ПРОСТРАНСТВА МЕРОМОРФНЫХ ДИФФЕРЕНЦИАЛОВ ПРИМА НА КОНЕЧНОЙ РИМАНОВОЙ ПОВЕРХНОСТИ

А. А. Казанцева, В. В. Чуешев

Аннотация. В предыдущих работах второго автора начато построение общей теории мультипликативных функций и дифференциалов Прима на компактной римановой поверхности для произвольных характеров. Теория функций на компактных римановых поверхностях существенно отличается от теории функций на конечных римановых поверхностях. В настоящей работе начато построение общей теории функций на переменных конечных римановых поверхностях для мультипликативных мероморфных функций и дифференциалов. Построены все виды элементарных дифференциалов Прима для любых характеров. Найдены размерности и построены явные базисы в двух важных фактор-пространствах дифференциалов Прима. Как следствие находятся размерность и базис в первой голоморфной группе когомологий де Рама дифференциалов Прима для любых характеров.

Ключевые слова: пространство Тейхмюллера конечных римановых поверхностей, дифференциал Прима, векторное расслоение, группа характеров, многообразие Якоби, мультипликативная точка Вейерштрасса.

Теория мультипликативных функций и дифференциалов Прима для случая специальных характеров на компактной римановой поверхности нашла приложения в геометрической теории функций комплексного переменного, аналитической теории чисел и уравнениях математической физики [1–9]. В [2] начато построение общей теории мультипликативных функций и дифференциалов Прима на компактной римановой поверхности для произвольных характеров. Теория функций на компактных римановых поверхностях существенно отличается от теории функций на конечных римановых поверхностях даже для класса однозначных мероморфных функций и абелевых дифференциалов. Ряд основных пространств функций и дифференциалов на конечной римановой поверхности F' типа (g,n), g > 1, n > 0, будут бесконечномерны.

В настоящей работе начато построение общей теории функций на конечных римановых поверхностях для мультипликативных мероморфных функций и дифференциалов. Построены все виды элементарных дифференциалов Прима для любых характеров. Найдены размерности двух важных фактор пространств. Как следствие находится размерность первой голоморфной группы когомологий де Рама дифференциалов Прима для любых характеров. В указанных фактор-пространствах построены явные базисы.

Работа поддержана грантами: АВЦП (2.1.1.3707); ФЦП (№-02.740.11.0457); РФФИ (09–01–00255); НШ (7347.2010.1).

§ 1. Предварительные сведения

Пусть F — фиксированная гладкая компактная ориентированная поверхность рода $g \geq 2$ с отмечанием $\{a_k,b_k\}_{k=1}^g$, т. е. упорядоченным набором образующих для $\pi_1(F)$, а F_0 — компактная риманова поверхность с фиксированной комплексно-аналитической структурой на F. Зафиксируем различные точки $P_1,\ldots,P_n\in F$. Пусть $F'=F\backslash\{P_1,\ldots,P_n\}$ — поверхность типа $(g,n),\ n\geq 1,\ g\geq 2,$ и Γ' — фуксова группа первого рода, инвариантно действующая в круге $U=\{z\in \mathbf{C}:|z|<1\}$ и униформизирующая поверхность F'_0 , т. е. $F'_0=U/\Gamma'$, которая имеет алгебраическое представление

$$\Gamma' = \left\langle A_1, \ldots, A_g, B_1, \ldots, B_g, \gamma_1, \ldots, \gamma_n : \prod_{j=1}^g [A_j, B_j] \gamma_1 \ldots \gamma_n = I
ight
angle,$$

где $[A,B]=ABA^{-1}B^{-1}$ для $A,B\in\Gamma'$, а I — тождественное отображение. Здесь $A_j,\,B_j,\,j=1,\ldots,g$, — гиперболические, а γ_1,\ldots,γ_n — параболические элементы [6].

Любая другая комплексно-аналитическая структура на F' задается некоторым дифференциалом Бельтрами μ на F'_0 , т. е. выражением вида $\mu(z)d\bar{z}/dz$, которое инвариантно относительно выбора локального параметра на F'_0 , где $\mu(z)$ — комплекснозначная функция на F'_0 и $\|\mu\|_{L_{\infty}(F'_0)} < 1$. Эту структуру на F' будем обозначать через F'_{μ} . Ясно, что $\mu=0$ соответствует F'_0 . Пусть M(F') — множество всех комплексно-аналитических структур на F' с топологией C^{∞} сходимости на F'_0 , $\mathrm{Diff}^+(F')$ —группа всех сохраняющих ориентацию гладких диффеоморфизмов поверхности F' на себя, которые оставляют неподвижными все проколы, и $\mathrm{Diff}_0(F')$ — нормальная подгруппа в $\mathrm{Diff}^+(F')$, состоящая из всех диффеоморфизмов, гомотопных тождественному диффеоморфизму на F'_0 . Группа $\mathrm{Diff}^+(F')$ действует на M(F') по правилу $\mu \to f^*\mu$, где $f \in \mathrm{Diff}^+(F')$, $\mu \in M(F')$. Тогда пространство Тейхмюллера $\mathbf{T}_{g,n}(F') = \mathbf{T}_{g,n}(F')$ есть фактор-пространство $M(F')/\mathrm{Diff}_0(F')$ [10, 11].

