НОВАЯ ФОРМА ЛЕММЫ ФАРКАША

С. С. Кутателадзе

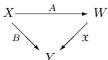
Аннотация. В рамках булевозначного анализа даны операторные версии классической леммы Фаркаша в теории линейных неравенств.

Ключевые слова: пространство Канторовича, линейное программирование, линейные неравенства, полиэдральные сублинейные неравенства, интервальное уравнение, теорема об альтернативе, булевозначные модели.

Лемма Фаркаша, известная также как лемма Фаркаша — Минковского, играет ключевую роль в линейном программировании и родственных разделах оптимизации (см. [1, 2]). Используя булевозначный анализ [3] и субдифференциальное исчисление [4], мы устанавливаем некоторые довольно общие свойства систем операторных неравенств. Эта заметка возникла в порядке краткого комментария к [5].

Пусть X — вещественное векторное пространство, Y — некоторое пространство Канторовича. Через L(X,Y) обозначим пространство линейных операторов из X в Y. Если X снабжено некоторой Y-полунормой, под $L^{(m)}(X,Y)$ мы будем понимать пространство мажорированных линейных операторов из X в Y. Для $T: X \to Y$ и $y \in Y$, как обычно, полагаем $\{T \le y\} := \{T(\cdot) \le y\} := \{x \in X \mid Tx \le y\}$ и $\ker(T) := \{T = 0\} := T^{-1}(0)$.

Рассмотрим еще одно вещественное векторное пространство W и диаграмму



Как известно,

(i) $(\exists \mathfrak{X}) \ \mathfrak{X}A = B \leftrightarrow \ker(A) \subset \ker(B)$;

 $(ii)^{(1)}$ если W упорядочено конусом W_+ и $A(X)-W_+=W_+-A(X)=W,$ т. е. A(X) мажорирует W, то

$$(\exists \mathfrak{X} \geq 0) \ \mathfrak{X} A = B \leftrightarrow \{A \leq 0\} \subset \{B \leq 0\}.$$

1. Системы линейных неравенств

Пусть $\mathbb{B} := \mathbb{B}(Y) - \textit{база } Y$, т. е. полная булева алгебра проекторов в Y, а m(Y) — максимальное расширение Y. Будем считать, что W = Y. В этой ситуации имеет место операторный аналог леммы Фаркаша.

Автор признателен А. Е. Гутману за тонкие и глубокие замечания к предварительным вариантам этой статьи.

¹⁾Теорема Канторовича (см. [4, с. 44]).

Теорема 1.1. Пусть X — вещественное Y-полунормированное пространство, где Y — некоторое пространство Канторовича. Допустим также, что заданы мажорированные операторы $A_1, \ldots, A_N, B \in L^{(m)}(X,Y)$. Следующие утверждения эквивалентны:

(1) для любого $b \in \mathbb{B}$ операторное неравенство $bBx \leq 0$ является следствием системы операторных неравенств $bA_1x \leq 0, \ldots, bA_Nx \leq 0$, т. е.

$$\{bB \le 0\} \supset \{bA_1 \le 0\} \cap \cdots \cap \{bA_N \le 0\};$$

(2) существуют положительные ортоморфизмы $\alpha_1, \ldots, \alpha_N \in \operatorname{Orth}(m(Y))$ такие, что

$$B = \sum_{k=1}^{N} \alpha_k A_k,$$

т. е. B принадлежит операторно выпуклой конической оболочке A_1, \dots, A_N .

Начнем с утверждений, представляющих варианты леммы Фаркаша для векторных пространств над подполями вещественной прямой. Доказательства этих утверждений даны для полноты, так как приводимые результаты основаны на их прямой булевозначной интерпретации.

Лемма 1.1. Пусть X — векторное пространство над подполем R поля вещественных чисел \mathbb{R} . Пусть, далее, f,g — это R-линейные функционалы над X, символически $f,g\in X^\#$.

Включение

$$\{g \le 0\} \supset \{f \le 0\}$$

имеет место в том и только в том случае, если найдется $\alpha \in \mathbb{R}_+$ такое, что $q=\alpha f$.

ДОКАЗАТЕЛЬСТВО. Установим лемму в сторону необходимости, ибо достаточность очевидна.

Случай f=0 тривиален. Если $f\neq 0$, то для некоторого $x\in X$ будет $f(x)\in\mathbb{R}$ и f(x)>0. Обозначим через R_0 образ f(X). Пусть теперь $h:=g\circ f^{-1}$, т. е. $h\in R_0^\#$ — единственное решение уравнения $h\circ f=g$. По условию h — положительный R-линейный функционал на R_0 . По теореме Бигарда [4, с. 108] h допускает продолжение до положительного гомоморфизма $h:\mathbb{R}\to\mathbb{R}$, поскольку группа R_0 мажорирует \mathbb{R} . Положительный автоморфизм \mathbb{R} есть умножение на положительное число. В качестве искомого α можно взять h(1). Тем самым лемма доказана.

Лемма 1.2. Пусть X — некоторое \mathbb{R} -полунормированное пространство над подполем R поля \mathbb{R} . Пусть, далее, f_1, \ldots, f_N и g — это ограниченные R-линейные функционалы над X, символически $f_1, \ldots, f_N, g \in X^* := L^{(m)}(X, \mathbb{R})$.

Включение

$$\{g \le 0\} \supset \bigcap_{k=1}^{N} \{f_k \le 0\}$$

имеет место в том и только в том случае, если найдутся $\alpha_1,\dots,\alpha_N\in\mathbb{R}_+$ такие, что $g=\sum\limits_{k=1}^N \alpha_k f_k.$

Доказательство. Проведем индукцию по N. Предположим, что требуемое доказано для любого набора из N функционалов на любом пространстве X, и осуществим шаг индукции.

