СМЕШАННАЯ ЗАДАЧА ДЛЯ ГИПЕРБОЛИЧЕСКОЙ СИСТЕМЫ НА ПЛОСКОСТИ С ЗАПАЗДЫВАНИЕМ В ГРАНИЧНЫХ УСЛОВИЯХ

Н. А. Люлько

Аннотация: Рассматривается корректность постановки в полуполосе краевой задачи для линейной гиперболической системы первого порядка с запаздыванием (сосредоточенным и распределенным) в граничных условиях. В случае отрицательности реальных частей собственных значений соответствующей спектральной задачи доказывается равномерная по времени оценка решения однородной задачи, позволяющая обосновать принцип линеаризации для анализа устойчивости стационарных решений нелинейной задачи.

Ключевые слова: гиперболические системы, запаздывание по времени, устойчивость стационарных решений.

Памяти Тадея Ивановича Зеленяка

Введение

Исследованию качественных свойств решений смешанных задач для гиперболических систем посвящена обширная литература, обзор которой можно найти в [1, 2]. Мы будем исследовать достаточно частные вопросы, ограничиваясь ссылками на наиболее близкие к изучаемым проблемам работы.

Гиперболические системы с запаздыванием в граничных условиях возникают при математическом моделировании противоточных химических реакторов с рециклом [3], когда некоторые вещества возвращаются частично после выхода из реактора опять на вход с запаздыванием по времени, необходимом для транспортировки (по трубам, механически и т. д.). Коэффициенты пропорциональности обычно показывают, какая часть вещества возвращается назад. В [4] доказывается, что адиабатические и изотермические трубчатые реакторы идеального вытеснения с рециклом могут иметь несколько стационарных решений, поэтому возникает вопрос об их устойчивости.

Рассмотрим в полуполосе $\Pi = \{(x,t): 0 < x < 1, t > 0\}$ краевую задачу для гиперболической системы первого порядка:

$$U_t - L_{\mathscr{A}}U = F(x, t, U), \quad (x, t) \in \Pi, \tag{1}$$

$$\sum_{k=0}^{m} \left(A_k U(0, t - \tau_k) + B_k U(1, t - \tau_k) \right) + \sum_{r=0, 1} \sum_{k=1}^{m} \left(\int_{0}^{\tau_k} \Phi_k^r(\xi) U(r, t - \xi) \, d\xi \right) = 0, \tag{2}$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03–01–00162).

$$U(x,t)|_{\Gamma} = \overline{U}(x,t). \tag{3}$$

Здесь $U(x,t)=[u_1(x,t),\dots,u_n(x,t)]^T-n$ -мерный вектор неизвестных функций, F(x,t,U)-n-мерный вектор-столбец гладких функций и

$$L_{\mathscr{A}}U = -\mathscr{K}(x)U_x + \mathscr{A}(x)U, \quad \mathscr{A}(x) = (a_{ij}(x))_{i,j=1,\dots,n},$$

где $\mathscr{K}(x)$ — диагональная матрица с элементами $k_i(x)=\frac{1}{\Upsilon_i(x)}$ $(1\leq i\leq p),$ $k_i(x)=\frac{-1}{\Upsilon_i(x)}$ $(p+1\leq i\leq n).$ В дальнейшем положим

$$0 < \Upsilon_1(x) < \dots < \Upsilon_p(x), \quad 0 < \Upsilon_{p+1}(x) < \dots < \Upsilon_n(x), \tag{4}$$

где $\Upsilon_i(x)$ — непрерывно дифференцируемые на отрезке [0,1] функции, причем $1 \le p < n, \, n \ge 2.$

В краевых условиях (2) моменты запаздывания τ_k — фиксированные вещественные числа: $0=\tau_0<\tau_1<\dots<\tau_m,\ m\geq 0;\ A_k,\ B_k$ — матрицы размером $n\times n$, состоящие соответственно из вещественных чисел $\alpha_{ij}^k,\ \beta_{ij}^k,\ i,j=1,\dots,n$ $(k=0,1,\dots,m).$ Относительно матриц $A_0,\ B_0$ всюду далее предполагается выполнение условия

$$\det\begin{pmatrix} \alpha_{11}^{0} & \dots & \alpha_{1p}^{0} & \beta_{1,p+1}^{0} & \dots & \beta_{1n}^{0} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{n1}^{0} & \dots & \alpha_{np}^{0} & \beta_{n,p+1}^{0} & \dots & \beta_{nn}^{0} \end{pmatrix} \neq 0,$$

поэтому в дальнейшем для простоты будем полагать, что матрицы A_0, B_0 имеют вид

$$A_{0} = \begin{pmatrix} E^{p,p} & A^{p,n-p} \\ O^{n-p,p} & A^{n-p,n-p} \end{pmatrix}, \quad B_{0} = \begin{pmatrix} B^{p,p} & O^{p,n-p} \\ B^{n-p,p} & E^{n-p,n-p} \end{pmatrix}.$$
 (5)

Здесь $E^{k,k}$ — единичная матрица размером $k \times k$, $O^{l,k}$ — нулевая матрица размером $l \times k$; $A^{l,k}$, $B^{l,k}$ — матрицы, состоящие соответственно из элементов α^0_{ij} , β^0_{ij} $(i=1,\ldots,l;\ j=1,\ldots,k);\ l,k$ — натуральные числа.

Элементами матриц $\Phi_k^r(\xi)$ являются гладкие на соответствующих отрезках $[0,\tau_k]$ функции $f_{kij}^r(\xi)$ $(i,j=1,\ldots,n;\ r=0,1,\ k=1,\ldots,m).$

Обсудим начальные данные (3). Для каждого i $(1 \le i \le n)$ обозначим через τ_i^r максимальное из запаздываний τ_k $(0 \le k \le m)$, встречающихся у функции $u_i(r,t)$ в краевых условиях (2), и определим два множества: $\gamma_i^r = \{(x,t): x=r, -\tau_i^r \le t \le 0\}, r=0,1$. Пусть $\gamma_i = \{(x,t): 0 \le x \le 1\} \cup \gamma_i^0 \cup \gamma_i^1$, тогда начальные данные (3) следует понимать так:

$$U(x,t)|_{\Gamma} = \overline{U}(x,t) \Longleftrightarrow u_i(x,t)|_{\gamma_i} = \overline{u}_i(x,t), \quad i = 1, \dots, n,$$

где $\overline{U}(x,t) = [\bar{u}_1(x,t), \dots, \bar{u}_n(x,t)]^T$, а функция $\bar{u}_i(x,t)$ для данного i задается на множестве γ_i .

Здесь и далее принадлежность функции $\overline{U}(x,t)$ пространству $C(\Gamma)$ будем понимать в следующем смысле: $\overline{U}(x,0) \in C[0,1], \overline{U}(r,t) \in C(\Gamma^r)$ (т. е. $\bar{u}_i(r,t) \in C(\gamma_i^r), i=1,\ldots,n), r=0,1$. Под нормой $\|\overline{U}(x,t)\|_{C(\Gamma)}$ понимаем

$$\max_{r=0,1} (\|\overline{U}(x,0)\|_{C[0,1]}, \|\overline{U}(r,t)\|_{C(\Gamma^r)}),$$

где $\|\overline{U}(r,t)\|_{C(\Gamma^r)}=\max_{\substack{1\leq i\leq n}}\|\bar{u}_i(r,t)\|_{C(\gamma_i^r)};$ пространство $C^1(\Gamma)$ и норма в нем вводятся аналогично, т. e.

$$\overline{U}(x,t)\in C^1(\Gamma)\Longleftrightarrow \overline{U}(x,0)\in C^1[0,1],\quad \overline{U}(r,t)\in C^1(\Gamma^r),\ r=0,1,$$

$$\|\overline{U}(x,t)\|_{C^1(\Gamma)} = \max_{r=0,1} (\|\overline{U}(x,0)\|_{C^1[0,1]}, \|\overline{U}(r,t)\|_{C^1(\Gamma^r)}).$$

Под нормой вектор-функции в пространстве C[0,1] ($C^1[0,1]$) мы понимаем максимум из норм компонент этого вектора в C[0,1] ($C^1[0,1]$); модулем матрицы будем считать максимум из модулей ее элементов; принадлежность функции F(x,t) пространству $C_{x,t}^{\alpha,\beta}(\overline{\Pi})$ ($\alpha,\beta=0,1$) обозначает ее принадлежность пространству $C_{x,t}^{\alpha,\beta}(\Pi_T)$ для любого T>0, где $\Pi_T=\{0\leq x\leq 1,\ 0\leq t\leq T\}$; буквами A,K будем обозначать константы, зависящие только от коэффициентов системы (1),(2) (и не зависящие от $t,\overline{U}(x,t),F(x,t)$).

Процессы с распределенными параметрами, в которых запаздывание по времени t входит как в уравнения движения, так и в граничные условия, рассматривались в [5, гл. 6]. В случае смешанной задачи для линейных систем первого порядка в предположении их разрешимости был построен функционал Ляпунова, обеспечивающий асимптотическую устойчивость решений рассматриваемой задачи.

В случае отсутствия запаздывания ($\tau_k = 0$ при $k = 1, \ldots, m$) корректность постановки линейной задачи (1)–(3) в классе гладких функций и в классе обобщенных функций рассмотрена в работе [6]. В работе автора [7] изучалась задача (1)–(3) в случае отсутствия запаздывания и распадающихся краевых условий, т. е. когда в матрицах A_0 , B_0 (5) вместо $A^{n-p,n-p}$, $B^{p,p}$ стоят нулевые матрицы. В этой работе было исследовано поведение резольвенты соответствующего дифференциального оператора, что позволило получить равномерные по t оценки решений линейной задачи и обосновать принцип линеаризации для нелинейной системы.

В настоящей статье в случае $F(x,t,U) \equiv F(x,t)$ будет приведена теорема существования в полуполосе Π непрерывно дифференцируемого решения U(x,t) задачи (1)–(3) и показано наличие для него при $t \geq 0$ оценки

$$||U(x,t)||_{C^1[0,1]} \le Ke^{At}(||\overline{U}(x,t)||_{C^1(\Gamma)} + \max_{0 \le \tau \le t} ||F(x,\tau)||_{C^1[0,1]}).$$
 (6)

В случае $F(x,t,U)\equiv 0$ для решения U(x,t) однородной задачи (1)–(3) будет доказана для $t\geq 0$ оценка

$$||U(x,t)||_{C[0,1]} \le Ke^{-(\gamma-\varepsilon)t} ||\overline{U}(x,t)||_{C(\Gamma)}, \quad \gamma - \varepsilon > 0, \tag{7}$$

при условии, что собственные числа λ спектральной задачи, соответствующей системе (1), (2), лежат в полуплоскости $\operatorname{Re} \lambda \leq -\gamma \ (\gamma > 0)$.

Наличие оценки (6) позволяет для задачи (1)–(3) с известной нелинейностью F(x,t,U) получить теорему существования в малом по t при любых начальных данных $\overline{U}(x,t)$, удовлетворяющих условиям согласования. С другой стороны, неравенство (7) позволяет доказать теорему об устойчивости по первому приближению для системы

$$U_t + \mathcal{K}(x)U_x = \mathfrak{F}(x, U), \quad \mathfrak{F} = [\mathfrak{F}_1, \dots, \mathfrak{F}_n]^T,$$
 (8)

решение которой удовлетворяет краевым условиям (2) и начальным данным (3).

Существование решения линейной задачи

Для системы

$$U_t - L_{\mathscr{A}}U = F(x,t), \quad F(x,t) = [f_1(x,t), \dots, f_n(x,t)]^T,$$
 (9)

рассмотрим в полуполосе П смешанную задачу с краевыми условиями (2) и начальными данными (3). Вид (2) граничных условий гарантирует сведение задачи (9), (2), (3) к системе интегральных уравнений типа Вольтерра, исследованной в [8]. В своем изложении этого вопроса мы будем следовать работам [7,8].

В силу (5) граничные условия (2) при t > 0 можно записать в виде

$$u_i(0,t) = \Phi_i[U](t) \ (i=1,\ldots,p), \quad u_i(1,t) = \Phi_i[U](t) \ (i=p+1,\ldots,n).$$

Здесь Φ_i $(i=1,\ldots,n)$ — оператор, переводящий вектор-функцию U(x,t), заданную на множестве $\overline{\Pi} \cup \Gamma$, в скалярную функцию $\Phi_i[U](t)$, определенную при $t \geq 0$ (под значением $\Phi_i[U](0)$ понимаем $\lim_{t\to 0+} \Phi_i[U](t)$) и имеющую вид

$$\Phi_i[U](t) = -\sum_{j=p+1}^n \alpha_{ij}^0 u_j(0,t) - \sum_{j=1}^p \beta_{ij}^0 u_j(1,t) - R_i[U](t), \tag{10}$$

где $R_i[U](t)$ есть i-я компонента вектор-столбца

$$\sum_{k=1}^{m} \left(A_k U(0, t - \tau_k) + B_k U(1, t - \tau_k) + \sum_{r=0, 1} \int_{0}^{\tau_k} \Phi_k^r(\xi) U(r, t - \xi) \, d\xi \right).$$

Для сведения рассматриваемой дифференциальной задачи к системе интегральных уравнений введем ряд обозначений. Через каждую точку $(x_0,t_0)\in\overline{\Pi}$ проходит n характеристик $x=\varphi_i(t;x_0,t_0)$ системы (9), определяемых уравнениями

$$rac{darphi_i}{dt} = k_i(arphi_i), \quad arphi_i|_{t=t_0} = x_0 \quad (i=1,\ldots,n).$$

Пусть $\chi_i(x_0,t_0)=\inf_t\{t:(\varphi_i(t;x_0,t_0),t)\in\overline{\Pi}\}$, тогда, очевидно, $0\leq\chi_i(x_0,t_0)$, и если $\chi_i(x_0,t_0)>0$, то $\varphi_i(\chi_i(x_0,t_0);x_0,t_0)$ равно либо 0, либо 1 (это равносильно тому, что характеристика $x=\varphi_i(t;x_0,t_0)$ выходит из точки (x_0,t_0) и приходит с уменьшением t на боковую сторону Π).

