ВЛАСТНЫЕ ОРГРАФЫ

С. В. Судоплатов

Аннотация: Определяется понятие властного орграфа и устанавливается, что структура властного орграфа содержится в насыщенной структуре любого неглавного властного типа p, обладающего глобальным свойством попарного пересечения и свойством подобия теорий графовых структур типа p и некоторых его формульных ограничений (такими свойствами обладают все властные типы в известных теориях с конечным (> 1) числом попарно неизоморфных счетных моделей). Описываются структуры транзитивных замыканий насыщенных властных орграфов, образующихся в моделях теорий с неглавными властными 1-типами при условии конечного числа неглавных 1-типов. Доказывается, что структура властного орграфа, рассматриваемая в модели простой теории, индуцирует бесконечный вес, откуда вытекает, что властные орграфы не встречаются в структурах известных классов простых теорий (таких, как суперпростые или конечно базируемые теории), не содержащих теории с конечным (> 1) числом счетных моделей.

Ключевые слова: властный тип, властный орграф, бесконечный вес.

В работе продолжается начатое в [1–3] изучение свойств структур властных (или мощных) типов, т. е. полных типов $p(\bar{x}) \in S(\varnothing)$ таких, что любая модель данной полной теории, реализующая тип $p(\bar{x})$, реализует любой тип из $S(\varnothing)$. Интерес к исследованию структур властных типов связан с тем, что властные типы присутствуют в любой эренфойхтовой теории (напомним [4], что эренфойхтовой называется любая полная теория, имеющая конечное, но большее единицы число попарно неизоморфных счетных моделей).

Отметим основные результаты, представленные в работе. Мы определим понятие властного орграфа, установим его «локальное» присутствие в структуре любого неглавного властного типа p, а также покажем, что при условии (2,p)-инвариантности теории структура властного орграфа содержится в ограничении насыщенной структуры на структуру реализаций любого неглавного властного типа, обладающего глобальным свойством попарного пересечения. Далее опишем структуры транзитивных замыканий насыщенных властных орграфов, образующихся в моделях теорий с неглавными властными 1-типами при условии конечного числа неглавных 1-типов. Кроме того, докажем, что структура властного орграфа, рассматриваемая в модели простой теории, индуцирует бесконечный вес. Это означает, что властные орграфы не встречаются в структурах известных классов простых теорий (таких, как суперпростые или конечно базируемые теории), не содержащих эренфойхтовых теорий.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 02–01–00258, 05–01–00411) и Совета по грантам Президента Российской Федерации для государственной поддержки ведущих научных школ Российской Федерации (грант НШ–4787.2006.1).

В работе без пояснений используются стандартная теоретико-модельная терминология из [5–7], аппарат теории графов [8], а также понятия и обозначения из работы [9].

Все рассматриваемые теории будут считаться полными и не имеющими конечных моделей.

Орграфом будет называться алгебраическая система $\Gamma = \langle X,Q \rangle$ с одним антисимметричным иррефлексивным двуместным отношением Q. При этом множество X называется множеством вершин, а отношение Q- множеством дуг орграфа Γ . Маршрутом в орграфе Γ называется любая непустая последовательность $S = (a_0, \ldots, a_n)$ вершин, для которых выполняется $\Gamma \models Q(a_i, a_{i+1}), i = 0, \ldots, n-1$. При этом маршрут S будет также называться (a_0, a_n) -маршрутом, а число n- длиной маршрута S. Контуром в орграфе Γ называется любой (a,a)-маршрут ненулевой длины. Орграф, не имеющий контуров, называется S весконтурным.

Отношения $Q^n, n \in \mathbf{Z}$, определим по индукции следующими соотношениями: $Q^0 \rightleftharpoons \mathrm{i}\, d_X, \, Q^1 \rightleftharpoons Q, \, Q^{n+1} \rightleftharpoons Q^n \circ Q, \, Q^{-n} \rightleftharpoons (Q^n)^{-1}, \, n \in \omega.$

Счетный бесконтурный орграф $\Gamma = \langle X, Q \rangle$ называется *властным*, если выполняются следующие условия:

- (а) группа автоморфизмов орграфа Г транзитивна;
- (б) формула Q(x,y) эквивалентна в теории $\mathrm{Th}(\Gamma)$ дизъюнкции главных формул;
 - (в) $\operatorname{acl}(\{a\}) \cap \bigcup_{n \in \omega} Q^n(\Gamma, a) = \{a\}$ для любой вершины $a \in X;$
 - (г) $\Gamma \models \forall x,y \,\exists z \, (Q(z,x) \land Q(z,y))$ (свойство попарного пересечения).

