Σ -ОПРЕДЕЛИМОСТЬ НЕСЧЕТНЫХ МОДЕЛЕЙ c-ПРОСТЫХ ТЕОРИЙ

А. И. Стукачев

Аннотация. Показано, что всякая c-простая теория с дополнительным условием дискретности имеет несчетную модель, Σ -определимую в $\mathbb{HF}(\mathbb{L})$, \mathbb{L} — плотный линейный порядок. В качестве следствия этот факт установлен для всех c-простых теорий конечной сигнатуры, являющихся подмодельно полными.

Ключевые слова: теория вычислимости, теория моделей, конструктивная модель, допустимое множество.

Посвящается Юрию Леонидовичу Ершову

1. Введение

В работе, продолжающей [1], исследуются вопросы эффективной представимости (Σ -определимости) алгебраических систем в наследственно конечных надстройках.

Для произвольного бесконечного кардинала α через \mathcal{K}_{α} будем обозначать класс систем мощности не больше, чем α , с конечной или вычислимой сигнатурой. Для систем с бесконечной вычислимой сигнатурой предполагается, что зафиксирована некоторая гёделевская нумерация формул данной сигнатуры. Для систем \mathfrak{A} и \mathfrak{B} через $\mathfrak{A} \leq_{\Sigma} \mathfrak{B}$ будем обозначать тот факт, что \mathfrak{A} Σ -определима в $\mathbb{HF}(\mathfrak{B})$ (см. [2]). Предполагается, что сигнатура надстройки $\mathbb{HF}(\mathfrak{B})$ содержит предикатный символ Sat^2 , интерпретацией которого является предикат истинности атомарных формул системы \mathfrak{B} , согласованный с зафиксированной гёделевской нумерацией для формул сигнатуры этой системы. В случае систем конечной сигнатуры добавление предиката Sat к сигнатуре надстройки не является существенным.

Предпорядок \leq_{Σ} порождает на классе \mathscr{K}_{α} отношение Σ -эквивалентности: $\mathfrak{A} \equiv_{\Sigma} \mathfrak{B}$, если $\mathfrak{A} \leq_{\Sigma} \mathfrak{B}$ и $\mathfrak{B} \leq_{\Sigma} \mathfrak{A}$. Классы эквивалентности по отношению \equiv_{Σ} будем называть степенями Σ -определимости, или Σ -степень системы \mathfrak{A} будем обозначать через $[\mathfrak{A}]_{\Sigma}$. Σ -степень будем называть несчетной, если она содержит систему некоторой несчетной мощности (легко понять, что все системы такой Σ -степени имеют такую же мощность). Структура

$$S_{\Sigma}(\alpha) = \langle \mathscr{K}_{\alpha} / \equiv_{\Sigma}, \leq_{\Sigma} \rangle$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 06–01–04002–HHИOа, 08–01–00442а, 09–01–12140–0фи_м), Совета по грантам Президента РФ и государственной поддержке ведущих научных школ (проект HIII–335.2008.1) и Лаврентьевского гранта для молодых ученых СО РАН (постановление Президиума СО РАН № 43 от 04.02.2010 г.).

является верхней полурешеткой с наименьшим элементом, которым является степень, состоящая из конструктивизируемых систем. Для любых систем $\mathfrak{A},\mathfrak{B}\in\mathscr{K}_{\alpha}$ имеем $[\mathfrak{A}]_{\Sigma}\vee[\mathfrak{B}]_{\Sigma}=[(\mathfrak{A},\mathfrak{B})]_{\Sigma}$, где $(\mathfrak{A},\mathfrak{B})$ — теоретико-модельная пара систем \mathfrak{A} и \mathfrak{B} .

Для системы $\mathfrak{A} \in \mathscr{K}_{\alpha}$ и бесконечных кардиналов $\beta \leq \alpha$ и $\gamma \geq \alpha$ множества

$$I_{\beta}(\mathfrak{A}) = \{ [\mathfrak{B}]_{\Sigma} \mid \mathfrak{B} \in \mathscr{K}_{\beta}, \, \mathfrak{B} \leq_{\Sigma} \mathfrak{A} \}, \quad F_{\gamma}(\mathfrak{A}) = \{ [\mathfrak{B}]_{\Sigma} \mid \mathfrak{B} \in \mathscr{K}_{\gamma}, \, \mathfrak{A} \leq_{\Sigma} \mathfrak{B} \}$$

являются соответственно идеалом в полурешетке $\mathcal{S}_{\Sigma}(\beta)$ (главным при $\beta=\alpha$) и фильтром в полурешетке $\mathcal{S}_{\Sigma}(\gamma)$ (главным при любом $\gamma\geq\alpha$). Множества $F_{\gamma}(\mathfrak{A})$ в полурешетках $\mathcal{S}_{\Sigma}(\gamma)$ являются аналогом понятия cnekmpa системы $\mathfrak{A}-$ это множества Σ -степеней систем, относительно которых \mathfrak{A} конструктивизируема. Множества $I_{\beta}(\mathfrak{A})$ в полурешетках $\mathcal{S}_{\Sigma}(\beta)$ состоят из Σ -степеней систем, конструктивизируемых относительно \mathfrak{A} . Данная работа посвящена изучению идеалов $I_{\beta}(\mathfrak{A})$ в случае, когда β — несчетный кардинал, а \mathfrak{A} — «достаточно простая» система.

Теория первого порядка называется регулярной [2], если она модельно полна и разрешима, и c-простой [2], если она модельно полна, разрешима, ω -категорична и имеет разрешимое множество полных формул. Алгебраическую систему будем называть регулярной (c-простой), если таковой является ее элементарная теория. Примерами регулярных систем являются поля \mathbb{R} , \mathbb{Q}_p и \mathbb{C} действительных, p-адических и комплексных чисел. Примерами c-простых систем являются плотные линейные порядки и бесконечные системы с пустой сигнатурой.

Система $\mathfrak A$ называется локально конструктивизируемой [2], если $\mathrm{Th}_{\exists}(\mathfrak A, \bar a)$ вычислимо перечислимо для любого $\bar a \in A^{<\omega}$. Свойство локальной конструктивизируемости сохраняется при Σ -определимости. Известно (см. [2]), что поле $\mathbb C$ Σ -определимо в $\mathrm{HF}(\mathbb L)$ для (любого) плотного линейного порядка $\mathbb L$ мощности континуум, однако не Σ -определимо в $\mathrm{HF}(\mathbb S)$ для множеств $\mathbb S$ без структуры. Поля $\mathbb R$ и $\mathbb O_p$ не Σ -определимы над линейными порядками, так как не являются локально конструктивизируемыми.

Известно также, что система $\mathfrak A$ локально конструктивизируема тогда и только тогда, когда для любого набора $\bar a \in A^{<\omega}$ существуют конструктивизируемая система $\mathfrak B$ и набор $\bar b \in B^{<\omega}$ такие, что $(\mathfrak A, \bar a) \equiv_1 (\mathfrak B, \bar b)$ (что равносильно $\mathbb{HF}(\mathfrak A, \bar a) \equiv_1 \mathbb{HF}(\mathfrak B, \bar b)$). Следующее определение является, таким образом, непосредственным обобщением понятия локальной конструктивизируемости.