Так как отображение $U \to F_0' = U/\Gamma'$ — локальный диффеоморфизм, любой дифференциал Бельтрами μ на F_0' поднимается до Γ' -дифференциала Бельтрами μ на U, т. е. $\mu \in L_\infty(U)$,

$$\|\mu\|_{\infty} = \operatorname{ess\,sup}_{z \in U} |\mu(z)| < 1, \quad \mu(T(z)) \overline{T'(z)} / T'(z) = \mu(z), \quad z \in U, \ T \in \Gamma'.$$

Если Γ' -дифференциал μ на U продолжить на $\overline{\mathbf{C}}\backslash U$, положив $\mu=0$, то существует единственный квазиконформный гомеоморфизм $w^\mu:\overline{\mathbf{C}}\to\overline{\mathbf{C}}$ с неподвижными точками +1,-1,i, который является решением уравнения Бельтрами $w_{\bar{z}}=\mu(z)w_z$. Отображение $T\to T^\mu=w^\mu T(w^\mu)^{-1}$ задает изоморфизм группы Γ' на квазифуксову группу

$$\Gamma'_{\mu}=w^{\mu}\Gamma'(w^{\mu})^{-1}=\left\langle A_1^{\mu},\ldots,B_g^{\mu},\gamma_1^{\mu},\ldots,\gamma_n^{\mu}:\prod_{j=1}^g\left[A_j^{\mu},B_j^{\mu}\right]\gamma_1^{\mu}\ldots\gamma_n^{\mu}=I\right\rangle.$$

Классические результаты Л. Альфорса, Л. Берса [10] и других авторов утверждают, что

- 1) $\mathbf{T}_{g,n}(F')$ является комплексным многообразием размерности 3g-3+n при $g\geq 2,\, n\geq 1;$
- 2) $\mathbf{T}_{g,n}(F')$ имеет единственную комплексно-аналитическую структуру такую, что естественное отображение $\Psi: M(F') \to \mathbf{T}_{g,n}(F')$ будет голоморфным, при этом Ψ имеет только локальные голоморфные сечения;

3) элементы из Γ'_{μ} голоморфно зависят от модулей $[\mu]$ конечных римановых поверхностей F'_{μ} .

Два Γ' -дифференциала Бельтрами μ и ν конформно эквивалентны, если и только если $w^{\mu}T(w^{\mu})^{-1}=w^{\nu}T(w^{\nu})^{-1},\,T\in\Gamma'$. Естественно, что выбор образующих $\{a_k,b_k\}_{k=1}^g\cup\{\gamma_1,\ldots,\gamma_n\}$ в $\pi_1(F')$ эквивалентен выбору системы образующих $\{a_k(\mu),b_k(\mu)\}_{k=1}^g\cup\{\gamma_1(\mu),\ldots,\gamma_n(\mu)\}$ в $\pi_1(F'_{\mu})$ и $\{A_j^{\mu},B_j^{\mu}\}_{j=1}^g\cup\{\gamma_1^{\mu},\ldots,\gamma_n^{\mu}\}$ в Γ'_{μ} для любого $[\mu]$ из $\mathbf{T}_{g,n}$. Отсюда получаем отождествления $M(F')/\operatorname{Diff}_0(F')=\mathbf{T}_{g,n}(F')=\mathbf{T}_{g,n}(\Gamma')$. При этом имеем взаимно однозначное соответствие между классами дифференциалов Бельтрами $[\mu]$, классами конформно эквивалентных отмеченных римановых поверхностей $[F'_{\mu};\{a_k(\mu),b_k(\mu)\}_{k=1}^g\cup\{\gamma_1(\mu),\ldots,\gamma_n(\mu)\}]$ и отмеченными квазифуксовыми группами Γ'_{μ} [11].