Рассмотрим поточечные супремумы $q:=f_1\vee\dots\vee f_{N+1}$ и $p:=q\vee(-g)$. Ясно, что $p(x)\geq 0$ для всех $x\in X$. Действительно, если одно число $f_k(x)$ строго положительно, то строго положительно и число q(x). Если все числа $f_1(x),\dots,f_{N+1}(x)$ отрицательны, то отрицательно и число g(x) и, стало быть, $p(x)\geq -g(x)\geq 0$.

Поле $\mathbb R$ над R допускает выпуклый анализ (см. [4, с. 119; 6, с. 259]). Стало быть, найдутся положительные числа γ_1,γ_2 такие, что $\gamma_1+\gamma_2=1$ и для некоторого f из субдифференциала $\partial(q)$ будет $\gamma_1 f - \gamma_2 g = 0$.

Если $\gamma_2>0$, то все доказано, ибо $\partial(q)=\operatorname{co}\{f_1,\ldots,f_{N+1}\}$. Если же $\gamma_2=0$, то найдется выпуклая комбинация $\sum\limits_{k=1}^{N+1}t_kf_k=0$. Один из коэффициентов t_1,\ldots,t_{N+1} не равен нулю. Для определенности можно считать, что это t_{N+1} . Таким образом,

$$-f_{N+1}=\sum_{k=1}^Nar{t}_kf_k$$

для некоторых положительных коэффициентов $\bar{t}_k, k := 1, \dots, N$.

Пусть $X_0:=\{f_{N+1}=0\}=\ker(f_{N+1})$. Если $x_0\in X_0$ и $f_k(x_0)\leq 0$ для всех $k:=1,\ldots,N$, то по условию $g(x_0)\leq 0$. По предположению индукции найдутся положительные числа β_1,\ldots,β_N такие, что $h|_{X_0}=0$, где

$$h := g - \sum_{k=1}^{N} \beta_k f_k.$$

Функционалы h и f_{N+1} ограничены по условию и, стало быть, допускают единственные продолжения до линейных над \mathbb{R} функционалов на пополнении X. Таким образом, для некоторого $\gamma \in \mathbb{R}$ будет

$$g - \sum_{k=1}^N eta_k f_k = \gamma f_{N+1}.$$

Если $\gamma \geq 0$, то требуемое представление для g получено. Если же $\gamma < 0$, то

$$g = \sum_{k=1}^N (eta_k + |\gamma| ar{t}_k) f_k.$$

Тем самым лемма доказана полностью.

Отметим, что в случае, когда $R=\mathbb{R},$ требования ограниченности функционалов излишни.

Доказательство теоремы 1.1. (2) \to (1) Если $B=\sum\limits_{k=1}^N \alpha_k A_k$ для подходящих положительных α_1,\ldots,α_N из $\mathrm{Orth}(m(Y)),$ а $b\in\mathbb{B}$ и $x\in X$ таковы, что $bA_kx\leq 0$, то

$$bBx = b\sum_{k=1}^{N} \alpha_k A_k x = \sum_{k=1}^{N} \alpha_k b A_k x \le 0,$$

ибо ортоморфизмы коммутируют и проекторы являются ортоморфизмами.

 $(1) \to (2)$ Рассмотрим отделимый булевозначный универсум $\mathbb{V}^{(\mathbb{B})}$ над базой \mathbb{B} пространства Y. В силу теоремы Гордона [4, с. 496] подъем $Y \uparrow$ есть поле \mathscr{R} вещественных чисел внутри $\mathbb{V}^{(\mathbb{B})}$.

Используя каноническое вложение, мы видим, что X^{\wedge} — это \mathscr{R} -полунормированное векторное пространство над стандартным именем \mathbb{R}^{\wedge} поля \mathbb{R} . При этом \mathbb{R}^{\wedge} — подполе и подрешетка $\mathscr{R} = Y \uparrow$ внутри $\mathbb{V}^{(\mathbb{B})}$.

Положим $f_k := A_k \uparrow$ для $k := 1, \ldots, N$ и $g := B \uparrow$. Ясно, что $f_1, \ldots, f_N, g \in (X^{\wedge})^*$ внутри $\mathbb{V}^{\mathbb{B}}$. Определим последовательность $f : \{1, \ldots, N\}^{\wedge} \to (X^{\wedge})^*$ как подъем семейства (f_1, \ldots, f_N) . При этом для оценок истинности справедливы соотношения

$$\llbracket f_{k^{\wedge}}(x^{\wedge}) = A_k x
rbracket = 1, \quad \llbracket g(x^{\wedge}) = Bx
rbracket = 1$$

для всех $x \in X$ и $k := 1, \dots, N$.