Определение 1.1 [3]. Система $\mathfrak A$ называется локально конструктивизируемой уровня α (0 < $\alpha \leq \omega$), если для любого набора $\bar{a} \in A^{<\omega}$ существуют конструктивизируемая система $\mathfrak B$ и набор $\bar{b} \in B^{<\omega}$ такие, что

$$\mathbb{HF}(\mathfrak{A}, \bar{a}) \equiv_{\alpha} \mathbb{HF}(\mathfrak{B}, \bar{b}).$$

Локальная конструктивизируемость любого уровня сохраняется при Σ -определимости: имеет место

Предложение 1.1 [3]. Пусть системы $\mathfrak A$ и $\mathfrak B$ таковы, что $\mathfrak A \leq_{\Sigma} \mathfrak B$, и система $\mathfrak B$ локально конструктивизируемая уровня α для $0 < \alpha \leq \omega$. Тогда система $\mathfrak A$ также является локально конструктивизируемой уровня α .

Всякая c-простая система является локально конструктивизируемой уровня ω , причем соответствующая «конструктивная симуляция» единственна с точностью до вычислимого изоморфизма. В то же время, как уже отмечалось, существуют регулярные системы, не являющиеся локально конструктивизируемыми

даже для уровня 1. Наличием хороших свойств локальной конструктивизируемости у *с*-простых систем обусловлена следующая

Гипотеза 1 (Ю. Л. Ершов [4]). Всякая с-простая теория имеет несчетную модель, Σ -определимую в $\mathbb{HF}(\mathbb{L})$ для некоторого плотного линейного порядка \mathbb{L} .

Как оказалось, в максимально общей формулировке (без ограничений на мощность сигнатуры) данная гипотеза неверна (см. ниже теорему 2.1). Целью настоящей работы является выделение с помощью одного достаточного условия довольно широкого подкласса класса c-простых теорий, для которых эта гипотеза справедлива.

2. Дискретные и подмодельно полные *с*-простые теории

Определение 2.1. Теория T называется sc-npocmoй, если она ω -категорична, подмодельно полна, разрешима и имеет разрешимое множество полных формул.

Таким образом, определение sc-простой теории отличается от определения c-простой теории тем, что условие модельной полноты заменяется более сильным условием подмодельной полноты. Будем обозначать через C-SIMPLE, C-SIMPLE и SC-SIMPLE и SC-SIMPLE $_{\rm fin}$ классы соответствующих теорий (индекс fin означает, что рассматриваются только системы с конечными сигнатурами).

Как оказалось, не все теории с «очень простыми» с точки зрения вычислимости счетными моделями имеют «достаточно простые» несчетные модели: имеет место

Теорема 2.1 [1]. Существует *sc*-простая теория (бесконечной сигнатуры), не имеющая несчетных моделей, Σ -определимых в $\mathbb{HF}(\mathbb{L})$, \mathbb{L} — плотный линейный порядок.

Ниже будет показано, что для класса sc-простых теорий конечной сигнатуры в отличие от случая теорий с бесконечной сигнатурой гипотеза 1 верна.

Пусть σ — конечная или вычислимая сигнатура, $V = \{x_i \mid i \in \omega\}$ — фиксированное множество переменных, и пусть T — непротиворечивая теория сигнатуры σ . Для $n \in \omega$ под n-типом теории T будем, как обычно, понимать максимальное совместное множество формул сигнатуры σ , все свободные переменные которых находятся среди x_0, \ldots, x_{n-1} , замкнутое относительно логической выводимости в T. Аналогичным образом определяется понятие a типа a0 все a1. Тип a2 будем называть a3 поa4 пипа a4 если a5 сели a6.

Определение 2.2. Пусть T — непротиворечивая теория сигнатуры σ . Под ω -типом теории T будем понимать максимальное совместное множество формул сигнатуры σ , все свободные переменные которых находятся среди $\{x_n \mid n \in \omega\}$, замкнутое относительно логической выводимости в T.

Тип p называется вырожденным, если $(x_i = x_j) \in p$ для некоторых $i \neq j$. Для ω -типа p и набора $\bar{n} = \langle n_0, n_1 \dots \rangle \in \omega^{<\omega} \cup \omega^{\omega}$ через $p | \bar{n}$ будем обозначать тип $[p(x_{n_0}, x_{n_1}, \dots)]_{x_0, x_1, \dots}^{x_{n_0}, x_{n_1}, \dots}$, получающийся заменой переменных x_{n_0}, x_{n_1}, \dots переменными x_0, x_1, \dots соответственно в типе $p(x_{n_0}, x_{n_1}, \dots) \subseteq p$, состоящем из формул, свободные переменные которых принадлежат множеству $\{x_{n_0}, x_{n_1}, \dots\}$.

Будем говорить, что тип p вкладывается в тип q (и обозначать $p \hookrightarrow q$), если $p=q|\bar{n}$ для некоторого $\bar{n} \in \omega^{<\omega} \cup \omega^{\omega}$.

Если $\mathfrak A$ — вычислимая система и $p-\omega$ -тип, то будем говорить, что p вычислимо реализуется в $\mathfrak A$, если этот тип реализуется некоторой вычислимой последовательностью элементов системы $\mathfrak A$.

Лемма 2.1. Пусть \mathfrak{A} — вычислимая система, и пусть $p-\omega$ -тип. Тогда

- 1) если система $\mathfrak A$ разрешима, то всякий вычислимо реализующийся в $\mathfrak A$ ω -тип вычислим; в частности, если $\operatorname{Th}(\mathfrak A)$ регулярная теория, то всякий вычислимо реализующийся в $\mathfrak A$ ω -тип вычислим;
- 2) если $\operatorname{Th}(\mathfrak{A}) c$ -простая теория и p реализуется в \mathfrak{A} , то p вычислимо реализуется в \mathfrak{A} тогда и только тогда, когда p вычислим.

Доказательство. П. 1 непосредственно вытекает из определений. В п. 2 для доказательства вычислимой реализуемости вычислимого ω -типа в системе $\mathfrak A$ достаточно воспользоваться однородностью $\mathfrak A$ и разрешимостью множества полных формул теории $\mathrm{Th}(\mathfrak A,\bar a)$ для любого $\bar a\in A^{<\omega}$. \square

Определение 2.3. Пусть p и q — произвольные ω -типы (возможно, различных сигнатур). Тип q называется p-неразличимым (и обозначается $q \leq_i p$), если для любых наборов $\bar{n}_1, \bar{n}_2 \in \omega^{<\omega}$ одинаковой длины

из
$$p|\bar{n}_1=p|\bar{n}_2$$
 следует, что $q|\bar{n}_1=q|\bar{n}_2$.