В [10, с. 99] построены формы $\zeta_1[\mu] = \zeta_1([\mu], \xi) d\xi, \ldots, \zeta_g[\mu] = \zeta_g([\mu], \xi) d\xi,$ $[\mu] \in \mathbf{T}_g, \ \xi \in w^\mu(U)$, такие, что для любого $[\mu] \in \mathbf{T}_g$ они являются поднятиями на $w^\mu(U)$ голоморфных на F_μ абелевых дифференциалов $\zeta_1[\mu], \ldots, \zeta_g[\mu]$, которые образуют канонический базис, двойственный каноническому гомотопическому базису $\{a_k(\mu), b_k(\mu)\}_{k=1}^g$ на F_μ и голоморфно зависящий от модулей $[\mu]$ для F_μ . Кроме того, матрица b-периодов $\Omega(\mu) = (\pi_{jk}[\mu])_{j,k=1}^g$ на F_μ состо-

ит из комплексных чисел $\pi_{jk}[\mu]=\int\limits_{\xi}^{B_k^\mu(\xi)}\zeta_j([\mu],w)\,dw,\,\xi\in w^\mu(U),$ и голоморфно зависит от $[\mu].$

Для любых фиксированных $[\mu] \in \mathbf{T}_g$ и $\xi_0 \in w^\mu(U)$ определим классическое отображение Якоби $\varphi: w^\mu(U) \to \mathbf{C}^g$ по правилу $\varphi_j(\xi) = \int\limits_{\xi_0}^\xi \zeta_j([\mu], w) \, dw$, $j=1,\ldots,g$. Фактор-пространство $J(F) = \mathbf{C}^g/L(F)$ называется *отмеченным многообразием Якоби для* $F=F_0$, где L(F) — решетка над \mathbf{Z} , порожденная столбцами $e^{(1)},\ldots,e^{(g)},\,\pi^{(1)},\ldots,\pi^{(g)}$ матрицы (I_g,Ω) . Универсальное многообразие Якоби рода g — расслоенное пространство над \mathbf{T}_g , слой которого над $[\mu] \in \mathbf{T}_g$ является якобианом $J(F_\mu)$ поверхности F_μ [12].

Далее, для любого натурального числа m>1 существует расслоенное пространство над \mathbf{T}_g , у которого слой над $[\mu]\in\mathbf{T}_g$ — пространство всех целых дивизоров степени m на F_μ . Голоморфные сечения этого расслоения определяют на каждой F_μ целый дивизор D^μ степени m, который голоморфно зависит от $[\mu]$. Также существует голоморфное отображение φ_m из этого расслоения на универсальное расслоение Якоби, $m\geq 1$, ограничение которого на слои является продолжением отображения Якоби $\varphi:F_\mu\to J(F_\mu)$. Известно, что для m=g отображение $\varphi:F_g[\mu]\backslash F_g^1[\mu]\to W_g[\mu]\backslash W_g^1[\mu]$ является аналитическим изоморфизмом, где $F_g[\mu]-g$ -кратное симметрическое произведение поверхности F_μ и $W_g^1[\mu]=\varphi(F_g^1[\mu])$ имеет комплексную размерность, не превышающую g-2 [6]. Локальные голоморфные сечения этих расслоений над окрестностью $U([\mu_0])\subset \mathbf{T}_g$ можно получить (для любого $m\geq 1$) из локальных голоморфных сечений Эрла s для $\Psi:M(F)\to \mathbf{T}_g$ над $U([\mu_0])$ [12].

Xарактером ρ для F'_{μ} называется любой гомоморфизм $\rho: (\pi_1(F'_{\mu}), \cdot) \to (\mathbf{C}^*, \cdot), \mathbf{C}^* = \mathbf{C} \setminus \{0\}$. Характер единственным образом задается упорядоченным набором $(\rho(a_1^{\mu}), \rho(b_1^{\mu}), \dots, \rho(a_q^{\mu}), \rho(b_q^{\mu}), \rho(\gamma_1^{\mu}), \dots, \rho(\gamma_n^{\mu})) \in (\mathbf{C}^*)^{2g+n}$.

Определение 1.1. *Мультипликативной функцией f* на F'_μ для характера ρ назовем мероморфную функцию f на $w^\mu(U)$ такую, что $f(Tz)=\rho(T)f(z), z\in w^\mu(U), T\in \Gamma'_\mu$.