Пусть $b := [\![A_1x \le 0^\wedge]\!] \wedge \cdots \wedge [\![A_Nx \le 0^\wedge]\!]$. Тогда $bA_kx \le 0$ для всех $k := 1, \ldots, N$ и по условию будет $bBx \le 0$. Стало быть, $[\![A_1x \le 0^\wedge]\!] \wedge \cdots \wedge [\![A_Nx \le 0^\wedge]\!] \le [\![Bx \le 0^\wedge]\!]$. Иначе говоря,

$$\llbracket (\forall k := 1^{\wedge}, \ldots, N^{\wedge}) f_k(x^{\wedge}) \leq 0^{\wedge} \rrbracket = \bigwedge_{k := 1, \ldots, N} \llbracket f_{k^{\wedge}}(x^{\wedge}) \leq 0^{\wedge} \rrbracket \leq \llbracket g(x^{\wedge}) \leq 0^{\wedge} \rrbracket.$$

Таким образом,

$$\begin{split} & [\![(\forall x \in X^\wedge) ((\forall k := 1^\wedge, \dots, N^\wedge) \ f_k(x) \leq 0^\wedge) \to g(x) \leq 0^\wedge)]\!] \\ &= \bigwedge_{x \in X} [\![((\forall k := 1^\wedge, \dots, N^\wedge) \ f_k(x^\wedge) \leq 0^\wedge) \to g(x^\wedge) \leq 0^\wedge]\!] = \mathbb{1}. \end{split}$$

Применяя лемму 1.2 внутри $\mathbb{V}^{(\mathbb{B})}$ и используя принцип максимума булевозначного анализа, найдем конечную последовательность $\alpha:\{1^\wedge,\dots,N^\wedge\}\to\mathscr{R}_+$ внутри $\mathbb{V}^{(\mathbb{B})}$ такую, что

$$\left[\left[(\forall x\in X^\wedge)\ g(x)=\sum_{k=1^\wedge}^{N^\wedge}\alpha(k)f_k(x)\right]\right]=\mathbb{1}.$$

Положим $\alpha_k:=\alpha(k^\wedge)\in\mathscr{R}_+\downarrow$ для $k:=1,\ldots,N.$ Операторы умножения в $\mathscr{R}\downarrow$ — ортоморфизмы m(Y). При этом $B=\sum\limits_{k=1}^N\alpha_kA_k$, что и требовалось доказать.

Лемма 1.1, относящаяся к следствиям одного неравенства, не использует никаких предположений, ограничивающих класс рассматриваемых функционалов. Аналогичный вариант леммы Фаркаша для двух неравенств в общем случае просто неверен. В самом деле, включение $\{f=0\}\subset \{g\leq 0\}$, эквивалентное включению $\{f=0\}\subset \{g=0\}$, не обеспечивает пропорциональности f и g в случае произвольного подполя поля $\mathbb R$. Достаточно рассмотреть, скажем, $\mathbb R$ над полем рациональных чисел $\mathbb Q$, взять разрывный $\mathbb Q$ -линейный функционал на $\mathbb R$ и тождественное отображение $\mathbb R$ в $\mathbb R$.

В этой связи уместно сформулировать такой результат.

Теорема 1.2. Пусть X — вещественное векторное пространство, Y — некоторое пространство Канторовича и $A, B \in L(X, Y)$. Эквивалентны утверждения:

- (1) $(\exists \alpha \in Orth(m(Y))) B = \alpha A;$
- (2) существует проектор $\varkappa \in \mathbb{B}$ такой, что для всякого $b \in \mathbb{B}$ выполнено²⁾

$$\{\varkappa bB\leq 0\}\supset \{\varkappa bA\leq 0\},\quad \{\neg\varkappa bB\leq 0\}\supset \{\neg\varkappa bA\geq 0\}.$$

 $^{^{(2)}}$ Как обычно, $\neg \varkappa := 1 - \varkappa$.

Доказательство. Булевозначный анализ сводит дело к скалярному случаю. Дважды применяя лемму 1.1 и расписывая оценки истинности, мы завершаем доказательство.

В условиях мажорирования можно получить аналоги теоремы 1.2 для полилинейных форм.

Теорема 1.3. Пусть X — вещественное Y-полунормированное пространство, где Y — пространство Канторовича. Для некоторого $N \in \mathbb{N}$ рассмотрим две мажорированные Y-значные N-линейные формы A, B на X.

Существует ортоморфизм $\alpha \in \text{Orth}(Y)_+$ такой, что $B = \alpha A$, в том и только в том случае, если для каждого $b \in \mathbb{B}$ будет $\{bA \leq 0\} \subset \{bB \leq 0\}$.

Доказательство. В скалярном случае эта теорема выведена в [7] в качестве простого следствия основного результата из [8]. В указанных работах рассматриваются полилинейные отображения, действующие из векторного пространства над некоторым полем в это же самое поле. Условие мажорации позволяет воспользоваться прямой булевозначной интерпретацией скалярного результата по схеме доказательства теоремы 1.1.

2. Системы сублинейных неравенств

Перейдем к лемме Фаркаша для сублинейных операторов. Обозначим через $\mathrm{Sub}(X,Y)$ множество сублинейных операторов из X в Y. Оператор $P \in \mathrm{Sub}(X,Y)$ называют *полиэдральным* и пишут $P \in \mathrm{PSub}(X,Y)$ при условии, что P представляет собою верхнюю огибающую конечного набора линейных операторов, т. е. если найдется конечное множество $\Lambda \subset L(X,Y)$ такое, что

$$P(x) = P_{\Lambda}(x) := \sup\{Ax \mid A \in \Lambda\}.$$

В случае, когда X снабжено какой-нибудь Y-полунормой, мы рассматриваем множество мажорированных сублинейных операторов $\mathrm{Sub}^{(m)}(X,Y)$ и множество полиэдральных мажорированных сублинейных операторов $\mathrm{PSub}^{(m)}(X,Y)$, подразумевая операторы, чьи субдифференциалы лежат в $L^{(m)}(X,Y)$.

Начнем с двух скалярных лемм, вторая из которых обобщает основной результат [9].