Очевидно, что в классических примерах эренфойхтовых теорий (см., например, [9]) властным является счетный граф с отношением x < y, задающим плотный линейный порядок.

В следующем примере теории с тремя счетными моделями, близком к примеру из работы [10], властный орграф также включает отношение <.

ПРИМЕР 1. Пусть $\mathcal{M} = \langle M, \leq \rangle$ — нижняя полурешетка без наименьшего и максимальных элементов такая, что

- а) никакие два несравнимых элемента не имеют верхней грани;
- б) между любыми двумя различными сравнимыми элементами имеется промежуточный;
- в) для любого элемента a существует бесконечное множество попарно несравнимых бо́льших элементов, инфимум которого равен a.

Обогатим систему \mathcal{M} константами c_n , $n \in \omega$, такими, что $c_n < c_{n+1}$, $n \in \omega$. Теория T полученной системы имеет ровно три счетные модели: простую, насыщенную, а также простую над реализацией властного типа $p_{\infty}(x)$, изолируемого множеством формул $\{c_n < x \mid n \in \omega\}$. \square

Следующий пример, представленный в работах [11, 12], определяет стабильную теорию ациклической парной функции со структурой властного орграфа.

ПРИМЕР 2. Пусть M — множество с двумя функциями $f_1, f_2: M \to M$ такими, что $(f_1, f_2): M \to M \times M$ — биекция, для которой не существует непустой последовательности i_1, \ldots, i_n и элемента $a \in M$ с условием $f_{i_n}(\ldots f_{i_1}(a)\ldots) = a$. Теория $T \rightleftharpoons \operatorname{Th}(\langle M; f_1, f_2 \rangle)$ стабильна. Рассмотрим $c \circ o \circ \partial h \circ i \circ i$ 1-тип $p \in S^1(T)$, т. е. тип элементов a, для которых

$$f_{i_n}(\ldots f_{i_1}(a)\ldots)=f_{j_m}(\ldots f_{j_1}(a)\ldots)\Leftrightarrow i_1\ldots i_n=j_1\ldots j_m.$$

Непосредственно проверяется, что некоторое счетное множество реализаций типа p с отношением, определяемым формулой $(y = f_1(x)) \lor (y = f_2(x))$, образует властный орграф. \square

Кроме приведенных примеров достаточно богатый класс властных орграфов образуют бесконтурные орграфы вида $\langle P,Q\rangle=\langle P,\{(p,p')\mid p'=pg_0$ на некоторой линии $\}\rangle$, соответствующие полигонометриям $\operatorname{pm}(G,\langle P,L,\in\rangle,g_0)$ на проективной плоскости (см. [13, теорема 2.1]).

Пусть $\mathcal{M}-$ модель теории $T,\ p(\bar{x})-$ полный тип теории T над пустым множеством, $\psi(\bar{x},\bar{y})-$ формула теории $T,\ l(\bar{x})=l(\bar{y}).$ Обозначим через p(M) множество реализаций типа $p(\bar{x})$ в модели $\mathcal{M},$ а через $R_{\psi}^{p}(\mathcal{M})-$ бинарное отношение $\{(\bar{a},\bar{b})\in (p(M))^2\mid \mathcal{M}\models\psi(\bar{a},\bar{b})\}.$

Следующее утверждение показывает, что властные орграфы «локально» присутствуют в структуре любого неглавного властного типа.

Предложение 1. Если $p(\bar{x})$ — неглавный властный тип теории T и \mathcal{M} — счетная насыщенная модель теории T, то для любой формулы $\varphi(\bar{x}) \in p(\bar{x})$ существует формула $\psi(\bar{x},\bar{y})$ теории T (где $l(\bar{x}) = l(\bar{y})$), удовлетворяющая следующим условиям:

- 1) для любого $\bar{a} \in p(M)$ формула $\psi(\bar{a}, \bar{x})$ эквивалентна дизъюнкции главных формул $\psi_i(\bar{a}, \bar{x}), i \leq n$, таких, что $\psi_i(\bar{a}, \bar{x}) \vdash p(\bar{x})$ и из $\models \psi_i(\bar{a}, \bar{b})$ следует, что \bar{b} не полуизолирует \bar{a} ;
- 2) для любых $\bar{a}, \bar{b} \in p(M)$ существует такой набор \bar{c} , что $\models \varphi(\bar{c}) \land \psi(\bar{c}, \bar{a}) \land \psi(\bar{c}, \bar{b})$.