Введем в рассмотрение для каждого i $(1 \le i \le n)$ следующие множества:

$$\Pi_{i} = \{(x,t) \in \overline{\Pi} : \chi_{i}(x,t) = 0\},$$

$$\Pi_{i}^{0} = \{(x,t) \in \overline{\Pi} : \chi_{i}(x,t) > 0, \ \varphi_{i}(\chi_{i}(x,t); x,t) = 0\},$$

$$\Pi_{i}^{1} = \{(x,t) \in \overline{\Pi} : \chi_{i}(x,t) > 0, \ \varphi_{i}(\chi_{i}(x,t); x,t) = 1\}.$$

Очевидно, что $\Pi_i^0=arnothing,\,i=p+1,\ldots,n,\,\Pi_i^1=arnothing,\,i=1,\ldots,p.$

Проинтегрируем i-е уравнение системы (9) вдоль соответствующей характеристики и, используя (2), (3), получим следующую систему интегральных уравнений:

$$u_{i}(x_{0}, t_{0}) = \int_{\chi_{i}(x_{0}, t_{0})}^{t_{0}} \left\{ \sum_{j=1}^{n} a_{ij}(x) u_{j}(x, t) + f_{i}(x, t) \right\} \bigg|_{\substack{t=\tau \\ x=\varphi_{i}(\tau; x_{0}, t_{0})}} d\tau + v_{i}(x_{0}, t_{0}), \quad (11)$$

$$(x_{0}, t_{0}) \in \Pi, \quad i = 1, \dots, n,$$

$$v_{i}(x, t) = \begin{cases} \bar{u}_{i}(\varphi_{i}(0; x, t)), & (x, t) \in \Pi_{i}, \ i = 1, \dots, n, \\ \Phi_{i}[U](\chi_{i}(x, t)), & (x, t) \in \Pi_{i}^{0}, \ 1 \leq i \leq p, \\ \Phi_{i}[U](\chi_{i}(x, t)), & (x, t) \in \Pi_{i}^{1}, \ p+1 < i < n, \end{cases}$$

$$|u_i(r,t)|_{\gamma_i^r} = \bar{u}_i(r,t), \quad i = 1, \dots, n \quad (r = 0,1).$$

Очевидно, что непрерывно дифференцируемая функция U(x,t) будет решением задачи (9), (2), (3) тогда и только тогда, когда она будет являться решением данной интегральной системы. При этом необходимо, чтобы начальные данные $\overline{U}(x,t)$ принадлежали пространству $C^1(\Gamma)$ и удовлетворяли условиям согласования нулевого порядка:

 $\overline{U}(x,t)$ — непрерывная на множестве Γ функция;

$$egin{align} A_0\overline{U}(0,0)+B_0\overline{U}(1,0)+\sum_{k=1}^m(A_k\overline{U}(0,- au_k)+B_k\overline{U}(1,- au_k)\ +\sum_{r=0,1}\int\limits_0^{ au_k}\Phi_k^r(\xi)\overline{U}(r,-\xi)\,d\xi)=0, \end{align}$$

и первого порядка:

$$A_0 U_1(0) + B_0 U_1(1) + \sum_{k=1}^m \left(A_k \overline{U}_t(0, -\tau_k) + B_k \overline{U}_t(1, -\tau_k) \right)$$

$$+ \sum_{r=0,1} \int_0^{\tau_k} \Phi_k^r(\xi) \overline{U}_t(r, -\xi) d\xi = 0, \qquad (S_1)$$

$$\lim_{t \to 0-} \frac{d\overline{U}}{dt}(r, t) = U_1(r) \quad (r = 0, 1),$$

где

$$U_1(x) = -\mathscr{K}(x)rac{d\overline{U}}{dx}(x,0) + \mathscr{A}(x)\overline{U}(x,0) + F(x,0).$$

Вольтерровость системы (11) гарантируется наличием для операторов Φ_i следующих свойств (см. [8, с. 428, 431]).

1. Пусть $U_k(x,t)$ — непрерывные в $\overline{\Pi} \cup \Gamma$ функции, удовлетворяющие условию (3), тогда $\Phi_i[U_k](t)$ также непрерывны при $t \geq 0, \ k=1,2$. Обозначим $\Delta U = U_1 - U_2, \ \Delta \Phi_i[U](t) = \Phi_i[U_1](t) - \Phi_i[U_2](t)$ и докажем, что для некоторого $\rho > 0$ и всех t > 0 при $1 \leq i \leq n$ имеет место неравенство

$$|\Delta \Phi_i[U](t)| \le K \left(\max_{j; x; \tau \le t}^* |\Delta u_j(x, \tau)| + \int_0^t \max_{j; x; \vartheta \le \tau} |\Delta u_j(x, \vartheta)| \, d\tau \right), \tag{12}$$

где звездочка при знаке тах означает, что берутся только такие значения (x,τ) , для которых $\chi_j(x,\tau) \leq t-\rho$ (если $t>\rho$) или $\chi_j(x,\tau)=0$ (если $t\leq\rho$), а постоянные K, ρ определяются операторами Φ_i и матрицей $\mathcal{K}(x)$.

2. Если $U_k(x,t)$ — гладкие в $\overline{\Pi}\cup\Gamma$ функции, удовлетворяющие условию (3), то функции $\Phi_i[U_k](t)$ (k=1,2) также гладкие при $t\geq 0$ и для $1\leq i\leq n$ справедливы неравенства

$$|\Delta \Phi_{i}[U]'(t)| \leq K \left\{ \max_{j,x;\tau \leq t}^{*} \left(\left| \Delta \frac{\partial u_{j}(x,\tau)}{\partial x} \right| + \left| \Delta \frac{\partial u_{j}(x,\tau)}{\partial \tau} \right| \right) + \max_{j,x;\tau \leq t} |\Delta u_{j}(x,\tau)| + \int_{0}^{t} \max_{j,x;\vartheta \leq \tau} \left(\left| \Delta \frac{\partial u_{j}(x,\vartheta)}{\partial x} \right| + \left| \Delta \frac{\partial u_{j}(x,\vartheta)}{\partial \vartheta} \right| \right) d\tau \right\}.$$
(13)

Покажем, что для операторов Φ_i (10) справедлива оценка (12). Имеем

$$\Delta\Phi_i[U](t) = -\sum_{j=p+1}^n \alpha_{ij}^0 \Delta u_j(0,t) - \sum_{j=1}^p \beta_{ij}^0 \Delta u_j(1,t) - \Delta R_i[U](t). \tag{14}$$

Введем число

$$ho = \min_{1 \leq k \leq m, i \leq n} \left(au_k, \left| \int\limits_0^1 rac{dx}{k_i(x)}
ight|
ight), \quad ext{если } m \geq 1,$$
 $ho = \min_{1 \leq i \leq n} \left(\left| \int\limits_0^1 rac{dx}{k_i(x)}
ight|
ight), \quad ext{если } m = 0.$

Если $0 < t < \rho$, то характеристики j-го семейства $(j=p+1,\ldots,n)$, выходящие из точек (0,t), будут приходить на нижнее основание Π , т. е. $\chi_j(0,t)=0$; аналогично для характеристик j-го семейства $(j=1,\ldots,p)$, выходящих из точек (1,t), также будет $\chi_j(1,t)=0$. Если же $t>\rho$, то для характеристик j-го семейства $(j=p+1,\ldots,n)$, выходящих из точек (0,t), справедливо $\chi_j(0,t)\leq t-\rho$; аналогично $\chi_j(1,t)\leq t-\rho$ при $j=1,\ldots,p$. Поэтому

$$\left| \sum_{j=p+1}^{n} \alpha_{ij}^{0} \Delta u_{j}(0,t) + \sum_{j=1}^{p} \beta_{ij}^{0} \Delta u_{j}(1,t) \right| \leq K \underset{j;x;\tau \leq t}{\max}^{*} |\Delta u_{j}(x,\tau)|.$$
 (15)

Рассмотрим выражение $\Delta R_i[U](t)$, являющееся i-й компонентой вектор-столбца

$$\sum_{k=1}^m \left(A_k \Delta U(0, t - \tau_k) + B_k \Delta U(1, t - \tau_k) + \sum_{r=0,1} \int_0^{\tau_k} \Phi_k^r(\xi) \Delta U(r, t - \xi) d\xi \right).$$

Из (3) для $0 \le t \le \tau_k$ следует, что

$$A_k \Delta U(0, t - \tau_k) \equiv 0, \quad B_k \Delta U(1, t - \tau_k) \equiv 0 \quad (k = 1, \dots, m),$$

поэтому

$$\sum_{k=1}^m (A_k \Delta U(0,t- au_k) + B_k \Delta U(1,t- au_k)) \equiv 0,$$

если $0 \le t < \rho$. Если же $t \ge \rho$, то для всех k $(1 \le k \le m)$ справедливо $t-\tau_k \le t-\rho$, поэтому при t>0 имеет место неравенство

$$\left| \sum_{k=1}^{m} (A_k \Delta U(0, t - \tau_k) + B_k \Delta U(1, t - \tau_k)) \right| \le K \max_{j; x; \tau \le t} |\Delta u_j(x, \tau)|. \tag{16}$$

Пусть t > 0, тогда для r = 0, 1 и каждого $k \ (k = 1, \dots, m)$ имеем

$$\int\limits_0^{\tau_k} \Phi_k^r(\xi) \Delta U(r,t-\xi) \, d\xi = \int\limits_{t-\tau_k}^t \, \Phi_k^r(t-\mu) \Delta U(r,\mu) \, d\mu,$$

откуда

$$\int_{0}^{\tau_{k}} \left| \Phi_{k}^{r}(\xi) \Delta U(r, t - \xi) \right| d\xi \le K \int_{0}^{t} \max_{j; x; \vartheta \le \tau} \left| \Delta u_{j}(x, \vartheta) \right| d\tau, \tag{17}$$

так как $\Delta U(r,t) \equiv 0$ при t < 0 в силу (3). Подставляя (15)–(17) в (14), мы и получаем (12). Оценка (13) доказывается аналогично.

При выполнении условий согласования (S_0) , (S_1) свойства 1, 2 операторов Φ_i позволяют для системы (11) методом последовательных приближений доказать существование в Π непрерывно дифференцируемого решения и оценку (6) для него, как это сделано в [8] . Таким образом, имеет место

Теорема 1. Пусть K(x), $A(x) \in C^1[0,1]$, $F(x,t) \in C^{1,0}_{x,t}(\overline{\Pi})$, $\Phi^r_k(\xi) \in C[0,\tau_k]$ $(k=1,\ldots,m;\ r=0,1)$, а функция $\overline{U}(x,t)$ принадлежит пространству $C^1(\Gamma)$ и удовлетворяет условиям (S_0) , (S_1) . Тогда в полуполосе Π существует единственное непрерывно дифференцируемое решение U(x,t) задачи (9), (2), (3); при t>0 оно удовлетворяет оценке (6).

В дальнейшем нам понадобится использовать решения рассматриваемой задачи в случае отсутствия у начальных данных условий согласования. Для определения таких решений проведем некоторые вспомогательные построения, следуя работе [7, с. 189].

Из точки (0,0) (соответственно (1,0)) проведем p (n-p) различных характеристик системы (9) с положительным (отрицательным) наклоном до пересечения с прямой x=1 (x=0). Через каждую из полученных точек пересечения проведем n-p (p) различных характеристик с отрицательным (положительным) наклоном до пересечения с прямой x=0 (x=1). Возьмем каждую из полученных точек в качестве исходной и будем повторять описанный выше процесс бесконечное число раз. Проделаем предложенную процедуру еще m раз, взяв в качестве начальных точки $(0,\tau_k)$ (соответственно $(1,\tau_k)$), $k=1,\ldots,m$.

Из построенных выше характеристик выделим семейство кривых, параллельных характеристике $x=\varphi_i(t;0,0)$ ($x=\varphi_i(t;1,0)$), и обозначим это семейство через $Q_i,\,i=1,\ldots,p$ ($i=p+1,\ldots,n$). Полуполоса П разбивается характеристиками из всех семейств $Q_i,\,i=1,\ldots,n$, на бесконечное число односвязных непересекающихся областей $R_j,\,j=1,2,\ldots$

Рассмотрим отрезок $p_{\tau}=\{(x,t):0\leq x\leq 1,\ t=\tau\}$. Для каждого фиксированного $\tau>0$ он пересекает лишь конечное число областей R_j , которые мы обозначим через $R_{k_1},\dots,R_{k_{l(\tau)}}$. Пусть $\Omega_j(\tau)=p_{\tau}\cap R_{k_j}\ (1\leq j\leq l(\tau))$. Обозначим через $R_{\tau}[0,1]$ множество равномерно непрерывных в интервалах $\Omega_j(\tau),$ $1\leq j\leq l(\tau),$ функций $V(x)=[v_1(x),\dots,v_n(x)]^T$ с нормой

$$\|V(x)\|_{R_\tau} = \max_{1 \leq j \leq l(\tau)} \sup_{x \in \Omega_j(\tau)} |V(x)|, \quad |V(x)| = \max_{1 \leq i \leq n} |v_i(x)|,$$

а через $R^1_{\tau}[0,1]$ — множество функций V(x), которые равномерно непрерывны вместе со своей производной $V_x(x)$ в интервалах $\Omega_j(\tau), 1 \leq j \leq l(\tau)$, причем

$$||V(x)||_{R^1} = \max(||V(x)||_{R_{\sigma}}, ||V_x(x)||_{R_{\sigma}}).$$

Через $R(\Pi)$ будем обозначать множество функций U(x,t) равномерно непрерывных в областях $R_j,\ j=1,2,\ldots,$ а через $R^1(\Pi)$ — множество функций U(x,t) равномерно непрерывных вместе со своими производными $U_x(x,t),\ U_t(x,t)$ в тех же областях. Очевидно, если функция U(x,t) принадлежит $R^1(\Pi),$ то для любого t>0 она принадлежит множеству $R^1_t[0,1]$ и величина $\|U_t(x,t)\|_{R_t}+\|U(x,t)\|_{R_t}$ для нее конечна.

