К ГИПОТЕЗЕ О ПОЛУПРОПОРЦИОНАЛЬНЫХ ХАРАКТЕРАХ

В. А. Белоногов

Аннотация: Два характера конечной группы G называются полупропорциональными, если они не пропорциональны и G есть объединение двух непересекающихся нормальных подмножеств таких, что ограничения данных характеров на каждом из этих подмножеств пропорциональны. В настоящей статье получены некоторые результаты о строении произвольной конечной группы, содержащей пару полупропорциональных неприводимых характеров, в частности, утверждения о порядке группы и о ядрах полупропорциональных характеров. Рассматривается также следующая гипотеза: полупропорциональные неприводимые характеры конечной группы имеют равные степени. Доказана справедливость этой гипотезы для 2-разложимых групп, а также тот факт, что из справедливости гипотезы для двух групп следует ее справедливость для их прямого произведения.

Ключевые слова: конечные группы, неприводимые характеры, гипотеза о полупропорциональных характерах, *D*-блоки.

Введение

Пусть G — конечная группа. Характеры φ и ψ группы G назовем *полупро-порциональными*, если они не пропорциональны и для некоторого нормального подмножества M из G $\varphi|_M$ пропорционально $\psi|_M$ и $\varphi|_{G\backslash M}$ пропорционально $\psi|_{G\backslash M}$. В настоящей статье рассматривается следующая

Гипотеза 1 (гипотеза о полупропорциональных характерах). Если φ и ψ — полупропорциональные неприводимые характеры конечной группы, то $\varphi(1) = \psi(1)$.

Первоначально эта гипотеза была выдвинута в [1] в следующей формулировке.

Гипотеза 2 (гипотеза о малых *D*-блоках). Если $\{\varphi, \psi\}$ — малый *D*-блок группы G для некоторого нормального подмножества D из G, то $\varphi(1) = \psi(1)$.

Понятие D-блока было введено в [1] (см. также гл. 3 в [2]). D-блок группы G есть некоторое множество ее неприводимых характеров (определение напоминается в § 1), а при D, равном множеству всех p'-элементов из G, где p — простое число, понятие D-блока совпадает с классическим понятием p-блока. D-блок мощности 2 группы G называется ее малым D-блоком. Равносильность гипотез 1 и 2 видна из предложения 1.1 (см. ниже).

Подтверждения гипотез 1 и 2 получены для следующих групп: для спорадических простых групп в [3];

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 04–01–00463) и РФФИ-БРФФИ (код проекта 04–01–81001).

```
для групп L_2(q), SL_2(q), PGL_2(q), GL_2(q) в [4]; для групп PGL_3(q), GL_3(q), PGU_3(q), GU_3(q) в [5]; для групп L_3(q), SL_3(q), U_3(q), SU_3(q) в [6]; для симметрических и некоторых знакопеременных групп в [7].
```

В указанных работах получено полное описание всех малых D-блоков в перечисленных группах с указанием соответствующих нормальных подмножеств D. Для групп лиева типа выявилась интересная зависимость наличия малых D-блоков и, следовательно, пар полупропорциональных неприводимых характеров от четности характеристики поля определения группы. В квазипростых группах $L_2(q)$, $SL_2(q)$, $L_3(q)$, $SL_3(q)$, $U_3(q)$ и $SU_3(q)$ такие пары отсутствуют при всех четных q и присутствуют при всех нечетных q, за исключением групп $L_2(5)$ ($\simeq L_2(4)$), $L_2(7)$ ($\simeq L_3(2)$) и $L_2(9)$ ($\simeq A_6 \simeq PSp_4(2)'$). Среди спорадических простых групп таких пар не имеют только группы M_{12} , M_{22} , M_{23} , M_{24} , J_1 , J_2 , J_3 , Suz, He и Co_1 .

Общих же утверждений о малых D-блоках почти нет. В настоящей статье получены некоторые результаты о строении произвольной конечной группы, имеющей пару полупропорциональных неприводимых характеров, и о свойствах таких пар. В качестве следствий указаны некоторые новые подтверждения гипотез 1 и 2.

Обозначения, используемые в этой статье, стандартны (см., например, [3,8]). В частности, $\mathrm{Irr}(G)$ — множество всех неприводимых комплексных характеров группы G; $\mathrm{Irr}(G\mid N)$ — множество всех неприводимых комплексных характеров группы G, ядра которых содержат нормальную подгруппу N из G; $(\alpha,\beta)_G$ — скалярное произведение классовых функций α и β группы G; $\alpha\mid_K$ — ограничение классовой функции α группы G на ее подмножестве K; G_ξ — стабилизатор в G классовой функции ξ ее нормальной подгруппы, а $(G:G_\xi)$ — некоторая система вычетов G по G_ξ ; g^G — класс сопряженных элементов группы G, содержащий элемент $g\in G$; $\dot{\cup}$ — знак объединения непересекающихся множеств; \mathbb{C} , \mathbb{Q} , \mathbb{Z} и \mathbb{N} — множества всех комплексных, рациональных, целых и натуральных чисел соответственно; \mathbb{Z} — множество всех целых алгебраических чисел из \mathbb{C} . Если p — простое число, то G_p — множество всех p-элементов группы G. Если m и n — целые числа, то (m,n) — их наибольший общий делитель, а запись $m \mid n$ означает, что m делит n.

G всегда обозначает конечную группу.

§ 1. Предварительные результаты

Напомним некоторые определения и результаты из [1] и [2].

Пусть G — конечная группа, D — ее нормальное подмножество и $\Phi \subseteq \operatorname{Irr}(G)$. D-срезкой классовой функции ψ группы G называется классовая функция $\psi|_D^0$, совпадающая с ψ на D и исчезающая (обращающаяся в нуль) на $G \setminus D$. Говорят, что D и Φ взаимодействуют, если D-срезка $\varphi|_D^0$ любого характера φ из Φ является линейной комбинацией (с комплексными коэффициентами) характеров из Φ . (Недавняя работа [9] позволяет по-новому взглянуть на взаимодействия, а именно, как на некоторую экстремальную ситуацию в таблице характеров группы.) D-блок группы G — это минимальное (по включению) непустое подмножество из $\operatorname{Irr}(G)$, взаимодействующее с D. При рассмотрении D-блоков можно, не ограничивая общности рассуждений, предполагать, что $1 \in D$, так как D-блок является одновременно и $(G \setminus D)$ -блоком.

Чтобы определить все *D*-блоки мощности 1 группы, достаточно беглого

взгляда на ее таблицу характеров; $\{\varphi\}$ есть D-блок группы G, если и только если φ исчезает на D или на $G\setminus D$. Нам потребуются следующие результаты о D-блоках мощности 2.

Предложение 1.1. Пусть G — конечная группа, φ и ψ — ее различные неприводимые характеры и D — нормальное подмножество в G. Равносильны условия:

- $(1) \{\varphi, \psi\} D$ -блок группы G;
- (2) $\psi|_D=a\varphi|_D$, и $\psi|_{G\backslash D}=b\varphi|_{G\backslash D}$ для некоторых $a,b\in\mathbb{C};$
- (3) $\psi|_D = a\varphi|_D$, и $\psi|_{G\setminus D} = b\varphi|_{G\setminus D}$, где $\{a,b\} = \{\frac{\psi(1)}{\varphi(1)}, -\frac{\varphi(1)}{\psi(1)}\}$.

Это — теорема 833 в [2]. Отсюда непосредственно вытекает

Следствие. Пусть G — конечная группа, а φ и ψ — ее неприводимые характеры. Равносильны условия:

- $(1) \varphi$ и ψ полупропорциональны;
- (2) $\varphi \neq \psi$, и $\{\varphi,\psi\}$ есть *D*-блок группы *G* для некоторого нормального подмножества *D* из *G*.

