 1$ (39)

с параметром

$$q_0 \le q_{0,n,m}(M) = M\left(\frac{n}{4^n - M^2 n}\right)^{\frac{1}{2}}.$$
 (40)

Здесь q — операторнозначное отображение из Δ в пространство $\mathbb{C}L(\mathbb{C}^{nm},\mathbb{C}^{nm})$ комплексно-линейных преобразований.

Обратно, если $f:\Delta\subset\mathbb{C}^n\to\mathbb{C}^m$ — непрерывное $W^1_{2,\mathrm{loc}}$ -решение многомерной системы Бельтрами (39), то для любого куба $Q\subset\Delta$ и номера $s=1,\ldots,n$ справедливы неравенства (38) c

$$M = M_{n,m}(q_0) = \frac{2^n q_0}{(1 - q_0^2)^{\frac{1}{2}}}. (41)$$

Доказательство. Несмотря на кажущуюся громоздкость формулировки, при ближайшем рассмотрении оказывается, что доказательство теоремы 4 практически не отличается от доказательства теоремы 3. Отметим только два технических момента. В процессе доказательства приходится систематически использовать теорему Фубини о повторном интегрировании. Кроме того, обыгрывается тот факт, что если непрерывное отображение $f:\Delta\subset\mathbb{C}^n\to\mathbb{C}^m$ имеет обобщенные производные $f_{\bar{z}}=(f_{\bar{z}_1},f_{\bar{z}_2},\ldots,f_{\bar{z}_n})\in L_{2,\mathrm{loc}}(\Delta)$, то $f\in W^1_{2,\mathrm{loc}}(\Delta)$. Это следует из свойств представления Мартинелли — Бохнера (см., например, [10, с. 64–65, 123–134]). Другой способ доказательства этого факта состоит в том, чтобы, предполагая наличие этого свойства при n=m=1 с соответствующей оценкой L_2 -норм (см. [9, с. 67]), распространить его на любые размерности n и m применением теоремы Фубини о повторном интегрировании и известных результатов теории пространств Соболева.

Подробности рассуждений доказательства мы опускаем.

Замечание. Если в формулировку теоремы 4 подставить n=m=1, то функции $q_{0,n,m}$ и $M_{n,m}$ из соотношений (40) и (41) будут несколько отличаться от соответствующих функций q_0 и M, определяемых соотношениями (32) и (33) в теореме 3. Это объясняется тем, что в многомерном случае существуют решения системы (39), у которых разность $|f_{k_{\bar{z}_l}}|^2 - |f_{k_{\bar{z}_l}}|^2$ может принимать отрицательные значения для некоторых k,l, поэтому оценки в теореме 4 имеют более грубый вид в сравнении с соответствующими оценками в теореме 3. Но в то же время следует отметить, что при n>1 и m>1 функции $q_{0,n,m}$ и $M_{n,m}$ из формулировки теоремы 4 (подобно функциям q и M из (32) и (33)) являются наименьшими из возможных.

ЛИТЕРАТУРА

- 1. Пономарев С. П. Об одном условии квазиконформности // Мат. заметки. 1971. Т. 9, № 6. С. 663–666.
- **2.** *Пономарев С. П.* Интегральный критерий квазирегулярности // Сиб. мат. журн. 1997. Т. 38, № 1. С. 173–181.
- 3. Ponomarev S. P. On some characterizations of quasiregularity // Acta Univ. Carolin. Math. Phys. 1997. V. 38, N 2. P. 13–18.
- **4.** *Копылов А. П.* Об устойчивости в теоремах Коши и Мореры о голоморфных функциях // Докл. РАН. 2001. Т. 378, № 4. С. 447–449.
- Решетняк Ю. Г. Пространственные отображения с ограниченным искажением. Новосибирск: Наука, 1982.
- 6. Rado T., Reichelderfer P. V. Continuous transformations in analysis. Berlin: Springer, 1955.
- 7. Чернавский А. В. Дополнение к статье «О конечнократных открытых отображениях многообразий» // Мат. сб. 1965. Т. 66, № 3. С. 471–472.
- 8. Гольдштейн B.~M.,~ Решетняк W. W. Введение в теорию функций с обобщенными производными и квазиконформные отображения. Новосибирск: Наука, 1983.
- 9. Векуа И. Н. Обобщенные аналитические функции. 2-е изд., перераб. М.: Наука, 1988.
- 10. Копылов А. П. Устойчивость в С-норме классов отображений. Новосибирск: Наука, 1990.

Cтатья поступила 12 августа 2002 г.

Копылов Анатолий Павлович Институт математики им. С. Л. Соболева СО РАН, пр. Коптюга, 4, Новосибирск 630090 kopylov@math.nsc.ru

Коробков Михаил Вячеславович Институт математики им. С. Л. Соболева СО РАН, пр. Коптюга, 4, Новосибирск 630090 korob@math.nsc.ru

Пономарев Станислав Петрович Pedagogical University, Institute of Mathematics, Arciszewskiego 22 b, 76-200, Slupsk, Poland stapon@o2.pl