АНАЛОГ ТЕОРЕМЫ АМИЦУРА — ЛЕВИЦКОГО ДЛЯ МАТРИЧНЫХ СУПЕРАЛГЕБР

Л. М. Самойлов

Аннотация. Для матричной супералгебры $M_{n,k}$ над полем нулевой характеристики строится полиномиальное тождество степени $2(nk+n+k)-\min\{n,k\}$. Выдвигается гипотеза, что тождеств меньшей степени у алгебры $M_{n,k}$ нет.

Ключевые слова: матричная супералгебра, полиномиальное тождество, тождество со следом.

Введение. Все рассматриваемые в работе алгебры будем предполагать ассоциативными алгебрами над полем F нулевой характеристики.

Пусть M_n — алгебра матриц порядка n над полем F, G — алгебра Грассмана счетного ранга с единицей с \mathbb{Z}_2 -градуировкой $G=G_0\oplus G_1$; G_0 и G_1 — подпространства алгебры G, порожденные всеми словами четной и нечетной длины соответственно. Для $n,k\geq 0$ рассмотрим в алгебре $M_{n+k}(G)=M_{n+k}\otimes G$ подмножество $M_{n,k}$, состоящее из блочных матриц вида

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

где A и D — квадратные матрицы размера $n \times n$ и $k \times k$ соответственно с элементами из G_0 , B и C — прямоугольные матрицы размера $n \times k$ и $k \times n$ соответственно с элементами из G_1 . Легко проверить, что $M_{n,k}$ является подалгеброй алгебры $M_n(G)$. Алгебры $M_{n,k}$ называются матричными супералгебрами.

Как показал А. Р. Кемер, алгебры $M_n(G)$ и $M_{n,k}$ играют фундаментальную роль в теории многообразий ассоциативных алгебр. Это связано с тем, что все первичные многообразия ассоциативных алгебр над полями нулевой характеристики порождаются алгебрами $M_n(G)$ или $M_{n,k}, n \geq k$ [1]. Отметим, что алгебры $M_{n,0}$ и M_n имеют одинаковые идеалы тождеств.

О тождествах алгебр $M_{n,k}$ известно крайне мало. В частности, при $n \cdot k > 1$ неизвестна минимальная степень тождеств этих алгебр. Для k=0 теорема Амицура — Левицкого утверждает, что минимальная степень тождеств алгебры матриц M_n (следовательно, и алгебры $M_{n,0}$) равна 2n. Минимальная степень тождеств алгебры $M_{1,1}$ равна 5.

В настоящей работе доказывается следующая

Теорема 1. Над полем характеристики нуль у алгебры $M_{n,k}$ есть тождества степени $2(nk+n+k) - \min\{n,k\}$.

Отметим, что в силу теоремы Амицура — Левицкого при k=0 число $2(nk+n+k)-\min\{n,k\}=2n$ совпадает с минимальной степенью тождеств алгебры

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 07–01–0080–а).

 M_n . Аналогично при n=k=1 число $2(nk+n+k)-\min\{n,k\}=5$ совпадает с минимальной степенью тождеств алгебры $M_{1,1}$. Это мотивирует следующую гипотезу.

Гипотеза 1. Верно ли, что над полем характеристики 0 минимальная степень тождеств алгебры $M_{n,k}$ равна $2(nk+n+k) - \min\{n,k\}$?

Отметим, что над полями характеристики p>0 при некоторых n и k алгебры $M_{n,k}$ имеют тождества меньшей степени. Действительно, можно показать, что алгебра $M_{n+k}(G)$ удовлетворяет симметрическому тождеству степени p(n+k). Если n и k велики по сравнению с p, то p(n+k) меньше, чем $2(nk+n+k)-\min\{n,k\}$.

Наше доказательство теоремы 1 обобщает доказательство Ю. П. Размыслова [2] теоремы Амицура — Левицкого.

Доказательство теоремы 1. Вкратце приведем некоторые результаты о тождествах со следом матричных супералгебр.