Лемма 2.1. Пусть X — вещественное векторное пространство. Предположим, что $f_1,\ldots,f_N\in X^\#$ и $p\in \mathrm{Sub}(X):=\mathrm{Sub}(X,\mathbb{R}).$

Включение

$$\{p \ge 0\} \supset \bigcap_{k=1}^{N} \{f_k \le 0\}$$

имеет место в том и только в том случае, когда найдутся положительные числа $\alpha_1, \ldots, \alpha_N \in \mathbb{R}_+$ такие, что

$$(\forall x \in X) \ p(x) + \sum_{k=1}^{N} \alpha_k f_k(x) \ge 0.$$

Доказательство. Достаточность очевидна, а необходимость мы проверим. Для этого положим $H:=\bigcap_{k=1}^N \{f_k\leq 0\}$. Ясно, что H- (выпуклый) конус в X. По условию $p(x)\geq 0$ для всех $x\in H$. По соответствующей теореме субдифференциального исчисления (см. [4, 3.2.16]) имеется функционал $l\in\partial(p)$

такой, что $l(h) \geq 0$ при любом $h \in H$. По лемме Фаркаша $-l = \sum_{k=1}^N \alpha_k f_k$ для подходящих положительных чисел $\alpha_1, \dots, \alpha_N$. Тем самым доказательство закончено.

Лемма 2.2. Пусть X — вещественное векторное пространство. Предположим, что $p_1, \ldots, p_N \in \mathrm{PSub}(X) := \mathrm{PSub}(X, \mathbb{R})$ и $p \in \mathrm{Sub}(X)$.

Следующие утверждения эквивалентны:

(1)
$$\{p \ge 0\} \supset \bigcap_{k=1}^{N} \{p_k \le 0\};$$

(2) существуют числа $\alpha_1, \ldots, \alpha_N \in \mathbb{R}_+$ такие, что

$$(\forall x \in X) \ p(x) + \sum_{k=1}^{N} \alpha_k p_k(x) \ge 0.$$

Доказательство. По условию даны конечные подмножества $\Lambda_1,\dots,\Lambda_N$ алгебраически сопряженного пространства $X^\#$ такие, что $p_k=P_{\Lambda_k}$ для $k:=1,\dots,N.$ Пусть Λ — дизъюнктное объединение всех Λ_k для $k:=1,\dots,N.$ Ясно, что

$$\bigcap_{k=1}^{N} \{ p_k \le 0 \} = \bigcap_{\lambda \in \Lambda} \{ \lambda \le 0 \}.$$

По лемме 2.1 найдутся $(\beta_{\lambda})_{\lambda \in \Lambda} \subset \mathbb{R}_+$ такие, что для всех $x \in X$ будет выполнено следующее:

$$egin{aligned} 0 & \leq p(x) + \sum_{\lambda \in \Lambda} eta_{\lambda} \lambda(x) = p(x) + \sum_{k=1}^N \sum_{\lambda \in \Lambda_k} eta_{\lambda} \lambda(x) \ & \leq p(x) + \sum_{k=1}^N \sum_{\lambda \in \Lambda_k} eta_{\lambda} p_k(x) = p(x) + \sum_{k=1}^N \Big(\sum_{\lambda \in \Lambda_k} eta_{\lambda}\Big) p_k(x). \end{aligned}$$

Полагая $\alpha_k := \sum_{\lambda \in \Lambda_k} eta_\lambda$ для $k := 1, \dots, N,$ мы завершаем доказательство.

Перейдем теперь к операторному случаю.

Лемма 2.3. Пусть X — векторное пространство над некоторым подполем R поля вещественных чисел \mathbb{R} . Предположим, что $f \in X^\#$ и $p \in \mathrm{Sub}(X)$.

Для того чтобы имело место включение

$$\{p\geq 0\}\supset \{f\leq 0\},$$

необходимо и достаточно, чтобы нашлось положительное число $\alpha \in \mathbb{R}$ такое, что $(\forall x \in X) \ p(x) + \alpha f(x) \geq 0$.

Доказательство. Рассуждаем, как в лемме 2.1, ссылаясь на лемму 1.1 вместо леммы Фаркаша.

Теорема 2.1. Пусть X — вещественное векторное пространство, а Y — пространство Канторовича. Предположим, что $A \in L(X,Y)$ и $P \in \mathrm{Sub}(X,Y)$.

Включение

$$\{bP \ge 0\} \supset \{bA \le 0\}$$

имеет место для всех $b \in \mathbb{B}$ в том и только в том случае, если найдется элемент $\alpha \in \operatorname{Orth}(m(Y))_+$ такой, что

$$(\forall x \in X) \ P(x) + \alpha Ax \ge 0.$$

Доказательство. Утверждение следует из леммы 2.3 с помощью булевозначной интерпретации.

Теорема 2.2. Пусть X — вещественное Y-полунормированное пространство, где Y — некоторое пространство Канторовича. Допустим также, что заданы мажорированные полиэдральные сублинейные операторы $P_1, \ldots, P_N \in \operatorname{PSub}^{(m)}(X,Y)$ и мажорированный сублинейный оператор $P \in \operatorname{Sub}^{(m)}(X,Y)$.

Следующие утверждения эквивалентны:

- (1) для всех $b \in \mathbb{B}$ сублинейное операторное неравенство $bP(x) \geq 0$ является следствием системы полиэдральных сублинейных операторных неравенств $bP_1(x) \leq 0, \ldots, bP_N x \leq 0$, $x \in \{bP \geq 0\} \supset \{bP_1 \leq 0\} \cap \cdots \cap \{bP_N \leq 0\}$;
- (2) найдутся положительные ортоморфизмы $\alpha_1,\dots,\alpha_N\in \mathrm{Orth}(m(Y))$ такие, что

$$(\forall x \in X) \ P(x) + \sum_{k=1}^{N} \alpha_k P_k(x) \ge 0.$$

Доказательство. Утверждение устанавливается, как в лемме 2.2, с заменой ссылки на лемму Фаркаша ссылкой на теорему 1.1.