Предложение 1.2. Пусть φ и ψ — полупропорциональные неприводимые характеры группы G. Положим

$$G_{+} := \left\{ g \in G \mid \psi(g) = \frac{\psi(1)}{\varphi(1)} \varphi(g) \neq 0 \right\},$$

$$G_{-} := \left\{ g \in G \mid \psi(g) = -\frac{\varphi(1)}{\psi(1)} \varphi(g) \neq 0 \right\},$$

$$G_{0} := \left\{ g \in G \mid \psi(g) = \varphi(g) = 0 \right\}.$$

Справедливы следующие утверждения.

- 1) $G = G_+ \dot{\cup} G_- \dot{\cup} G_0$, причем G_+ и G_- непустые.
- 2) Если D нормальное подмножество в G, то $\{\varphi, \psi\}$ является D-блоком группы G, если и только если $D = G_+ \cup S$ или $D = G_- \cup S$, где S объединение некоторого (возможно, пустого) множества классов сопряженных элементов группы G, входящих в G_0 .
- 3) G_+ , G_- и G_0 (если $G_0 \neq \emptyset$) объединения смежных классов по подгруппе $\mathrm{Ker}(\varphi) \cap \mathrm{Ker}(\psi)$.
- 4) Пусть $T \in \{G_+, G_-, G_0\}$, $g \in T$ и k целое число, взаимно простое c порядком элемента g. Тогда $g^k \in T$ (в частности, $T = T^{-1}$).
- 5) Если какое-либо из множеств G_+ и G_- есть класс сопряженных элементов, то $\varphi(1)=\psi(1)=1.$
- 6) Если $\varphi(1)=1$, то $\varphi(1)=\psi(1)$ и $\psi=\xi\varphi$, где ξ характер G c ядром индекса 2 в G.

Пункты 1)—5) установлены в теореме 836 из [2] в терминах D-блоков (следует учесть предыдущее следствие). Первое утверждение п. 6) следует из п. 1), поскольку неприводимый характер имеет степень 1, если и только если он не имеет нулевых значений (2A11 и 2A28 в [2]). Второе утверждение этого пункта следует из 837 в [2].

§ 2. О порядке группы

Начиная с этого параграфа и по §4 считается выполненным следующее предположение А. Лишь в формулировках теорем это будет указано явно.

Предположение А. Пусть φ и ψ — полупропорциональные неприводимые характеры группы G. Примем обозначения G_+ , G_- и G_0 из предложения 1.2 и положим

$$t:=(arphi(1),\psi(1)),\quad arphi_0:=rac{arphi(1)}{t},\quad \psi_0:=rac{\psi(1)}{t}.$$

Заметим, что $1 \in G_+$ и $\{\varphi, \psi\}$ является D-блоком для любого нормального подмножества D группы G такого, что $G_+ \subseteq D \subseteq G_+ \cup G_0$. Вводимые в следующей лемме обозначения m_q для $g \in G$ будут использоваться и далее в рамках предположения А.

Лемма 2.1 (основная лемма).

$$rac{arphi(d)}{arphi_0} = rac{\psi(d)}{\psi_0} =: m_d \in \widehat{\mathbb{Z}}$$
 для любого $d \in G_+ \cup G_0,$

$$\dfrac{arphi(x)}{\psi_0} = -\dfrac{\psi(x)}{arphi_0} =: m_x \in \widehat{\mathbb{Z}}$$
 для любого $x \in G_- \cup G_0.$

Доказательство. Первые равенства в записанных соотношениях следуют из предложения 1.1, в п. (2) которого при $D=G_+\cup G_0$ должно быть $a=rac{\psi(1)}{\varphi(1)}$ и $b=-rac{arphi(1)}{\psi(1)}$. Далее, так как $(arphi_0,\psi_0)=1$, то существуют целые числа u и v такие, что $u\varphi_0+v\psi_0=1$. При $d\in G_+\cup G_0$ имеем

$$\frac{\varphi(d)}{\varphi_0} = (u\varphi_0 + v\psi_0)\frac{\varphi(d)}{\varphi_0} = u\varphi(d) + v\frac{\psi_0}{\varphi_0}\varphi(d) = u\varphi(d) + v\psi(d) \in \widehat{\mathbb{Z}}.$$

Аналогично при $x \in G_- \cup G_0$

$$\frac{\varphi(x)}{\psi_0} = (u\varphi_0 + v\psi_0)\frac{\varphi(x)}{\psi_0} = u\frac{\varphi_0}{\psi_0}\varphi(x) + v\varphi(x) = -u\psi(x) + v\varphi(x) \in \widehat{\mathbb{Z}}.$$

Лемма 2.1 доказана.

Из этой леммы непосредственно вытекает

Следствие. Если группа G имеет элемент g такой, что $\varphi(g)$ или $\psi(g)$ является обратимым элементом в $\widehat{\mathbb{Z}}$ (например, если $|\varphi(q)|=1$ или $|\psi(q)|=1$), то $arphi_0 = 1$ или $\psi_0 = 1$ (т. е. одно из чисел arphi(1) и $\psi(1)$ делит другое).

Заметим, что из леммы 2.1 непосредственно вытекают также равенства

$$egin{aligned} & rac{1}{arphi_0}arphiig|_{G_+}^0 = rac{1}{\psi_0}\psiig|_{G_+}^0 = rac{1}{arphi_0^2+\psi_0^2}(arphi_0arphi+\psi_0\psi), \ & rac{1}{\psi_0}arphiig|_{G_-}^0 = -rac{1}{arphi_0}\psiig|_{G_-}^0 = rac{1}{arphi_0^2+\psi_0^2}(\psi_0arphi-arphi_0\psi). \end{aligned}$$

Теорема 2.1. Пусть выполнено предположение А. Тогда 1)
$$|G| = (\varphi_0^2 + \psi_0^2)m$$
, где $m = \sum_{d \in G_+} |m_d|^2 = \sum_{x \in G_-} |m_x|^2 \in \mathbb{N};$

(2) |G| четен.

Доказательство. 1) Положим

$$A = \sum_{d \in G_+} |arphi(d)|^2$$
 и $B = \sum_{x \in G_-} |arphi(x)|^2.$

Очевидно,

$$|G| = |G|(\varphi, \varphi)_G = A + B. \tag{2.1}$$

Далее, по лемме 2.1

$$\begin{split} 0 &= |G|(\varphi,\psi)_G = \sum_{d \in G_+} \varphi(d) \overline{\psi(d)} + \sum_{x \in G_-} \varphi(x) \overline{\psi(x)} \\ &= \frac{\psi_0}{\varphi_0} \sum_{d \in G_+} |\varphi(d)|^2 - \frac{\varphi_0}{\psi_0} \sum_{x \in G_-} |\psi(x)|^2 = \frac{\psi_0}{\varphi_0} A - \frac{\varphi_0}{\psi_0} B, \end{split}$$

откуда

$$\frac{1}{\varphi_0^2} A = \frac{1}{\psi_0^2} B,\tag{2.2}$$

т. е.

$$\sum_{d \in G_{+}} |m_{d}|^{2} = \sum_{x \in G_{-}} |m_{x}|^{2}. \tag{2.3}$$

Это часть утверждения 1) теоремы.

Обозначим через m левую часть равенства (2.3). Тогда m есть левая часть равенства (2.2) и, следовательно, по (2.2) $A=\varphi_0^2 m$ и $B=\psi_0^2 m$. Отсюда и из (2.1) следует, что $|G|=(\varphi_0^2+\psi_0^2)m$.

Остается показать, что $m\in\mathbb{N}$. По лемме $2.1\ m=\sum\limits_{d\in G_+}|m_d|^2\in\widehat{\mathbb{Z}}$. Но

по доказанному выше $m=\frac{|G|}{\varphi_0^2+\psi_0^2}\in\mathbb{Q}$. Следовательно, $m\in\widehat{\mathbb{Z}}\cap\mathbb{Q}=\mathbb{Z}$ (по утверждению 2A6 в [2]) и, значит, $m\in\mathbb{N}$.