Пусть A — произвольная ассоциативная алгебра с единицей над полем F, R — ассоциативная и коммутативная алгебра с единицей над F, C(A) — центр A, $\pi:R\to C(A)$ — гомоморфизм F-алгебр. Положим $ar=a\pi(r)$ для $a\in A,\,r\in R$. Это определение превращает A в R-алгебру. Пусть $\mathrm{Tr}:A\to R$ — произвольное R-линейное отображение, удовлетворяющее свойству $\mathrm{Tr}(ab)=\mathrm{Tr}(ba)$ для всех $a,b\in A$. Четверка (A,R,π,Tr) называется алгеброй со следом.

Рассмотрим две алгебры со следом $(A, R, \theta, \text{Tr})$ и $(A', R', \theta', \text{Tr}')$. Пара (μ, ν) гомоморфизмов F-алгебр $\mu: A \to A'$ и $\nu: R \to R'$ называется гомоморфизмом алгебр со следом, если $\mu\theta = \theta'\nu$ и ν Tr = Tr' μ .

Обозначим через X счетное множество $X = \{x_1, x_2, \dots\}$, а через $F^{\sharp}\langle X \rangle$ — свободную ассоциативную алгебру с единицей, порожденную множеством X. Определим отношение эквивалентности на свободной полугруппе с единицей $\langle X \rangle$, порожденной множеством X, полагая $u_1 \sim u_2$ тогда и только тогда, когда существуют элементы $u, v \in \langle X \rangle$ такие, что $u_1 = vw, u_2 = wv$. Если $u \in \langle X \rangle$, то положим $\bar{u} = \{v \in \langle X \rangle \mid v \sim u\}$. Обозначим через $T\langle X \rangle$ свободную ассоциативную и коммутативную алгебру с единицей, порожденную всеми элементами $Tr(\bar{u})$, где $u \in \langle X \rangle$.

Рассмотрим алгебру $\widetilde{F}\langle X\rangle=F^\sharp\langle X\rangle\otimes T\langle X\rangle$. Определим гомоморфизмы F-алгебр $\theta:T\langle X\rangle\to C\bigl(\widetilde{F}\langle X\rangle\bigr)$ и ${\rm Tr}:\widetilde{F}\langle X\rangle\to T\langle X\rangle$ по формулам $\theta(t)=1\otimes t$ и ${\rm Tr}\Bigl(\sum u\otimes t\Bigr)=\sum {\rm Tr}(\bar{u})t$. Из определения отображения ${\rm Tr}$ следует, что оно удовлетворяет свойству ${\rm Tr}(ab)={\rm Tr}(ba)\ \forall a,b\in\widetilde{F}\langle X\rangle$. Четверка $\bigl(\widetilde{F}\langle X\rangle,T\langle X\rangle,\theta,{\rm Tr}\bigr)$ является алгеброй со следом, которая называется свободной алгеброй со следом, порожденной множеством X. После отождествления алгебр $F^\sharp\langle X\rangle\otimes 1$ и $F^\sharp\langle X\rangle$ получаем включение

$$X \subset F^{\sharp}\langle X \rangle \subset \widetilde{F}\langle X \rangle.$$

Название «свободная алгебра со следом» объясняется тем, что для произвольной алгебры со следом A отображение множеств $X \to A$ может быть единственным образом продолжено до гомоморфизма алгебр со следом $\widetilde{F}\langle X \rangle \to A$.

Произвольный элемент $f \in \widetilde{F}\langle X \rangle$ однозначно можно представить в виде F-линейной комбинации элементов $\mathrm{Tr}(1)^s u_0 \, \mathrm{Tr}(u_1) \dots \mathrm{Tr}(u_n)$, где $u_0 \in \langle X \rangle$, $u_1, \dots, u_n \in \langle X \rangle \setminus \{1\}$, $n, s \geq 0$. Элементы алгебры $\widetilde{F}\langle X \rangle$ называются полиномами со следом.