Доказательство. Пусть \bar{a} и b — реализации типа $p(\bar{x})$ в модели $\mathcal{M}_{\bar{a}}$ такие, что \bar{b} не полуизолирует \bar{a} . Поскольку $\mathcal{M}_{\bar{b}} \prec \mathcal{M}_{\bar{a}}$, то для любой реализации $\bar{c} \in \mathcal{M}_{\bar{b}}$ найдется главная формула $\chi_{\bar{c}}(\bar{a},\bar{y})$ такая, что $\models \chi_{\bar{c}}(\bar{a},\bar{c})$. Перенумеруем все реализации типа $p(\bar{x})$ в модели $\mathcal{M}_{\bar{b}}$: $p(M_{\bar{b}}) = \{\bar{c}_n \mid n \in \omega\}$. Положим $\chi_n(\bar{a},\bar{y}) \rightleftharpoons \chi_{\bar{c}_n}(\bar{a},\bar{y}), n \in \omega$.

Зафиксируем формулу $\varphi(\bar{x}) \in p(\bar{x})$ и покажем, что некоторую формулу $\bigvee_{i=0}^m \chi_i(\bar{x},\bar{y})$ можно взять в качестве формулы $\psi(\bar{x},\bar{y})$. Очевидно, что любая из этих формул удовлетворяет условию 1. Предполагая, что ни одна из указанных формул не удовлетворяет условию 2, по теореме компактности получаем совместность множества

$$\begin{split} r(\bar{x},\bar{y}) & \rightleftharpoons p(\bar{x}) \cup p(\bar{x}) \\ & \cup \left\{ \neg \exists \bar{z} \left(\left(\bigvee_{i=0}^m \chi_i(\bar{z},\bar{x}) \right) \wedge \left(\bigvee_{i=0}^m \chi_i(\bar{z},\bar{y}) \right) \wedge \varphi(\bar{z}) \right) \mid m \in \omega \right\}. \end{split}$$

В силу властности типа $p(\bar{x})$ тип $r(\bar{x},\bar{y})$ реализуется в модели $\mathcal{M}_{\bar{b}}$ посредством некоторых кортежей \bar{d}_1 и \bar{d}_2 : $\mathcal{M}_{\bar{b}} \models r(\bar{d}_1,\bar{d}_2)$. Значит, найдутся формулы $\chi_{\bar{d}_1}(\bar{x},\bar{y})$ и $\chi_{\bar{d}_2}(\bar{x},\bar{y})$ такие, что $\models \chi_{\bar{d}_1}(\bar{a},\bar{d}_1) \wedge \chi_{\bar{d}_2}(\bar{a},\bar{d}_2)$, а это противоречит совместности множества $r(\bar{x},\bar{y})$. Таким образом, множество $r(\bar{x},\bar{y})$ несовместно, откуда для некоторого m_0 следует несовместность множества

$$p(\bar{x}) \cup p(\bar{x}) \cup \left\{ \neg \exists \bar{z} \left(\left(\bigvee_{i=0}^{m_0} \chi_i(\bar{z}, \bar{x}) \right) \land \left(\bigvee_{i=0}^{m_0} \chi_i(\bar{z}, \bar{y}) \right) \land \psi_n(\bar{z}) \right) \mid n \in \omega \right\}.$$

Полагая $\psi(\bar{x},\bar{y}) \rightleftharpoons \bigvee_{i=0}^{m_0} \chi_i(\bar{x},\bar{y})$, получаем требуемое. \square

Свойство 2, приведенное в предложении 1, будем называть локальным свойством попарного пересечения. Если же для формулы $\psi(\bar{x},\bar{y})$ выполняется более сильное свойство:

2') для любых $\bar{a}, \bar{b} \in p(M)$ существует такой набор $\bar{c} \in p(M),$ что $\models \psi(\bar{c}, \bar{a}) \land \psi(\bar{c}, \bar{b}),$

то это свойство будем называть глобальным свойством попарного пересечения для типа $p(\bar{x})$ относительно формулы $\psi(\bar{x},\bar{y})$.

При наличии формулы $\psi(\bar{x},\bar{y})$, удовлетворяющей свойствам 1 и 2', будем называть орграф $\langle p(M), R^p_{sb}(\mathscr{M}) \rangle$ предвластным.