Очевидно, что отношение \leq_i на множестве ω -типов рефлексивно и транзитивно. Будем называть ω -типы p и q i-эквивалентными (и обозначать $p \equiv_i q$), если $p \leq_i q$ и $q \leq_i p$, т. е. для любых наборов $\bar{n}_1, \bar{n}_2 \in \omega^{<\omega}$ одинаковой длины, $p|\bar{n}_1 = p|\bar{n}_2$ тогда и только тогда, когда $q|\bar{n}_1 = q|\bar{n}_2$.

Пусть $f:\omega\to\omega^{<\omega}$ — произвольная функция и p — произвольный ω -тип. Определим ω -тип p/f следующим образом: для всякого $\bar{n}=\langle n_0,\dots,n_{k-1}\rangle\in\omega^{<\omega}$

$$(p/f)|\bar{n} = p|f(n_0)^{\hat{}} \dots \hat{}f(n_{k-1}).$$

В случае, когда $f(n)=\langle kn,\dots,kn+k-1\rangle$ для некоторого k>0, ω -тип p/f будем обозначать через p/k.

Определение 2.4. Для произвольных систем $\mathfrak A$ и $\mathfrak B$ и некоторого k>0 множество $I\subseteq A^k\cap B$ называется множеством $\mathfrak A$ -неразличимых элементов в $\mathfrak B$ (размерности k), если для любых наборов $\bar i,\bar i'\in I^{<\omega}$ одинаковой длины

из
$$\langle \mathfrak{A}, \bar{i} \rangle \equiv \langle \mathfrak{A}, \bar{i}' \rangle$$
 следует, что $\langle \mathfrak{B}, \bar{i} \rangle \equiv \langle \mathfrak{B}, \bar{i}' \rangle$.

Лемма 2.2. Для любых c-простых теорий T,T' и k>0 следующие условия эквивалентны:

- 1) существуют вычислимые невырожденные ω -типы p и q теорий T и T' соответственно такие, что q является p/k-неразличимым;
- 2) существуют вычислимые модели $\mathfrak{A} \models T$ и $\mathfrak{A}' \models T'$ такие, что в \mathfrak{A}' существует бесконечное вычислимое множество \mathfrak{A} -неразличимых элементов размерности k.

Доказательство следует из определений и леммы 2.1. \square

Определение 2.5. Для $\alpha \leq \omega$ α -тип p называется yпорядоченно неразличимым, если для любого $k < \alpha$ и любых подмножеств $I, J \subseteq \alpha$ мощности k

$$p|I=p|J$$
,

где для $I = \{i_0 < i_1 < \dots\}$ через p|I обозначается тип $p|\langle i_0, i_1, \dots \rangle$.

Из определения очевидно, что ω -тип p является упорядоченно неразличимым тогда и только тогда, когда p является q-неразличимым для ω -типа q последовательности всех натуральных чисел в плотном линейном порядке, содержащем $\langle \omega, \leq \rangle$ как подсистему, например, в $\langle \mathbb{Q}, \leq \rangle$. Упорядоченная неразличимость p также эквивалентна тому, что множество $\{p|I\mid I\subseteq\omega \text{ конечно}\}$ конечных подтипов p минимально по включению. Отметим также, что любой ω -подтип p|I для бесконечного $I\subseteq\omega$ совпадает с p.

Упорядоченно неразличимые невырожденные ω -типы теории T — это в точности типы бесконечных последовательностей упорядоченно неразличимых элементов в моделях T. По теореме Эренфойхта — Мостовского любая непротиворечивая теория имеет невырожденные упорядоченно неразличимые ω -типы. Рассмотрим вопрос существования вычислимых невырожденных упорядоченно неразличимых ω -типов у c-простых теорий.

Определение 2.6. Пусть $n \in \omega$. Теорию T будем называть n-дискретной, если любой тип теории T однозначно определяется своими n-подтипами.

Будем называть теорию $\partial ucкретной$, если она n-дискретна для некоторого $n \in \omega$. Если T-n-дискретная теория, число n-типов которой конечно, то T ω -категорична и подмодельно полна в некотором обогащении конечным числом формульно определимых в исходной сигнатуре предикатов. Всякая регулярная n-дискретная теория с конечным числом n-типов является c-простой.

Лемма 2.3. 1. Всякая подмодельно полная теория конечной предикатной сигнатуры является n-дискретной c конечным числом n-типов для некоторого $n \in \omega$.

2. Всякая ω -категоричная подмодельно полная теория конечной сигнатуры является n-дискретной c конечным числом n-типов для некоторого $n \in \omega$.

Доказательство. Установим п. 1: пусть T — теория конечной сигнатуры $\sigma = \left\langle R_0^{n_0}, \dots, R_{k-1}^{n_{k-1}} \right\rangle$. Вследствие элиминации кванторов и конечности сигнатуры теории T любой ее тип p полностью и однозначно определяется совокупностью своих n_* -подтипов, где где $n_* = \max(n_0, \dots, n_{k-1})$. Каждый n_* -тип $p(x_0, \dots, x_{n_*-1})$, в свою очередь, определяется конечной конъюнкцией атомарных формул и их отрицаний: рассмотрим для всех i < k множества $\mathscr{F}(n_i)$ всех функций из $\{0, \dots, n_i - 1\}$ в $\{0, \dots, n_i - 1\}$. Тип элементов x_0, \dots, x_{n_*-1} определяется функцией

$$\varepsilon : \{ (R_i, f) \mid i < k, f \in \mathscr{F}(n_i) \} \rightarrow \{0, 1\}$$

следующим образом: $\varepsilon(R_i,f)=1$ тогда и только тогда, когда $R_i(f(\bar x))\in p$, где $f(\bar x)=\langle x_{f(0)},\dots,x_{f(n_i-1)}\rangle.$

Для доказательства п. 2 достаточно заметить, что в моделях ω -категоричных теорий любая конечно порожденная подсистема конечна, причем ее мощность ограничена функцией, равномерно зависящей от количества порождающих. \square

Лемма 2.4. Пусть T - c-простая дискретная теория.

- 1. Все упорядоченно неразличимые невырожденные ω -типы теории T вычислимы. В частности, теория T имеет вычислимые упорядоченно неразличимые невырожденные ω -типы.
- 2. В любой вычислимой модели теории T вычислимо реализуется хотя бы один упорядоченно неразличимый невырожденный ω -тип.

Доказательство. Пусть для простоты T — теория конечной предикатной сигнатуры $\sigma = \left\langle R_0^{n_0}, \dots, R_{k-1}^{n_{k-1}} \right\rangle$. Рассмотрим счетную модель $\mathfrak{M} \models T$. По

теореме Рамсея существует бесконечная последовательность (I,<) упорядоченно неразличимых элементов в \mathfrak{M} . Пусть $p-\omega$ -тип этой последовательности. Вследствие дискретности T ω -тип p однозначно определяется своим невырожденным n_* -подтипом, где $n_*=\max(n_0,\ldots,n_{k-1})$, который, в свою очередь, определяется некоторой бескванторной формулой φ_p . Ввиду разрешимости теории T получаем, что тип p вычислим.