2) Предположим, что |G| нечетен. Тогда нечетны $\varphi(1)$ и $\psi(1)$ (так как они делят |G| согласно утверждению 2A7(3) из [2]), а следовательно, нечетны φ_0 и ψ_0 . Но тогда $\varphi_0^2 + \psi_0^2$ четно. По п. 1) это влечет четность |G| в противоречие с предположением.

Теорема 2.1 доказана.

Заметим, что $arphi_0\psi_0\mid m$, так как $\left(arphi_0\psi_0,arphi_0^2+\psi_0^2\right)=1.$

Следствие. Для примарных групп гипотеза 1 верна.

Доказательство. Пусть G-p-группа, удовлетворяющая предположению А. Если $\varphi(1)<\psi(1)$, то $\varphi_0=1$, а $\psi_0=p^a$, где $a\in\mathbb{N}$. Но тогда число $\varphi_0^2+\psi_0^2=1+p^{2a}$ не может делить |G|, а это противоречит теореме 2.1.

Следствие доказано.

Теорема 2.2. Пусть выполнено предположение A и p — простой делитель порядка G. Тогда

либо $p \mid (\varphi_0^2 + \psi_0^2)t$ (равносильно, $p \mid \varphi(1)^2 + \psi(1)^2$), либо все p-элементы из G содержатся в G_+ .

Доказательство. Сначала мы выведем некоторые формулы для значений φ и ψ на произвольном p-элементе из G, а затем, приняв предположение, что $G_p \not\subseteq G_+$ (равносильное тому, что некоторый неединичный p-элемент из G содержится в $G_- \cup G_0$), докажем, что $p \mid (\varphi_0^2 + \psi_0^2)t$.

Пусть a — элемент порядка p^n группы G, где $n \in \mathbb{N}$, и ε — первообразный корень степени p^n в \mathbb{C} . Согласно утверждению 2A11 из [2] существует представление \mathscr{F} группы G с характером φ такое, что

$$\mathscr{F}(a)=\mathrm{diag}(arepsilon_1,\ldots,arepsilon_{arphi(1)}), \quad$$
где $arepsilon_i^{p^n}=1.$

Для каждого $i \in \{0, 1, \dots, p^n - 1\}$ обозначим через k_i число элементов последовательности $\varepsilon_1, \dots, \varepsilon_{\varphi(1)}$, равных ε^i $(k_i \ge 0)$. Тогда

$$\varphi(1) = \sum_{i=0}^{p^n - 1} k_i, \tag{2.5}$$

$$\varphi(a) = \sum_{i=0}^{p^n - 1} k_i \varepsilon^i. \tag{2.6}$$

Проведя подобные рассуждения для ψ на месте φ , мы заключаем, что при некоторых целых неотрицательных числах l_i справедливы равенства

$$\psi(1) = \sum_{i=0}^{p^n - 1} l_i, \tag{2.7}$$

$$\psi(a) = \sum_{i=0}^{p^n - 1} l_i \varepsilon^i. \tag{2.8}$$

Числа $\varphi(a)$ и $\psi(a)$ лежат в поле $\mathbb{Q}(\varepsilon)$. Согласно утверждению 2A14 из [2]

$$\mathbb{Q}(\varepsilon) = \mathbb{Q} \oplus \mathbb{Q}\varepsilon \oplus \cdots \oplus \mathbb{Q}\varepsilon^{f-1}, \quad \text{где } f := \phi(p^n)$$
 (2.9)

 $(\phi-$ функция Эйлера). Если n=1, то $1+\varepsilon+\cdots+\varepsilon^{p-1}=rac{\varepsilon^p-1}{\varepsilon-1}=0,$ откуда $\varepsilon^{p-1}=-(1+\varepsilon+\cdots+\varepsilon^{p-2}).$ Аналогично при любом n получаем

$$\varepsilon^f = \varepsilon^{p^{n-1}(p-1)} = -\sum_{m=0}^{p-2} \varepsilon^{mp^{n-1}}$$

И

$$arepsilon^{f+j} = -\sum_{m=0}^{p-2} arepsilon^{mp^{n-1}+j}$$
 при любом $j \in \{0,1,\dots,p^{n-1}-1\}.$

Поэтому

$$\varphi(a) = \sum_{i=0}^{p^{n}-1} k_{i} \varepsilon^{i} = \sum_{i=0}^{f-1} k_{i} \varepsilon^{i} + \sum_{j=0}^{p^{n-1}-1} k_{f+j} \varepsilon^{f+j}$$

$$= \sum_{i=0}^{f-1} k_{i} \varepsilon^{i} - \sum_{j=0}^{p^{n-1}-1} k_{f+j} \sum_{m=0}^{p-2} \varepsilon^{mp^{n-1}+j} \left(= \sum_{i=0}^{f-1} \left(k_{i} - \sum_{m=0}^{p-2} k_{i+f-mp^{n-1}} \right) \varepsilon^{i} \right).$$
(2.10)

Аналогично получаем

$$\psi(a) = \sum_{i=0}^{f-1} l_i \varepsilon^i - \sum_{j=0}^{p^{n-1}-1} l_{f+j} \sum_{m=0}^{p-2} \varepsilon^{mp^{n-1}+j}.$$
 (2.11)

Предположим теперь, что $a \in G_- \cup G_0$. Тогда согласно лемме 2.1 справедливо равенство $\psi(a) = -\frac{\varphi_0}{\psi_0} \varphi(a)$, которое ввиду (2.10) и (2.11) можно записать так:

$$\sum_{i=0}^{f-1} l_i \varepsilon^i - \sum_{j=0}^{p^{n-1}-1} l_{f+j} \sum_{m=0}^{p-2} \varepsilon^{mp^{n-1}+j} = -\frac{\varphi_0}{\psi_0} \left(\sum_{i=0}^{f-1} k_i \varepsilon^i - \sum_{j=0}^{p^{n-1}-1} k_{f+j} \sum_{m=0}^{p-2} \varepsilon^{mp^{n-1}+j} \right). \tag{2.12}$$

Все показатели степеней ε , встречающихся в этом равенстве, не превосходят f-1. Но из условия (2.9), очевидно, следует, что при любых рациональных $q_1,\ldots,q_s,\ r_1,\ldots,r_t$ равенство вида $\sum\limits_{i=1}^s q_i \varepsilon^{u(i)} = \sum\limits_{j=1}^t r_j \varepsilon^{v(j)},$ где все u(i) и v(j) принадлежат $\{0,1,\ldots,f-1\}$, влечет равенство $\sum\limits_{i=1}^s q_i = \sum\limits_{j=1}^t r_j.$ Поэтому равенство (2.12) влечет равенство

$$\sum_{i=0}^{f-1} l_i - (p-1) \sum_{j=0}^{p^{n-1}-1} l_{f+j} = -\frac{\varphi_0}{\psi_0} \left(\sum_{i=0}^{f-1} k_i - (p-1) \sum_{j=0}^{p^{n-1}-1} k_{f+j} \right).$$

Отсюда, учитывая равенства (2.5) и (2.7), получаем

$$\psi(1) - p \sum_{j=0}^{p^{n-1}-1} l_{f+j} = -\frac{\varphi_0}{\psi_0} \left(\varphi(1) - p \sum_{j=0}^{p^{n-1}-1} k_{f+j} \right),$$

что можно переписать в виде

$$\psi(1) - p\psi_1 = -\frac{\varphi_0}{\psi_0}(\varphi(1) - p\varphi_1),$$

обозначив через ψ_1 и φ_1 соответствующие суммы (целые неотрицательные). Поэтому $\psi_0\psi(1)+\varphi_0\varphi(1)=p(\psi_0\psi_1+\varphi_0\varphi_1),$ т. е.

$$(\varphi_0^2 + \psi_0^2)t = p(\varphi_0\varphi_1 + \psi_0\psi_1). \tag{2.13}$$

Отсюда следует, что $p \mid (\varphi_0^2 + \psi_0^2)t$.