В дальнейшем для простоты будем считать, что p-1-тип.

Напомним, что теории T_0 и T_1 сигнатур Σ_0 и Σ_1 соответственно называются *подобными*, если для любой модели $M_i \models T_i, i=0,1$, существуют формулы теории T_i , определяющие в M_i предикаты, функции и константы сигнатуры Σ_{1-i} таким образом, что соответствующая алгебраическая система сигнатуры Σ_{1-i} является моделью теории T_{1-i} .

Пусть \mathscr{M} — счетная насыщенная модель теории T, имеющей предикатную сигнатуру. Рассмотрим индуцированную системой \mathscr{M} подсистему $p(\mathscr{M}) = \langle p(M), \Sigma(T) \rangle$ сигнатуры $\Sigma(T)$ теории T с носителем p(M) и отношениями $R(p(\mathscr{M})) = R(\mathscr{M}) \cap (p(M))^{\mu(R)}, R \in \Sigma(T)$. Обозначим через T_p теорию $\operatorname{Th}(p(\mathscr{M}))$.

Теория T называется (n,p)-инвариантной, если для любой формулы $\psi(\bar{x})$ (где $l(\bar{x})=n$) теории T_p обеднение морлизации теории T_p на сигнатуру $\{R_\psi\}$ подобно обеднению морлизации теории структуры некоторого формульного множества $\varphi(\mathcal{M})$ (где $\varphi \in p$) на ту же самую сигнатуру.

Покажем, что из существования предвластной структуры на множестве реализаций неглавного властного типа $p\ (2,p)$ -инвариантной теории следует существование формулы, определяющей структуру властного орграфа на этом множестве.

Предложение 2. Если p(x) — неглавный властный тип (2,p)-инвариантной теории T и $\langle p(M), R_{\psi}^p(\mathscr{M}) \rangle$ — предвластный орграф, то для некоторой формулы $\theta(x,y)$ с условием $T \vdash \theta(x,y) \to \psi(x,y)$ орграф $\langle p(M), R_{\theta}^p(\mathscr{M}) \rangle$ является властным.

Доказательство. Из (2,p)-инвариантности теории T следует, что можно выбрать главными формулы $R_{\chi_i'}^p(x,y)$, соответствующие в T формулам $\chi_i(x,y)$ таким, что $\psi(a,x)=\bigvee_{i=0}^m\chi_i(a,x)$ и формулы $\chi_i(a,x)$ являются главными для любого $a\in p(M)$ и любого $i=1,\ldots,m$. Действительно, элемент a принадлежит простой модели \mathcal{M}_0 обеднения морлизации теории T_p на сигнатуру $\{R_\psi\}$. Этой же модели принадлежат некоторые реализации d_i главных формул, соответствующих формулам $\chi_i(a,y),\ i=0,\ldots,m_0$. Рассмотрим формулы $\chi_i'(x,y)$ сигнатуры $\{R_\psi\}$, соответствующие полным формулам типов $\mathrm{tp}(a\,\hat{}^{}d_i),\ i=0,\ldots,m$. Возьмем в качестве $\theta(x,y)$ формулу теории T, для которой выполняются следующие условия:

1) обеднение морлизации теории структуры некоторого формульного множества $\varphi(\mathcal{M})$ (где $\varphi \in p$) на сигнатуру $\{R_{\theta}\}$ подобно обеднению морлизации теории T_p на ту же самую сигнатуру;

$$2) \vdash (\varphi(x) \land \varphi(y)) \to \left(\theta(x,y) \leftrightarrow \bigvee_{i=0}^{m} \chi_i'(x,y)\right);$$

$$3) \vdash \theta(\bar{x}, \bar{y}) \to \psi(\bar{x}, \bar{y}).$$

В силу насыщенности модели $\mathscr M$ группа автоморфизмов орграфа $\Gamma = \langle p(M), R^p_\theta(\mathscr M) \rangle$ транзитивна.

Заметим, что для любого $a \in p(M)$ из $\models \theta(a,b)$ следует $b \in p(M)$ и b не полуизолирует a. Тогда в силу транзитивности отношения полуизолированности орграф Γ является бесконтурным.