Определение 1.2. т-Дифференциалом Прима относительно фуксовой груп-

пы Γ' для ρ , т. е. (ρ,m) -дифференциалом, называется дифференциал $\omega(z)\,dz^m$ такой, что $\omega(Tz)(T'z)^m=\rho(T)\omega(z),\,z\in U,\,T\in\Gamma',\,\rho:\Gamma'\to\mathbf{C}^*.$

Если f_0 — мультипликативная функция на F_μ для ρ без нулей и полюсов, то

$$f_0(P) = f_0(P_0) \exp \int\limits_{P_0[\mu]}^P 2\pi i \sum_{j=1}^g c_j([\mu],
ho) \zeta_j([\mu]),$$

где $P_0[\mu]=f^{s[\mu]}(P_0)\in F_\mu,\ c_j([\mu],\rho)\in {\bf C},\ j=1,\ldots,g,\ c_j$ зависят голоморфно от $[\mu]$ и от ρ . При этом интегрирование производится от фиксированной $P_0[\mu]$ до текущей P на переменной поверхности F_μ и $s[\mu]$ — сечение Эрла [12] над $U([\mu_0])\subset {\bf T}_g$. Получим, что характер ρ для f_0 имеет вид

$$hoig(a_k^\muig)=\exp 2\pi i c_k([\mu],
ho), \quad
hoig(b_k^\muig)=\exp\Biggl(2\pi i \sum_{j=1}^g c_j([\mu],
ho)\pi_{jk}([\mu])\Biggr), \quad k=1,\ldots,g.$$

Будем называть такие характеры ρ несущественными, а f_0 (с таким характером) — $e \partial u h u u e \tilde{u}$. Характеры, которые не являются несущественными, будем называть существенными на $\pi_1(F_\mu)$. Обозначим через $\operatorname{Hom}(\Gamma, \mathbf{C}^*)$ группу всех характеров на Γ с естественным умножением. Несущественные характеры образуют подгруппу L_g в группе $\operatorname{Hom}(\Gamma, \mathbf{C}^*)$.

Определение 1.3. Дифференциал Прима ϕ класса C^1 на $F' = U/\Gamma'$ для ρ называется мультипликативно точным, если $\phi = df(z)$ и $f(Tz) = \rho(T)f(z)$, $T \in \Gamma'$, $z \in U$, т. е. f — мультипликативная функция на F' класса C^2 для ρ .

Обозначим через $Z^1(\Gamma'_{\mu}, \rho)$ для $\rho \in \text{Hom}(\Gamma'_{\mu}, \mathbf{C}^*)$ множество всех отображений $\phi: \Gamma'_{\mu} \to \mathbf{C}$ таких, что $\phi(ST) = \phi(S) + \rho(S)\phi(T), \ S, T \in \Gamma'_{\mu}$ [1].

Пусть ϕ — замкнутый дифференциал Прима на $F'=F'_0$ для ρ . Проинтегрировав его, получим, что $f(Tz)-f(Tz_0)=\rho(T)(f(z)-f(z_0))$, где $\phi=df(z),z\in U,\ f(z)$ — интеграл Прима на круге U для ϕ , который определяется с точностью до аддитивного слагаемого. Отсюда для $T\in \Gamma'$ верно равенство $f(Tz)=\rho(T)f(z)+\phi_{f,z_0}(T),$ где $\phi_{f,z_0}(T)=f(Tz_0)-\rho(T)f(z_0).$ Таким образом, определено $\phi_{f,z_0}:\Gamma'\to \mathbf{C}$ — отображение периодов для ϕ . Оно зависит от выбора интеграла Прима f(z) на U и базисной точки $z_0.$ Если $f_1(z)=f(z)+c$ — другой интеграл Прима для ϕ , то $\phi_{f_1,z_0}(T)=\phi_{f,z_0}(T)+c\sigma(T),\ T\in \Gamma'.$ Легко проверить, что оба отображения ϕ_{f,z_0} и ϕ_{f_1,z_0} удовлетворяют коциклическому соотношению $\phi(ST)=\phi(S)+\rho(S)\phi(T),\ S,T\in \Gamma'.$ Они принадлежат пространству $Z^1(\Gamma',\rho)$ и представляют один и тот же класс периодов $[\phi]$ из $H^1(\Gamma',\rho)$ для дифференциала Прима ϕ на F'.

Для замкнутого дифференциала Прима ϕ можно определить так называемые классические периоды. Для $T\in \Gamma'$ соответствующий ему классический период $\phi_{z_0}(T)$ равен $\int\limits_{z_0}^{Tz_0} \phi$ и верно равенство $\phi_{z_0}(T)=\phi_{f,z_0}(T)-f(z_0)\sigma(T).$

Следовательно, отображения вида $T \to \phi_{f,z_0}(T)$ (периоды по Ганнингу) и вида $T \to \phi_{z_0}(T)$ (классические периоды) определяют один и тот же класс периодов $[\phi] \in H^1(\Gamma',\rho)$ для дифференциала Прима ϕ на F' для ρ . Поэтому корректно определено С-линейное отображение $p:\phi\to [\phi]$ из векторного пространства замкнутых дифференциалов Прима ϕ на F' для ρ в векторное пространство $H^1(\Gamma',\rho)$.