Пусть A — алгебра со следом, $\tilde{f} = \tilde{f}(x_1, \dots, x_m) \in \tilde{F}\langle X \rangle$. Вудем говорить, что алгебра A удовлетворяет тождеству со следом $\tilde{f} = 0$, если для произвольных $a_1, \dots, a_n \in A$ в алгебре A выполнено равенство $\tilde{f}(a_1, \dots, a_m) = 0$. Идеал

$$\widetilde{T}[A] = \{\widetilde{f} \in \widetilde{F}\langle X \rangle \mid \widetilde{f} = 0$$
 — тождество со следом алгебры $A\}$

называется $udeanom\ moжdecmb$ со следом алгебры A. Очевидно, что идеал тождеств со следом произвольной алгебры содержит идеал обычных тождеств этой алгебры.

Далее будем рассматривать только алгебры со следом, удовлетворяющие тождеству нулевой степени ${\rm Tr}(1)=\gamma,\ \gamma\in F$. Обозначим через \widetilde{P}_m множество всех полилинейных полиномов со следом степени m, зависящих от переменных x_1,\ldots,x_m и являющихся линейной комбинацией слагаемых $u_0\,{\rm Tr}(u_1)\ldots{\rm Tr}(u_n)$, где $u_0\in\langle X\rangle,\,u_1,\ldots,u_n\in\langle X\rangle\setminus\{1\},\,n,s\geq 0$. Пусть FS_{m+1} —групповая алгебра (над F) симметрической группы S_{m+1} , действующей на множестве $\{0,1,\ldots,m\}$. Определим F-линейное отображение $\widetilde{\lambda}_m:\widetilde{P}_m\to FS_{m+1}$, полагая

$$\tilde{\lambda}_m(x_{i_1}\ldots x_{i_s}\operatorname{Tr}(x_{j_1}\ldots x_{j_t})\operatorname{Tr}(x_{k_1}\ldots x_{k_t})\ldots)=\sigma\in S_{m+1},$$

где σ — перестановка, которая раскладывается на независимые циклы следующим образом:

$$\sigma = (0, i_1, \ldots, i_s)(j_1, \ldots, j_t)(k_1, \ldots, k_l) \ldots$$

При этом символ 0 играет роль метки, отделяющей неследовую часть монома. Из определения свободной алгебры со следом вытекает, что $\tilde{\lambda}_m$ является изоморфизмом линейных пространств.

Алгебра $M_{n,k}$ превращается в алгебру со следом, если положить

$$\operatorname{Tr} \left(egin{array}{cc} A & B \ C & D \end{array}
ight) = \operatorname{Tr}(A) - \operatorname{Tr}(D),$$

где ${\rm Tr}(A)$ и ${\rm Tr}(D)$ — суммы диагональных элементов матриц A и D. При этом ${\rm Tr}(1)=n-k$.

Обозначим через $D_{n+1,k+1}$ минимальный двусторонний идеал алгебры FS_{nk+n+k} , соответствующий прямоугольной диаграмме Юнга из n+1 строк и k+1 столбцов.

Идеал тождеств со следом алгебр $M_{n,k}$ над полями нулевой характеристики найден Ю. П. Размысловым в [3]. В работе [4] предложено более короткое доказательство, основанное на других идеях. Следующая теорема содержит описание базиса тождеств со следом алгебры $M_{n,k}$.

Теорема 2 [3,4]. Пусть поле F имеет нулевую характеристику. Тогда

- 1. Для каждого m множество $\tilde{\lambda}_m(\tilde{T}[M_{n,k}] \cap \tilde{P}_m)$ является двусторонним идеалом алгебры FS_{m+1} . Этот идеал является суммой минимальных двусторонних идеалов, соответствующих тем диаграммам Юнга, которые содержат $D_{n+1,k+1}$ в качестве поддиаграммы.
- 2. Идеал $\widetilde{T}[M_{n,k}]$ порождается (как идеал тождеств со следом) тождеством нулевой степени $\mathrm{Tr}(1) = n-k$ и тождествами степени nk+n+k из пространства $\widetilde{T}[M_{n,k}] \cap \widetilde{P}_{nk+n+k}$.