Несимметричность отношения полуизолированности $\mathrm{SI}_p,\,$ обусловленная формулой $\theta,\,$ влечет равенство

$$\operatorname{acl}(\{b\}) \cap \bigcup_{n \in \omega} (R^p_{\theta}(\mathscr{M}))^n(\Gamma, b) = \{b\}$$

для любого $b \in p(\mathcal{M})$. Действительно, предполагая, что существует элемент

$$d \in \operatorname{acl}(\{b\}) \cap \bigcup_{n \in \omega} (R^p_{\theta}(\mathscr{M}))^n(\Gamma, b) \setminus \{b\},$$

получаем, что b полуизолирует d в модели \mathcal{M} . Значит, в силу транзитивности отношения полуизолированности элемент b будет полуизолировать a, где $\models \theta(a,b)$ и $a \in p(M)$; противоречие.

Из глобального свойства попарного пересечения для типа $p(\bar{x})$ относительно формулы $\psi(x,y)$ следует это же свойство относительно формулы $\theta(x,y)$, а значит, и свойство попарного пересечения для орграфа Γ . Таким образом, Γ — властный орграф. \square

Заметим, что в условиях предложения 2 конечное число неглавных 1-типов влечет соотношение

$$\operatorname{acl}(\{a\}) \cap \bigcup_{n \in \omega} (R^p_{\theta}(\mathcal{M}))^n(a, \Gamma) = \{a\}$$
 (1)

для любой вершины a из орграфа $\Gamma = \langle p(M), R_{\theta}^{p}(\mathscr{M}) \rangle$.

Действительно, в предположении, что тип $\operatorname{tp}(b/a)$ алгебраичен для некоторого $b \in \left(R^p_{\theta}(\mathscr{M})\right)^n(\bar{a},\Gamma), \ b \neq a$, в исходной теории найдется полуизолирующая формула $\theta(a,y)$ такая, что $\models \theta(a,b) \land \exists^{=k} \bar{y} \ \theta(a,y)$ для некоторого $k \in \omega$. Из того, что b не полуизолирует a и число неглавных 1-типов конечно, следует существование кортежа c, реализующего главный тип и такого, что $\models \theta(c,b) \land \exists^{=k} \bar{y} \ \theta(c,y)$. Это означает, что в простой модели реализуется неглавный тип p(x); противоречие.

В предположении, что число неглавных $l(\bar{x})$ -типов бесконечно, соотношение (1) может не выполняться. В качестве иллюстрации рассмотрим следующий пример ω -стабильной теории с неглавным 1-типом $p_0(x)$, имеющим несимметричное отношение полуизолированности посредством формулы Q(x,y) с условием $\mathrm{acl}(\{a\}) = \bigcup_{n \in \omega} Q^n(a,\mathscr{M})$ для любой реализации a типа $p_0(x)$.

ПРИМЕР 3. Обозначим через Ω множество непустых конечных последовательностей $\bar{\alpha} = \langle \alpha_0, \alpha_1, \dots, \alpha_n \rangle$ таких, что $\alpha_i \in \omega, i \leq n, l(\bar{\alpha}) = \alpha_0 + 2.$

Пусть T_0 — теория сигнатуры $\langle P_{\bar{\alpha}}^{(1)}, Q^{(2)} \rangle_{\bar{\alpha} \in \Omega}$ со следующими аксиомами:

1) если $\bar{\alpha} = \bar{\alpha}' \hat{\ } m \in \Omega$, то

$$\vdash (P_{\bar{\alpha}'\,{}^\smallfrown (m+1)}(x) \to P_{\bar{\alpha}'\,{}^\smallfrown m}(x)) \wedge \exists^{\geq \omega} x\, (P_{\bar{\alpha}'\,{}^\smallfrown m}(x) \wedge \neg P_{\bar{\alpha}'\,{}^\smallfrown (m+1)}(x));$$

2) если $\bar{\alpha}_1=\bar{\alpha}_1'$ $\hat{\ }0,$ $\bar{\alpha}_2=\bar{\alpha}_2'$ $\hat{\ }0$ — кортежи из Ω и $\bar{\alpha}_1'\neq\bar{\alpha}_2',$ то

$$\vdash \neg \exists x (P_{\bar{\alpha}_1}(x) \land P_{\bar{\alpha}_2}(x));$$

- 3) отношение Q образует график свободного (без циклов) унара с бесконечным числом прообразов у каждого элемента;
 - 4) выполняется

$$\vdash \forall x, y \left((P_{\langle 0, m \rangle}(x) \land \neg P_{\langle 0, m+1 \rangle}(x) \land Q(x, y) \right) \rightarrow (P_{\langle 0, m \rangle}(y) \land \neg P_{\langle 0, m+1 \rangle}(y))),$$

$$m \in \omega;$$

5) если $\models P_{\langle 0,m\rangle}(a) \land \neg P_{\langle 0,m+1\rangle}(a)$, то множество реализаций формулы Q(x,a) состоит из бесконечного числа реализаций формулы $P_{\langle 0,m\rangle}(x) \land \neg P_{\langle 0,m+1\rangle}(x)$, а также бесконечного числа реализаций формул $P_{\langle 1,k,m\rangle}(x) \land \neg P_{\langle 1,k,m+1\rangle}(x)$ для каждого $k \in \omega$;