Определение 1. Кусочно гладким решением (КГР) задачи (9), (2), (3) называется функция $U(x,t) \in R^1(\Pi)$, являющаяся решением системы интегральных уравнений (11).

Теорема 2. Пусть K(x), $A(x) \in C^1[0,1]$, $F(x,t) \in C^{1,0}_{x,t}(\overline{\Pi})$, $\Phi^r_k(\xi) \in C[0,\tau_k]$ $(k=1,\ldots,m;\ r=0,1)$, а функция $\overline{U}(x,t)$ принадлежит пространству $C^1(\Gamma)$. Тогда в полуполосе Π существует единственное КГР U(x,t) задачи (9), (2), (3), причем при t>0 оно удовлетворяет неравенствам

$$||U(x,t)||_{R_t} \le Ke^{At}(||\overline{U}(x,t)||_{C(\Gamma)} + ||F(x,t)||_{C([0,1]\times[0,t])}), \tag{18}$$

$$||U_t(x,t)||_{R_t} + ||U(x,t)||_{R_t^1} \le K_1 e^{A_1 t} (||\overline{U}(x,t)||_{C^1(\Gamma)} + \max_{0 \le \tau \le t} ||F(x,\tau)||_{C^1[0,1]}).$$
(19)

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ приводиться здесь не будет, так как оно в основном совпадает с доказательством теоремы 1.

ЗАМЕЧАНИЕ 1. Отметим, что при выполнении условий согласования (S_0) , (S_1) КГР U(x,t) исходной задачи будет совпадать с классическим решением. При выполнении условий (S_0) КГР U(x,t) будет непрерывной функцией. Если же условия (S_0) не выполнены, то из системы (11) видно, что каждая из функций $u_i(x,t)$ $(1 \le i \le n)$ может терпеть разрывы на характеристиках только из соответствующего множества Q_i .

В силу определения КГР из (11) видно, что в областях R_j ($j=1,2,\ldots$) КГР U(x,t) будет удовлетворять дифференциальной системе (9).

Преобразование Лапласа для однородной задачи

Рассмотрим в полуполосе П для системы

$$U_t - L_{\mathscr{A}}U = 0 \tag{20}$$

смешанную задачу с краевыми условиями (2) и начальными данными (3). Пусть выполнены условия теоремы 2, тогда для КГР U(x,t) этой задачи справедлива оценка (19), позволяющая применить к системе (20), (2) преобразование Лапласа по t. В силу свойств функций $u_i(x,t)$ (см. замечание 1) получаем краевую задачу

$$\lambda \widetilde{U} = L_{\mathscr{A}} \widetilde{U} + U_0(x), \quad I_0 \widetilde{U}(0, \lambda) + I_1 \widetilde{U}(1, \lambda) + R(\lambda) = 0,$$
 (21)

где

$$\widetilde{U}(x,\lambda) = \int_{0}^{\infty} U(x,t)e^{-\lambda t} dt, \quad \operatorname{Re} \lambda > A_1$$

 $(\lambda-$ комплексный параметр, константа A_1 определена в (19)); $U_0(x)=\overline{U}(x,0).$ Здесь

$$I_{0} = A_{0} + \sum_{k=1}^{m} \left(e^{-\lambda \tau_{k}} A_{k} + \widetilde{F}_{k}^{0}(\lambda)\right), \quad I_{1} = B_{0} + \sum_{k=1}^{m} \left(e^{-\lambda \tau_{k}} B_{k} + \widetilde{F}_{k}^{1}(\lambda)\right),$$

$$R(\lambda) = \sum_{k=1}^{m} \left(\widetilde{\Phi}_{k}^{0}(\lambda) + \widetilde{\Phi}_{k}^{1}(\lambda) + e^{-\lambda \tau_{k}} \left(A_{k} \widetilde{U}_{k}^{0}(\lambda) + B_{k} \widetilde{U}_{k}^{1}(\lambda)\right)\right),$$

$$(22)$$

где $\widetilde{U}^r_k(\lambda),\,\widetilde{F}^r_k(\lambda),\,\widetilde{\Phi}^r_k(\lambda)$ — целые по λ функции $(r=0,1;\,k=1,\ldots,m)$:

$$\widetilde{U}_{k}^{r}(\lambda) = \int_{-\tau_{k}}^{0} \overline{U}(r,\xi)e^{-\lambda\xi} d\xi, \quad \widetilde{F}_{k}^{r}(\lambda) = \int_{0}^{\tau_{k}} \Phi_{k}^{r}(\xi)e^{-\lambda\xi} d\xi,$$

$$\widetilde{\Phi}_{k}^{r}(\lambda) = \int_{0}^{\tau_{k}} \Phi_{k}^{r}(\xi)e^{-\lambda\xi} \left(\int_{-\xi}^{0} \overline{U}(r,t)e^{-\lambda t} dt\right) d\xi.$$
(23)

Отметим, что если в краевые условия (2) функция $u_i(r,t)$ не входит с запаздыванием τ_k , то соответствующая i-я компонента вектора $\widetilde{U}_k^r(\lambda)$ равна нулю.

Назовем λ собственным числом задачи (21), если однородное уравнение $\lambda Y = L_{\mathscr{A}}Y,\ I_0Y(0,\lambda) + I_1Y(1,\lambda) = 0$ имеет нетривиальное решение на отрезке

[0,1]. Обозначим через $\Lambda(L_{\mathscr{A}})$ множество собственных чисел задачи (21) и введем в рассмотрение $V(x,\lambda)$ — фундаментальную матрицу решений уравнения $L_{\mathscr{A}}Y=\lambda Y$. Очевидно, $\lambda\in\Lambda(L_{\mathscr{A}})$ тогда и только тогда, когда $\det X(\lambda)=0$, где $X(\lambda)=I_0V(0,\lambda)+I_1V(1,\lambda)$.

Рассмотрим наряду с системой (21) задачу

$$\lambda Y = L_{\mathscr{A}}Y + U_0(x), \quad I_0Y(0,\lambda) + I_1Y(1,\lambda) = 0$$
 (24)

и обозначим через $G(x,\xi,\lambda)$ функцию Грина этой задачи. Так как I_0 , I_1 являются целыми по λ функциями, из результатов работы [9, гл. 1, п. 3] следует, что $G(x,\xi,\lambda)$ — мероморфная по λ функция, полюсами которой могут быть лишь собственные числа задачи (21). Множество $\Lambda(L_{\mathscr{A}})$ состоит из не более чем счетного числа собственных чисел, не имеющих конечной предельной точки. Если $\lambda \notin \Lambda(L_{\mathscr{A}})$, то для любой функции $U_0(x) \in C[0,1]$ существует единственное решение $Y(x,\lambda) \in C^1[0,1]$ задачи (24), которое представимо в виде

$$Y(x,\lambda) = -\int\limits_0^1 G(x,\xi,\lambda) U_0(\xi)\,d\xi.$$

Лемма 1. Если $\lambda \notin \Lambda(L_{\mathscr{A}})$, то для любой функции $U_0(x) \in C[0,1]$ существует единственное решение $\widetilde{U}(x,\lambda) \in C^1[0,1]$ задачи (21), причем

$$\widetilde{U}(x,\lambda) = \widetilde{U}_1(x,\lambda) + \widetilde{U}_2(x,\lambda),$$
 (25)

$$\widetilde{U}_1(x,\lambda) = -V(x,\lambda)X^{-1}(\lambda)R(\lambda), \tag{26}$$

$$\widetilde{U}_2(x,\lambda) = -\int\limits_0^1 G(x,\xi,\lambda) U_0(\xi) \,d\xi.$$
 (27)

Доказательство. Будем искать решение задачи (21) в виде суммы двух функций, одна из которых $\widetilde{U}_1(x,\lambda)$ — решение задачи

$$\lambda Y = L_A Y$$
, $I_0 Y(0, \lambda) + I_1 Y(1, \lambda) + R(\lambda) = 0$,

а другая $\widetilde{U}_2(x,\lambda)$ — решение задачи (24). Ранее показано, что $\widetilde{U}_2(x,\lambda)$ имеет вид (27). Непосредственной проверкой убеждаемся, что решение $\widetilde{U}_1(x,\lambda)$ определяется формулой (26). Единственность $\widetilde{U}(x,\lambda)$ следует из фундаментальности матрицы $V(x,\lambda)$. \square

Заметим, что из оценки (19) для КГР U(x,t) задачи (20), (2), (3) вытекает, что множество $\Lambda(L_{\mathscr{A}})$ находится в полуплоскости $\operatorname{Re} \lambda \leq A_1$. Поэтому в дальнейшем будем обозначать $\kappa_{\mathscr{A}} = \sup_{\lambda \in \Lambda(L_{\mathscr{A}})} \operatorname{Re} \lambda$.

Для изучения асимптотических при $|\lambda| \to \infty$ свойств функций $\widetilde{U}_i(x,\lambda)$ (i=1,2) нам нужны некоторые вспомогательные построения. Следуя [7], для $i,j=1,\ldots,n$ введем следующие обозначения:

$$\mathfrak{T}_{j}(x) = \int_{0}^{x} \frac{-1}{k_{j}(\xi)} d\xi, \quad b_{ij}(x) = \frac{a_{ij}(x)}{k_{i}(x)}, \quad \mathscr{B}_{j}(x) = \int_{0}^{x} b_{jj}(\xi) d\xi.$$

Пусть $\mathcal{A}(x)$, $\mathcal{K}(x) \in C^2[0,1]$, тогда [10] матрицу $V(x,\lambda)$ можно выбрать так, что в каждой из полуплоскостей $\mathrm{Re}\,\lambda < 0,\,\mathrm{Re}\,\lambda > 0$ при $|\lambda| > N$ (здесь и далее

N будет обозначать достаточно большое положительное число) справедливо представление

$$V(x,\lambda) = P(x,\lambda)\mathfrak{I}(x,\lambda), \quad P(x,\lambda) = I + \frac{P_1(x)}{\lambda} + \frac{W(x,\lambda)}{\lambda^2},$$
 (28)

где $\Im(x,\lambda)=(e^{\lambda \Im_j(x)+\mathscr{B}_j(x)}\delta_{ij}),\,I=(\delta_{ij}),\,\delta_{ij}$ — символ Кронекера $(i,j=1,\ldots,n)$. Здесь матрица $P_1(x)$ принадлежит $C^2[0,1]$, а матрица $W(x,\lambda)$ непрерывно дифференцируема по $x\in[0,1]$, аналитична по λ в областях $\mathrm{Re}\,\lambda<0,\,\mathrm{Re}\,\lambda>0$ при $|\lambda|>N$ и для рассматриваемых значений λ справедливо $|W(x,\lambda)|\leq K$, где значение константы K зависит от $\max_{i,j}(\|b_{ij}(x)\|_{C^2[0,1]},\|k_i(x)\|_{C^2[0,1]},\|\frac{1}{k_i(x)}\|_{C^2[0,1]})$.

Для матрицы $V^{-1}(\xi,\lambda)$ в каждой из полуплоскостей $\operatorname{Re} \lambda < 0$, $\operatorname{Re} \lambda > 0$ при $|\lambda| > N$ верно представление $V^{-1}(\xi,\lambda) = \mathfrak{T}^{-1}(\xi,\lambda)R(\xi,\lambda)$, где $R(\xi,\lambda) = I + \frac{R_1(\xi)}{\lambda} + \frac{W_1(\xi,\lambda)}{\lambda^2}$, и свойства гладкости матриц $R_1(\xi)$, $W_1(\xi,\lambda)$ по переменным ξ , λ аналогичны свойствам гладкости соответствующих матриц P(x), $W(x,\lambda)$ по переменным x, λ .

При построении $G(x,\xi,\lambda)$ используем методику, предложенную в [7] и опирающуюся на результаты работ [10,11]. Справедливо [7] представление

$$G(x,\xi,\lambda) = G_1(x,\xi,\lambda) + G_2(x,\xi,\lambda), \tag{29}$$

где $G_1(x,\xi,\lambda) = -V(x,\lambda)Q(x,\xi)V^{-1}(\xi,\lambda)\mathscr{K}^{-1}(\xi),$

$$G_2(x,\xi,\lambda) = -V(x,\lambda)H(\lambda)V^{-1}(\xi,\lambda)\mathcal{K}^{-1}(\xi), \tag{30}$$

$$H(\lambda) = X^{-1}(\lambda)(I_0V(0,\lambda)I^{**} - I_1V(1,\lambda)I^*), \quad Q(x,\xi) = \left\{ \begin{array}{ll} -I^{**} & \text{при } x < \xi, \\ I^* & \text{при } x > \xi, \end{array} \right.$$

здесь I^* — диагональная матрица, у которой первые p диагональных элементов 1, а остальные 0, а матрица I^{**} такова, что $I^* + I^{**} = I$.

Функция $G_1(x,\xi,\lambda)$ не зависит от вида матриц I_0 , I_1 , а определяется только через коэффициенты выражения $L_{\mathscr{A}}$. В [7] получено асимптотическое представление этой функции, и в дальнейшем мы его будем использовать. Для построения функций $\widetilde{U}_1(x,\lambda)$ и $G_2(x,\xi,\lambda)$ проведем исследование функции $\det X(\lambda)$ и построим обратную матрицу $X^{-1}(\lambda)$.