Доказательство теоремы 1. Рассмотрим в групповой алгебре FS_{m+1} при m+1=(n+1)(k+1) центральный идемпотент $e_{n+1,k+1}$, соответствующий

прямоугольной диаграмме Юнга $D_{n+1,k+1}$. Перестановки, имеющие одинаковые цикловые структуры, входят в запись $e_{n+1,k+1}$ с равными коэффициентами. Пусть s — минимальное число такое, что существует перестановка, раскладывающаяся в произведение s+1 независимых циклов и входящая в запись $e_{n+1,k+1}$ с ненулевым коэффициентом. Тогда все перестановки, раскладывающиеся в произведение не более чем s независимых циклов, входят в запись $e_{n+1,k+1}$ с нулевыми коэффициентами. Построим тождество алгебры $M_{n,k}$ степени 2(nk+n+k)-s.

Рассмотрим полином со следом

$$\tilde{f}(x_1,\ldots,x_m) = \tilde{\lambda}_m^{-1}(e_{n+1,k+1}\cdot(012\ldots s)).$$

Из теоремы 2 следует, что $\tilde{f} \in \widetilde{T}[M_{n,k}]$. Легко видеть, что полином $\tilde{f}(x_1,\ldots,x_m)$ симметричен по переменным x_{s+1},\ldots,x_m . Кроме того, обычная (неследовая) часть полинома \tilde{f} не равна нулю. В самом деле, из определения числа s немедленно вытекает, что в запись $e_{n+1,k+1}$ с ненулевым коэффициентом входит некоторая перестановка вида $(0A_0)(1A_1)(2A_2)\ldots(sA_s)$ (некоторые из блоков A_0,\ldots,A_s могут быть пустыми). Но тогда полином \tilde{f} содержит с ненулевым коэффициентом моном

$$\tilde{\lambda}_m^{-1}((0A_0)(1A_1)(2A_2)\dots(sA_s)\cdot(012\dots s)) = \tilde{\lambda}_m^{-1}((0A_11A_22\dots A_ssA_0))$$

$$= x_{A_1}x_1x_{A_2}x_2\dots x_{A_s}x_sx_{A_0},$$

где обозначено $x_{i_1...i_l} = x_{i_1}...x_{i_l}$.

Рассмотрим полином

$$ilde{g}(x_1,\ldots,x_s,y_1,\ldots,y_{2l}) = \sum_{\pi \in S_{2l}} ilde{f}(x_1,\ldots,x_s,[y_{\pi(1)},y_{\pi(2)}],\ldots,[y_{\pi(2l-1)},y_{\pi(2l)}]),$$

где l = nk + n + k - s.

Так как \tilde{g} является следствием \tilde{f} , то \tilde{g} — тождество со следом алгебры $M_{n,k}$. Покажем, что на самом деле \tilde{g} имеет нулевую следовую часть, а его неследовая (обычная) часть отлична от нуля. Отсюда будет следовать, что \tilde{g} — искомое обычное тождество алгебры $M_{n,k}$ степени 2(nk+n+k)-s.

Легко видеть, что неследовая часть полинома \tilde{f} является линейной комбинацией слагаемых вида

$$\operatorname{Lin}(x^{\alpha_0} x_1 x^{\alpha_1} x_2 \dots x^{\alpha_{s-1}} x_s x^{\alpha_s}), \quad \alpha_0, \dots, \alpha_s \ge 0, \tag{1}$$

где Lin — оператор полной линеаризации, «расклеивающий» переменную x в переменные x_{s+1},\ldots,x_m . Сделаем три замечания. Во-первых, как показано выше, некоторое слагаемое вида (1) входит в запись \tilde{f} с ненулевым коэффициентом. Во-вторых, при $(\alpha_0,\ldots,\alpha_s)\neq(\beta_0,\ldots,\beta_s)$ полиномы

$$\sum_{\pi \in S_{2l}} \operatorname{Lin}(x^{\alpha_0} x_1 x^{\alpha_1} x_2 \dots x^{\alpha_{s-1}} x_s x^{\alpha_s})(x_1, \dots, x_s, [y_{\pi(1)}, y_{\pi(2)}], \dots, [y_{\pi(2l-1)}, y_{\pi(2l)}]),$$

$$\sum_{\pi \in S_{2l}} \operatorname{Lin}(x^{\beta_0} x_1 x^{\beta_1} x_2 \dots x^{\beta_{s-1}} x_s x^{\beta_s})(x_1, \dots, x_s, [y_{\pi(1)}, y_{\pi(2)}], \dots, [y_{\pi(2l-1)}, y_{\pi(2l)}])$$

удовлетворяют свойству: никакой моном не может входить в запись сразу двух этих полиномов с ненулевыми коэффициентами. В-третьих, эти полиномы не равны нулю, так как, например, при подстановке $x_1=x_2=\cdots=x_s=1$ получаются стандартные полиномы степени 2l, умноженные на 2^l . Из этих

трех замечаний вытекает, что неследовая (обычная) часть полинома \tilde{g} не равна нулю.