6) если
$$\bar{\alpha} = k \hat{\alpha}' \hat{l} m -$$
кортеж из $\Omega, k \geq 1$, то

$$\vdash \forall x, y \left(\left(P_{k \hat{\alpha}' \hat{\alpha}' \hat{\alpha}' \hat{\alpha}' n}(x) \land \neg P_{k \hat{\alpha}' \hat{\alpha}' \hat{\alpha}' (m+1)}(x) \land Q(x, y) \right) \\ \rightarrow \left(P_{(k-1)} \hat{\alpha}' \hat{\alpha}' m(y) \land \neg P_{(k-1)} \hat{\alpha}' \hat{\alpha}' (m+1)}(y) \right), \quad m \in \omega;$$

7) если $k \neq 0$ и $\models P_{k \hat{\alpha} m}(a) \land \neg P_{k \hat{\alpha} (m+1)}(a)$, то множество реализаций формулы Q(x,a) состоит из бесконечного числа реализаций формул

$$P_{(k+1)\hat{\bar{\alpha}}\hat{\bar{\alpha}}\hat{l}\hat{m}}(x) \wedge \neg P_{(k+1)\hat{\bar{\alpha}}\hat{\bar{\alpha}}\hat{l}(m+1)}(x)$$

для каждого $l \in \omega$.

Построение насыщенной модели, удовлетворяющей аксиомам 1–7, позволяет проверить полноту теории T_0 . Ее ω -стабильность вытекает из того, что каждая формула со свободными переменными и без параметров эквивалентна булевой комбинации формул вида $P_{\bar{\alpha}}(x)$, $\bar{\alpha} \in \Omega$, и $\exists z \, (Q^{n_1}(x,z) \land \, Q^{n_2}(y,z)), \, n_1, n_2 \in \omega$. Для типа $p_0(x) \in S^1(\varnothing)$, определяемого множеством формул $\{P_{\langle 0,m\rangle} \mid m \in \omega\}$, отношение полуизолированности несимметрично посредством формулы Q(x,y). Для любого $a \models p_0$ множество реализаций формулы Q(x,a) исчерпывается реализациями типа p_0 , а также реализациями неглавных типов $p_{\langle 1,k\rangle}(x) \in S^1(\varnothing)$, определяемых множествами формул $\{P_{\langle 1,k,m\rangle} \mid m \in \omega\}, \, k \in \omega$. В силу того, что отношение Q образует график свободного унара с бесконечным числом прообразов у каждого элемента, для любого элемента a модели $\mathcal{M} \models T_0$ выполняется $\mathrm{acl}(\{a\}) = \bigcup_{n \in \omega} Q^n(a,\mathcal{M})$. \square

В связи с приведенными выше рассуждениями представляется перспективной проблема описания властных орграфов, обогащаемых до структур неглавных властных 1-типов как в случае конечного числа неглавных 1-типов, так и в случае их бесконечного числа.

Напомним, что частично упорядоченное множество $\langle X, \leq \rangle$ называется направленным вниз, если для любых $x,y \in X$ существует $z \in X$ с условиями $z \leq x$ и $z \leq y$.

Укажем основные возможности, которыми исчерпываются структуры транзитивных замыканий властных орграфов, полученных из структур неглавных властных типов $p(\bar{x})$, для которых число неглавных $l(\bar{x})$ -типов конечно.

Теорема. Пусть $\Gamma = \langle X,Q \rangle$ — насыщенный властный орграф, в котором $\operatorname{acl}(\{a\}) \cap \bigcup_{n \in \omega} Q^n(a,\Gamma) = \{a\}$ для любого $a \in X$. Тогда его транзитивное замыкание $\operatorname{TC}(\Gamma) = \langle X, \bigcup_{n \in \omega} Q^n \rangle$ изоморфно направленному вниз множеству с транзитивной группой автоморфизмов, имеющему один из следующих порядков:

 (1_{α}) плотный частичный порядок c максимальными антицепями, содержащими α элементов, $\alpha \in (\omega + 1) \setminus \{0\}$;

(2) частичный порядок с бесконечным числом покрывающих элементов для любого элемента.