Обозначим через $\Omega_{2,\rho}(F'_{\mu})$ пространство дифференциалов Прима второго рода с конечным числом полюсов на F'_{μ} для характера ρ [2,6].

Лемма 1.1. Если $\omega \in \Omega_{2,\rho}(F'_{\mu})$ имеет класс периодов $[\omega] = 0$ в $H^1(\Gamma'_{\mu}, \rho)$, то ω — мультипликативно точный дифференциал на F'_{μ} для ρ .

Доказательство. Достаточно доказать это для фиксированных поверхности и характера. Классические периоды $\omega_{z_0}(\tilde{\gamma}_1), \dots, \omega_{z_0}(\tilde{\gamma}_k)$ получаются при обходе по петлям $\tilde{\gamma}_1, \dots, \tilde{\gamma}_k$ вокруг отдельных полюсов Q_1, \dots, Q_k для дифференциала ω соответственно. Они все обращаются в нуль, так как они равны вычетам относительно полюсов второго или большего порядка для ветвей нашего многозначного дифференциала.

Если класс периодов $[\omega]$ равен 0, то отсюда классический период $\omega_{z_0}(T)$ равен $c\sigma(T),\ c\neq 0,$ для любого T, где $\omega_{z_0}(T)=f(Tz_0)-f(z_0)=c(1-\rho(T)),$ а f — некоторый интеграл Прима для ω . Тогда $\tilde{f}=(f-c)$ будет мультипликативной функцией для ho и $\omega=d\hat{f}=d(f-c)$. Поэтому периоды по Ганнингу $\widetilde{\omega}_{z_0}(a_1),\ldots,\widetilde{\omega}_{z_0}(b_g),\ \widetilde{\omega}_{z_0}(\gamma_1),\ldots,\widetilde{\omega}_{z_0}(\gamma_n)$ все равны нулю для некоторого представителя из класса $[\omega]$. Следовательно, ω является мультипликативно точным дифференциалом для ρ на F'_{μ} . Лемма 1.1 доказана.

Дивизором на F_{μ} назовем формальное произведение $D=P_1^{n_1}\dots P_k^{n_k},\, P_j\in$ $F_{\mu}, n_{j} \in \mathbf{Z}, j = 1, \dots, k.$

Теорема (Римана — Роха для характеров) [2,6]. Пусть F — компактная риманова поверхность рода q > 1. Тогда для любого дивизора D на F и любого характера ho верно равенство $r_{
ho}(D^{-1}) = \deg D - g + 1 + i_{
ho^{-1}}(D).$

Теорема (Абеля для характеров) [2,6]. Пусть D- дивизор на отмеченной переменной компактной римановой поверхности $[F_{\mu}, \{a_1^{\mu}, \dots, a_q^{\mu}, b_1^{\mu}, \dots, b_q^{\mu}\}]$ рода $g \ge 1$ и ρ — характер на $\pi_1(F_\mu)$. Тогда D будет дивизором мультипликативной функции f на F_μ для характера ho в том и только в том случае, если $\deg D=0$

$$arphi(D) = rac{1}{2\pi i} \sum_{i=1}^g \log
hoig(b_j^\muig) e^{(j)}[\mu] - rac{1}{2\pi i} \sum_{i=1}^g \log
hoig(a_j^\muig) \pi^{(j)}[\mu] \quad (\equiv \psi(
ho, [\mu]))$$

в \mathbb{C}^g по модулю целочисленной решетки $L(F_\mu)$, порожденной столбцами $e^{(1)}[\mu]$, $\ldots, e^{(g)}[\mu], \pi^{(1)}[\mu], \ldots, \pi^{(g)}[\mu],$ где $\varphi[\mu]: F_{\mu} \to J(F_{\mu}).$

Отметим, что по теореме Л. Берса [10, с. 99] отображение ψ зависит локально голоморфно от ρ и $[\mu]$.

§ 2. Когомологическое расслоение Ганнинга на конечной римановой поверхности

Обозначим через $Z^1(\Gamma', \rho)$ для $\rho \in \text{Hom}(\Gamma', \mathbf{C}^*)$ множество всех отображений $\phi: \Gamma' \longrightarrow \mathbf{C}$ таких, что $\phi(ST) = \phi(S) + \rho(S)\phi(T), S, T \in \Gamma'$ [1]. Отметим основные свойства таких отображений:

- 1) так как $\phi(S \cdot I) = \phi(S) + \rho(S)\phi(I)$ и $\rho(S) \neq 0$, то $\phi(I) = 0$;
- 2) $\phi(S^{-1}) = -\frac{\phi(S)}{\rho(S)}$, tak kak $0 = \phi(I) = \phi(SS^{-1}) = \phi(S) + \rho(S)\phi(S^{-1})$; 3) $\phi([A,B][C,D]) = \phi([A,B]) + \rho([A,B])\phi([C,D]) = \phi([A,B]) + \phi([C,D])$, tak как $\rho([A, B]) = 1$;
- $(A,B) = \sigma(B)\phi(A) \sigma(A)\phi(B)$ для любых $A,B \in \Gamma'$, где $\sigma(T) = 1-1$ $\rho(T), T \in \Gamma'$.