Покажем, что каждый моном со следом, входящий в запись \tilde{f} с ненулевым коэффициентом, имеет вид $m_0 \operatorname{Tr}(m_1) \dots \operatorname{Tr}(m_t), t > 0$, где хотя бы один из мономов m_1, \ldots, m_t не зависит от переменных из множества $\{x_1, \ldots, x_s\}$. Это равносильно тому, что каждая перестановка, отличная от цикла длины m+1 и входящая в запись $e_{n+1,k+1} \cdot (01 \dots s)$ с ненулевым коэффициентом, содержит цикл, не содержащий ни одного элемента множества $\{0,1,\ldots,s\}$. Таким образом, достаточно показать, что при q > 1 любая перестановка вида $c_1 c_2 \dots c_q \cdot (0s \dots 21)$, где c_1, c_2, \ldots, c_q — независимые циклы суммарной длины m+1, каждый из которых содержит хотя бы один из элементов множества $\{0,1,\ldots,s\}$, входит в запись $e_{n+1,k+1}$ с нулевым коэффициентом. Заметим, во-первых, что перестановка $c_1c_2\dots c_q\cdot (0s\dots 21)$ в своем разложении на независимые циклы имеет не более s+1 циклов, так как в каждый цикл в этом разложении входит хотя бы один из элементов $0, 1, \ldots, s$. Во-вторых, перестановка $c_1 c_2 \ldots c_q \cdot (0s \ldots 21)$ не может иметь в своем разложении на независимые циклы ровно s+1 циклов: равенство $c_1c_2\ldots c_q\cdot (0s\ldots 21)=(0A_0)(1A_1)\ldots (sA_s)$ равносильно равенству $c_1 \dots c_q = (0A_0)(1A_1) \dots (sA_s) \cdot (01 \dots s) = (0A_11A_2 \dots sA_0),$ откуда q=1;противоречие с условием q > 1.

Так как полином со следом \tilde{f} симметричен по переменным x_{s+1},\dots,x_m и каждый моном со следом, входящий в запись \tilde{f} с ненулевым коэффициентом, содержит сомножитель $\mathrm{Tr}(m_t)$, не зависящий от x_1,\dots,x_s , то следовую часть полинома \tilde{g} можно представить в виде линейной комбинации полиномов со следом

$$\left. \left(m_0 \operatorname{Tr}(m_1) \dots \operatorname{Tr}(m_{t-1}) \sum_{\sigma \in \operatorname{Sym}\{i_1, \dots, i_r\}} \operatorname{Tr}(x_{\sigma(1)} \dots x_{\sigma(r)}) \right) \right|_{x_{i_1} = [y_{j_1}, y_{j_2}], \dots, x_{i_r} = [y_{j_{2r-1}}, y_{j_{2r}}]},$$

которые затем нужно прокососимметризовать по j_1, j_2, \ldots, j_{2r} . Результат такой кососимметризации равен

$$2^r m_0 \operatorname{Tr}(m_1) \dots \operatorname{Tr}(m_{t-1}) \operatorname{Tr}(S_{2r}(j_1, \dots, j_{2r})),$$

где S_{2r} — стандартный полином степени 2r. Но след от стандартного полинома четной степени равен нулю. Таким образом, следовая часть полинома \tilde{g} равна нулю.

Для завершения доказательства осталось показать, что $s=\min\{n,k\}$. Для центрального примитивного идемпотента $e_{n+1,k+1}$ хорошо известна формула

$$e_{n+1,k+1} = \frac{\chi_{n+1,k+1}(1)}{(m+1)!} \sum_{\tau \in S_{m+1}} \chi_{n+1,k+1}(\tau^{-1})\tau, \tag{2}$$

где $\chi_{n+1,k+1}$ — характер представления группы S_{m+1} , соответствующий диаграмме Юнга $D_{n+1,k+1}$ (аналогичная формула верна для произвольных конечных групп).