Остановимся немного на исследовании линейных неравенств с неточными данными в духе интервального анализа.

Предположим дополнительно, что X является векторной решеткой. Напомним, под интервальным оператором $\mathbf T$ из X в Y понимают просто порядковый интервал $[\underline T,\overline T]$ в пространстве порядково ограниченных операторов $L^{(r)}(X,Y)$. По умолчанию разумеется, что $\underline T \leq \overline T$. Говорят, что интервальное уравнение $\mathbf B = \mathfrak X \mathbf A$ имеет слабое интервальное решение, если для некоторых $A \in \mathbf A$ и $B \in \mathbf B$ решение имеет уравнение $B = \mathfrak X A$. Принято рассматривать и иные типы решений. В целях иллюстрации механизма исследований такого рода ограничимся слабыми интервальными решениями уравнений, уравновещивая объем и идеи. Все уместные подробности в конечномерном случае можно извлечь из $[10, \, \mathrm{гл.} \, 2, \, 3]$.

С каждым интервальным оператором **T** свяжем сублинейный оператор $P_{\mathbf{T}}$. Заметим, что $\mathbf{T} = [0, \overline{T} - \underline{T}] + \underline{T}$. Стало быть, для $x \in X$ будет

$$P_{\mathbf{T}}(x) = P_{[0,\overline{T}-T]}x + \underline{T}x = (\overline{T}-\underline{T})x_{+} + \underline{T}x = \overline{T}x_{+} - \underline{T}x_{-}.$$

Оператор **T** назовем адаптированным, если $P_{\mathbf{T}} \in \mathrm{PSub}(X,Y)$, т. е. если **T** имеет конечное число o-крайних точек³⁾ или, что то же самое, оператор $\overline{T} - \underline{T}$ представляет собой сумму конечного числа дизъюнктных слагаемых. Отметим, что если X и Y — конечномерные пространства, то все интервальные операторы из X в Y адаптированы. Наконец, положим $\sim (x) := -x$ для всех $x \in X$.

Лемма 2.4. Пусть X — векторная решетка. Предположим, что \mathbf{f} и \mathbf{g} — интервальные функционалы, причем \mathbf{f} адаптирован.

Следующие утверждения эквивалентны:

³⁾См. [4, с. 95].

- (1) уравнение $\mathbf{g} = \alpha \mathbf{f}$ имеет слабое интервальное решение $\alpha \in \mathbb{R}_+$;
- (2) $\{\mathfrak{g} \geq 0\} \supset \{\mathfrak{f}^{\sim} \leq 0\}$ для $\mathfrak{f}^{\sim} := P_{\mathbf{f}} \circ \sim$ и $\mathfrak{g} := P_{\mathbf{g}}$.

Доказательство. Сублинейный функционал f полиэдрален. Стало быть, по лемме 2.2 условие (2) равносильно существованию $\alpha \in \mathbb{R}_+$ такого, что $\mathfrak{g}(x) + \alpha \mathfrak{f}(-x) \geq 0$ для всех $x \in X$. Сублинейный функционал положителен в том и только в том случае, если у него есть положительный опорный. Иначе говоря, (2) эквивалентно существованию положительного α , для которого $0 \in (\mathbf{g} - \alpha \mathbf{f})$.

Теорема 2.3. Пусть X — векторная решетка, а Y — некоторое пространство Канторовича. Допустим также, что в пространстве порядково ограниченных операторов $L^{(r)}(X,Y)$ заданы адаптированные интервальные операторы $\mathbf{A}_1, \ldots, \mathbf{A}_N$ и произвольный интервальный оператор \mathbf{B} .

Следующие утверждения эквивалентны:

(1) интервальное уравнение

$$\mathbf{B} = \sum_{k=1}^{N} \alpha_k \mathbf{A}_k$$

имеет слабое интервальное решение $\alpha_1, \ldots, \alpha_N \in \text{Orth}(Y)_+;$

(2) для всех $b \in \mathbb{B}$ будет

$$\{b\mathfrak{B} \geq 0\} \supset \{b\mathfrak{A}_1^{\sim} \leq 0\} \cap \cdots \cap \{b\mathfrak{A}_N^{\sim} \leq 0\},\$$

где $\mathfrak{A}_k^\sim := P_{\mathbf{A}_k} \circ \sim$ для $k := 1, \ldots, N$ и $\mathfrak{B} := P_{\mathbf{B}}.$

Доказательство. Достаточно повторить рассуждение леммы 2.4 и сослаться на теорему 2.2.

3. Системы неоднородных неравенств

Перейдем к случаю неоднородных неравенств.

Лемма 3.1. Пусть X — векторное пространство над подполем R поля вещественных чисел \mathbb{R} , а $f,g \in X^\#$ и $u,v \in \mathbb{R}$. Допустим, что неоднородное неравенство $f(x) \leq u$ совместно.

Включение $\{g \leq v\} \supset \{f \leq u\}$ выполнено в том и только в том случае, если найдется $\alpha \in \mathbb{R}_+$ такое, что $g = \alpha f$ и $v \geq \alpha u$.

Доказательство. Установим лемму в сторону необходимости, ибо достаточность очевидна.