Таким образом, предположив, что $G_- \cup G_0$ содержит некоторый p-элемент a, мы доказали, что $p \mid (\varphi_0^2 + \psi_0^2)t$.

Теорема 2.2 доказана.

Следствие. 1) Если $p \in \pi(\varphi_0\psi_0) \setminus \pi(t)$, то $G_p \subseteq G_+$.

- 2) Если $G_2 \nsubseteq G_+$, то $\varphi(1) \psi(1)$ четно.
- 3) Если $G_3 \not\subseteq G_+$, то $3 \mid t$.
- 4) Если $\varphi(1) = \psi(1)$ и $p \nmid 2\varphi(1)$, то $G_p \subseteq G_+$.

Доказательство. 1) Следует из теоремы 2.2, так как $\varphi_0\psi_0$ взаимно просто с $\varphi_0^2+\psi_0^2.$

- 2) Если $G_2 \nsubseteq G_+$, то по теореме 2.2 число 2 делит $(\varphi_0^2 + \psi_0^2)t = \frac{\varphi(1)^2 + \psi(1)^2}{t}$, т. е. $2 \mid \varphi(1)^2 \psi(1)^2$ и, значит, $2 \mid \varphi(1) \psi(1)$.
- 3) Если $G_3 \nsubseteq G_+$, то $3 \mid (\varphi_0^2 + \psi_0^2)t$ по теореме 2.2. Если $3 \nmid t$, то $3 \mid \varphi_0^2 + \psi_0^2$. Пусть $\varphi_0 \equiv k \pmod{3}$ и $\psi_0 \equiv k \pmod{3}$, $\{k,l\} \subseteq \{1,2,0\}$. Так как $(\varphi_0,\psi_0)=1$, то по крайней мере одно из чисел k,l отлично от 0. Пусть $k \in \{1,2\}, l \in \{1,2,0\}$. Должно быть $3 \mid k^2 + l^2$, но это не так: числа $1^2 + 1^2 = 2$, $1^2 + 2^2 = 5$, $1^2 + 0^2 = 1$, $2^2 + 2^2 = 8$, $2^2 + 0^2 = 4$ не делятся на 3. Следовательно, $3 \mid t$.
- 4) Это непосредственно следует из теоремы 2.2, так как при $\varphi(1)=\psi(1)$ условие $p\nmid 2\varphi(1)$ равносильно условию $p\nmid (\varphi_0^2+\psi_0^2)t$.

Следствие доказано.

Утверждение теоремы 2.2 можно несколько усилить следующим образом.

Теорема 2.2'. Пусть выполнено предположение А. Тогда для любого $p \in \pi(G)$ верно по крайней мере одно из следующих утверждений:

- 1) $G_p \subseteq G_+$;
- 2) существуют целые числа φ_1 и ψ_1 такие, что

$$(\varphi_0^2 + \psi_0^2)t = p(\varphi_0\varphi_1 + \psi_0\psi_1), \quad 0 \le \varphi_1 \le \varphi(1), \ 0 \le \psi_1 \le \psi(1)$$

(в частности, $p \mid (\varphi_0^2 + \psi_0^2)t)$.

Кроме того, если $p \nmid t$ и числа φ_1 и ψ_1 удовлетворяют соотношениям п. 2), то выполнено точно одно из следующих условий:

- а) $\varphi_0 \le ($ и делит) $p\psi_1 \psi(1) \le (p-1)\psi(1)$ $(\psi_1 \ne 0)$ и $\psi_0 \le ($ и делит) $\varphi(1) p\varphi_1 \le \varphi(1);$
- б) $\psi_0 \le ($ и делит) $p\varphi_1 \varphi(1) \le (p-1)\varphi(1)$ $(\varphi_1 \ne 0)$ и $\varphi_0 \le ($ и делит) $\psi(1) p\psi_1 \le \psi(1)$.

Доказательство. Пусть $p \in \pi(G)$. Если не выполнено утверждение 1), то, как замечено в доказательстве теоремы 2.2 (см. (2.13)), верно равенство

п. 2), где
$$\varphi_1 = \sum_{j=0}^{p^{n-1}-1} k_{f+j} \leq \varphi(1)$$
 и $\psi_1 = \sum_{j=0}^{p^{n-1}-1} l_{f+j} \leq \psi(1)$, и, значит, верно утверждение 2).

Предположим теперь, что $p \nmid t$ и числа φ_1 и ψ_1 удовлетворяют соотношениям п. 2). Тогда

$$\varphi_0(\varphi(1) - p\varphi_1) = \psi_0(p\psi_1 - \psi(1)),$$
 (2.14)

причем числа $\varphi(1) - p\varphi_1$ и $\psi(1) - p\psi_1$ отличны от нуля и, следовательно, точно одно из них положительно.

Пусть $\varphi(1) - p\varphi_1 > 0$. Тогда $\psi_0 \mid \varphi(1) - p\varphi_1$ и $\psi_0 \leq \varphi(1)$. Далее, ввиду (2.14) $\psi(1) - p\psi_1 < 0$ и тогда $\varphi_0 \mid p\psi_1 - \psi(1)$ и $\varphi_0 \leq p\psi_1 - \psi(1) \leq p\psi(1) - \psi(1) = (p-1)\psi(1)$. В этом случае верно условие а).

Если же $\psi(1) - p\psi_1 > 0$, то подобно предыдущему рассуждению получаем условие б).

Теорема 2.2′ доказана.

Из теоремы 2.2' непосредственно вытекает

Следствие. Если $G_p \nsubseteq G_+$, $p \nmid t$ и $\varphi_0 \leq \psi_0$, то $\frac{\psi_0}{\varphi_0} \leq (p-1)t$.

Замечания.

- 1. В условии 2) теоремы 2.2' при $\varphi_1=0$ будет $\psi_0\mid t,$ а при $\psi_1=0$ будет $\varphi_0\mid t.$
- 2. Если в условии 2) теоремы 2.2' будет $\varphi_1=\varphi(1)$, то будет $\varphi_0(\varphi_0t-p\varphi_0t)=\psi_0(p\psi_1-\psi_0t)$, т. е. $\varphi_0^2(p-1)t=\psi_0(\psi_0t-p\psi_1)$, откуда

$$\psi_0 \mid (p-1)t$$

и $\varphi_0^2 \mid \psi_0 t - p \psi_1$, т. е. $\varphi_0^2 \leq \psi_0 t - p \psi_1 \leq \psi_0 t$ и

$$\varphi_0 \le \sqrt{\psi_0 t} \le \sqrt{p-1} t.$$

§ 3. Первое приближение к гипотезе 1

Здесь мы получим некоторое (хотя и незначительное) приближение к гипотезе 1, а именно, что степени $\varphi(1)$ и $\psi(1)$ полупропорциональных неприводимых характеров φ и ψ имеют неединичный общий делитель, за исключением тривиального случая, когда $\varphi(1)=\psi(1)=1$.

Лемма 3.1. Пусть $H \leq G$. Тогда выполнено точно одно из следующих условий:

- 1) $H\subseteq G_+\cup G_0$, и существует характер θ группы H такой, что $\varphi|_H=\varphi_0\theta$ и $\psi|_H=\psi_0\theta$;
 - 2) $H \not\subseteq G_+ \cup G_0$, и характеры $\varphi|_H$ и $\psi|_H$ полупропорциональны.