Наряду с дифференциальным выражением $L_{\mathscr{A}}$ рассмотрим выражение $L_{\mathscr{A}_d}$, в котором диагональная матрица $\mathscr{A}_d(x)$ имеет вид $\mathscr{A}_d(x)=(a_{ij}(x)\delta_{ij})_{i,j=1,\dots,n}$. Фундаментальная матрица $V_d(x,\lambda)$ решений уравнения $\lambda Y=L_{\mathscr{A}_d}Y$ имеет вид $V_d(x,\lambda)=\mathfrak{I}(x,\lambda)$, поэтому собственные числа λ задачи (21) для $\mathscr{A}(x)\equiv\mathscr{A}_d(x)$ удовлетворяют уравнению $\det X_d(\lambda)=0$, где $X_d(\lambda)=I_0+I_1\mathfrak{I}(1,\lambda)$. Запишем матрицу $X_d(\lambda)$ в виде суммы $X_0(\lambda)$ и $X_1(\lambda)$, где

$$X_0(\lambda) = A_0 + \sum_{k=1}^m e^{-\lambda \tau_k} A_k + \left(B_0 + \sum_{k=1}^m e^{-\lambda \tau_k} B_k\right) \mathfrak{I}(1,\lambda),$$

$$X_1(\lambda) = \sum_{k=1}^m ig(\widetilde{F}_k^0(\lambda) + \widetilde{F}_k^1(\lambda) \mathfrak{I}(1,\lambda)ig),$$

и разложим определитель $X_d(\lambda)$ по первым p строкам, тогда

$$\det X_d(\lambda) = e^{\lambda \sum\limits_{i=p+1}^n \mathfrak{T}_i + \sum\limits_{i=p+1}^n \mathscr{B}_i} (\Delta(\lambda) + r_0(\lambda)).$$

Здесь $\mathfrak{T}_i=\mathfrak{T}_i(1),\ \mathscr{B}_i=\mathscr{B}_i(1)\ (i=1,\ldots,n),$ причем в силу (4) справедливо $\mathfrak{T}_p<\mathfrak{T}_{p-1}<\cdots<\mathfrak{T}_1<0<\mathfrak{T}_{p+1}<\cdots<\mathfrak{T}_n,$ а

$$\Delta(\lambda) = 1 + \sum_{k=1}^{M} E_k e^{-\lambda \beta_k}, \tag{31}$$

где E_k — вещественные числа, определяемые через элементы матриц A_k , B_k $(k=0,1\ldots,m)$; числа $0<\beta_1<\cdots<\beta_M$ определяются через моменты сосредоточенного запаздывания τ_k и числа \mathfrak{T}_i $(i=1,\ldots,n;\ k=1,\ldots,m)$. Полином Дирихле $\Delta(\lambda)$ имеет следующий смысл:

$$\det X_0(\lambda) = e^{\lambda \sum_{i=p+1}^n \mathfrak{T}_i + \sum_{i=p+1}^n \mathscr{B}_i} \Delta(\lambda).$$

Обсудим вид функции $r_0(\lambda)$. Будем обозначать далее через $\mathcal{L}(g_1,\ldots,g_n)$ линейную комбинацию с постоянными коэффициентами функций g_1,\ldots,g_n , тогда

$$r_0(\lambda) = \mathcal{L}(e^{-\lambda t}\tilde{f}(\lambda), e^{-\lambda t}\underbrace{\tilde{f}(\lambda)\tilde{f}(\lambda)}_{2}, \dots, e^{-\lambda t}\underbrace{\tilde{f}(\lambda)\dots\tilde{f}(\lambda)}_{n}). \tag{32}$$

Здесь и ниже $\tilde{f}(\lambda)$ — целая по λ функция, принадлежащая множеству

$$\widetilde{\mathscr{F}} = \{ \tilde{f}_{kij}^r(\lambda), \ i, j = 1, \dots, n; \ k = 1, \dots, m; \ r = 0, 1 \},$$

где

$$ilde{f}_{kij}^r(\lambda) = \int\limits_0^{ au_k} f_{kij}^r(\xi) e^{-\lambda \xi} \, d\xi.$$

Выражение $\underbrace{\tilde{f}(\lambda)\dots\tilde{f}(\lambda)}_n$ обозначает произведение n функций $\tilde{f}(\lambda)$, принадлежа-

щих множеству \mathscr{F} и не обязательно равных между собой. Число t принимает значения из множества, состоящего из конечного числа неотрицательных чисел, максимальное из которых t_* . Заметим, что существование функции $r_0(\lambda)$ связано с наличием матриц $\Phi_k^r(\xi)$ $(r=0,1;\ k=1,\ldots,m)$, соответствующих распределенному запаздыванию.

Из (28) имеем

$$\det X(\lambda) = \det \left(X_d(\lambda) + \frac{1}{\lambda} \left(I_0 P_1(0) + I_1 P_1(1) \mathfrak{T}(1,\lambda) \right) + \frac{X_2(\lambda)}{\lambda^2} \right)$$

при $|\lambda|>N$, где $X_2(\lambda)=I_0W(0,\lambda)+I_1W(1,\lambda)\mathfrak{I}(1,\lambda)$. Разложим определитель матрицы $X(\lambda)$ по первым p строкам, тогда

$$\det X(\lambda) = e^{\lambda \sum_{i=p+1}^{n} \mathfrak{T}_{i} + \sum_{i=p+1}^{n} \mathscr{B}_{i}} \Theta(\lambda), \tag{33}$$

$$\Theta(\lambda) = \Delta(\lambda) + r_0(\lambda) + \sum_{k=1}^{2n} \frac{\Theta_k(\lambda)}{\lambda^k}, \quad \Theta_k(\lambda) = \Delta_k(\lambda) + r_k(\lambda).$$
 (34)

Здесь полином Дирихле $\Delta_1(\lambda)$ имеет вид

$$\Delta_1(\lambda) = \sum_{i=1}^{M_1} E_i^1 e^{-\lambda d_i}, \quad 0 \le d_1 < d_2 < \dots < d_{M_1}, \tag{35}$$

где E_i^1 — вещественные числа, а

$$r_1(\lambda) = \mathcal{L}_1(e^{-\lambda t}\tilde{f}(\lambda), e^{-\lambda t}\underbrace{\tilde{f}(\lambda)\tilde{f}(\lambda)}_2, \dots, e^{-\lambda t}\underbrace{\tilde{f}(\lambda)\dots\tilde{f}(\lambda)}_n). \tag{36}$$

Функции $\Delta_k(\lambda)$ $(2 \le k \le 2n)$ имеют вид (35) с коэффициентами $E_i^1(\lambda)$, являющимися аналитическими в областях $\operatorname{Re} \lambda > 0$, $\operatorname{Re} \lambda < 0$ и ограниченными при $|\lambda| > N$ функциями. Функции $r_k(\lambda)$ $(2 \le k \le 2n)$ суть линейные комбинации вида (36), но с коэффициентами, зависящими от λ так же, как и $E_i^1(\lambda)$. В выражениях Θ_k $(1 \le k \le 2n)$ все встречающиеся показатели экспонент t, d_i принадлежат конечному множеству неотрицательных чисел, максимальное из которых t_{**} .

Пусть всюду далее матрицы $\Phi_k^r(\xi)$ принадлежат пространству $C^1[0, \tau_k]$ $(r=0,1;\ k=1,\ldots,m)$, тогда для $i,j=1,\ldots,n$ имеет место равенство

$$\tilde{f}_{kij}^r(\lambda) = \int\limits_0^{\tau_k} f_{kij}^r(\xi) e^{-\lambda \xi} d\xi = \frac{f_{kij}^r(0)}{\lambda} - \frac{f_{kij}^r(\tau_k) e^{-\lambda \tau_k}}{\lambda} + \int\limits_0^{\tau_k} \frac{f_{kij}^{r'}(\xi) e^{-\lambda \xi}}{\lambda} d\xi. \quad (37)$$

Отсюда для любого числа B>0 и для любой функции $\tilde{f}(\lambda)\in\widetilde{\mathscr{F}}$ следует при $\lambda\neq 0$ справедливость неравенств

$$|\tilde{f}(\lambda)| \le \frac{K}{|\lambda|} (\operatorname{Re} \lambda \ge B), \quad |\tilde{f}(\lambda)| \le \frac{Ke^{Bt_*}}{|\lambda|} (-B \le \operatorname{Re} \lambda),$$
 (38)

из которых при $|\lambda| > N$ имеем

$$|r_0(\lambda)| \le \frac{Ke^{Bt^*}}{|\lambda|}, \quad |r_1(\lambda)| \le \frac{Ke^{Bt^*}}{|\lambda|}, \quad |r(\lambda)| \le \frac{Ke^{Bt^*}}{|\lambda|} \quad (-B \le \operatorname{Re}\lambda),$$
 (39)

где

$$r(\lambda) = r_0(\lambda) + \sum_{k=1}^{2n} rac{\Theta_k(\lambda)}{\lambda^k}, \quad t^* = \max(t_*, t_{**}).$$

Из (33) получаем, что $\lambda \in \Lambda(L_{\mathscr{A}})$ тогда и только тогда, когда λ удовлетворяет уравнению $\Theta(\lambda)=0$. Возможны два случая.

1. $\Delta(\lambda) \not\equiv 1$. В этом случае полином Дирихле $\Delta(\lambda)$ имеет [12] счетное число нулей, заключенных в полосе, параллельной мнимой оси. Введем число $\kappa_{\Delta} = \sup_{\Delta(\lambda)=0} \operatorname{Re} \lambda$. Так как $\Delta(\lambda)$ является аналитической почти периодической

функцией, из результатов работы [13] следует, что для любого $\varepsilon > 0$ существует число $\Delta_{\varepsilon} > 0$ такое, что $|\Delta(\lambda)| \geq \Delta_{\varepsilon}$ при $\mathrm{Re}\,\lambda \geq \kappa_{\Delta} + \varepsilon$. Эта оценка и неравенство (39) для $r(\lambda)$ позволяют применить к функциям $\Theta(\lambda)$, $\Delta(\lambda)$ теорему Руше, из которой вытекает, что при $|\lambda| \to \infty$ собственные числа задачи (21) асимптотически приближаются к корням уравнения $\Delta(\lambda) = 0$. Поэтому в рассматриваемом случае справедливо $\kappa_{\Delta} \leq \kappa_{\mathscr{A}}$.

2. $\Delta(\lambda) \equiv 1$. В силу (39) имеем $\Theta(\lambda) = 1 + r(\lambda) \to 1$ при $|\lambda| \to \infty$, где $\text{Re } \lambda \geq A$ (A — любое число). Поэтому в рассматриваемом случае справа от любой прямой, параллельной мнимой оси, может лежать только конечное число собственных чисел задачи (21).

Итак, при $|\lambda| > N$, Re $\lambda \ge \kappa_{\mathscr{A}} + \varepsilon$ ($\varepsilon > 0$) справедливо представление

$$rac{1}{\det X(\lambda)} = rac{e^{-\lambda\sum\limits_{i=p+1}^{n} \mathbb{T}_i - \sum\limits_{i=p+1}^{n} \mathscr{B}_i}}{\Delta(\lambda)} \chi(\lambda),$$

где

$$\chi(\lambda) = 1 - \frac{r_0(\lambda)}{\Delta(\lambda)} - \frac{\Theta_1(\lambda)}{\lambda \Delta(\lambda)} + \frac{R_{\chi}(\lambda)}{\lambda^2}, \quad |R_{\chi}(\lambda)| \le K. \tag{40}$$

Здесь константа K зависит от коэффициентов матриц A_k , B_k $(k=0,1,\ldots,m)$ и $\max_{i,j,k,r} (\|a_{ij}(x)\|_{C^2[0,1]}, \|k_i(x)\|_{C^2[0,1]}, \|f^r_{kij}(\xi)\|_{C^1[0,\tau_k]}).$

Построим матрицу $X^{-1}(\lambda)$. Обозначим через $\widetilde{X}_{ij}(\lambda)$ алгебраическое дополнение к элементу матрицы $X(\lambda)$, находящемуся в j-й строке и i-м столбце, тогда

$$X^{-1}(\lambda) = \left(\frac{\widetilde{X}_{ij}(\lambda)}{\det X(\lambda)}\right)_{i,j=1,\dots,n}.$$

Разложим $\widetilde{X}_{ij}(\lambda)$ по последним n-p строкам матрицы $X(\lambda)$, тогда при $|\lambda|>N$ имеет место разложение

$$X^{-1}(\lambda) = \left(\frac{e^{\lambda A_{ij} + B_{ij}}}{\Delta(\lambda)} X_{ij}(\lambda) \chi(\lambda)\right)_{i,j=1,\dots,n},$$

где при $1 \leq i, j \leq p$

$$A_{ij} = 0, \quad B_{ij} = 0;$$

при $1 \leq i \leq p, \, p+1 \leq j \leq n$

$$\left\{ egin{aligned} A_{ij} = 0, \; B_{ij} = 0, & ext{ если } p+1 = n, \ A_{ij} = -\mathfrak{T}_{p+1}, \; B_{ij} = -\mathscr{B}_{p+1}, & ext{ если } p+1 < n; \end{aligned}
ight.$$

при p + 1 < i < n, 1 < j < p

$$A_{ij} = \mathfrak{T}_p - \mathfrak{T}_i, \quad B_{ij} = \mathscr{B}_p - \mathscr{B}_i,$$

при $p+1 \leq i, j \leq n$

$$A_{ij} = -\mathfrak{I}_i, \quad B_{ij} = -\mathscr{B}_i,$$

$$X_{ij}(\lambda) = \Delta_{ij}^{0}(\lambda) + r_{ij}^{0}(\lambda) + \frac{\Delta_{ij}^{1}(\lambda) + r_{ij}^{1}(\lambda)}{\lambda} + \sum_{k=2}^{2(n-1)} \left(\frac{\Delta_{ij}^{k}(\lambda) + r_{ij}^{k}(\lambda)}{\lambda^{k}}\right). \tag{41}$$