Каждый элемент $\phi \in Z^1(\Gamma', \rho)$ единственным образом определяется упорядоченным набором комплексных чисел $\phi(A_1), \ldots, \phi(A_q), \phi(B_1), \ldots, \phi(B_q),$ $\phi(\gamma_1),\ldots,\phi(\gamma_n).$

Лемма 2.1. Для любого $\phi \in Z^1(\Gamma', \rho)$ верно равенство

$$\sum_{j=1}^{g} (\sigma(B_j)\phi(A_j) - \sigma(A_j)\phi(B_j)) + \phi(\gamma_1) + \sum_{j=1}^{n-1} \rho(\gamma_1 \dots \gamma_j)\phi(\gamma_{j+1}) = 0.$$
 (1)

Доказательство. Из равенства $I=\prod\limits_{j=1}^g [A_j,B_j]\gamma_1\dots\gamma_n$ следует, что

$$egin{aligned} 0 &= \phi(I) = \phi\Biggl(\prod_{j=1}^g [A_j,B_j]\Biggr) + \rho\Biggl(\prod_{j=1}^g [A_j,B_j]\Biggr)\phi(\gamma_1\dots\gamma_n) \ &= \sum_{j=1}^g (\sigma(B_j)\phi(A_j) - \sigma(A_j)\phi(B_j)) + \phi(\gamma_1\dots\gamma_n). \end{aligned}$$

Найдем

$$\phi(\gamma_1 \dots \gamma_n) = \phi(\gamma_1) + \rho(\gamma_1)\phi(\gamma_2 \dots \gamma_n) = \phi(\gamma_1) + \rho(\gamma_1)(\phi(\gamma_2) + \rho(\gamma_2)\phi(\gamma_3 \dots \gamma_n))$$

$$= \phi(\gamma_1) + \rho(\gamma_1)\phi(\gamma_2) + \rho(\gamma_1\gamma_2)\phi(\gamma_3) + \rho(\gamma_1\gamma_2\gamma_3)\phi(\gamma_4) + \dots + \rho(\gamma_1 \dots \gamma_i)\phi(\gamma_{i+1}) + \dots + \rho(\gamma_1 \dots \gamma_{n-1})\phi(\gamma_n).$$

Лемма 2.1 доказана.

Лемма 2.2. Голоморфное главное $\operatorname{Hom}(\Gamma', \mathbf{C}^*)$ -расслоение

$$E = \bigcup_{[\mu]} \operatorname{Hom}(\Gamma'_{\mu}, \mathbf{C}^*)$$

аналитически эквивалентно тривиальному расслоению $\mathbf{T}_{g,n}(F') \times \mathrm{Hom}(\Gamma', \mathbf{C}^*)$ над базой $\mathbf{T}_{g,n}(F')$.

Доказательство. Глобальная тривиализация (карта) Θ сопоставляет паре $([F'_{\mu}]; \rho_{\mu}) \in [F'_{\mu}] \times \operatorname{Hom}(\Gamma'_{\mu}, \mathbf{C}^*)$ упорядоченный набор $([F'_{\mu}], \rho_{\mu}(A^{\mu}_{1}), \dots, \rho_{\mu}(A^{\mu}_{g}), \rho_{\mu}(B^{\mu}_{1}), \dots, \rho_{\mu}(B^{\mu}_{g}), \rho_{\mu}(\gamma^{\mu}_{1}), \dots, \rho_{\mu}(\gamma^{\mu}_{n})) \in [F'_{\mu}] \times [\mathbf{C}^*]^{2g+n}$. Она задает послойную биекцию из E на $\mathbf{T}_{g,n}(F') \times [\mathbf{C}^*]^{2g+n}$ и определяет на E глобальную комплексную аналитическую структуру. Аналогично отображение $\Theta_0: ([F'_{\mu}]; \rho) \to ([F'_{\mu}]; \rho(A_1), \dots, \rho(B_g), \rho(\gamma_1), \dots, \rho(\gamma_n))$ задает глобальную карту на прямом произведении $\mathbf{T}_{g,n}(F') \times \operatorname{Hom}(\Gamma', \mathbf{C}^*)$. Определим отображение ψ по правилу $\psi: ([F'_{\mu}]; \rho_{\mu}) \to ([F'_{\mu}]; \rho)$, где $\rho(A_j) = \rho_{\mu}(A^{\mu}_j), \rho(B_j) = \rho_{\mu}(B^{\mu}_j), j = 1, \dots, g, \rho(\gamma_k) = \rho_{\mu}(\gamma^{\mu}_k), k = 1, \dots, n$. Оно будет изоморфизмом из переменного слоя $\operatorname{Hom}(\Gamma'_{\mu}, \mathbf{C}^*)$ на постоянный слой $\operatorname{Hom}(\Gamma', \mathbf{C}^*)$ при фиксированном $[F'_{\mu}]$. В картах Θ и Θ_0 отображение ψ имеет вид (id; id), а значит, будет биголоморфным изоморфизмом из E на произведение $\mathbf{T}_{g,n}(F') \times \operatorname{Hom}(\Gamma', \mathbf{C}^*)$ над базой $\mathbf{T}_{g,n}(F')$. Лемма 2.2 доказана.