ДОКАЗАТЕЛЬСТВО. Предположим, что $H\subseteq G_+\cup G_0$. Для характеров $\varphi|_H$ и $\psi|_H$ группы H имеем

$$\varphi|_H = \sum_{\xi \in Irr(H)} a_{\xi}\xi, \quad \psi|_H = \sum_{\xi \in Irr(H)} b_{\xi}\xi,$$

где $a_\xi,b_\xi\in\mathbb{N}\cup\{0\}$. Так как $H\subseteq G_+\cup G_0$, то по лемме $2.1\ \psi_0\varphi|_H=\varphi_0\psi|_H$, т. е.

$$\sum_{\xi \in \operatorname{Irr}(H)} \psi_0 a_{\xi} \xi = \sum_{\xi \in \operatorname{Irr}(H)} \varphi_0 b_{\xi} \xi.$$

Следовательно, для всех $\xi \in Irr(H)$ $\psi_0 a_{\xi} = \varphi_0 b_{\xi}$, и $\frac{a_{\xi}}{\varphi_0} = \frac{b_{\xi}}{\psi_0} =: c_{\xi} \in \mathbb{N} \cup \{0\}$ (так как $(\varphi_0, \psi_0) = 1$). Но теперь, положив

$$heta:=\sum_{\xi\in {
m Irr}(H)} c_{\xi} \xi,$$

имеем $\varphi|_H = \varphi_0 \theta$ и $\psi|_H = \psi_0 \theta$, т. е. выполнено условие 1).

Предположим теперь, что $H \not\subseteq G_+ \cup G_0$. Так как тогда $H \cap G_- \neq \emptyset$, то характеры $\varphi|_H$ и $\psi|_H$ не могут быть пропорциональными и, следовательно, ввиду леммы 2.1 они полупропорциональны.

Лемма 3.1 доказана.

Теорема 3.1. Пусть выполнено предположение А. Тогда если $\varphi(1) \neq \psi(1)$, то $t \neq 1$.

ДОКАЗАТЕЛЬСТВО. Без ограничения общности будем считать, что $\mathrm{Ker}(\varphi) \cap \mathrm{Ker}(\psi) = 1$. Предположим, что $\varphi(1) \neq \psi(1)$ и t=1. Тогда согласно лемме 2.1

$$rac{arphi(d)}{arphi(1)} = rac{\psi(d)}{\psi(1)} \in \widehat{\mathbb{Z}}$$

для всех $d \in G_+$. Отсюда по утверждению 2A31 из [2] следует, что для любого $d \in G_+$ справедливы равенства

$$|\varphi(d)| = \varphi(1) \quad \text{if} \quad |\psi(d)| = \psi(1), \tag{3.1}$$

из которых ввиду утверждения 2А30 из [2] вытекает, что

$$[d, G] \subseteq \operatorname{Ker}(\varphi) \cap \operatorname{Ker}(\psi) = 1,$$

т. е. $d \in Z(G)$. Следовательно, $G_+ \subseteq Z(G)$. Предположим, что существует элемент $z \in Z(G) \setminus G_+$. Тогда, учитывая, что $|\varphi(z)| = \varphi(1)$ и $|\psi(z)| = \psi(1)$ ([3, теорема 2A9(4)] при $g = g^{-1}$), ввиду леммы 2.1 имеем

$$\frac{\varphi(1)}{\psi(1)} = \left| \frac{\varphi(z)}{\psi(1)} \right| = \left| \frac{\psi(z)}{\varphi(1)} \right| = \frac{\psi(1)}{\varphi(1)},$$

откуда $\varphi(1) = \psi(1)$ в противоречие с предположением. Значит,

$$G_{+} = Z(G). \tag{3.2}$$

Из (3.2) и леммы 3.1 получаем, что $\varphi|_{Z(G)}=\varphi_0\theta$, где θ — характер группы Z(G). Поскольку t=1, то θ — линейный (и тем самым неприводимый) характер. Но тогда (так как $Z(G) \leq G$) по теореме 11.29 из [8]

$$\varphi_0 \mid |G:Z(G)|. \tag{3.3}$$

По п. 6) предложения 1.2 $\varphi_0 \neq 1$. Пусть p — простой делитель φ_0 . Тогда p не делит $\varphi_0^2 + \psi_0^2$ и по теореме 2.2 $G_p \subseteq G_+ = Z(G)$. Отсюда Z(G) содержит силовскую p-подгруппу из G и, значит, $p \nmid |G:Z(G)|$, в противоречие с (3.3). Таким образом, утверждение t=1 ложно.

Теорема 3.1 доказана.

\S 4. О ядрах характеров φ и ψ

Пусть $K:=\mathrm{Ker}(\varphi)\cap\mathrm{Ker}(\psi)$. Тогда, как следует из п. 3) предложения 1.2, группа G/K имеет пару полупропорциональных неприводимых характеров $\widetilde{\varphi}$, где $\widetilde{\varphi}(gK)=\varphi(g)$ и $\widetilde{\psi}(gK)=\psi(g)$ при $g\in G$. Поэтому для изучения факторгруппы G/K мы можем принять условие K=1.

Лемма 4.1.
$$G_+ \cap \operatorname{Ker}(\varphi) = G_+ \cap \operatorname{Ker}(\psi) = \operatorname{Ker}(\varphi) \cap \operatorname{Ker}(\psi)$$
.

Доказательство. Из леммы 2.1 непосредственно следует, что

$$G_+ \cap \operatorname{Ker}(\varphi) = G_+ \cap \operatorname{Ker}(\psi)$$

и если $x \in \mathrm{Ker}(\varphi) \cap \mathrm{Ker}(\psi) \cap (G_- \cup G_0)$, то

$$rac{\psi(1)}{arphi_0} = rac{\psi(x)}{arphi_0} = -rac{arphi(x)}{\psi_0} = rac{arphi(1)}{\psi_0},$$

что противоречиво.

Лемма 4.1 доказана.

Из этой леммы следует, что при K=1 и $N\in\{\mathrm{Ker}(\varphi),\mathrm{Ker}(\psi)\}$ выполняется равенство $N\cap G_+=1$. Следующая теорема 4.1 показывает, что при $\varphi(1)\neq \psi(1)$ в группе G существует не более одной неединичной нормальной подгруппы N с этим свойством. Для доказательства потребуется следующая

Лемма 4.2. Если $H \leq G$ и $H \cap G_+ = 1$, то $\varphi_0 \varphi|_H + \psi_0 \psi|_H = c \rho_H$, где $\rho_H -$ регулярный характер группы H и $c = \frac{(\varphi_0^2 + \psi_0^2)t}{|H|} \in \mathbb{N}$.

ДОКАЗАТЕЛЬСТВО. По лемме 2.1 характер $\varphi_0 \varphi|_H + \psi_0 \psi|_H$ исчезает на $H \setminus \{1\}$ и, следовательно, кратен регулярному характеру

$$ho_H = \sum_{\chi \in \operatorname{Irr}(H)} \chi(1) \chi$$

группы H:

$$\varphi_0 \varphi|_H + \psi_0 \psi|_H = c\rho_H, \quad c \in \mathbb{C}.$$

Из этого равенства получаем $(\varphi_0^2 + \psi_0^2)t = c|H|$ (сравнив значения левой и правой частей на единичном элементе), а также $\varphi_0(\varphi|_H, 1_H)_H + \psi_0(\psi|_H, 1_H)_H = c(\rho_H, 1_H)_H = c$ и, следовательно, $c \in \mathbb{Z}$. Таким образом, $c = (\varphi_0^2 + \psi_0^2)t/|H| \in \mathbb{N}$, и лемма 4.2 доказана.

Теорема 4.1. Пусть выполнено предположение А. Допустим, что $\mathrm{Ker}(\varphi) \cap \mathrm{Ker}(\psi) = 1$ и G имеет неединичную нормальную подгруппу N такую, что $N \cap G_+ = 1$. Тогда верны следующие утверждения.