Пусть $\mathfrak{M} \models T$ — вычислимая модель, и пусть p — (вычислимый) упорядоченно неразличимый невырожденный ω -тип, реализующийся в \mathfrak{A} . Существует бескванторная формула $\varphi(x,\bar{y})$ сигнатуры σ такая, что для любого набора $\overline{m} \in M^{<\omega}$, реализующего $lh(\overline{m})$ -подтип p, и любого $a \in M$ из истинности

$$\mathfrak{M} \models \bigwedge_{\bar{c} \sqsubseteq \overline{m}} \varphi(a, \bar{c})$$

следует, что \overline{m} а является $(lh(\overline{m})+1)$ -подтипом p (запись $\overline{c} \sqsubseteq \overline{m}$ означает, что $c_i = m_{h(i)}$ для некоторой возрастающей функции h). Действительно, в качестве $\varphi(x,\overline{y})$ можно взять формулу $\varphi_p(\overline{y},x)$.

Всякая модель *с*-простой теории является однородной, поэтому для любых $\overline{m}_1, \overline{m}_2 \in M^{<\omega}$ из $(\mathfrak{M}, \overline{m}_1) \equiv (\mathfrak{M}, \overline{m}_2)$ следует $(\mathfrak{M}, \overline{m}_1) \cong (\mathfrak{M}, \overline{m}_2)$.

Вычислимая бесконечная последовательность элементов системы \mathfrak{M} , реализующая ω -тип p, выбирается в ходе пошаговой конструкции следующим образом. На шаге 0 выбираем произвольную последовательность \overline{m}_0 из n_* элементов, реализующую n_* -подтип p. Далее, на шаге s+1 выбираем элемент $a \in M$ с наименьшим номером такой, что $\mathfrak{A} \models \varphi(a, \overline{c})$ для всех $\overline{c} \sqsubseteq \overline{m}_s$, где \overline{m}_s — последовательность, построенная на шаге s. Такой элемент s0 существует вследствие реализуемости s1 и однородности s2. Полагаем $\overline{m}_{s+1} \leftrightharpoons \overline{m}_s \hat{a}$ 3. s3

Следствие 2.1. Если T-sc-простая теория конечной сигнатуры, то в (любой) вычислимой модели теории T существует бесконечное вычислимое множество упорядоченно неразличимых элементов.

3. Σ -степени несчетных моделей c-простых теорий

Возвращаясь к вопросу о Σ -определимости несчетных моделей c-простых теорий, приведем одно (достаточно общее) необходимое условие Σ -определимости, аналогичное введенному в [1].

Предложение 3.1. Пусть система $\mathfrak A$ несчетна, система $\mathfrak B$ достаточно насыщена и локально конструктивизируема уровня ω , и пусть $\mathfrak A \leq_{\Sigma} \mathfrak B$. Тогда существуют вычислимые системы $\mathfrak A' \equiv \mathfrak A$ и $\mathfrak B' \equiv \mathfrak B$ такие, что в $\mathfrak A'$ существует бесконечное вычислимое множество $(\mathfrak B', \bar b')$ -неразличимых элементов размерности k для некоторых k > 0 и $\bar b' \in (B')^{<\omega}$.

Доказательство. Пусть система $\mathfrak A$ Σ -определима в $\mathbb{HF}(\mathfrak B)$ посредством набора Σ -формул

$$\Gamma = \langle \Phi, \Psi, \Psi^*, \Phi_0, \Phi_0^*, \dots, \Phi_k, \Phi_k^*, \dots \rangle,$$

где формулы Ψ и Ψ^* определяют отношения равенства и неравенства соответственно, причем, не нарушая общности, можно считать, что параметром в этих формулах является набор праэлементов $\bar{b}_0 \in B^{<\omega}$. Пусть $(\mathfrak{B}', \bar{b}')$ — конструктивная симуляция уровня ω для системы $(\mathfrak{B}, \bar{b}_0)$.

Набор формул Γ с параметром \bar{b}' корректно определяет в $\mathbb{HF}(\mathfrak{B}')$ некоторую систему \mathfrak{A}^* , которая вычислима и элементарно эквивалентна системе \mathfrak{A} . Отсюда, в частности, следует, что система \mathfrak{A}^* бесконечна.

Известно [2], что любой элемент наследственно конечной надстройки $\mathbb{HF}(\mathfrak{B}')$ представим в виде значения терма $t_{\varkappa}(\bar{b})$, где $\bar{b} \in (B')^{<\omega}$ — набор праэлементов, $\varkappa \in \mathrm{HF}(\omega)$. В нашем случае существуют такие элемент $\varkappa \in \mathrm{HF}(k)$ и бесконечное множество $X \subseteq (B')^k$, что $\mathbb{HF}(\mathfrak{B}') \models \Psi^*(t_{\varkappa}(\bar{b}_1), t_{\varkappa}(\bar{b}_2))$ для любых различных наборов \bar{b}_1 и \bar{b}_2 из множества X. Действительно, в противном случае набор формул Γ определял бы не более чем счетную систему в $\mathbb{HF}(\mathfrak{B})$.

Так как система \mathfrak{B}' вычислима и $\Psi^* - \Sigma$ -формула, можно найти бесконечное вычислимое множество $I \subseteq X$. Для этого достаточно взять произвольное $\bar{b}_0 \in X$, найти (эффективно) $\bar{b}_1 = \mu \bar{b}(\mathbb{HF}(\mathfrak{B}') \models \Psi^*(t_\varkappa(\bar{b}_0), t_\varkappa(\bar{b}))$ и т. д. В результате получим вычислимое бесконечное множество $I \leftrightharpoons \{\bar{b}_0, \bar{b}_1, \dots\}$.

Так как система \mathfrak{B}' , как и \mathfrak{B} , является достаточно насыщенной, то для любых $c_0, c_1 \in \mathrm{HF}(\mathfrak{B}')$ типы элементов c_1 и c_2 в $\mathbb{HF}(\mathfrak{B}')$ совпадают тогда и только тогда, когда существуют $n \in \omega$, $\varkappa \in \mathbb{HF}(n)$, \bar{b}_0 , $\bar{b}_1 \in (B')^n$ такие, что $c_0 = t_{\varkappa}(\bar{b}_0)$, $c_1 = t_{\varkappa}(\bar{b}_1)$, а элементарные типы наборов \bar{b}_0 и \bar{b}_1 совпадают в \mathfrak{B}' . Таким образом, для любых $i_0, \ldots, i_n, i'_0, \ldots, i'_n \in I$ из $\langle \mathfrak{B}', \bar{b}', i_0, \ldots, i_n \rangle \equiv \langle \mathfrak{B}', \bar{b}', i'_0, \ldots, i'_n \rangle$ следует

$$\langle \mathbb{HF}(\mathfrak{B}'), \bar{b}', t_{\varkappa}(i_0), \dots, t_{\varkappa}(i_n) \rangle \equiv \langle \mathbb{HF}(\mathfrak{B}'), \bar{b}', t_{\varkappa}(i'_0), \dots, t_{\varkappa}(i'_n) \rangle.$$