Рассмотрим $Z^1(\Gamma'_\mu,\rho)$ — комплексное (2g+n-1)-мерное векторное пространство для ρ при $n\geq 1$. Пусть $B^1(\Gamma'_\mu,\rho)$ — одномерное подпространство в $Z^1(\Gamma'_\mu,\rho)$, порожденное элементом σ при $\rho\neq 1$. Тогда $H^1(\Gamma'_\mu,\rho)=Z^1(\Gamma'_\mu,\rho)/B^1(\Gamma'_\mu,\rho)$ — комплексное (2g+n-2)-мерное векторное пространство для $\rho\neq 1$ и (2g+n-1)-мерное пространство для $\rho\equiv 1$.

В дальнейшем будем предполагать, что $\rho(\gamma_j) = 1, j = 1, \dots, n$.

Множество $G'=\bigcup_{[\mu],\rho\neq 1}H^1(\Gamma'_\mu,\rho)$ будем называть когомологическим расслоением Ганнинга над базой $\mathbf{T}_{g,n} \times \mathrm{Hom}(\Gamma',\mathbf{C}^*)\backslash\{1\}$ [1]. Для G' при $\rho\neq 1$ используем изоморфизм Ганнинга [1] между комплексным векторным пространством $H^1(\Gamma'_\mu,\rho)$ и векторным пространством $\mathrm{Hom}_\rho([\Gamma'_\mu,\Gamma'_\mu],\mathbf{C})$, состоящим из гомоморфизмов $\phi_0:[\Gamma'_\mu,\Gamma'_\mu]\to(\mathbf{C},+)$ с условием, что $\phi_0(STS^{-1})=\rho(S)\phi_0(T)$, $T\in [\Gamma'_\mu,\Gamma'_\mu]$, $S\in \Gamma'_\mu$. Здесь $[\Gamma'_\mu,\Gamma'_\mu]$ — коммутант группы Γ'_μ . Таким образом, расслоение G' изоморфно векторному расслоению \bigcup $\mathrm{Hom}_\rho([\Gamma'_\mu,\Gamma'_\mu],\mathbf{C})$.

Кроме того, матрицы перехода для этого расслоения можно будет определить через 2g координатных окрестностей $U_j=\{\rho: \rho(A_j)\neq 1\},\ U_{g+j}=\{\rho: \rho(B_j)\neq 1\},\ j=1,\ldots,g,$ которые покрывают базу $\operatorname{Hom}(\Gamma',\mathbf{C}^*)\setminus\{1\},$ при условии $\rho(\gamma_j)=1,\ j=1,\ldots,n.$ Для окрестности U_1 будет $\sigma(A_1^\mu)\neq 0.$ Любой элемент $\phi_0\in\operatorname{Hom}_\rho([\Gamma'_\mu,\Gamma'_\mu],\mathbf{C})$ при $\rho\in U_1$ можно задать как $\phi_0=\phi_1^\mu|_{[\Gamma'_\mu,\Gamma'_\mu]}$ для $\phi_1^\mu\in Z^1(\Gamma'_\mu,\rho)$ такого, что $\phi_1(A_1^\mu)=0$ и $\phi_1(T)=\sigma(A_1^\mu)^{-1}\phi_0([T,A_1^\mu]),\ T\in\Gamma'_\mu[1].$

Теорема 2.1. Когомологическое расслоение Ганнинга G' над $\mathbf{T}_{g,n}(F') \times (\operatorname{Hom}(\Gamma', \mathbf{C}^*) \setminus \{1\})$ является голоморфным векторным расслоением ранга 2g + n - 2 при $n \geq 1, \ g \geq 2$.