- 1) Все неединичные элементы из N сопряжены в G и, в частности, N элементарная абелева минимальная нормальная подгруппа в G.
 - 2) N совпадает c $\mathrm{Ker}(\varphi)$ или c $\mathrm{Ker}(\psi)$.
- $3)\ |N|=arphi_0^2+\psi_0^2,$ причем либо $N=\mathrm{Ker}(arphi),$ $arphi_0=1$ и $\psi_0\mid t,$ либо $N=\mathrm{Ker}(\psi),$ $\psi_0=1$ и $arphi_0\mid t.$
 - 4) Eсли $\mathrm{Ker}(\varphi) \neq 1 \neq \mathrm{Ker}(\psi)$, то $|\mathrm{Ker}(\varphi)| = |\mathrm{Ker}(\psi)| = 2$ и $\varphi(1) = \psi(1)$. Доказательство. 1) По лемме 4.2 (при H=N)

$$arphi_0arphi|_N+\psi_0\psi|_N=c
ho_N,$$
 где $c=rac{\left(arphi_0^2+\psi_0^2
ight)t}{|N|}\in\mathbb{N}.$ (4.1)

Далее, по теореме Клиффорда (теорема 2Б9 в [2]) имеем

$$arphi|_N = n_{arphi} \sum_{g \in (G:G_{arepsilon})} \xi^g$$
 и $\psi|_N = n_{\psi} \sum_{g \in (G:G_{ heta})} heta^g,$

где $\{n_{\varphi},n_{\psi}\}\subseteq\mathbb{N}$ и $\{\xi,\theta\}\subseteq\mathrm{Irr}(N)$. Отсюда и из (4.1) следует (так как $\rho_N=\sum_{\gamma\in\mathrm{Irr}(N)}\gamma(1)\gamma$), что каждый неприводимый характер подгруппы N сопряжен в G с ξ или с θ . Поэтому

один из характеров
$$\xi$$
 и θ совпадает с 1_N (4.2)

И

все характеры из
$$Irr(N) \setminus \{1_N\}$$
 сопряжены в G . (4.3)

Из (4.3) по (6.33) из [8] следует (так как $\mu^g(h^g)=\mu(h)$ для всех $\mu\in {\rm Irr}(G),$ $h\in N$ и $g\in G),$ что все неединичные элементы из N сопряжены в G.

- 2) Из утверждения (4.2), полученного при доказательстве п. 1), следует, что $N \subseteq \operatorname{Ker}(\varphi)$ или $N \subseteq \operatorname{Ker}(\psi)$. Пусть, например, $N \subseteq \operatorname{Ker}(\varphi)$. Поскольку по лемме 4.1 $G_+ \cap \operatorname{Ker}(\varphi) = 1$ (т. е. $\operatorname{Ker}(\varphi)$ удовлетворяет условию теоремы 4.1 на месте N), то по уже доказанному п. 1) этой теоремы $\operatorname{Ker}(\varphi)$ минимальная нормальная подгруппа в G и, следовательно, $N = \operatorname{Ker}(\varphi)$. Аналогично доказывается, что из $N \subseteq \operatorname{Ker}(\psi)$ следует $N = \operatorname{Ker}(\psi)$,
- 3) По п. 2) N совпадает с $\mathrm{Ker}(\varphi)$ или с $\mathrm{Ker}(\psi)$. Предположим, что $N=\mathrm{Ker}(\varphi)$. Тогда по теореме Клиффорда

$$arphi|_N=arphi(1)1_N$$
 и $\psi|_N=n_\psi\sum_{g\in (G:G_ heta)} heta^g,$ где $n_\psi\in\mathbb{N}$ и $heta\in\mathrm{Irr}(N),$

причем $\theta \neq 1_N$, так как $N \nsubseteq \mathrm{Ker}(\psi)$. Теперь, подсчитав кратности характера 1_N в левой и правой частях равенства (4.1), получим $\varphi_0 \varphi(1) = \frac{(\varphi_0^2 + \psi_0^2)t}{|N|}$, откуда $|N| = \frac{\varphi_0^2 + \psi_0^2}{\varphi_0^2}$, а так как φ_0 и ψ_0 взаимно просты, то

$$arphi_0=1$$
 и $|N|=arphi_0^2+\psi_0^2$

Далее, по лемме 2.1 для любого $x \in N \setminus \{1\}$ имеем

$$\psi(x) = -rac{arphi_0}{\psi_0}arphi(x) = -rac{arphi_0^2 t}{\psi_0},$$

откуда следует, что $\psi_0 \mid t$.

Аналогично при $N = {\rm Ker}(\psi)$ получим $\psi_0 = 1, \; |N| = \varphi_0^2 + \psi_0^2$ и $\varphi_0 \mid t.$ Утверждение 3) доказано.

4) Если подгруппы $Ker(\varphi)$ и $Ker(\psi)$ обе не единичны, то каждая из них может выступать в роли N (см. абзац перед леммой 4.2). Но тогда по 3) будет $arphi_0 = 1, \ \psi_0 = 1, \ \mathrm{r.} \ \mathrm{e.} \ \ arphi(1) = \psi(1), \ \mathrm{и} \ |\operatorname{Ker}(arphi)| = |\operatorname{Ker}(\psi)| = 2.$

Теорема 4.1 доказана.

Отметим, что последнее утверждение теоремы 4.1 подтверждает гипотезу 1 в случае, когда ядра полупропорциональных неприводимых характеров φ и ψ группы G не инцидентны.

Следствие. Пусть выполнено условие теоремы 4.1 и $\varphi(1) < \psi(1)$. Тогда справедливы следующие утверждения:

- а) $N = {
 m Ker}(\varphi)$ и ${
 m Ker}(\psi) = 1$ (в частности, $\varphi_0 = 1, \ \psi_0 \ | \ t$ и $|N| = 1 + \psi_0^2$ степень некоторого простого числа p);
 - 6) группа G не нильпотентна;
 - в) $\psi_0^2 \mid \chi(1)$ для любого $\chi \in \operatorname{Irr}(G) \setminus \operatorname{Irr}(G \mid N)$;
 - Γ) $\operatorname{Irr}(G \mid N) = \operatorname{Irr}(1_N^G);$
 - д) $\operatorname{Irr}(G) = \operatorname{Irr}(1_N^G) \dot{\cup} \operatorname{Irr}(\xi^G)$, где $\xi \in \operatorname{Irr}(N) \setminus \{1_N\}$;
- е) если $k\in N\setminus\{1\}$, то $|G|=|C_G(k)|\psi_0^2$ и $\psi(k)=-\frac{\varphi(1)}{\psi_0};$ ё) если $\psi_0=q^m$, где q простое число и $m\in\mathbb{N}$, то q=2, $|N|=p=1+2^{2m}$ и $G/C_G(N)$ циклическая группа порядка $p-1=2^{2m}.$

Доказательство. a) Предположим, что существует $g \in \text{Ker}(\psi) \setminus \{1\}$. Toгда по лемме $4.1 \ q \in G \setminus D$ и по лемме 2.1

$$arphi(g) = -rac{\psi(1)}{arphi(1)}\psi(g) = -rac{\psi(1)^2}{arphi(1)},$$

откуда $|\varphi(g)| > \varphi(1)$ в противоречие с утверждением 2A11 из [2]. Следовательно, $Ker(\psi) = 1$, и ввиду п. 2) теоремы $4.1 \ N = Ker(\varphi)$.

- б) Если G нильпотентна, то каждая ее минимальная нормальная подгруппа содержится в ее центре. Поэтому из п 1) теоремы 4.1 |N| = 2. Но тогда согласно п. а) $\psi_0 = 1$, что противоречит предположению $\varphi(1) < \psi(1)$.
- в) Согласно (4.3) $\operatorname{Irr}(N) = \{1_N\} \cup \{\xi^g \mid g \in (G:G_\xi)\}$, где $\xi(1) = 1$ ввиду абелевости N. Отсюда и из равенства (4.1), в котором согласно п. a) этого следствия $\varphi_0 = 1$ и c = 1, получаем

$$\psi|_{N} = \frac{t}{\psi_0} \sum_{g \in (G:G_{\mathcal{E}})} \xi^g. \tag{4.4}$$

Если $\chi \in Irr(G) \setminus Irr(G \mid N)$, то согласно теореме Клиффорда

$$\chi|_N=n_\chi\sum_{g\in (G:G_\xi)}\xi^g,$$
 где $n_\xi\in\mathbb{N}$ и $\xi\in\mathrm{Irr}(N)\setminus\{1_N\}.$

Отсюда и из (4.4) следует, что $\chi(1)/n_{\chi} = \psi(1)/\frac{t}{\psi_0} = \psi_0^2$.