Здесь при $k=0,1 \; (i,j=1,\ldots,n)$ полиномы Дирихле

$$\Delta_{ij}^k(\lambda) = \varkappa_{ij}^k + \sum_{n=1}^{k_{ij}} \varkappa_{ij}^{n,k} e^{-\lambda \gamma_n}; \quad r_{ij}^k(\lambda) = \mathfrak{L}_{ij}^k(e^{-\lambda t}\tilde{f}(\lambda), \dots, e^{-\lambda t}\underbrace{\tilde{f}(\lambda) \dots \tilde{f}(\lambda)}_{n-1})$$
(42)

суть линейные комбинации соответствующих элементов. Функции $\Delta_{ij}^k(\lambda)$ $(k=2,\ldots,2(n-1))$ имеют вид полиномов Дирихле в (42), но с коэффициентами, ограниченными при $|\lambda|>N$; $r_{ij}^k(\lambda)$ $(k=2,\ldots,2(n-1))$ также имеют вид функций $r_{ij}^l(\lambda)$ (l=0,1) в (42), но в соответствующих линейных комбинациях коэффициенты суть ограниченные при $|\lambda|>N$ функции. Показатели экспонент γ_n , t во всех функциях $X_{ij}(\lambda)$ принадлежат конечному множеству неотрицательных чисел, максимальное из которых t_{***} . Из оценки (38) на любой прямой $\mathrm{Re}\,\lambda=-B$ (B>0) при $|\lambda|>N$ для всех $k=0,1,\ldots,2(n-1)$ $(i,j=1,\ldots,n)$ имеем

$$\left| r_{ij}^k(\lambda) \right| \le \frac{Ke^{\gamma t_{***}}}{|\lambda|}.\tag{43}$$

При $|\lambda| > N$ справедливо также следующее представление:

$$\mathfrak{I}(x,\lambda)X^{-1}(\lambda) = \frac{\mathfrak{I}^x(x,\lambda)}{\Delta(\lambda)}\chi(\lambda), \quad \mathfrak{I}^x(x,\lambda) = (e^{\lambda\mu_{ij}(x) + \nu_{ij}(x)}X_{ij}(\lambda))_{i,j=1,\dots,n}, \quad (44)$$

где $\mu_{ij}(x)=A_{ij}+\mathfrak{T}_i(x),\ \nu_{ij}(x)=B_{ij}+\mathscr{B}_i(x).$ Отсюда видно, что $\mu_{ij}(x),\ \nu_{ij}(x)$ принадлежат пространству $C^3[0,1]\ (i,j=1,\ldots,n)$ и обладают свойствами

$$\frac{d\mu_{ij}(x)}{dx} = -\frac{1}{k_i(x)} \neq 0, \quad -\mu_1 \leq \mu_{ij}(x) \leq 0 \quad (\mu_1 > 0). \tag{45}$$

Получение оценки для решения однородной задачи

Теорема 3. Пусть $\mathscr{A}(x)$, $\mathscr{K}(x) \in C^2[0,1]$, $\Phi_k^r(\xi) \in C^1[0,\tau_k]$ $(r=0,1;\ k=1,\ldots,m)$. Если функция $\overline{U}(x,t)$ принадлежит пространству $C^1(\Gamma)$ и $\kappa_\mathscr{A}<-\gamma$ $(\gamma>0)$, то для КГР U(x,t) задачи (20), (2), (3) справедлива оценка

$$||U(x,t)||_{R_t} \le Ke^{-\gamma t} ||\overline{U}(x,t)||_{C(\Gamma)}, \tag{46}$$

где константа K зависит от коэффициентов матриц A_k , B_k $(k=0,1,\ldots,m)$, γ , $\max_{i,j,k,r} \left(\|a_{ij}(x)\|_{C^2[0,1]}, \|k_i(x)\|_{C^2[0,1]}, \|f_{kij}^r(\xi)\|_{C^1[0,\tau_k]}\right)$ и не зависит от $t, \overline{U}(x,t)$.

Доказательство. При выполнении условий этой теоремы рассматриваемая задача имеет КГР U(x,t), для которого верна оценка (19), что позволяет применить к U(x,t) теорему об обращении преобразования Лапласа [14]. Тогда в областях непрерывности КГР, т. е. в областях R_j $(j=1,2,\ldots)$, решение представимо в виде

$$U(x,t) = \frac{1}{2\pi i} \int_{\rho - i\infty}^{\rho + i\infty} \widetilde{U}(x,\lambda) e^{\lambda t} d\lambda, \quad \rho > A_1, \tag{47}$$

где интеграл на бесконечности понимается в смысле главного значения, а константа A_1 определяется в (19). Функция $\widetilde{U}(x,\lambda)$, являющаяся преобразованием Лапласа по t от функции U(x,t), есть решение краевой задачи (21), поэтому она представима в виде (25). Используя это представление и предыдущие наши построения, докажем оценку (46).

Рассмотрим функцию $\widetilde{U}_1(x,\lambda)$ (26). В силу гладкости $\overline{U}(x,t)$ и $\Phi_k^r(\xi)$ для целой функции $R(\lambda)$ (22) при $|\lambda| \to \infty$ справедливо $R(\lambda) = O(\frac{1}{\lambda})$ в любой полосе $B_1 \le \text{Re } \lambda \le B_2$ ($B_1 < B_2$). Поэтому ввиду (28), (44) этим же свойством обладает $\widetilde{U}_1(x,\lambda)$, если $B_1 > \kappa_{\mathscr{A}}$. Тогда при t > 0 имеем

$$rac{1}{2\pi i}\int\limits_{
ho-i\infty}^{
ho+i\infty}\widetilde{U}_1(x,\lambda)e^{\lambda t}\,d\lambda=rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty}\widetilde{U}_1(x,\lambda)e^{\lambda t}\,d\lambda.$$

Обозначим через $U_1(x,t)$ функцию справа в этом равенстве. Очевидно, что она есть КГР задачи (20), (2) (3) в случае начальных данных $\overline{U}_1(x,t)$:

$$\overline{U}_1(x,0)=0,\quad \overline{U}_1(r,t)|_{\Gamma^r}=\overline{U}(r,t)|_{\Gamma^r}\;(r=0,1),$$

и для нее при t > 0 верно неравенство (18), т. е.

$$||U_1(x,t)||_{R_t} \le Ke^{At}||\overline{U}_1(x,t)||_{C(\Gamma)}.$$
 (48)

Докажем при $t > T_0$ оценку

$$||U_1(x,t)||_{R_t} \le Ke^{-\gamma t} \max_{r=0,1} ||\overline{U}(r,t)||_{C(\Gamma^r)}.$$
(49)

Используя (28), (40), (44), запишем (26) при $|\lambda| > N$ в виде суммы:

$$\widetilde{U}_1(x,\lambda) = -igg(I + rac{P_1(x)}{\lambda} + rac{W(x,\lambda)}{\lambda^2}igg)rac{\mathfrak{I}^x(x,\lambda)}{\Delta(\lambda)}\chi(\lambda)R(\lambda) = \sum_{i=1}^3ig(-\widetilde{U}_1^i(x,\lambda)R(\lambda)ig),$$

гле

$$\widetilde{U}_1^1(x,\lambda) = \mathfrak{T}^x(x,\lambda) \left(rac{1}{\Delta} - rac{r_0}{\Delta^2} - rac{\Theta_1}{\lambda\Delta^2}
ight), \quad \widetilde{U}_1^2(x,\lambda) = rac{P_1(x)\mathfrak{T}^x(x,\lambda)}{\lambda} \left(rac{1}{\Delta} - rac{r_0}{\Delta^2}
ight),$$

$$\widetilde{U}_1^3(x,\lambda) = rac{1}{\lambda^2} \left(W(x,\lambda) \mathfrak{I}^x(x,\lambda) \chi(\lambda) - P_1(x) \mathfrak{I}^x(x,\lambda) \left(rac{\Theta_1}{\Delta^2} - rac{R_\chi}{\lambda \Delta}
ight) + rac{\mathfrak{I}^x(x,\lambda) R_\chi}{\Delta}
ight),$$

и докажем существование чисел $T_k \ge 0 \ (k=1,2,3)$ таких, что при $t>T_k$ будут справедливы неравенства

$$\sup_{x \in [0,1]} \left| \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \widetilde{U}_1^k(x,\lambda) R(\lambda) d\lambda \right| \le K e^{-\gamma t} \max_{r=0,1} \|\overline{U}(r,t)\|_{C(\Gamma^r)}. \tag{50}$$

В дальнейшем мы будем ссылаться на следующую лемму, доказательство которой вытекает из леммы 4 и доказательства теоремы 4 в [7].

Лемма 2. Пусть $\Delta(\lambda)$ — полином Дирихле вида (31), для нулей которого верна оценка $\kappa_{\Delta} < -\gamma \ (\gamma > 0)$. Если $y(\xi)$ — непрерывно дифференцируемая, а $z(x,\xi)$ — дважды непрерывно дифференцируемая функции своих аргументов, причем $-\varrho \leq z(x,\xi) \ (\varrho \geq 0), \ z_{\xi}(x,\xi) \neq 0$ для всех $x,\xi \in [a,b]$, то при $t > \varrho$ верна оценка

$$\left| \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda t}}{\lambda^k} \int_a^b \frac{y(\xi)e^{\lambda z(x,\xi)}}{\Delta^q(\lambda)} d\xi d\lambda \right| \le K e^{-\gamma t} \|y(x)\|_{C[a,b]}$$

с константой K, не зависящей от t, y(x). Здесь q = 0, 1, 2, k = 0, 1.

Рассмотрим функцию $U_1^1(x,\lambda)$. Из (44) следует, что для получения оценки (50) нужно оценить следующее выражение:

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda(t + \mu_{sl}(x)) + \nu_{sl}(x)} X_{sl}(\lambda) \left(\frac{1}{\Delta} - \frac{r_0}{\Delta^2} - \frac{\Theta_1}{\lambda \Delta^2}\right) R_p(\lambda) d\lambda, \tag{51}$$

где $R_p(\lambda)$ есть p-я компонента вектор-столбца $R(\lambda)$ (22), а s, l, p — любые числа от 1 до n. Функции $X_{sl}(\lambda)$ определены в выражении (41), $\Delta(\lambda)$, $r_0(\lambda)$, $\Theta_1(\lambda)$ — в выражениях (31), (32), (34). Из (41) в силу (43) на прямой $\operatorname{Re} \lambda = -\gamma$ при $|\lambda| > N$ имеем для $i, j = 1, \ldots, n$ представление

$$X_{ij}(\lambda) = X_{ij}^0(\lambda) + rac{X_{ij}^{ac}(\lambda)}{\lambda^2}, \quad X_{ij}^0(\lambda) = \Delta_{ij}^0(\lambda) + r_{ij}^0(\lambda) + rac{\Delta_{ij}^1(\lambda)}{\lambda}, \quad \left|X_{ij}^{ac}(\lambda)
ight| \leq K,$$

откуда в силу (39), (43) справедливо

$$X_{ij}(\lambda) \left(\frac{1}{\Delta} - \frac{r_0}{\Delta^2} - \frac{\Theta_1}{\lambda \Delta^2} \right) = x_{ij}^0(\lambda) + \frac{x_{ij}^{ac}(\lambda)}{\lambda^2},$$

где

$$x_{ij}^{0}(\lambda) = \frac{\Delta_{ij}^{0}}{\Lambda} - \frac{\Delta_{ij}^{0}\Delta_{1}}{\lambda\Lambda^{2}} + \frac{\Delta_{ij}^{1}}{\lambda\Lambda} - \frac{\Delta_{ij}^{0}r_{0}}{\Lambda^{2}} + \frac{r_{ij}^{0}}{\Lambda}, \quad \left|x_{ij}^{ac}(\lambda)\right| \leq K. \tag{52}$$

Так как при t>0 интеграл

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda(t + \mu_{sl}(x)) + \nu_{sl}(x)} x_{sl}^{ac}(\lambda) \frac{R_p(\lambda)}{\lambda^2} d\lambda$$

в силу (22) оценивается величиной в правой части (50) для всех s, l, p, то для получения нужной оценки интеграла (51) достаточно оценить

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda(t + \mu_{sl}(x)) + \nu_{sl}(x)} x_{sl}^{0}(\lambda) \frac{R_{p}(\lambda)}{\lambda} d\lambda.$$

Для этого в силу (22) достаточно оценить при $r=0,1;\ s,l=1,\ldots,n;\ \nu=1,\ldots,m$ функции

$$v_1(t) = rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} e^{\lambda(t+\mu_{sl}(x))} x_{sl}^0(\lambda) \Biggl(\int\limits_{- au_
u}^0 ar{u}_p(r,\xi) e^{-\lambda \xi} \, d \xi \Biggr) \, d\lambda,$$

$$v_2(t) = rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} e^{\lambda(t+\mu_{sl}(x))} x_{sl}^0(\lambda) \widetilde{\Phi}_{kp}^r(\lambda) \, d\lambda,$$

где $\widetilde{\Phi}^r_{kp}(\lambda)$ есть p-й элемент столбца (23) $(p=1,\dots,n).$

Оценим функцию $v_1(t)$. Из (52) следует, что для этого нужно оценить интегралы

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))}\widetilde{\Delta}(\lambda)}{\lambda^{k_0} \Delta^q} \int_{-\tau_0}^{0} \bar{u}_p(r, \xi) e^{-\lambda \xi} d\xi d\lambda, \tag{53}$$

$$\frac{1}{2\pi i} \int_{-\infty - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \tilde{r}(\lambda)}{\Delta^q} \int_{-\pi}^{0} \bar{u}_p(r, \xi) e^{-\lambda \xi} d\xi d\lambda.$$
 (54)

Здесь $k_0=0,1,\,q=0,1,2,\,\widetilde{\Delta}(\lambda)$ — один из полиномов Дирихле $\Delta^0_{ij},\,\Delta^0_{ij}\Delta_1,\,\Delta^1_{ij},$ а $\tilde{r}(\lambda)$ имеет вид одной из функций $\Delta^0_{ij}r_0,\,r^0_{ij}\,\,(i,j=1,\ldots,n)$. Не ограничивая общности, будем считать, что

$$\widetilde{\Delta}(\lambda) = \sum_{k=0}^{\widetilde{M}} D_k e^{-\lambda d_k} \quad (0 = d_1 < \dots < d_{\widetilde{M}} = t_{**} + t_{***}).$$

Запишем (53) как

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \widetilde{\Delta}(\lambda)}{\lambda^{k_0} \Delta^q} \left(\int_{0}^{\tau_{\nu}} \bar{u}_p(r, \xi - \tau_{\nu}) e^{-\lambda(\xi - \tau_{\nu})} d\xi \right) d\lambda$$

и применим к этому интегралу лемму 2. В силу неравенства (45) при $t>t_1=\mu_1+d_{\widetilde{M}}$ интеграл (53) оценивается величиной в правой части неравенства (50).