По произвольной конструктивизации μ системы \mathfrak{B}' можно построить конструктивизацию ν наследственно конечной надстройки $\mathbb{HF}(\mathfrak{B}')$, для которой $\mu^{-1}(i) = \nu^{-1}(t_{\varkappa}(i))$ при всех $i \in I$. Поскольку система \mathfrak{A}^* определяется в $\mathbb{HF}(\mathfrak{B}')$ набором Σ -формул, на основе этой конструктивизации легко получить вычислимую модель \mathfrak{A}' такую, что I будет бесконечным вычислимым множеством $\langle \mathfrak{B}', \bar{b}' \rangle$ - неразличимых элементов в системе \mathfrak{A}' . \square

В некоторых случаях полученное выше необходимое условие Σ -определимости может быть упрощено. Будем говорить, что теория T обладает свойством эффективной элиминации констант, если для любого главного расширения $T \cup p_0(\bar{c})$ теории T конечным числом констант и любого невырожденного вычислимого ω -типа p теории $T \cup p_0(\bar{c})$ существует невырожденный вычислимый ω -подтип $q \hookrightarrow p$ такой, что для сужения $r \subseteq q$ типа q на сигнатуру теории T выполняется $p \equiv_i r$.

Обозначим через DLO теорию плотного линейного порядка без концевых элементов, а через E — теорию бесконечной модели пустой сигнатуры. Очевидно, что обе эти теории являются sc-простыми. В [1] показано, что теории DLO и E обладают свойством эффективной элиминации констант.

Теория T называется uupoκoй, если в любой невырожденный ω -тип теории T вкладывается любой конечный тип теории T. Легко проверить, что теории DLO и E являются широкими.

Предложение 3.2. Пусть $\mathfrak{A} \leq_{\Sigma} \mathfrak{B}$, система \mathfrak{A} несчетна и $\mathfrak{B} \models T$, $T \in \{\text{DLO,E}\}$. Тогда существует вычислимая система $\mathfrak{A}' \equiv \mathfrak{A}$, содержащая бесконечное вычислимое множество неразличимых (упорядоченно для T = DLO, тотально для T = E) элементов размерности 1.

Доказательство. Пусть $\mathfrak{B}' \models T$ — произвольная вычислимая модель и система \mathfrak{A}' определяется в $\mathbb{HF}(\mathfrak{B}')$ тем же набором Σ -формул, что и система \mathfrak{A} в $\mathbb{HF}(\mathfrak{B})$. Используя предложение 3.1 и замечание об элиминации констант,

можно считать, что существует бесконечное вычислимое множество $I\subseteq A\cap B^k$ \mathfrak{B} -неразличимых элементов в \mathfrak{A} размерности k. Пусть для определенности первых элементов различных наборов из І бесконечное число. Рассмотрим наборы $b_0 b_0$ и $b_1 b_1$ из $(B')^k$, для которых в обозначениях доказательства предложения $3.1~\mathbb{HF}(\mathfrak{B}')\models\Phi(\varkappa(b_{\hat{i}}\hat{b}_{i})),~i=0,1,$ и $\mathbb{HF}(\mathfrak{B}')\models\Psi^{*}(\varkappa(b_{\hat{0}}\hat{b}_{0}),\varkappa(b_{\hat{1}}\hat{b}_{1})).$ Полагаем $I_0 = I_1 = \{b_0\hat{\ }b_0, b_1\hat{\ }b_1\}$. Пусть для n>1 уже построено множество

$$I_{n-1} = \{b_0 \hat{b}_0, \dots, b_{n-1} \hat{b}_{n-1}\}.$$

Вследствие насыщенности существует набор $b_n \hat{b}_n$ такой, что

$$(\mathfrak{B}', b_m\hat{b}_m, b_n\hat{b}_n) \equiv (\mathfrak{B}', b_0\hat{b}_0, b_1\hat{b}_1)$$

для всех m < n. В частности, $\mathbb{HF}(\mathfrak{B}') \models \Phi(\varkappa(b_n \bar{b}_n))$, и для всех m < n будет

 $\mathbb{HF}(\mathfrak{B}')\models\Psi^*(\varkappa(b_m\hat{b}_m),\varkappa(b_n\hat{b}_n)).$ Полагаем $I_n=I_{n-1}\cup\{b_n\hat{b}_n\}.$ Пусть $I=\bigcup\limits_{n\in\omega}I_n.$ Вследствие 2-дискретности теории T для любых i_0,\ldots,i_k

 $\in \omega$ элементарный тип набора $b_{i_0} \dot{\bar{b}}_{i_0} \dots \dot{\bar{b}}_{i_k} \dot{\bar{b}}_{i_k}$ в системе \mathfrak{B}' в случае $T=\mathrm{DLO}$ однозначно определяется упорядочением набора натуральных чисел $\langle i_0,\ldots,i_k \rangle$, который подобен упорядочению элементов набора $\langle b_{i_0}, \dots, b_{i_k} \rangle$ в системе $\mathfrak{B}',$ а значит, определяется элементарным типом этого набора. В случае $T={
m E}$ элементарный тип набора $b_{i_0}\hat{\ }b_{i_0}\hat{\ }\dots\hat{\ }b_{i_k}\hat{\ }b_{i_k}$ в системе \mathfrak{B}' однозначно определяется числом различных элементов в наборе $\langle i_0, \ldots, i_k \rangle$. \square

В некоторых случаях необходимое условие Σ-определимости несчетных систем, полученное в предложении 3.1, является также и достаточным. Воспользуемся критерием Σ -определимости в $\mathbb{HF}(\mathbb{L})$ из [2].

Определим категорию $^*\omega$ следующим образом. Объектами являются множества вида $[\mathbf{n}] \rightleftharpoons \{0,1,\ldots,n-1\}, n \in \omega$ ($[\mathbf{0}] \rightleftharpoons \varnothing$), а морфизмами — вложения, сохраняющие порядок. Заметим, что имеется единственный морфизм из [0] в $[\mathbf{n}]$ для любого $n \in \omega$.

Определение 3.1 (Ю. Л. Ершов [2]). * ω -Спектром называется любой функтор S из категории $^*\omega$ в категорию Mod_{π}^* алгебраических систем (некоторой фиксированной сигнатуры σ), морфизмами которой являются всевозможные вложения.