г) Используя закон взаимности Фробениуса (утверждение 2Б1 в [2]), получаем

$$\chi \in \operatorname{Irr}(1_N^G) \Longleftrightarrow 0 \neq (1_N^G, \chi)_G = (1_N, \chi|_N)_N = (\chi|_N, 1_N)_N \Longleftrightarrow \chi \in \operatorname{Irr}(G \mid N).$$

- д) Это следует из п. г) и из предпоследнего предложения в доказательстве п. в) с использованием закона взаимности Фробениуса.
- е) $|G:C_G(k)|=|k^G|=|N|-1=\psi_0^2$. Второе утверждение вытекает из леммы 2.1.
- $\ddot{\mathrm{e}}$) По в) $p^n=1+q^{2m}$. Отсюда по лемме IX.2.7 из [10] следует, что q=2и n=1, т. е. $|N|=p=1+2^{2m}$. Тогда $C_G(N)=C_G(k)$, где $k\in N\setminus\{1\}$, и $|G/C_G(N)| = |G:C_G(k)| = \psi_0^2 = p-1$ (по п. е)). Поэтому $G/C_G(N) \simeq {
 m Aut}(N) \simeq {
 m Aut}(N)$ Z_{p-1} .

Следствие доказано.

§ 5. Прямые произведения групп

Пусть $G = A \times B$ — (внешнее или внутреннее) прямое произведение групп A и B. Хорошо известно (см., например, утверждение 2A38 в [2]), что Irr(G) = $\{\alpha \times \beta \mid \alpha \in \operatorname{Irr}(A), \beta \in \operatorname{Irr}(B)\}$. Здесь $\alpha \times \beta$ — функция из G в $\mathbb C$, определяемая для всех $a \in A$ и $b \in B$ равенством $(\alpha \times \beta)((a,b)) = \alpha(a)\beta(b)$ в случае внешнего прямого произведения и равенством $(\alpha \times \beta)(ab) = \alpha(a)\beta(b)$ в случае внутреннего прямого произведения.

Целью этого параграфа является доказательство следующего результата.

Теорема 5.1. Если гипотеза о полупропорциональных характерах верна для групп A и B, то она верна и для группы $A \times B$.

Более того, если $\{\varphi,\psi\}\subseteq \operatorname{Irr}(G)$, где $G=A\times B$, то равносильны утверждения:

- (1) φ и ψ полупропорциональны;
- (2) $\varphi = \alpha_1 \times \beta_1$ и $\psi = \alpha_2 \times \beta_2$, где $\{\alpha_1, \alpha_2\} \subseteq Irr(A)$, $\{\beta_1, \beta_2\} \subseteq Irr(B)$, и выполнено одно из следующих условий:
 - 2a) α_1 и α_2 полупропорциональны, и $\beta_1 = \beta_2$;
 - 26) β_1 и β_2 полупропорциональны, и $\alpha_1 = \alpha_2$;
- 2в) α_1 и α_2 полупропорциональны, β_1 и β_2 полупропорциональны, $\alpha_1(1) =$ $\alpha_2(1)$ и $\beta_1(1) = \beta_2(1)$ (в этом случае $\varphi(1) = \psi(1)$).

Для доказательства теоремы потребуются следующие две леммы.

Лемма 5.1. Пусть выполнено предположение A и $H \leq G$. Положим

$$s_{\varphi} := (\varphi|_{H}, \varphi|_{H})_{H}, \quad s_{\psi} := (\psi|_{H}, \psi|_{H})_{H}, \quad s := (\varphi|_{H}, \psi|_{H})_{H},$$

$$m_{+} := \sum_{d \in G_{+} \cap H} |m_{d}|^{2}, \quad m_{-} := \sum_{x \in G_{-} \cap H} |m_{x}|^{2}.$$

Тогда

a)
$$|H|s_{\varphi} = \varphi_0^2 m_+ + \psi_0^2 m_-, \quad |H|s_{\psi} = \psi_0^2 m_+ + \varphi_0^2 m_-,$$

6)
$$|H|s = \varphi_0 \psi_0 (m_+ - m_-),$$

B)
$$|H|(s_{\varphi}+s\frac{\psi_{0}}{\varphi_{0}})=|H|(s_{\psi}+s\frac{\varphi_{0}}{\varphi_{0}})=m_{+}(\varphi_{0}^{2}+\psi_{0}^{2})$$

в)
$$|H|\left(s_{\varphi}+s\frac{\psi_0}{\varphi_0}\right)=|H|\left(s_{\psi}+s\frac{\varphi_0}{\psi_0}\right)=m_+\left(\varphi_0^2+\psi_0^2\right),$$
 г) $|H|\left(s_{\varphi}-s\frac{\varphi_0}{\psi_0}\right)=|H|\left(s_{\psi}-s\frac{\psi_0}{\varphi_0}\right)=m_-\left(\varphi_0^2+\psi_0^2\right),$ д) $s_{\varphi}=s_{\psi}\Longleftrightarrow (\varphi_0-\psi_0)s=0.$

д)
$$s_{\varphi} = s_{\psi} \iff (\varphi_0 - \psi_0)s = 0.$$

Доказательство. Введем обозначения

$$A = \sum_{d \in G_+ \cap H} |\varphi(d)|^2 \quad \left(=\varphi_0^2 m_+\right), \quad B = \sum_{x \in G_- \cap H} |\varphi(x)|^2 \quad \left(=\psi_0^2 m_-\right).$$

Имеем

$$|H|s_{\varphi} = \sum_{h \in H} |\varphi(h)|^2 = \sum_{d \in G_+ \cap H} |\varphi(d)|^2 + \sum_{x \in G_- \cap H} |\varphi(x)|^2 = A + B$$

и аналогично, используя лемму 2.1,

$$|H|s_{\psi} = \sum_{d \in G_{+} \cap H} |\psi(d)|^{2} + \sum_{x \in G_{-} \cap H} |\psi(x)|^{2} = \frac{\psi_{0}^{2}}{\psi_{0}^{2}} A + \frac{\varphi_{0}^{2}}{\psi_{0}^{2}} B$$

И

$$|H|s=rac{\psi_0}{arphi_0}A-rac{arphi_0}{\psi_0}B.$$

Отсюда следуют равенства а) и б). Из этих равенств непосредственно выводятся равенства в) и г). Наконец, первое равенство в п. в) влечет равенство

$$s_{arphi}-s_{\psi}=rac{s}{arphi_0\psi_0}ig(arphi_0^2-\psi_0^2ig),$$

из которого, очевидно, следует утверждение д).

Лемма 5.1 доказана.

Лемма 5.2. Пусть выполнено предположение A и $H \leq G$. Если $\varphi|_H$ и $\psi|_H$ кратны неприводимым характерам ξ и θ группы H соответственно, то

либо
$$\xi = \theta$$
 (и $H \subseteq G_+ \cup G_0$),

либо ξ и θ полупропорциональны и $(\varphi|_H, \xi)_H = (\psi|_H, \theta)_H \ (H \not\subseteq G_+ \cup G_0)$.

Доказательство. Пусть $\varphi|_H = a\xi$ и $\psi|_H = b\theta$ $(a,b \in \mathbb{N})$. По лемме 3.1 либо $H\subseteq G_+\cup G_0$ и тогда $\xi=\theta,$ либо $H\nsubseteq G_+\cup G_0$ и характеры $\varphi|_H=a\xi$ и $\psi|_{H}=b\theta$ полупропорциональны. А именно, ввиду леммы 2.1 $\frac{a\xi(d)}{\varphi_{0}}=\frac{b\theta(d)}{\psi_{0}}$ для любого $d\in(G_{+}\cup G_{0})\cap H,$ $\frac{a\psi(x)}{\psi_{0}}=-\frac{b\theta(x)}{\varphi_{0}}$ для любого $x\in G_{-}\cap H$ $(\neq\varnothing).$

$$\frac{a\psi(x)}{dh_0} = -\frac{b\theta(x)}{dh_0}$$
 для любого $x \in G_- \cap H \ (\neq \varnothing)$.