Положим $p(x):=(f(x)-u)\vee(v-g(x))$ для всех $x\in X$. По условию $(\forall x\in X)\ p(x)\geq 0$. Стало быть, найдутся положительные числа γ,δ такие, что $\gamma+\delta=1$ и при этом $\gamma g-\delta f=0$ и $\gamma v\geq \delta u$. Если $\gamma>0$, то полагаем $\alpha:=\delta/\gamma$. Если же $\gamma=0$, то $\delta=1$. Следовательно, f=0. Учитывая совместность, видим, что $v\geq 0$, а g=0. Значит, в этом случае можно взять $\alpha:=0$.

Лемма 3.2. Пусть X — некоторое \mathbb{R} -полунормированное пространство над подполем R поля \mathbb{R} . Пусть, далее, $f_1, \ldots, f_N, g \in X^*$, а $u_1, \ldots, u_N, v \in \mathbb{R}$. Предположим также, что система неоднородных неравенств $f_k(x) \leq u_k$, где $k := 1, \ldots, N$, совместна.

Неоднородное неравенство $g(x) \leq v$ является следствием рассматриваемой неоднородной системы в том и только в том случае, если найдутся $\alpha_1, \ldots, \alpha_N \in \mathbb{R}_+$ такие, что

$$g = \sum_{k=1}^N lpha_k f_k, \quad v \geq \sum_{k=1}^N lpha_k u_k.$$

Доказательство. По-прежнему нуждается в доказательстве лишь необходимость приведенного условия.

Как это принято, воспользуемся конструкцией преобразования Хёрмандера [4, с. 28]. Рассмотрим пространство $X \times \mathbb{R}$ над полем R и снабдим его естественной полунормой произведения. Для $(x,t) \in X \times \mathbb{R}$ положим $\bar{f}_k(x,t) := f_k(x) - tu_k$, $\bar{g}(x,t) := g(x) - tv$ и $\tau(x,t) := -t$. Пусть

$$(x,t) \in \{\tau \le 0\} \cap \bigcap_{k=1}^{N} \{\bar{f}_k \le 0\}.$$

Если при этом t>0, то $u_k\geq f_k(x/t)$ для $k:=1,\ldots,N$ и, стало быть, $g(x/t)\leq v$ по условию. Иначе говоря, $(x,t)\in \{\bar g\leq 0\}$. Если t=0, то выберем какое-нибудь решение $\bar x$ рассматриваемой системы неоднородных неравенств, являющееся одновременно решением неоднородного следствия $g(\bar x)\leq v$. Пусть $x\in K:=\bigcap_{k=1}^N \{f_k\leq 0\}$. Тогда $x+\bar x\in\bigcap_{k=1}^N \{f_k\leq u_k\}$. Следовательно, $x\in \{g\leq v-g(\bar x)\}$, т. е. R-линейный функционал g ограничен сверху на выпуклом конусе K. Значит, g принимает отрицательные значения на K. Применяя лемму 1.2, найдем положительные числа $\alpha_1,\ldots,\alpha_N,\beta$ такие, что

$$ar{g} = eta au + \sum_{k=1}^N lpha_k ar{f}_k.$$

Ясно, что найденные параметры α_1,\dots,α_N искомые. Тем самым лемма доказана полностью.

Отметим, что доказательство леммы 3.2 дословно проходит в случае, когда X — это вещественное векторное пространство, а рассматриваемые функционалы принадлежат $X^{\#}$.

Теорема 3.1. Пусть X — вещественное Y-полунормированное пространство, где Y — пространство Канторовича. Допустим также, что заданы мажорированные операторы $A_1, \ldots, A_N, B \in L^{(m)}(X,Y)$ и элементы $u_1, \ldots, u_N, v \in Y$. Предположим еще, что система неоднородных неравенств $A_1x \leq u_1, \ldots, A_Nx \leq u_N$ совместна. Тогда эквивалентны следующие утверждения:

(1) для любого $b \in \mathbb{B}$ неоднородное неравенство $bBx \leq bv$ является следствием системы неоднородных неравенств $bA_1x \leq bu_1, \ldots, bA_Nx \leq bu_N$, т. е.

$$\{bB \leq bv\} \supset \{bA_1 \leq bu_1\} \cap \cdots \cap \{bA_N \leq bu_N\}.$$

(2) существуют положительные ортоморфизмы $\alpha_1,\ldots,\alpha_N\in \mathrm{Orth}(m(Y))$ такие, что

$$B = \sum_{k=1}^{N} \alpha_k A_k, \quad v \ge \sum_{k=1}^{N} \alpha_k u_k.$$

ДОКАЗАТЕЛЬСТВО. Как и прежде, проверить нужно только импликацию $(1) \rightarrow (2)$. Повторяя доказательство теоремы 1.1, положим $f_k := A_k \uparrow$ для $k := 1, \ldots, N$ и $g := B \uparrow$. Ясно, что $f_1, \ldots, f_N, g \in (X^{\wedge})^*$ внутри $\mathbb{V}^{\mathbb{B}}$. Определим последовательности $f : \{1, \ldots, N\}^{\wedge} \rightarrow (X^{\wedge})^*$, $u : \{1, \ldots, N\}^{\wedge} \rightarrow \mathscr{R}$ как подъемы семейств (f_1, \ldots, f_N) и (u_1, \ldots, u_N) . Понятно, что неравенство $g(x) \leq v$ является следствием системы неравенств $f(k)(x) \leq u(k)$ для $k \in \{1, \ldots, N\}^{\wedge}$ внутри $\mathbb{V}^{\mathbb{B}}$. Легко видеть, что система всех рассматриваемых неравенств совместна

внутри $\mathbb{V}^{\mathbb{B}}$. Стало быть, применима лемма 3.2, и имеется последовательность $\alpha:\{1^{\wedge},\ldots,N^{\wedge}\}\to\mathscr{R}_{+}$ внутри $\mathbb{V}^{(\mathbb{B})}$ такая, что

$$\left[\!\!\left[(\forall x\in X^\wedge)\ g(x)=\sum_{k=1^\wedge}^{N^\wedge}\alpha(k)f(k)(x)\right]\!\!\right]=\mathbb{1},\quad \left[\!\!\left[v\geq\sum_{k=1^\wedge}^{N^\wedge}\alpha(k)u(k)\right]\!\!\right]=\mathbb{1}.$$

Полагая $\alpha_k:=\alpha(k^{\wedge})\in\mathscr{R}_+{\downarrow}$ для $k:=1,\ldots,N,$ завершаем доказательство.