Оценим интеграл (54). Из вида (32), (42) функций $r_0(\lambda)$, $r_{ij}^0(\lambda)$ следует, что в (54) в качестве $\tilde{r}(\lambda)$ нужно взять функцию

$$\tilde{r}(\lambda) = \mathfrak{L}(e^{-\lambda t}\tilde{f}(\lambda), \dots, e^{-\lambda t}\underbrace{\tilde{f}(\lambda)\dots\tilde{f}(\lambda)}_k),$$

где k равно n или n-1 ($n\geq 2$), а $t\in \{T\}$, где $\{T\}$ — конечное множество неотрицательных чисел. Из (38) на прямой $\mathrm{Re}\,\lambda = -\gamma$ имеем соотношение $\underbrace{\tilde{f}(\lambda)\ldots \tilde{f}(\lambda)}_{k} = O(\frac{1}{\lambda^2})$ ($\lambda\to\infty$) при $k\geq 2$, поэтому для оценивания (54) до-

статочно получить оценку в случае, когда $\tilde{r}(\lambda) = \tilde{f}(\lambda), \ \tilde{f}(\lambda) \in \widetilde{\mathscr{F}}$. Заменим $\tilde{f}(\lambda)$ ее выражением (37) и запишем (54) в виде суммы

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \left(f_{kij}^r(0) - f_{kij}^r(\tau_k) e^{-\lambda \tau_k} \right)}{\lambda \Delta^q} \int_{-\tau_{\nu}}^{0} \bar{u}_p(r, \xi) e^{-\lambda \xi} d\xi d\lambda
+ \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))}}{\lambda \Delta^q} \left(\int_{0}^{\tau_k} \frac{d}{dy} f_{kij}^r(y) e^{-\lambda y} dy \right) \left(\int_{-\tau_{\nu}}^{0} \bar{u}_p(r, \xi) e^{-\lambda \xi} d\xi \right) d\lambda,$$

где $k,\nu=1,\ldots,m;\ s,l=1,\ldots,n;\ q=0,1,2;\ r=0,1.$ Первое слагаемое в силу леммы 2 при $t>\mu_1+\tau_m$ оценивается величиной в правой части (50). Из гладкости $\bar{u}_p(r,\xi)$ по ξ следует, что

$$\int\limits_{- au_{p}}^{0}ar{u}_{p}(r,\xi)e^{-\lambda\xi}\,d\xi=O\left(rac{1}{\lambda}
ight),\quad |\lambda| o\infty,$$

поэтому ко второму слагаемому применим теорему Фубини, запишем его в виде

$$\int_{0}^{-\tau_{\nu}} \frac{d}{dy} f_{kij}^{r}(y) \left(\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x) - y)}}{\lambda \Delta^{q}} \int_{-\tau_{\nu}}^{0} \bar{u}_{p}(r, \xi) e^{-\lambda \xi} d\xi d\lambda \right) dy$$

и к повторному по ξ , λ интегралу применим лемму 2. Итак, при $t>\mu_1+\tau_m$ имеет место оценка и для второго слагаемого. Пусть $t_2=\max_{t\in\{T\}}t+\mu_1+\tau_m$, тогда из вида функции $\tilde{r}(\lambda)$ в (54) и приведенных выше рассуждений следует, что при $t>t_2$ интеграл (54) оценивается величиной в правой части (50). Таким образом, при $t>\max(t_1,t_2)$ для функции $v_1(t)$ имеет место нужная оценка.

Оценим функцию $v_2(t)$. Как и в случае с $v_1(t)$, для этого нужно оценить два интеграла

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \widetilde{\Delta}(\lambda)}{\lambda^{k_0} \Delta^q} \widetilde{\Phi}_{kp}^r(\lambda) d\lambda, \quad k_0 = 0, 1; \ q = 0, 1, 2,$$
 (55)

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \tilde{r}(\lambda)}{\Delta^q} \widetilde{\Phi}_{kp}^r(\lambda) d\lambda, \quad q = 0, 1, 2,$$
 (56)

где функции $\tilde{r}(\lambda)$, $\widetilde{\Delta}(\lambda)$ те же, что и в выражениях (53), (54). В качестве $\widetilde{\Phi}_{kp}^r(\lambda)$ возьмем функцию

$$arphi(\lambda) = \int\limits_0^{ au_k} f_{kpj}^r(\xi) e^{-\lambda \xi} \left(\int\limits_{-\xi}^0 \bar{u}_j(r,t) e^{-\lambda t} \, dt \right) d\xi,$$

где j — любое число от 1 до n. (В действительности $\widetilde{\Phi}^r_{kp}(\lambda)$ есть сумма n таких функций.) В силу гладкости $\Phi^r_k(\xi)$ запишем $\varphi(\lambda)$ в виде

$$\varphi(\lambda) = \frac{-f_{kpj}^{r}(\tau_{k})e^{-\lambda\tau_{k}}}{\lambda} \int_{-\tau_{k}}^{0} \bar{u}_{j}(r,t)e^{-\lambda t} dt + \frac{1}{\lambda} \int_{0}^{\tau_{k}} f_{kpj}^{r}(\xi)\bar{u}_{j}(r,-\xi) d\xi + \int_{0}^{\tau_{k}} \frac{e^{-\lambda\xi}}{\lambda} \frac{d}{d\xi} f_{kpj}^{r}(\xi) \left(\int_{-\varepsilon}^{0} \bar{u}_{j}(r,t)e^{-\lambda t} dt \right) d\xi, \quad (57)$$

затем подставим в (55) и результат представим в виде суммы трех функций:

$$i_1(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \widetilde{\Delta}(\lambda)}{\lambda^{k_0 + 1} \Delta^q} d\lambda \int_0^{\tau_k} f_{kpj}^r(\xi) \overline{u}_j(r, -\xi) d\xi,$$

$$i_2(x,t) = \frac{-1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x) - \tau_k)} \widetilde{\Delta}(\lambda)}{\lambda^{k_0 + 1} \Delta^q} f_{kpj}^r(\tau_k) \left(\int_{-\tau_k}^0 \overline{u}_j(r, t) e^{-\lambda t} dt \right) d\lambda,$$

$$i_3(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda(t + \mu_{sl}(x))} \widetilde{\Delta}(\lambda)}{\lambda^{k_0 + 1} \Delta^q} \left(\int_0^{\tau_k} e^{-\lambda \xi} \frac{d}{d\xi} f_{kpj}^r(\xi) \int_{-\xi}^0 \overline{u}_j(r, t) e^{-\lambda t} dt d\xi \right) d\lambda.$$

Для $k_0=1$, q=0,1,2 функции $i_p(x,t)$ (p=1,2,3) в силу абсолютной сходимости несобственного интеграла оцениваются величиной в правой части (50) при t>0. Для оценки этих функций при $k_0=0$ нам понадобятся формула из теории преобразования Лапласа [14]:

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda t}}{\lambda} d\lambda = 0 \quad \text{при } t > 0, \text{ если } \gamma > 0,$$
 (58)

а также лемма, справедливость которой следует из леммы 2 и следствия κ ней из работы [7].

Лемма 3. Пусть $\Delta(\lambda)$ — полином Дирихле вида (31), для нулей которого верна оценка $\kappa_{\Delta}<-\gamma$ ($\gamma>0$). Тогда при t>0 справедлива оценка

$$|h_q(t)| \le A_q(\gamma)e^{-\gamma t}, \quad \text{где} \quad h_q(t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} \frac{e^{\lambda t}}{\lambda \Delta^q(\lambda)} d\lambda \quad (q = 1, 2).$$
 (59)

Рассмотрим функцию $i_1(x,t)$ при $k_0=0$. Согласно лемме 3 и формуле (58) при $t>\mu_1+d_{\widetilde{M}}$ ее можно записать в следующем виде:

$$i_1(x,t) = \left\{egin{array}{l} \sum\limits_{i=1}^M D_i h_q(t+\mu_{sl}(x)-d_i) \int\limits_0^{ au_k} f_{kpj}^r(\xi) ar{u}_j(r,-\xi) \, d\xi, & ext{если } q=1,2, \ 0, & ext{если } q=0. \end{array}
ight.$$

Отсюда и из (59) получаем, что $i_1(x,t)$ при $t > \mu_1 + d_{\widetilde{M}}$ оценивается величиной в правой части (50). В силу леммы 2 для $i_2(x,t)$ при $k_0 = 0$ такая же оценка имеет место при $t > \mu_1 + d_{\widetilde{M}} + \tau_m$. Доказательство проводится аналогично случаю получения оценки для интеграла (53).

Рассмотрим функцию $i_3(x,t)$ и, пользуясь при $|\lambda| \to \infty$ соотношением

$$\int_{-\xi}^{0} \bar{u}_{j}(r,t)e^{-\lambda t} dt = O\left(\frac{1}{\lambda}\right),\,$$

применим к $i_3(x,t)$ теорему Фубини, записав ее в виде

$$i_3(x,t) = \int\limits_0^{ au_k} rac{d}{d\xi} f_{kpj}^r(\xi) \Biggl(\int\limits_{-\xi}^0 ar{u}_j(r,y) \Biggl(rac{1}{2\pi i} \int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} rac{e^{\lambda(t+\mu_{sl}(x)-y-\xi)} \widetilde{\Delta}(\lambda)}{\lambda^{k_0+1} \Delta^q} \, d\lambda \Biggr) \, dy \Biggr) \, d\xi.$$

Согласно (58) и лемме 3 для $k_0=0$ при $t>\mu_1+d_{\widetilde{M}}+ au_m$ имеем

$$i_3(x,t) = \left\{ egin{array}{l} \sum\limits_{i=1}^{\widetilde{M}} D_i \int\limits_0^{ au_k} rac{d}{d\xi} f_{k_{pj}}^r(\xi) \int\limits_{-\xi}^0 ar{u}_j(r,y) h_q(t+\mu_{sl}(x)-y-\xi-d_i) \, dy d\xi, & q=1,2, \ 0, & q=0. \end{array}
ight.$$

Отсюда в силу (59) получаем, что $i_3(x,t)$, а следовательно, и (55) для рассматриваемых t оценивается величиной в правой части (50).

Оценим интеграл (56), где в качестве $\tilde{\Phi}_{kp}^r(\lambda)$ возьмем $\varphi(\lambda)$ (57). Рассуждая аналогично случаю с интегралом (54), докажем для (56) нужную оценку, если $\tilde{r}(\lambda) = \tilde{f}(\lambda)$. Из (38), (57) на прямой $\operatorname{Re} \lambda = -\gamma$ имеем неравенство

$$\left|\frac{\widetilde{f}(\lambda)\varphi(\lambda)}{\Delta^q}\right| \leq \frac{K}{|\lambda|^2} \max_{r=0,1} \|\overline{U}(r,t)\|_{C(\Gamma^r)} \quad (q=0,1,2),$$

откуда и следует, что (56) при t>0 оценивается величиной в правой части (50). Итак, при $t>T_1=\max(t_1,t_2,\mu_1+\tau_m+d_{\widetilde{M}})$ для $\widetilde{U}_1^1(x,\lambda)$ справедлива оценка (50).

Рассмотрим функцию $\widetilde{U}_1^2(x,\lambda)$. Из равенства

$$rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty}e^{\lambda t}\widetilde{U}_{1}^{2}(x,\lambda)R(\lambda)\,d\lambda =rac{P_{1}(x)}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty}e^{\lambda t}rac{\mathfrak{I}^{x}(x,\lambda)}{\lambda}\left(rac{1}{\Delta}-rac{r_{0}}{\Delta^{2}}
ight)R(\lambda)\,d\lambda,$$

вида $\widetilde{U}_1^1(x,\lambda)$ и рассуждений, приведенных выше для функции $\widetilde{U}_1^1(x,\lambda)$, следует оценка (50) при $t>T_2$ ($T_2=T_1$) и для $\widetilde{U}_1^2(x,\lambda)$.

Рассмотрим функцию $\widetilde{U}_1^3(x,\lambda)$, для которой при $|\lambda|>N$ на прямой $\mathrm{Re}\,\lambda=-\gamma$ верна оценка $|\widetilde{U}_1^3(x,\lambda)|\leq \frac{K}{|\lambda|^2}$, гарантирующая наличие оценки (50) для этой функции при t>0. Итак, при $t>T_1=T_0$ для функции $U_1(x,t)$ имеет место оценка (49), а при t>0 — оценка (48), что и означает наличие для $U_1(x,t)$ неравенства (49) для t>0.