Для вычислений значений характера $\chi_{n+1,k+1}$ на некоторых перестановках воспользуемся правилом Мурнагана — Накаямы: пусть $\rho\pi\in S_l$, где ρ — цикл длины r,π — перестановка остальных l-r чисел, χ_D — характер, соответствующий диаграмме Юнга D. Тогда

$$\chi_D(
ho\pi) = \sum_{D'} \pm \chi_{D'}(\pi),$$

где суммирование ведется по всем диаграммам D', для которых $D \setminus D'$ является косым r-крюком. Выбор знаков \pm в этой сумме нас интересовать не будет, хотя известно, чему они равны [5]. При этом пустая сумма интерпретируется как 0, а значение характера $\chi_0(\varnothing)$ (0 — пустая диаграмма) на перестановке из 0 элементов считается равным 1.

Сначала покажем, что $\chi_{n+1,k+1}(c_1c_2\dots c_q)\neq 0$, где c_i — цикл длины $n+k+1-2(i-1),\ q=\min\{n,k\}+1$, циклы c_1,\dots,c_q независимы. Отметим, что суммарная длина этих циклов как раз равна (n+1)(k+1). Ясно, что 1) максимальная длина косого крюка в прямоугольной диаграмме Юнга размера $a\times b$ равна a+b-1; 2) имеется ровно один косой крюк максимальной длины a+b-1; 3) после его выкидывания остается прямоугольная диаграмма размера $(a-1)\times(b-1)$. Поэтому, многократно применяя правило Мурнагана — Накаямы, получаем

$$\chi_{n+1,k+1}(c_1c_2\ldots c_q) = \pm \chi_{n,k}(c_2c_3\ldots c_q) = \pm \chi_{n-1,k-1}(c_3\ldots c_q) = \cdots = \pm 1 \neq 0.$$

Покажем, что при $q \leq \min\{n, k\}$ имеет место равенство

$$\chi_{n+1,k+1}(c_1c_2\dots c_q)=0,$$

где $c_1c_2\ldots c_q$ — произведение q независимых циклов. Для этого применим правило Мурнагана — Накаямы q раз. Для того чтобы в итоге получился не 0, необходимо, чтобы прямоугольная диаграмма $D_{n+1,k+1}$ покрывалась q косыми крюками. Но при $q \leq \min\{n,k\}$ это невозможно. В самом деле, если рассмотреть диагонально идущие из угла диаграммы клетки (их как раз $\min\{n,k\}+1$), то никакие две из них не могут лежать в одном косом крюке.

Из двух последних утверждений и формулы (2) вытекает, что $s=\min\{n,k\}$. Теорема 1 доказана.

ЛИТЕРАТУРА

- Kemer A. R. Ideal of identities of associative algebras. Providence, RI: Amer. Math. Soc., 1991 (Translations of Math. Monographs; V. 87).
- 2. Размыслов Ю. П. Тождества со следом полной матричной алгебры над полем характеристики нуль // Изв. АН СССР. Сер. мат. 1974. Т. 38, № 4. С. 723–756.
- 3. Размыслов Ю. П. Тождества со следом и центральные полиномы в матричных суперал-гебрах $M_{n,k}$ // Мат. сб. 1985. Т. 128, № 4. С. 194–215.
- **4.** Самойлов Л. М. Новое доказательство теоремы Ю. П. Размыслова о тождествах матричной супералгебры // Фунд. и прикл. математика. 2000. Т. 6, № 4. С. 1121–1127.
- James G. D. The representation theory of the symmetric groups. Berlin; New York: Springer-Verl., 1978 (Lect. Notes Math.; V. 682).

Статья поступила 19 февраля 2009 г.

Самойлов Леонид Михайлович Ульяновский гос. университет, факультет математики и информационных технологий, ул Л. Толстого, 42, Ульяновск 432970 samoilov_l@rambler.ru