Доказательство. Рефлексивность и транзитивность отношения \leq орграфа $\mathrm{TC}(\Gamma) = \langle X, \leq \rangle$ очевидны. Антисимметричность отношения \leq вытекает из бесконтурности орграфа Γ . Существование в частично упорядоченном множестве $\mathrm{TC}(\Gamma)$ нижних граней для любых двух элементов вытекает из свойства попарного пересечения. Если порядок \leq не является плотным, то бесконечность числа покрывающих элементов для любого элемента $a \in X$ вытекает из условия $\mathrm{acl}(\{a\}) \cap \bigcup_{n \in \omega} Q^n(a,\Gamma) = \{a\}$, поскольку в этой ситуации совместная формула $a < x \land \neg \exists y \, (a < y \land y < x)$ не принадлежит алгебраическому типу над элементом a. \square

Заметим, что указанные плотные частичные порядки с максимальными антицепями мощности α реализуются заменой каждого элемента в плотном линейном порядке без концевых элементов классом эквивалентности, содержащим α попарно несравнимых элементов.

Отметим, что частичный порядок с бесконечным числом покрывающих элементов над каждым элементом получается лишь из властных орграфов, у которых формула Q(x,y) не является главной.

Действительно, если Q(x,y) — главная формула, то из истинности

$$\models Q(a,b) \land Q(a,c) \land Q(c,b)$$

для любого элемента a и некоторых элементов b,c и существования a-автоморфизмов, связывающих любые элементы из $Q(a,\Gamma)$, следует, что для любого элемента b из $Q(a,\Gamma)$ найдется элемент c, принадлежащий $Q(a,\Gamma)\cap Q(\Gamma,b)$. Следовательно, в графе $\mathrm{TC}(\Gamma)$ между любыми двумя различными элементами имеется промежуточный элемент.

Таким образом, справедливо

Следствие 1. Если $\Gamma = \langle X, Q \rangle$ — властный орграф c главной формулой Q(x,y), то отношение $\bigcup_{n \in \omega} Q^n$ является плотным частичным порядком.

Заметим, что если отношение \leq в транзитивном замыкании насыщенного властного орграфа $\Gamma = \langle X, Q \rangle$ не является формульно определимым в языке графа Γ (т. е. если длины кратчайших маршрутов не ограничены), то по теореме компактности в $\mathrm{TC}(\Gamma)$ над каждым элементом a имеется бесконечная антицепь, принадлежащая $Q(a,\Gamma)$. Таким образом, из теоремы вытекает

Следствие 2. Пусть $\Gamma = \langle X, Q \rangle$ — насыщенный властный орграф с неограниченными длинами кратчайших маршрутов и такой, что

$$\operatorname{acl}(\{a\})\cap \bigcup_{n\in\omega}Q^n(a,\Gamma)=\{a\}$$

для любого $a \in X$. Тогда его транзитивное замыкание $\mathrm{TC}(\Gamma) = \langle X, \bigcup_{n \in \omega} Q^n \rangle$ изоморфно направленному вниз множеству c транзитивной группой автоморфизмов, имеющему один из следующих порядков:

- (1) плотный частичный порядок с бесконечными антицепями;
- (2) частичный порядок с бесконечным числом покрывающих элементов для любого элемента.

Отметим, что наряду с доказанной необходимостью локального наличия властных орграфов в структурах неглавных властных типов открытым является вопрос о достаточности, т. е. о возможности обогащения любого властного орграфа до структуры властного типа. Также открытым остается вопрос о существовании властного орграфа Γ , теория которого $\mathrm{Th}(\Gamma)$ проста и мала.

Следующее утверждение показывает, что властные орграфы не встречаются в структурах известных классов простых теорий, не содержащих эренфойхтовых теорий.

Напомним [6], что тип $p(\bar{x})$ имеет бесконечный собственный вес, если существуют реализация \bar{a} типа $p(\bar{x})$ и бесконечная независимая последовательность $(\bar{a}_n)_{n\in\omega}$ реализаций типа $p(\bar{x})$ такая, что кортежи \bar{a} и \bar{a}_n зависимы для любого $n\in\omega$.

Предложение 3. Если $T = \text{Th}(\Gamma) - \text{простая}$ теория властного орграфа $\Gamma = \langle X, Q \rangle$, то (единственный) тип $p \in S^1(\varnothing)$ имеет бесконечный собственный вес.