Чтобы определить $*\omega$ -спектр S, нужно задать последовательность \mathfrak{M}_0, \ldots , $\mathfrak{M}_n,\ldots,\,n\in\omega$, алгебраических систем сигнатуры σ и каждому вложению μ : $[\mathbf{n}] \to [\mathbf{m}]$, сохраняющему порядок, сопоставить вложение $\mu_*: \mathfrak{M}_n \to \mathfrak{M}_m$, причем так, что если $\mu_0: [\mathbf{n}] \to [\mathbf{m}], \ \mu_1: [\mathbf{m}] \to [\mathbf{k}]$ — морфизмы категории $^*\omega$, то $(\mu_0\mu_1)_*=\mu_{1*}\mu_{0*}$, и если $\mu:[\mathbf{n}]\to[\mathbf{n}]$ — единственный морфизм $(=\mathrm{id}_{[\mathbf{n}]}),$ то $\mu_*=\mathrm{id}_{\mathfrak{M}_n}:\mathfrak{M}_n o\mathfrak{M}_n,\,n\in\omega.$ Если определен $^*\omega$ -спектр S, т. е. $\{\mathfrak{M}_n,\mu_*\mid$ $n \in \omega, \mu \in \operatorname{Mor}^*\omega\}$, то для любого линейно упорядоченного множества L можно определить алгебраическую систему \mathfrak{M}_L (\mathfrak{M}_L^S) как предел $\lim_{\vec{L}_0} \mathfrak{M}_{L_0}'$ прямого спектра

$$\{\mathfrak{M}'_{L_0}, \varphi_{L_0, L_1} \mid L_0 \subseteq L_1 \subseteq L, L_1 \text{ конечно}\},$$

где $\mathfrak{M}'_{L_0} \rightleftharpoons \mathfrak{M}_n$, если $L_0 \subseteq L$ конечно и $|L_0| = n$, а вложение $\varphi_{L_0,L_1}: \mathfrak{M}'_{L_0} \to \mathfrak{M}'_{L_1}$ для конечных $L_0 \subseteq L_1 (\subseteq L)$ определено так: если $L_1 = \{l_0 < l_1 < \ldots < l_{m-1}\}$, $L_0 = \{l_{i_0} < l_{i_1} < \ldots < l_{i_{n-1}}\}$ (тогда $0 \le i_0 < i_1 < \ldots < i_{n-1} \le m$) и $\mu: [\mathbf{n}] \to [\mathbf{m}]$ определено как $\mu(j) \rightleftharpoons i_j, j < n$, то

$$\varphi_{L_0,L_1} \rightleftharpoons \mu_* : \mathfrak{M}'_{L_0} = \mathfrak{M}_n \to \mathfrak{M}_m = \mathfrak{M}'_{L_1}.$$

Если $L\subseteq L'$ — линейно упорядоченные множества, то система \mathfrak{M}_L естественно отождествляется с подсистемой $\mathfrak{M}_{L'}$.

Любой изоморфизм линейно упорядоченных множеств L и L' индуцирует изоморфизм между \mathfrak{M}_L и $\mathfrak{M}_{L'}$. Кроме того, если $L\subseteq L'$ — плотные линейно упорядоченные множества без концевых элементов, то $\mathfrak{M}_L\preccurlyeq \mathfrak{M}_{L'}$. Как следствие, если L и L' — плотные линейно упорядоченные множества без концевых элементов, то $\mathfrak{M}_L\equiv \mathfrak{M}_{L'}$.

Пусть μ_0 и μ_1 — морфизмы из [1] в [2] такие, что $\mu_0(0)=0$ и $\mu_1(0)=1$, и пусть выполнено условие

$$\mu_{0*} \neq \mu_{1*}.$$
 (*)

Условия (*) достаточно, чтобы $|\mathfrak{M}_L^S| \ge |L|$ выполнялось для любого линейно упорядоченного множества L.

Определение 3.2 (Ю. Л. Ершов [2]). Система нумераций $\nu_n:\omega\to M_n,$ $n\in\omega$, называется вычислимой последовательностью конструктивизаций

$$(\mathfrak{M}_0, \nu_0), (\mathfrak{M}_1, \nu_1), \ldots, (\mathfrak{M}_n, \nu_n), \ldots, \quad n \in \omega,$$

если выполнены следующие условия (предполагается, что сигнатура σ систем \mathfrak{M}_i конечна и не содержит функциональных символов):

- 1) $E \rightleftharpoons \{\langle n, m_0, m_1 \rangle \mid n, m_0, m_1 \in \omega, \nu_n(m_0) = \nu_n(m_1)\} \Delta$ -предикат на ω ;
- 2) $N_P
 ightharpoonup \{ \bar{n} = \langle n_0, n_1, \dots, n_k \rangle \mid \bar{n} \in \omega^{k+1}, \langle \nu_{n_0}(n_1), \dots, \nu_{n_0}(n_k) \rangle \in P^{\mathfrak{M}_{n_0}} \} \Delta$ -предикат на ω для любого (k-местного) предикатного символа $P \in \sigma$;
- 3) для любого константного символа $c\in\sigma$ существует Σ -функция $f_c:\omega\to\omega$ такая, что $c^{\mathfrak{M}_n}=\nu_n f_c(n)$.

Каждый морфизм $\mu: [\mathbf{n}] \to [\mathbf{m}]$ категории $^*\omega$ однозначно определяется числом m и подмножеством $\mu([\mathbf{n}]) \subseteq [\mathbf{m}]$. Это замечание позволяет определить взаимно однозначное соответствие $\mu^*: \Delta \to \operatorname{Mor} ^*\omega$ между подмножеством $\Delta \rightleftharpoons \{n \mid n \in \omega, r(n) < 2^{l(n)}\} \subseteq \omega$ и множеством $\operatorname{Mor} ^*\omega$, считая, что $n \in \Delta$ кодирует морфизм $\mu: [\mathbf{k}] \to [\mathbf{l}]$ такой, что l = l(n), а r(n) — номер подмножества $\mu([\mathbf{k}]) \subseteq [\mathbf{l}] = [\mathbf{l}(n)]$. Очевидно, что Δ есть Δ -подмножество ω .

Определение 3.3 (Ю. Л. Ершов [2]). Пусть $S = \{\mathfrak{M}_n, \mu_* \mid n \in \omega, \mu \in \mathrm{Mor}^*\omega\}$ — * ω -спектр. Конструктивизацией S называется любая вычислимая последовательность конструктивизаций

$$(\mathfrak{M}_0, \nu_0), (\mathfrak{M}_1, \nu_1), \ldots, (\mathfrak{M}_n, \nu_n), \ldots, \quad n \in \omega,$$

вместе с Σ -функцией $f: \Delta \times \omega \to \omega$ такой, что для любых $n, m, k \in \omega, \mu : [\mathbf{n}] \to [\mathbf{m}] \in \text{Мог}^*\omega$ если $n^* \in \Delta$ такой, что $\mu^*(n^*) = \mu$, то $\mu_*\nu_n(k) = \nu_m f(n^*, k)$.

 $^*\omega$ -Спектр S называется *конструктивизируемым*, если для него существует конструктивизация.

Теорема 3.1 (Ю. Л. Ершов [2]). Теория T имеет несчетную модель, Σ определимую в $\mathbb{HF}(\mathbb{L})$, $\mathbb{L} \models \mathrm{DLO}$, тогда и только тогда, когда существует конструктивизируемый * ω -спектр S, удовлетворяющий условию (*) и такой, что $\mathfrak{M}_L^S \models T$.

Предложение 3.3. Для c-простой теории следующие условия эквивалентны:

1) существует конструктивизируемый * ω -спектр S, удовлетворяющий условию (*) и такой, что $\mathfrak{M}_L^S\models T$;

2) теория T имеет вычислимые невырожденные упорядоченно неразличимые ω -типы.