Перейдем теперь к случаю неоднородных неравенств. Для иллюстрации рассмотрим только два частных случая.

Теорема 3.2. Пусть X — вещественное векторное пространство, а Y — пространство Канторовича. Пусть, далее, $u, v \in Y$ и $A, B \in L(X, Y)$. Допустим, что неоднородное неравенство $Ax \leq u$ совместно.

Включение $\{bB \leq bv\} \supset \{bA \leq bu\}$ имеет место для всех $b \in \mathbb{B}$ в том и только в том случае, если найдется ортоморфизм $\alpha \in \operatorname{Orth}(m(Y))_+$ такой, что $B = \alpha A$ и $v > \alpha u$.

Доказательство. Это прямая булевозначная интерпретация леммы 3.1.

В приложениях встречаются неоднородные матричные неравенства над конечномерными пространствами разных размерностей (см. [11, предложение 2.1]).

Теорема 3.3. Пусть X — вещественное Y-полунормированное пространство, где Y — некоторое пространство Канторовича. Допустим также, что заданы мажорированные операторы $A \in L^{(m)}(X,Y^s)$ и $B \in L^{(m)}(X,Y^t)$ и элементы $u \in Y^s$, $v \in Y^t$, где s,t — натуральные числа, причем неравенство $Ax \leq u$ совместно. Следующие утверждения эквивалентны:

- (1) для любого $b \in \mathbb{B}$ неоднородное операторное неравенство $bBx \leq bv$ является следствием неоднородного неравенств $bAx \leq bu$, т. е. $\{bB \leq bv\} \supset \{bA \leq bu\}$.
- (2) существует $s \times t$ -матрица, составленная из положительных ортоморфизмов m(Y), такая, что для соответствующего оператора $\mathfrak{X} \in L_+(Y^s, Y^t)$ будет $B = \mathfrak{X} A$ и $\mathfrak{X} u < v$.

Доказательство. Проверим только импликацию $(1) \to (2)$. Пусть $A_k := \Pr_k A, \ u_k := \Pr_k u \ \text{и} \ B_l := \Pr_l B, \ v_l := \Pr_l v$ для соответствующих координатных проекторов. Тогда для всех $l := 1, \ldots, t$ и $b \in \mathbb{B}$ будет

$$\{bB_l \le bv_l\} \supset \{bB \le bv\} \supset \bigcap_{k=1}^s \{bA_k \le bu_k\}.$$

По теореме 3.1 найдутся положительные ортоморфизмы $\alpha_{lk}\in \mathrm{Orth}(m(Y))$ такие, что

$$B_l = \sum_{k=1}^{s} \alpha_{lk} A_k; \quad v_l \ge \sum_{k=1}^{s} \alpha_{lk} u_k.$$

Тем самым доказательство теоремы 3.3 завершено.

Уравновешивая краткость и полноту, остановимся на неоднородных операторных неравенствах в случае комплексных скаляров.

Теорема 3.4. Пусть X — комплексное Y-полунормированное пространство, где Y — некоторое пространство Канторовича. Допустим также, что заданы элементы $u_1, \ldots, u_N, v \in Y$ и мажорированные операторы $A_1, \ldots, A_N, B \in$

 $L^{(m)}(X,Y_{\mathbb{C}})$, действующие в комплексификацию $^{4)}Y_{\mathbb{C}}:=Y\otimes iY$ пространства Y. Предположим, что система неоднородных неравенств $|A_{1}x|\leq u_{1},\ldots,|A_{N}x|\leq u_{N}$ совместна. Тогда эквивалентны следующие утверждения:

(1) для любого $b \in \mathbb{B}$ неравенство $b|Bx| \leq bv$ служит следствием системы неравенств $b|A_1x| \leq bu_1, \ldots, b|A_Nx| \leq bu_N$, т. е.

$$\{b|B(\cdot)| \leq bv\} \supset \{b|A_1(\cdot)| \leq bu_1\} \cap \cdots \cap \{b|A_N(\cdot)| \leq bu_N\};$$

(2) существуют комплексные ортоморфизмы $c_1,\ldots,c_N\in \mathrm{Orth}(m(Y)_\mathbb{C})$ такие, что

$$B = \sum_{k=1}^{N} c_k A_k, \quad v \ge \sum_{k=1}^{N} |c_k| u_k.$$

Доказательство. Вновь нужно проверить $(1) \rightarrow (2)$.