Доказательство. Покажем сначала, что если $\models Q^k(a,b)$ для некоторого k>0, то элементы a и b зависимы. Для этого достаточно установить, что формула $Q^k(a,x)$ копируется над \varnothing . Действительно, существует такое число $m \in \omega$, что для любого элемента a_0 найдется не более m элементов a_0,\ldots,a_m , удовлетворяющих условиям $Q^k(a_i,a_j)$ для всех $0 \le i < j \le m$, поскольку в противном случае по теореме компактности и в силу бесконтурности орграфа Γ найдется бесконечная последовательность $(a_n)_{n \in \omega}$ с условием

$$\models Q^k(a_i, a_j) \Leftrightarrow i < j,$$

что противоречит простоте теории T.

Определим по индукции последовательность $(a_n)_{n\in\omega}$. Элемент a_0 выберем из множества X произвольно. Если элементы a_0,\dots,a_{n-1} уже выбраны, то в качестве элемента a_n выберем элемент с условием $\Gamma \models Q^k(a_{n-1},a_n)$, принадлежащий максимально большому числу множеств $Q^k(a_i,\Gamma), i < n$. Из замеченного выше следует, что множество $\{Q^k(a_n,x)\mid n\in\omega\}$ m-несовместно. Поскольку любые два элемента связаны автоморфизмом, то формула $Q^k(a,x)$ копируется над \varnothing .

Теперь заметим, что по свойству попарного пересечения для любых элементов $a_1, \ldots, a_n \in X$ существует элемент

$$a \in Q(\Gamma, a_1) \cap Q^2(\Gamma, a_2) \cap \dots \cap Q^n(\Gamma, a_n)$$

и, в частности, любые n элементов, образующих независимую последовательность, зависят от некоторого элемента a. В силу того, что любые два элемента связаны автоморфизмом, а число n не ограничено, существует бесконечное число элементов, образующих независимую последовательность и зависящих от элемента a. \square

В заключение автор выражает глубокую благодарность своему научному консультанту Е. А. Палютину за полезные замечания и конструктивную критику, а также Акито Цубои и Нобуаки Тамае за внимание к работе и указания на неточности в первоначальном варианте статьи.

ЛИТЕРАТУРА

 Pillay A. Countable models of stable theories // Proc. Amer. Math. Soc. 1983. V. 89, N 4. P. 666-672.

- Судоплатов С. В. О мощных типах в малых теориях // Сиб. мат. журн. 1990. Т. 31, № 4. С. 118–128.
- Судоплатов С. В. Типовая редуцированность и мощные типы // Сиб. мат. журн. 1992.
 Т. 33, № 1. С. 150–159.
- 4. Гончаров С. С., Ершов Ю. Л. Конструктивные модели. Новосибирск: Научная книга, 1999.
- Справочная книга по математической логике. Ч. 1. Теория моделей / Под ред. Дж. Барвайса, Ю. Л. Ершова, Е. А. Палютина, А. Д. Тайманова. М.: Наука, 1982.
- Shelah S. Classification theory and the number of non-isomorphic models. Amsterdam: North-Holland, 1990.
- 7. Wagner F. O. Simple theories. Dordrecht; Boston; London: Kluwer Acad. Publ., 2000.
- 8. Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990.
- 9. Судоплатов С. В. Полные теории с конечным числом счетных моделей. І // Алгебра и логика. 2004. Т. 43, № 1. С. 110–124.
- 10. Перетятькин М. Г. О полных теориях с конечным числом счетных моделей // Алгебра и логика. 1973. Т. 12, № 5. С. 550–576.
- **11.** *Мальцев А. И.* Аксиоматизируемые классы локально свободных алгебр некоторых типов // Сиб. мат. журн. 1962. Т. 3, № 5. С. 729–743.
- 12. Bouscaren E., Poizat B. Des belles paires aux beaux uples // J. Symbolic Logic. 1988. V. 53, N 2. P. 434–442.
- 13. Sudoplatov S. V. Group polygonometries and related algebraic systems // Contributions to general algebra 11 / Proc. of the Olomouc Workshop '98 on General Algebra. Klagenfurt: Verl. Johannes Heyn, 1999. P. 191–210.

Статья поступила 6 июня 2003 г.

Судоплатов Сергей Владимирович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 sudoplat@math.nsc.ru, sudoplat@ngs.ru