Доказательство. Импликация из 1) в 2) следует из предыдущей теоремы и предложения 3.1. Установим импликацию из 2) в 1). Пусть $p-\omega$ -тип теории T, существование которого утверждается в п. 2) предложения, и пусть $\mathfrak{M}_0 \models T$ — вычислимая модель.

Определим * ω -спектр теории T следующим образом: положим $\mathfrak{M}_n=\mathfrak{M}_0$ для всех $n\in\omega$. Зафиксируем вычислимую реализацию

$$I = \langle i_0, i_1, \dots \rangle \subseteq M_0$$

 ω -типа p в системе \mathfrak{M}_0 . Для каждого морфизма $\mu:[\mathbf{n}] \to [\mathbf{m}]$ категории $^*\omega$ определим вложение $\mu_*:\mathfrak{M}_n \to \mathfrak{M}_m$ следующим образом: для всех k < n и $s \geq n$ полагаем

$$\mu_*(i_k) = i_{\mu(k)}, \quad \mu_*(i_{n+s}) = i_{m+s}.$$

Далее, пусть $\mathscr{H}(I)\subseteq M_0$ — эффективная скулемовская оболочка множества I в системе \mathfrak{M}_0 . Она существует вследствие того, что T-c-простая теория, и отсюда же следует, что $\mathscr{H}(I)\simeq \mathfrak{M}_0$. Любое сохраняющее порядок эффективное вложение множества I в себя продолжается до эффективного изоморфного вложения системы $\mathscr{H}(I)$ в себя. Обозначим его через μ_* . Легко понять, что $\mu_*:\mathfrak{M}_n\to\mathfrak{M}_m$, причем для различных морфизмов $\mu_0,\mu_1:[1]\to[2]$ морфизмы $(\mu_0)_*$ и $(\mu_1)_*$ также различны и выполняется условие на композиции морфизмов. Условие $\mathfrak{M}_L^S\models T$ выполняется вследствие модельной полноты T. \square

Следствие 3.1. Пусть T-c-простая теория. Следующие условия эквивалентны:

- 1) T имеет несчетную модель, Σ -определимую в $\mathbb{HF}(\mathbb{L})$, $\mathbb{L} \models \mathrm{DLO}$;
- 2) T имеет вычислимый невырожденный упорядоченно неразличимый ω -тип.

В работе [1] установлен следующий критерий существования у c-простой теории несчетной модели с «достаточно простой» Σ -степенью, частным случаем которого является предыдущее следствие (отметим, что приведенное здесь новое доказательство этого факта является более простым).

Теорема 3.2. Пусть T-c-простая теория, и пусть $\mathfrak A-($ произвольная) вычислимая модель T.

- (i) T имеет несчетную модель, Σ -определимую в $\mathbb{HF}(\mathbb{L})$, $\mathbb{L} \models \mathrm{DLO}$, тогда и только тогда, когда существует бесконечное вычислимое множество упорядоченно неразличимых элементов в \mathfrak{A} размерности 1.
- (ii) T имеет несчетную модель, Σ -определимую в $\mathbb{HF}(\mathbb{S})$, $\mathbb{S} \models \mathbb{E}$, тогда и только тогда, когда существует бесконечное вычислимое множество тотально неразличимых элементов в \mathfrak{A} размерности 1.

Замечание. Теорема 3.2 не справедлива, если теория T не является c-простой. Действительно, для теории ACF алгебраически замкнутых полей существует вычислимая модель, имеющая бесконечное вычислимое множество тотально неразличимых элементов (см. [5]). В то же время никакая несчетная модель теории ACF не определима в $\mathbb{HF}(\mathbb{S})$, $\mathbb{S} \models E$ (см. [2]).

Непосредственно из леммы 2.4 и следствия 3.1 вытекает

Следствие 3.2. Если T-c-простая дискретная теория, то существует несчетная система $\mathfrak{A} \models T$, для которой $\mathfrak{A} \leq_{\Sigma} \mathbb{L}$, $\mathbb{L} \models \mathrm{DLO}$.

Аналогично из следствий 2.1 и 3.1 получаем

Следствие 3.3. Если T-sc-простая теория конечной сигнатуры, то существует несчетная система $\mathfrak{A} \models T$, для которой $\mathfrak{A} \leq_{\Sigma} \mathbb{L}$, $\mathbb{L} \models \mathrm{DLO}$.

Как уже отмечалось, условие конечности сигнатуры теории существенно. Таким образом, гипотеза 1 верна для класса SC-SIMPLE $_{\rm fin}$, но не верна для класса SC-SIMPLE.

4. Примеры дискретных с-простых теорий

Для ω -категоричной теории T ее ϕ ункцией Pыль-Нардзевского называется функция $r_T: \omega \to \omega$ такая, что для всякого $n \in \omega$ значение $r_T(n)$ равно числу (полных) n-типов теории T.

Лемма 4.1. Пусть $T-\omega$ -категоричная разрешимая теория. Следующие утверждения эквивалентны:

- 1) Т имеет вычислимое множество полных формул;
- 2) Т имеет вычислимую функцию Рыль-Нардзевского.

Доказательство. 1. Пусть $n \in \omega$, и пусть $\bar{x} = \langle x_0, \dots, x_{n-1} \rangle$. Вследствие разрешимости равномерно по n эффективно находятся полные формулы $\varphi_1(\bar{x}), \dots, \varphi_k(\bar{x})$ теории T (с минимальными гёделевскими номерами), для которых

$$T \vdash \forall \bar{x}(\varphi_1(\bar{x}) \lor \ldots \lor \varphi_k(\bar{x})).$$

Тогда $r_T(n) = k$.

2. Пусть $n \in \omega$, $\bar{x} = \langle x_0, \dots, x_{n-1} \rangle$, и пусть $r_T(n) = k$. Вследствие разрешимости теории T эффективно находятся формулы $\varphi_1(\bar{x}), \dots, \varphi_k(\bar{x})$ (с минимальными гёделевскими номерами) такие, что $T \vdash \forall \bar{x}(\varphi_1(\bar{x}) \lor \dots \lor \varphi_k(\bar{x}))$ и для всех $1 \leq i, j \leq k, i \neq j$, справедливо

$$T \vdash \neg \exists \bar{x} (\varphi_i(\bar{x}) \land \varphi_i(\bar{x})).$$

Тогда $\varphi_1(\bar{x}), \ldots, \varphi_k(\bar{x})$ — полные формулы теории T от переменных \bar{x} . \square

Замечание. Существуют примеры ω -категоричных разрешимых теорий без вычислимой функции Рыль-Нардзевского. Более того, существуют примеры таких теорий с дополнительным условием подмодельной полноты.

Одним из способов построения ω -категоричных теорий является конструкция Фрессе прямого предела класса конечно порожденных систем, удовлетворяющего некоторым дополнительным условиям.

Определение 4.1. Пусть K — класс конечно порожденных систем некоторой фиксированной сигнатуры.