Повторяя доказательство теоремы 1.1 и полагая $f_k := A_k \uparrow$ для $k := 1, \ldots, N$ и $g := B \uparrow$, мы сводим дело к скалярному случаю. Ясно, что $f_1, \ldots, f_N, g \in (X^{\wedge})^* := L^{(m)}(X^{\wedge}, \mathscr{C})$, где \mathscr{C} — поле комплексных чисел внутри $\mathbb{V}^{\mathbb{B}}$. Определим последовательности $f : \{1, \ldots, N\}^{\wedge} \to (X^{\wedge})^*, \ u : \{1, \ldots, N\}^{\wedge} \to \mathscr{C}$ как подъемы семейств (f_1, \ldots, f_N) и (u_1, \ldots, u_N) .

По принципу переноса неравенство $\text{Re}(g(x)) \leq v$ является следствием совместной системы вещественных неравенств $\text{Re}(f(k))(x) \leq u(k)$, $\text{Im}(f(k))(x) \leq u(k)$ для $x \in X^{\wedge}$ и $k \in \{1, \dots, N\}^{\wedge}$. По лемме 3.2 найдутся последовательности $\alpha: \{1^{\wedge}, \dots, N^{\wedge}\} \to \mathscr{R}_{+}$, $\beta: \{1^{\wedge}, \dots, N^{\wedge}\} \to \mathscr{R}_{+}$ внутри $\mathbb{V}^{(\mathbb{B})}$ такие, что

$$\begin{bmatrix} (\forall x \in X^{\wedge}) \ \operatorname{Re}(g(x)) = \sum_{k=1^{\wedge}}^{N^{\wedge}} \left(\alpha(k) \operatorname{Re}(f(k)(x)) + \beta(k) \operatorname{Im}(f(k)(x)) \right) \end{bmatrix} = 1;$$

$$\begin{bmatrix} v \geq \sum_{k=1^{\wedge}}^{N^{\wedge}} (\alpha(k) + \beta(k)) u(k) \end{bmatrix} = 1.$$

Пусть теперь $c_k := \alpha(k^{\wedge}) - i^{\wedge}\beta(k^{\wedge}) \in \mathscr{C} \downarrow$ для $k := 1, \ldots, N$.

Легко видеть, что для двух $\mathbb C$ -линейных функционалов l,m на X и чисел $a,b\in\mathbb R$ для c:=a-ib будет l=cm в том и только в том случае, если $\mathrm{Re}(l(x))=a\,\mathrm{Re}(m(x))+b\,\mathrm{Im}(m(x))$ для всех $x\in X$. При этом $|c|\leq |a|+|b|$. Учитывая это наблюдение и осуществляя спуск, мы завершаем доказательство.

В заключение отметим, что в теории линейных неравенств популярны варианты леммы Фаркаша в виде утверждений о взаимоисключающих возможностях (см., например, [2] и [12, гл. 4]). В качестве иллюстрации приведем соответствующую переформулировку только теоремы 1.1.

Теорема об альтернативе. Пусть X — вещественное Y-полунормированное пространство, где Y — некоторое пространство Канторовича. Допустим также, что заданы мажорированные операторы $A_1, \ldots, A_N, B \in L^{(m)}(X,Y)$. Тогда имеет место в точности одна из следующих возможностей:

(1) найдутся точка $x \in X$ и проекторы $b, b' \in \mathbb{B}$ такие, что $b' \leq b$ и

$$b'Bx > 0$$
, $bA_1x < 0$, ..., $bA_Nx < 0$;

⁴⁾См. [3, с. 338].

(2) существуют положительные ортоморфизмы $\alpha_1,\dots,\alpha_N\in \mathrm{Orth}(m(Y))$ такие, что

$$B = \sum_{k=1}^{N} \alpha_k A_k.$$

ДОКАЗАТЕЛЬСТВО. Неравенство $bBx \le 0$ нарушено в том и только в том случае, если для некоторого проектора $\mathfrak{b} \in \mathbb{B}$ будет $\mathfrak{b}bBx > 0$.

ЛИТЕРАТУРА

- Kjeldsen T. H. Different motivations and goals in the historical development of the theory of systems of linear inequalities // Arch. Hist. Exact Sci. 2002. V. 56, N 6. P. 459–538.
- Encyclopedia of optimization / Floudas C. A., Pardalos P. M. (eds.) Berlin; New York: Springer, 2009.
- 3. Кусраев А. Г., Кутателадзе С. С. Введение в булевозначный анализ. М.: Наука, 2005.
- **4.** *Кусраев А. Г., Кутателадзе С. С.* Субдифференциальное исчисление. Теория и приложения. М.: Наука, 2007.
- Bartl D. A short algebraic proof of the Farkas lemma // SIAM J. Optim. 2008. V. 19, N 1. P. 234–239.
- **6.** Kuczma M. An Introduction to the theory of functional equations and inequalities. Basel etc.: Birkhäuser, 2009.
- Downey L. Farkas' lemma and multilinear forms // Missouri J. Math. Sci. 2009. V. 21, N 1. P. 65–67.
- Aron R., Downey L., Maestre M. Zero sets and linear dependence of multilinear forms // Note Mat. 2005/2006. V. 25, N 1. P. 49–54.
- 9. Jeyakumar V., Li G. I. Farkas' lemma for separable sublinear functionals // Optim. Letters. 2009. V. 3, N 4. P. 537–545.
- **10.** Задачи линейной оптимизации с неточными данными / М. Фидлер, Й. Недома, Я. Рамик, и др. М.; Ижевск: РХД, 2008.
- 11. Mangasarian O. L. Set containment characterization // J. Glob. Optim. 2002. V. 24, N 4. P. 473–480.
- 12. Giannessi F. Constrained optimization and image space analysis. V. 1: Separation of sets and optimality conditions. New York: Springer, 2005.

Статья поступила 25 июня 2009 г.

Кутателадзе Семён Самсонович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 sskut@math.nsc.ru