Отсюда следует полупропорциональность характеров ξ и θ ($\{\xi,\theta\}$ есть $(G_+\cap H)$ -блок группы H). Но тогда $\xi
eq \theta$ и $(arphi|_H,\psi|_H)_H=0$, откуда по п. д) леммы 5.1 $(\varphi|_H, \varphi|_H)_H = (\psi|_H, \psi|_H)_H$, т. е. $a^2 = b^2$ и a = b.

Лемма 5.2 доказана.

Доказательство теоремы 5.1. (1) \Rightarrow (2) Пусть выполнено условие (1). Согласно утверждению 2A38 из [2] $\varphi = \alpha_1 \times \beta_1$ и $\psi = \alpha_2 \times \beta_2$, где $\{\alpha_1, \alpha_2\} \subseteq$ Irr(A) и $\{\beta_1, \beta_2\} \subseteq Irr(B)$. Без ограничения общности мы можем считать, что $G = A \times B$ — внутреннее прямое произведение, т. е. A и B — подгруппы в G. Тогда

$$egin{aligned} arphi|_A &= eta_1(1)lpha_1, \quad \psi|_A &= eta_2(1)lpha_2, \ &arphi|_B &= lpha_1(1)eta_1, \quad \psi|_B &= lpha_2(1)eta_2. \end{aligned}$$

Ввиду леммы 5.2 отсюда следует, что имеются лишь две возможности для α_1 и α_2 :

- а1) $A \subseteq G_+ \cup G_0$ и $\alpha_1 = \alpha_2$,
- а2) $A \not\subseteq G_+ \cup G_0$, α_1 и α_2 полупропорциональны, и $\beta_1(1) = \beta_2(1)$; и также лишь две возможности для β_1 , β_2 :
 - b1) $B \subseteq G_+ \cup G_0$ и $\beta_1 = \beta_2$,
 - b2) $B \not\subseteq G_+ \cup G_0, \, \beta_1$ и β_2 полупропорциональны, и $\alpha_1(1) = \alpha_2(1).$

Утверждения a1) и b1) одновременно не могут быть выполнены, так как $\varphi \neq \psi$. Комбинации же утверждений «a1) и b2)», «a2) и b1)» и «a2) и b2)» влекут, очевидно, утверждения 26), 2a) и 2в) теоремы соответственно.

 $(2)\Rightarrow (1)$ Доказательство этого утверждения легко получается с помощью предложения 1.1. Пусть, например, выполнено утверждение 2в). Рассмотрим подмножества A_+ , A_- и A_0 из A, имеющие по отношению к α_1 и α_2 такой же смысл, как G_+ , G_- и G_0 по отношению к φ и ψ в предложении 1.2, и подобные подмножества B_+ , B_- и B_0 из B для β_1 и β_2 . Так как $\alpha_1(1)=\alpha_2(1)$ и $\beta_1(1)=\beta_2(1)$, то по предложению 1.1

$$lpha_1(d_A)=lpha_2(d_A)$$
 для всех $d_A\in A_+\cup A_0,$ $lpha_1(x_A)=-lpha_2(x_A)$ для всех $x_A\in A_-$

И

$$\beta_1(d_B) = \beta_2(d_B)$$
 для всех $d_B \in B_+ \cup B_0$, $\beta_1(x_B) = -\beta_2(x_B)$ для всех $x_B \in B_-$.

Отсюда следует, что

$$\varphi(g) = \pm \psi(g)$$
 для всех $g \in G$,

и, значит, φ и ψ полупропорциональны (при этом, как легко увидеть, $G_+=A_+B_+\cup A_-B_-,\,G_-=A_+B_-\cup A_-B_+,\,G_0=A_0B\cup AB_0$). Теорема 5.1 доказана.

Следствие 1. Гипотеза о полупропорциональных характерах верна для всех конечных 2-разложимых групп.

Доказательство. 2-Разложимая группа G имеет вид $G=A\times B$, где A-2-группа, а B- группа нечетного порядка. По теореме 2.1 группа B не имеет пар полупропорциональных неприводимых характеров и, значит, гипотеза о полупропорциональных характерах для B верна. Далее, согласно следствию теоремы 2.1 эта гипотеза верна для A. Следовательно, по теореме 5.1 она верна и для G.

Следствие 1 доказано.

Следствие 2. Если гипотеза о полупропорциональных характерах верна для групп A и B, то она верна и для любого их центрального произведения.

Доказательство. Пусть гипотеза 1 верна для групп A и B. Тогда по теореме 5.1 она верна для группы $A \times B$. Но любое центральное произведение групп A и B является гомоморфным образом группы $A \times B$. Остается заметить, что

если гипотеза 1 верна для некоторой группы H,

то она верна и для любой ее фактор-группы H/N;

это следует из существовании естественного взаимно однозначного соответствия между ${\rm Irr}(H\mid N)$ и ${\rm Irr}(H/N)$ (см. 2A34 в [2]).

Следствие 2 доказано.

Из теоремы 5.1 непосредственно вытекают также следующие два утверждения.

Следствие 3. Если группы A и B не имеют пар полупропорциональных характеров, то их не имеет и группа $A \times B$.

Следствие 4. Если φ и ψ — полупропорциональные неприводимые характеры группы $G = A \times B$, причем ни A ни B не содержатся в G_+ , то $\varphi(1) = \psi(1)$.

ЛИТЕРАТУРА

- 1. Белоногов В. А. D-блоки характеров конечной группы // Исследования по теории групп. Свердловск: УрО АН СССР, 1984. С. 3–31. (Англ. перевод: Belonogov V. A. D-blocks of characters of finite group // Amer. Math. Soc. Transl. (2). 1989. V. 143. P. 103–128).
- Белоногов В. А. Представления и характеры в теории конечных групп. Свердловск: УрО АН СССР, 1990.
- **3.** Белоногов В. А. Взаимодействия и D-блоки в конечных группах // Подгрупповая структура групп. Свердловск: УрО АН СССР, 1988. С. 4–44.
- **4.** *Белоногов В. А.* О малых взаимодействиях в конечных группах // Тр. ИММ УрО РАН. 1992. Т. 2. С. 3–18.
- 5. Белоногов В. А. Малые взаимодействия в группах $\mathrm{GL}_3(q)$, $\mathrm{GU}_3(q)$, $\mathrm{PGL}_3(q)$ и $\mathrm{PGU}_3(q)$ // Тр. ИММ УрО РАН. 1996. Т. 4. С. 17–47.
- 6. Белоногов В. А. Малые взаимодействия в группах $\mathrm{SL}_3(q)$, $\mathrm{SU}_3(q)$, $\mathrm{PSL}_3(q)$ и $\mathrm{PSU}_3(q)$ // Тр. ИММ УрО РАН. 1998. Т. 5. С. 3–27.
- 7. Белоногов В. А. О неприводимых характерах групп S_n и A_n // Сиб. мат. журн. 2004. Т. 45, № 5. С. 977–994.
- 8. Isaacs I. M. Character theory of finite groups. New York: Acad. Press, 1976.
- 9. Белоногов В. А. Одно свойство таблицы характеров конечной группы // Алгебра и логика. 2000. Т. 39, № 3. С. 273–279.
- 10. Huppert B., Blackburn N. Finite groups. II. Berlin a. o.: Springer, 1982.

Статья поступила 3 февраля 2004 г.

Белоногов Вячеслав Александрович Институт математики и механики УрО РАН ул. С. Ковалевской, 16, Екатеринбург 620219 belonogov@imm.uran.ru