- 1. K обладает свойством наследственности $(K \models HP)$, если для любых $\mathfrak{A} \in K$ и \mathfrak{B} из $\mathfrak{B} \subseteq \mathfrak{A}$ следует, что $\mathfrak{B} \in K$.
- 2. K обладает свойством совместной вложимости ($K \models \text{JEP}$), если для любых $\mathfrak{A}, \mathfrak{B} \in K$ существует $\mathfrak{C} \in K$, для которой $\mathfrak{A} \hookrightarrow \mathfrak{C}$ и $\mathfrak{B} \hookrightarrow \mathfrak{C}$.
- \mathfrak{A} . K обладает свойством амальгамируемости ($K \models AP$), если для любых $\mathfrak{A}, \mathfrak{B}, \mathfrak{C} \in K$, для которых существуют вложения $f_1 : \mathfrak{C} \hookrightarrow \mathfrak{A}$ и $f_2 : \mathfrak{C} \hookrightarrow \mathfrak{B}$, существуют $\mathfrak{D} \in K$ и вложения $g_1 : \mathfrak{A} \hookrightarrow \mathfrak{D}$ и $g_2 : \mathfrak{B} \hookrightarrow \mathfrak{D}$ такие, что $f_1g_1 = f_2g_2$.
- 4. K является равномерно локально конечным ($K \models \text{ULF}$), если существует функция $f : \omega \to \omega$ такая, что для любой $\mathfrak{A} \in K$ если система \mathfrak{A} имеет не более n порождающих, то число элементов в \mathfrak{A} не превосходит f(n).

Известно, что если класс K конечно порожденных систем обладает свойствами HP, JEP и AP, то существует единственная с точностью до изоморфизма подмодельно полная счетная система \mathfrak{A} , класс конечно порожденных систем

которой (с точностью до изоморфизма) совпадает с классом K (см. например, [6]). Будем называть такую систему $\mathfrak A$ пределом Фрессе класса K (и обозначать $\mathfrak A = \lim_F K$).

Теорема 4.1 [6]. Пусть K — счетный класс конечно порожденных систем некоторой конечной сигнатуры, обладающий свойствами HP, JEP, AP и ULF, и пусть $\lim_{\mathbb{R}} K$ — предел Фрессе класса K. Тогда $\operatorname{Th}(\lim_{\mathbb{R}} K)$ ω -категорична.

Определение 4.2. Класс K конечно порожденных систем сигнатуры σ называется ULF-вычислимым, если он вычислим, и вычислима функция f из определения свойства ULF. Класс K будем называть ULF-вычислимо npedcma-вимым, если существуют ULF-вычислимый класс K' и сохраняющее изоморфизм сюръективное отображение $\tau: K \to K'$.

Предложение 4.1. Пусть K — класс конечно порожденных систем некоторой конечной сигнатуры, удовлетворяющий условиям HP, JEP, AP u ULF. Тогда $\operatorname{Th}(\lim_F K) \in \operatorname{SC-SIMPLE}$ тогда u только тогда, когда K имеет ULF-вычислимое представление.

Доказательство легко следует из леммы 4.1.

Приведем некоторые примеры sc-простых теорий, получающихся в результате конструкции Фрессе.

Пусть FinGraph — класс всех конечных неупорядоченных графов. Легко убедиться, что этот класс удовлетворяет условиям HP, JEP, AP и имеет ULF-вычислимое представление.

Определение 4.3. Неупорядоченный граф $\mathfrak A$ называется *случайным*, если для любых конечных $X,Y\subseteq A$ таких, что $X\cap Y=\varnothing$, существует вершина $v\in A\setminus (X\cup Y)$ такая, что v смежна со всеми вершинами из X,v не смежна ни с одной из вершин из Y.

Предложение 4.2 [6]. Если $\mathfrak A$ — предел Фрессе класса FinGraph, то $\mathfrak A$ — случайный граф. Как следствие, $\mathrm{Th}(\mathfrak A)\in\mathrm{SC} ext{-SIMPLE}_\mathrm{fin}$.

Доказательство следующего предложения непосредственно вытекает из определений.

Лемма 4.2. Если в подмодельно полной теории T предикатной сигнатуры σ все предикаты симметричны, τ . е. $T \vdash (R(\bar{x}) \leftrightarrow R(f(\bar{x})))$ для любой перестановки f множества $\{0,\dots,lh(\bar{x})-1\}$, то в любой модели $\mathfrak M$ теории T всякое множество упорядоченно неразличимых элементов является множеством тотально неразличимых элементов.

Таким образом, если $\mathfrak A$ — случайный граф, то всякое множество упорядоченно неразличимых элементов в $\mathfrak A$ является множеством тотально неразличимых элементов.

Следствие 4.1. Существует несчетный случайный граф $\mathfrak A$ такой, что $\mathfrak A \leq_\Sigma \mathbb S, \mathbb S \models \mathrm E.$

Пусть σ — конечная предикатная сигнатура. Класс $Fin(\sigma)$ удовлетворяет условиям HP, JEP, AP и имеет ULF-вычислимое представление.

Определение 4.4. Пусть σ — конечная сигнатура. Случайной системой $\operatorname{Ran}(\sigma)$ сигнатуры σ называется предел Фрессе класса $\operatorname{Fin}(\sigma)$.

Следствие 4.2. $\operatorname{Th}(\operatorname{Ran}(\sigma)) \in \operatorname{SC-SIMPLE}_{\operatorname{fin}}$, и существует несчетная система $\mathfrak{A} \equiv \operatorname{Ran}(\sigma)$ такая, что $\mathfrak{A} \leq_{\Sigma} \mathbb{L}$, $\mathbb{L} \models \operatorname{DLO}$.

Системой аксиом для $\operatorname{Th}(\operatorname{Ran}(\sigma))$ являются предложения $\forall \bar{x}(\psi(\bar{x}) \to \exists y \in \chi(\bar{x},y))$, где $\psi(\bar{x})$ и $\chi(\bar{x},y)$ — произвольные непротиворечивые бескванторные формулы сигнатуры σ .

ЛИТЕРАТУРА

- 1. Стукачев А. И. Σ -определимость в наследственно конечных надстройках и пары моделей // Алгебра и логика. 2004. Т. 43, № 4. С. 459–481.
- 2. Ершов Ю. Л. Определимость и вычислимость. Новосибирск: Научная книга, 1996.
- 3. Стукачев А. И. О степенях представимости моделей. II // Алгебра и логика. 2008. Т. 47, № 1. С. 108–126.
- 4. Ershov Yu. L. Σ -definability of algebraic structures // Handbook of recursive mathematics. V. 1. Recursive model theory Amsterdam: Elsevier Sci. B. V., 1998. P. 235—260. (Stud. Logic Found. Math.; V. 138) .
- 5. Kierstead H. A., Remmel J. B. Indiscernibles and decidable models $/\!/$ J. Symbol. Logic. 1983. V. 48, N 1. P. 21–32.
- 6. Hodges W. Model theory. Cambridge: Cambridge Univ. Press, 1993.

Статья поступила 8 декабря 2008 г.

Стукачев Алексей Ильич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 aistu@math.nsc.ru