Рассмотрим функцию

$$U_2(x,t) = rac{1}{2\pi i}\int\limits_{
ho-i\infty}^{
ho+i\infty} \widetilde{U}_2(x,\lambda) e^{\lambda t}\,d\lambda,$$

где константа ρ определена в (47), а $\widetilde{U}_2(x,\lambda)$ — в (27). Очевидно, что $U_2(x,t)$ есть КГР задачи (20), (2), (3) в случае начальных данных $\overline{U}_2(x,t)$:

$$\overline{U}_2(x,0) = \overline{U}(x,0) = U_0(x), \quad \overline{U}_2(r,t)|_{\Gamma^r} = 0 \ (r=0,1),$$

поэтому для нее при t > 0 верно неравенство (18), т. е.

$$||U_2(x,t)||_{R_t} \le Ke^{At}||U_0(x)||_{C[0,1]}.$$
(60)

Докажем для функции $U_2(x,t)$ при t>0 справедливость оценки

$$||U_2(x,t)||_{R_t} \le Ke^{-\gamma t} ||U_0(x)||_{C[0,1]}.$$
(61)

В (27) $\widetilde{U}_2(x,\lambda)$ однозначно определяется через функцию Грина $G(x,\xi,\lambda)$, которая в (29) представима в виде суммы $G_1(x,\xi,\lambda)$ и $G_2(x,\xi,\lambda)$. Введем в рассмотрение две функции (k=1,2)

$$V_k(x,t) = -\frac{1}{2\pi i} \int_{\rho-i\infty}^{\rho+i\infty} e^{\lambda t} \int_0^1 G_k(x,\xi,\lambda) U_0(\xi) \, d\xi \, d\lambda \quad (\rho > A_1)$$
 (62)

и докажем для них при $t>\tilde{t}_k$ неравенство

$$\sup_{x \in [0,1]} |V_k(x,t)| \le Ke^{-\gamma t} ||U_0(x)||_{C[0,1]}$$
(63)

с константой K, не зависящей от t, $U_0(x)$. В [7] дано представление $G_1(x,\xi,\lambda)$ и доказана для функции $V_1(x,t)$ оценка (63) при $t>\tilde{t}_1$.

Построим асимптотическое представление $G_2(x,\xi,\lambda)$ и докажем оценку (63) для функции $V_2(x,t)$. Из (30), (44) при $|\lambda| > N$, $\operatorname{Re} \lambda > \kappa_A$ имеем

$$G_2(x,\xi,\lambda) = -\sum_{k=0}^2 \frac{\mathscr{G}_2^k(x,\xi,\lambda)}{\lambda^k \Delta(\lambda)} \chi(\lambda),$$

где

$$\mathscr{G}^0_2(x,\xi,\lambda)=\mathfrak{T}^x(x,\lambda)(I_0I^{**}-I_1\mathfrak{T}(1,\lambda)I^*)\mathfrak{T}^{-1}(\xi,\lambda)K^{-1}(\xi),$$

$$\mathcal{G}_{2}^{1}(x,\xi,\lambda) = P_{1}(x)\mathcal{G}_{2}^{0}(x,\xi,\lambda) + \mathfrak{I}^{x}(x,\lambda)(I_{0}P_{1}(0)I^{**} - I_{1}P_{1}(1)\mathfrak{I}(1,\lambda)I^{*})$$
$$\times \mathfrak{I}^{-1}(\xi,\lambda)K^{-1}(\xi) + \mathcal{G}_{2}^{0}(x,\xi,\lambda)K(\xi)R_{1}(\xi)K^{-1}(\xi),$$

$$\mathscr{G}_{2}^{2}(x,\xi,\lambda)=W(x,\lambda)H(\lambda)V^{-1}(\xi,\lambda)K^{-1}(\xi).$$

Из вида (40) функции $\chi(\lambda)$ справедливо представление

$$G_2(x,\xi,\lambda) = \sum_{k=0}^{2} \frac{G_2^k(x,\xi,\lambda)}{\lambda^k},\tag{64}$$

$$egin{aligned} G_2^0 &= \mathscr{G}_2^0 \left(rac{r_0}{\Delta^2} - rac{1}{\Delta}
ight), \quad G_2^1 &= rac{\mathscr{G}_2^0 \Theta_1}{\Delta^2} - \mathscr{G}_2^1 \left(rac{1}{\Delta} - rac{r_0}{\Delta^2}
ight), \ G_2^2 &= -rac{\mathscr{G}_2^0}{\Delta^2} R_\chi + rac{\mathscr{G}_2^1}{\Delta^2} \left(rac{R_\chi}{\lambda} - \Theta_1
ight) - \mathscr{G}_2^2 \chi(\lambda). \end{aligned}$$

Выпишем более подробно вид матриц $\mathscr{G}_2^k(x,\xi,\lambda)$ (k=0,1,2), для этого введем следующие обозначения:

$$\sigma_{ij}^{1}(\lambda) = \sum_{k=1}^{p} X_{ik} \beta_{kj}, \quad \sigma_{ij}^{2}(\lambda) = \sum_{k=p+1}^{n} X_{ik} \beta_{kj} \ (1 \le i \le n, \ 1 \le j \le p),$$

$$\sigma_{ij}^{1}(\lambda) = \sum_{k=1}^{p} X_{ik} \alpha_{kj}, \quad \sigma_{ij}^{2}(\lambda) = \sum_{k=n+1}^{n} X_{ik} \alpha_{kj} \ (1 \le i \le n, \ p+1 \le j \le n).$$
(65)

Здесь $\alpha_{ij}(\lambda)$, $\beta_{ij}(\lambda)$ — элементы соответственно матриц I_0 , I_1 , а функции $X_{ij}(\lambda)$ определены в (41). Тогда справедливо представление

$$\mathscr{G}_{2}^{0} = \left(g_{2ij}^{0}(x,\xi,\lambda)\right)_{i,j=1,\dots,n}, \quad g_{2ij}^{0}(x,\xi,\lambda) = \sum_{r=1}^{2} \frac{e^{\lambda \varphi_{ij}^{0,r}(x,\xi) + \psi_{ij}^{0,r}(x,\xi)} \sigma_{ij}^{r}(\lambda)}{k_{j}(\xi)}, \quad (66)$$

где функции $\varphi_{ij}^{0,r}(x,\xi),\;\psi_{ij}^{0,r}(x,\xi)$ трижды непрерывно дифференцируемы по x,ξ , причем

$$\frac{\partial \varphi_{ij}^{0,r}(x,\xi)}{\partial \xi} = \frac{1}{k_i(\xi)} \neq 0, \quad -\mu_2 \le \varphi_{ij}^{0,r}(x,\xi) \le 0 \ (\mu_2 > 0). \tag{67}$$

Из вида матрицы \mathscr{G}_2^1 ясно, что для ее представления достаточно построить матрицу

$$\mathscr{G}_{2}^{1,1}(x,\xi,\lambda) = \mathfrak{I}^{x}(x,\lambda)(I_{0}P_{1}(0)I^{**} - I_{1}P_{1}(1)\mathfrak{I}(1,\lambda)I^{*})\mathfrak{I}^{-1}(\xi,\lambda)K^{-1}(\xi),$$

вид которой лишь незначительно отличается от вида \mathscr{G}_2^0 . Действительно, обозначим $I_0P_1(0)=\left(\alpha_{ij}^p\right),\ I_1P_1(1)=\left(\beta_{ij}^p\right)\ (i,j=1,\dots,n)$ и вместо $\alpha_{ij},\ \beta_{ij}$ подставим в (65) соответственно $\alpha_{ij}^p,\ \beta_{ij}^p$. Полученные в (65) функции обозначим через $\sigma_{ij}^{p,r}\ (r=1,2)$, тогда вид матрицы $\mathscr{G}_2^{1,1}$ будет следующий:

$$\mathscr{G}_{2}^{1,1} = \left(g_{2ij}^{1,1}(x,\xi,\lambda)\right)_{i,j=1,\dots,n}, \quad g_{2ij}^{1,1}(x,\xi,\lambda) = \sum_{r=1}^{2} \frac{e^{\lambda \varphi_{ij}^{0,r}(x,\xi) + \psi_{ij}^{0,r}(x,\xi)} \sigma_{ij}^{p,r}(\lambda)}{k_{j}(\xi)}, \tag{68}$$

где функции $\varphi_{ij}^{0,r}(x,\xi)$, $\psi_{ij}^{0,r}(x,\xi)$ такие же, как и в (66). Из вида матрицы \mathscr{G}_2^2 вытекает, что она — непрерывно дифференцируемая по $x,\xi\in[0,1]$ функция, аналитическая по λ в полуплоскости $\operatorname{Re}\lambda>\kappa_\mathscr{A}+\varepsilon\ (\varepsilon>0)$, где для нее верна оценка $|\mathscr{G}_2^2(x,\xi,\lambda)|\leq K$. Отсюда, из вида (40) функции $\chi(\lambda)$ и (66), (68) следует, что в представлении (64) для функции G_2^2 при $|\lambda|>N$ также верна оценка

$$\left| G_2^2(x,\xi,\lambda) \right| \le K. \tag{69}$$

Итак, исследуем функцию $V_2(x,t)$ (68). В силу гладкости $U_0(x)$ и свойства (67) функции \mathscr{G}_2^0 при $|\lambda| \to \infty$ справедливо равенство

$$\int\limits_0^1\mathscr{G}_2^0(x,\xi,\lambda)U_0(\xi)\,d\xi=O\left(rac{1}{\lambda}
ight)$$

в любой полосе $B_1 \leq \operatorname{Re} \lambda \leq B_2 \ (B_2 > B_1 > \kappa_{\mathscr{A}})$. Тогда в силу (64)

$$\int\limits_0^1 G_2(x,\xi,\lambda) U_0(\xi)\,d\xi = O\left(rac{1}{\lambda}
ight)$$

при этих же значениях λ . Поэтому при t>0 имеем

$$V_2(x,t) = -rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty}e^{\lambda t}\int\limits_0^1G_2(x,\xi,\lambda)U_0(\xi)\,d\xi d\lambda.$$

Из (69) при t > 0 выводим оценку

$$\sup_{x \in [0,1]} \left| \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \int_{0}^{1} \frac{G_{2}^{2}(x, \xi, \lambda)}{\lambda^{2}} U_{0}(\xi) d\xi d\lambda \right| \leq K e^{-\gamma t} \|U_{0}(x)\|_{C[0,1]},$$

поэтому для доказательства (63) достаточно при $t>\tilde{t}_2$ доказать неравенства

$$\sup_{x \in [0,1]} \left| \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \int_{0}^{1} \frac{G_2^k(x, \xi, \lambda)}{\lambda^k} U_0(\xi) \, d\xi \, d\lambda \right| \le K e^{-\gamma t} \|U_0(x)\|_{C[0,1]}, \tag{70}$$

где k=0,1. Из (64), (66), (68) следует, что для этого достаточно оценить три вида функций

$$j_1(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \left(\int_0^1 \frac{e^{\lambda \varphi_{ij}^{0,r}(x,\xi) + \psi_{ij}^{0,r}(x,\xi)} X_{ik}(\lambda) C_{kj}(\lambda) u_{0_j}(\xi)}{\lambda^{k_0} \Delta k_j(\xi)} d\xi \right) d\lambda, \quad (71)$$

$$j_2(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \left(\int_0^1 \frac{e^{\lambda \varphi_{ij}^{0,r}(x,\xi) + \psi_{ij}^{0,r}(x,\xi)} X_{ik}(\lambda) C_{kj}(\lambda) r_0(\lambda) u_{0_j}(\xi)}{\lambda^{k_0} \Delta^2 k_j(\xi)} d\xi \right) d\lambda,$$
(72)

$$j_{3}(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \left(\int_{0}^{1} \frac{e^{\lambda \varphi_{ij}^{0,r}(x,\xi) + \psi_{ij}^{0,r}(x,\xi)} X_{ik}(\lambda) C_{kj}(\lambda) \Theta_{1}(\lambda) u_{0_{j}}(\xi)}{\lambda \Delta^{2} k_{j}(\xi)} d\xi \right) d\lambda$$

$$(73)$$

(здесь $i,\,j,\,k$ — произвольные числа от 1 до $n;\,r=1,2,\,k_0=0,1)$ и получить для них при $t>\tilde{t}_2$ неравенства

$$\sup_{x \in [0,1]} |j_k(x,t)| \le K e^{-\gamma t} \|u_{0_j}(x)\|_{C[0,1]} \quad (k = 1, 2, 3).$$
 (74)

В (71)–(73) функции $C_{kj}(\lambda)$ суть либо $\alpha_{kj}(\lambda)$, либо $\beta_{kj}(\lambda)$, $X_{ij}(\lambda)$ имеют вид (41), полином Дирихле Δ , функции $r_0(\lambda)$, $\Theta_1(\lambda)$ определены соответственно в (31), (32), (34). Из неравенств (43) получаем, что для оценивания интегралов (71)–(73) достаточно оценить эти интегралы в случае, когда функция $X_{ik}(\lambda)C_{kj}(\lambda)$ имеет вид одного из следующих выражений:

$$e^{-\lambda \tau_k} \frac{\Delta_{ij}^{n_0}}{\lambda^{n_0}}, \quad e^{-\lambda \tau_k} \frac{r_{ij}^{n_0}}{\lambda^{n_0}}, \quad \tilde{f}(\lambda) \frac{\Delta_{ij}^{n_0}}{\lambda^{n_0}}, \quad \tilde{f}(\lambda) \frac{r_{ij}^{n_0}}{\lambda^{n_0}}$$

где $n_0=0,1,$ а $\widetilde{f}(\lambda)\in\widetilde{\mathscr{F}}.$ Из (38), (43) на прямой $\operatorname{Re}\lambda=-\gamma$ имеем

$$\left| \tilde{f}(\lambda) \frac{r_{ij}^{n_0}}{\lambda^{n_0}} \right| \le \frac{K}{|\lambda|^2} \ (n_0 = 0, 1), \quad \left| \tilde{f}(\lambda) \frac{\Delta_{ij}^1}{\lambda} \right| \le \frac{K}{|\lambda|^2}, \quad \left| e^{-\lambda \tau_k} \frac{r_{ij}^1}{\lambda} \right| \le \frac{K}{|\lambda|^2},$$

поэтому для оценивания (71)–(73) в правых частях этих выражений достаточно в качестве $X_{ik}(\lambda)C_{kj}(\lambda)$ рассмотреть функции вида

$$x_{ijk,1} = e^{-\lambda \tau_k} \Delta^0_{ij}, \ x_{ijk,2} = e^{-\lambda \tau_k} \frac{\Delta^1_{ij}}{\lambda}, \ x_{ijk,3} = e^{-\lambda \tau_k} r^0_{ij}, \ x_{ijk,4} = e^{-\lambda \tau_k} \tilde{f}(\lambda) \Delta^0_{ij}.$$

Оценим функцию $j_1(x,t)$. В случае нахождения в подынтегральном выражении (71) функций $x_{ijk,1}, x_{ijk,2}$ будет

$$j_1(x,t) = rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} e^{\lambda t} \left(\int\limits_0^1 rac{e^{\lambda(arphi_{ij}^{0,r}(x,\xi)- au_k)+\psi_{ij}^{0,r}(x,\xi)}\Delta_{ij}^{n_0}u_{0_j}(\xi)}{\lambda^{k_0+n_0}\Delta k_j(\xi)}\,d\xi
ight)d\lambda,$$

где $k_0, n_0 = 0, 1$. Применим лемму 2 и в силу неравенств (67) получим при $t > \tau^* = \mu_2 + \tau_m + t_{***}$ оценку (74) в рассматриваемом случае. Из вида (42) функций Δ^0_{ij}, r^0_{ij} следует, что в случае использования в правой части (71) функций $x_{ijk,3}, x_{ijk,4}$ достаточно оценить интеграл

$$j_1(x,t) = \frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \left(\int_0^1 \frac{e^{\lambda(\varphi_{ij}^{0,r}(x,\xi) - \tau_k - \tau) + \psi_{ij}^{0,r}(x,\xi)} \tilde{f}_{kij}^r(\lambda) u_{0_j}(\xi)}{\lambda^{k_0} \Delta k_j(\xi)} d\xi \right) d\lambda \quad (75)$$

при $k_0=0,1$, где $\tilde{f}^r_{kij}(\lambda)$ имеет вид (37), а $\tau:0\leq \tau\leq t_{***}$.

При $k_0=1$ в силу (38) для $j_1(x,t)$ справедлива оценка (74) при t>0. Так как $\tilde{f}(\lambda)=O(\frac{1}{\lambda})$ на прямой $\mathrm{Re}\,\lambda=-\gamma$, то с учетом гладкости $u_{0_j}(\xi)$ при $k_0=0$ в правой части (75) можно поменять порядки интегрирования (см. лемму 4 в [7]) и при $t>\tau^{**}=\mu_2+2\tau_m+t_{***}$ получить

$$j_1(x,t) = \int\limits_0^1 \frac{e^{\psi_{ij}^{0,r}(x,\xi)}}{k_j(\xi)} u_{0_j}(\xi) \left(\frac{1}{2\pi i} \int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} \frac{e^{\lambda(t+\varphi_{ij}^{0,r}(x,\xi)-\tau_k-\tau)} \tilde{f}_{kij}^r(\lambda)}{\Delta} d\lambda \right) d\xi.$$

Обозначим внутренний интеграл через $w(x,\xi,t)$ и, используя (37), применим к функции w лемму 2, из которой при $t>\tau^{**}$ имеем оценку $|w(x,\xi,t)|\leq Ke^{-\gamma t}$, гарантирующую для $j_1(x,t)$ оценку (74) при $t>\tau^{**}$.

Рассмотрим функцию $j_2(x,t)$ (72). Согласно неравенству (39) для $r_0(\lambda)$ на прямой $\mathrm{Re}\,\lambda=-\gamma$ имеет место неравенство

$$\left| \frac{x_{ijk,l}r_0(\lambda)}{\lambda^{k_0}\Delta^2} \right| \le \frac{K}{|\lambda|^2} \quad (l = 2, 3, 4, \ k_0 = 0, 1),$$

обеспечивающее в рассматриваемом случае при t>0 оценку (74). Получим аналогичную оценку в случае функции $x_{ijk,1}$. Имеем

$$j_2(x,t) = \frac{1}{2\pi i} \int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} e^{\lambda t} \left(\int\limits_0^1 \frac{e^{\lambda(\varphi_{ij}^{0,r}(x,\xi)-\tau_k)+\psi_{ij}^{0,r}(x,\xi)}\Delta_{ij}^0 r_0(\lambda) u_{0_j}(\xi)}{\lambda^{k_0}\Delta^2 k_j(\xi)} \, d\xi \right) d\lambda,$$

где $k_0=0,1$. Из (39) для $j_2(x,t)$ ($k_0=1$) следует оценка (74) при t>0. Из (32), (39) ясно, что для оценивания $j_2(x,t)$ ($k_0=0$) нужно в качестве $r_0(\lambda)$ взять функцию $e^{-\lambda \tau} \tilde{f}(\lambda)$ ($0 \le \tau \le t_*$), т. е. в силу (42) достаточно оценить функцию

$$\frac{1}{2\pi i} \int_{-\gamma - i\infty}^{-\gamma + i\infty} e^{\lambda t} \left(\int_{0}^{1} \frac{e^{\lambda(\varphi_{ij}^{0,r}(x,\xi) - \tau_k - \tau - \tau^1) + \psi_{ij}^{0,r}(x,\xi)} \tilde{f}_{kij}^r(\lambda) u_{0_j}(\xi)}{\Delta^2 k_j(\xi)} d\xi \right) d\lambda,$$

где $0 \le \tau^1 \le t_{***}$. Рассуждая, как в случае функции (75) с $k_0=0$, при $t>\tau^{***}=\mu_2+2\tau_m+t_*+t_{***}$ получим для $j_2(x,t)$ оценку (74).

Рассмотрим функцию $j_3(x,t)$ (73). Из вида (34)–(36) функции $\Theta_1(\lambda)$ и оценки (39) для $r_1(\lambda)$ на прямой $\operatorname{Re} \lambda = -\gamma$ имеем для l=2,3,4 неравенства

$$\left| \frac{x_{ijk,1}r_1(\lambda)}{\lambda\Delta^2} \right| \le \frac{K}{|\lambda|^2}, \quad \left| \frac{x_{ijk,l}\Theta_1(\lambda)}{\lambda\Delta^2} \right| \le \frac{K}{|\lambda|^2}.$$

Таким образом, чтобы оценить (73), нужно оценить

$$j_3(x,t) = rac{1}{2\pi i}\int\limits_{-\gamma-i\infty}^{-\gamma+i\infty} e^{\lambda t}\int\limits_0^1 rac{e^{\lambda(arphi_{ij}^{0,r}(x,\xi)- au_k- au)+\psi_{ij}^{0,r}(x,\xi)}\Delta_1 u_{0_j}(\xi)}{\lambda\Delta^2 k_j(\xi)}d\xi\,d\lambda,$$

где $0 \le \tau \le t_{**}$. Используя гладкость $u_{0_j}(\xi)$ и (38), применим лемму 2 и получим для $j_3(x,t)$ оценку (74) при $t>\tau_3=\mu_2+\tau_m+t_{**}+t_{***}$.

Итак, при $t>\tilde{t}_2=\max(\tau^{**},\tau^{***},\tau_3)$ из (74) следует оценка (70), а из нее — оценка (63) для $V_2(x,t)$. Поэтому для функции $U_2(x,t)$ при $t>\max(\tilde{t}_1,\tilde{t}_2)$ верна оценка (61), а при t>0 — оценка (60), что и означает наличие для этой функции неравенства (69) при всех t>0. Отсюда и из (49) получим для кусочно гладкого решения U(x,t) исходной задачи оценку (46). \square

В заключение сформулируем утверждения, которые следуют из теоремы 3 и доказательство которых аналогично соответствующим теоремам в случае смешанной задачи с распадающимися граничными условиями [7].

Теорема 4. Пусть K(x), $A(x) \in C^2[0,1]$, $F(x,t) \in C^{1,1}_{x,t}(\overline{\Pi})$, $\Phi^r_k(\xi) \in C^1[0,\tau_k]$ $(k=1,\ldots,m;\ r=0,1)$, а функция $\overline{U}(x,t)$ принадлежит пространству $C^1(\Gamma)$ и удовлетворяет условиям согласования (S_0) . Тогда если $\kappa_{\mathscr{A}} < -\gamma,\ \gamma > 0$, то непрерывное КГР U(x,t) задачи (1)–(3) с $F(x,t,U) \equiv F(x,t)$ при t>0 удовлетворяет неравенству

$$||U(x,t)||_{R_t^1} + ||U_t(x,t)||_{R_t}$$

$$\leq K(e^{-\gamma t}||\overline{U}(x,t)||_{C^1(\Gamma)} + \max_{0 \leq \tau \leq t} (||F(x,\tau)||_{C[0,1]}, ||F_\tau(x,\tau)||_{C[0,1]})).$$

Рассмотрим нелинейную задачу (8), (2), (3), и пусть $U_c(x)$ — ее гладкое стационарное решение. Без ограничения общности можно считать, что $U_c(x) = 0$, $\mathfrak{F}(x,0) \equiv 0$.

Определение 2. Нулевое решение задачи (8), (2), (3) называется асимптотически устойчивым с показателем $\gamma>0$ в пространстве $C^1[0,1]$, если найдется $\delta>0$ такое, что для любой функции $\overline{U}(x,t)\in C^1(\Gamma)$, удовлетворяющей условиям согласования $(S_0),\ (S_1),\ \text{где }U_1(x)=-\mathcal{K}(x)\overline{U}_x(x,0)+\mathfrak{F}(x,\overline{U}(x,0)),$ а также оценке $\|\overline{U}(x,t)\|_{C^1(\Gamma)}\leq \delta$, при всех t>0 существует единственное классическое решение U(x,t) рассматриваемой задачи, причем $\|U(x,t)\|_{C^1[0,1]}\leq Ke^{-\gamma t}\|\overline{U}(x,t)\|_{C^1(\Gamma)}$, где K не зависит от $t,\overline{U}(x,t)$.

Обозначим через $s=(s_1,\ldots,s_n)$ целочисленный вектор с неотрицательными компонентами s_j и $|s|=s_1+\cdots+s_n$. Предположим, что линеаризованная в окрестности нулевого решения рассматриваемая задача имеет вид (20), (2), (3) с

$$\mathscr{A}(x) = \left(\frac{\partial \mathfrak{F}_i(x,U)}{\partial u_j} \bigg|_{U=0} \right)_{i,j=1,\dots,n}$$

Теорема 5. Пусть $K(x) \in C^2[0,1], \ \Phi_k^r(\xi) \in C^1[0,\tau_k] \ (k=1,\ldots,m; \ r=0,1)$ и для любого $i \ (1 \leq i \leq n)$ функции $\frac{\partial^{q+|s|}\mathfrak{F}_i(x,U)}{\partial x^q \partial U^s},$ где $|s|=0,1,2,3, \ q=0,1,2, \ q+|s|\leq 3,$ непрерывны на множестве $\Omega_r=\{(x,u_1,\ldots,u_n): 0\leq x\leq 1, \max_{1\leq i\leq n}|u_i|\leq r\}, \ r>0.$ Тогда нулевое решение задачи (8), (2), (3) асимптотически устойчиво c показателем γ в пространстве $C^1[0,1].$

ЛИТЕРАТУРА

- 1. Мышкис А. Д., Филимонов А. М. Непрерывные решения гиперболических систем квазилинейных уравнений с двумя независимыми переменными // Нелинейный анализ и нелинейные дифференциальные уравнения. М.: Физматлит, 2003. С. 337–351.
- Акрамов Т. А. Дифференциальные уравнения и их приложения в моделировании физико-химических процессов. Уфа: Изд-во Башкирск. ун-та, 2000.
- Генкин Г. Г., Глузман С. С. Численное и качественное исследование нестационарных режимов одного класса сложных химико-технологических схем // Математические проблемы химии. Новосибирск: ВЦ СОРАН, 1975. Т. 2. С. 90–98.
- 4. Перлмуттер Д. Устойчивость химических реакторов. Л.: Химия, 1976.
- Сиразетдинов Т. К. Устойчивость систем с распределенными параметрами. Новосибирск: Наука. 1987.
- Kmit I., Hörmann G. Systems with singular non-local boundary conditions: Reflection of singularities and delta-waves // J. Anal. Appl. 2001. V. 20, N 3. P. 637–659.
- Елтышева Н. А. О качественных свойствах решений некоторых гиперболических систем на плоскости // Мат. сб. 1988. Т. 137, № 2. С. 186–209.
- Аболиня В. Э., Мышкис А. Д. Смешанная задача для почти линейной гиперболической системы на плоскости // Мат. сб. 1960. Т. 50, № 4. С. 423–442.
- **9.** Наймарк М. А. Линейные дифференциальные операторы. М.: Наука, 1969.
- 10. Birkhoff G. D., Langer R. E. The boundary problems and developments associated with a system of ordinary linear differential equations of the first order // Proc. Amer. Acad. Arts Sci. 1923. V. 58, N 2. P. 51–128.
- Брушлинский К. В. О росте решения смешанной задачи в случае неполноты собственных функций // Изв. АН СССР. Сер. мат. 1959. Т. 23, № 6. С. 893–912.
- 12. Левин Б. Я. Распределение корней целых функций. М.: Гостехиздат, 1959.
- 13. Левитан Б. М. Почти-периодические функции. М.: Гостехиздат, 1959.
- **14.** Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1965.

Статья поступила 17 апреля 2005 г.

Люлько Наталья Альбертовна Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090