ДОКАЗАТЕЛЬСТВО. Покажем, что $G'|_{U[\mu_0]\times U_l}$ гомеоморфно $U[\mu_0]\times U_l\times {\bf C}^{2g+n-2}$, где координаты на слоях задаются так, что над $U[\mu_0]\times U_l$ имеем

$$\xi_j^l = \phi_0ig(ig[A_{ ilde{j}}^\mu,A_l^\muig]ig) = \sigmaig(A_l^\muig)\phi_l^\muig(A_{ ilde{j}}^\muig) - \sigmaig(A_{ ilde{j}}^\muig)\phi_l^\muig(A_l^\muig),$$

$$\eta_j^l = \phi_0 \big(\big[B_{\tilde{j}}^\mu, A_l^\mu \big] \big) = \sigma \big(A_l^\mu \big) \phi_l^\mu \big(B_{\tilde{j}}^\mu \big) - \sigma \big(B_{\tilde{j}}^\mu \big) \phi_l^\mu \big(A_l^\mu \big), \quad \zeta_m^l = \phi_l^\mu \big(\gamma_m^\mu \big),$$

а над $U[\mu_0] \times U_{q+l}$ имеем

$$\xi_{j}^{g+l} = \phi_{0}(\left[A_{\tilde{j}}^{\mu}, B_{l}^{\mu}\right]), \ \eta_{j}^{g+l} = \phi_{0}(\left[B_{\tilde{j}}^{\mu}, B_{l}^{\mu}\right]), \ \zeta_{m}^{g+l} = \phi_{g+l}^{\mu}(\gamma_{m}^{\mu}), \quad \tilde{j} = 1, \dots, (l-1), l+1, \dots, g, \ l = 1, \dots, g, \ m = 1, \dots, n.$$

Над U_1 получаем соотношения $\xi_j^1 = \phi_0(\left[A_{j+1}^\mu, A_1^\mu\right]) = \phi_1^\mu(\left[A_{j+1}^\mu, A_1^\mu\right]) = \sigma(A_1^\mu)\phi_1^\mu(A_{j+1}^\mu); \ \eta_j^1 = \phi_0(\left[B_{j+1}^\mu, A_1^\mu\right]) = \sigma(A_1^\mu)\phi_1^\mu(B_{j+1}^\mu), \ j=1,\ldots,g-1; \ \zeta_m^1 = \phi_1^\mu(\gamma_m^\mu), \ m=1,\ldots,n.$

Таким образом, координаты $\xi_j^1,~\eta_j^1,~\zeta_m^1$ слоя над фиксированным $([\mu],\rho)$ однозначно задают числа

$$\begin{split} \phi_1^{\mu} \big(A_1^{\mu} \big) &= 0, \quad \phi_1^{\mu} \big(A_2^{\mu} \big), \dots, \phi_1^{\mu} \big(A_g^{\mu} \big), \phi_1^{\mu} \big(B_1^{\mu} \big), \phi_1^{\mu} \big(B_2^{\mu} \big), \\ & \dots, \phi_1^{\mu} \big(B_g^{\mu} \big), \phi_1^{\mu} \big(\gamma_1^{\mu} \big), \dots, \phi_1^{\mu} \big(\gamma_n^{\mu} \big), \end{split}$$

а значит, и весь класс когомологий $[\phi_1^\mu]$, где

$$\phi_1^\muig(B_1^\muig) = \sigmaig(A_1^\muig)^{-2}\sum_{j=1}^{g-1}ig(\sigmaig(B_{j+1}^\muig)\xi_j^1 - \sigmaig(A_{j+1}^\muig)\eta_j^1ig) + \zeta_1^1 + \dots + \zeta_n^1.$$

Аналогично поступаем для остальных окрестностей.

Координаты ξ_j^l , η_j^l , ζ_m^l являются линейными комбинациями $\phi_l^\mu(A_j^\mu)$, $\phi_l^\mu(B_j^\mu)$, $\phi_l^\mu(\gamma_m^\mu)$ с голоморфными коэффициентами на $U[\mu_0] \times (U_k \cap U_l)$, так как $\phi_l^\mu|_{[\Gamma'_\mu, \Gamma'_\mu]} = \phi_0 = \phi_k^\mu|_{[\Gamma'_\mu, \Gamma'_\mu]}$ над $U[\mu_0] \times (U_k \cap U_l)$. Здесь ϕ_k^μ и ϕ_l^μ определяются, как ϕ_l^μ над U_1 , над U_k и U_l соответственно.

В свою очередь, $\phi_k^\mu(A_j^\mu)$, $\phi_k^\mu(B_j^\mu)$, $\phi_k^\mu(\gamma_m^\mu)$ — линейные комбинации от ξ_j^k , η_j^k , ζ_m^k с голоморфными коэффициентами на U_k . Поэтому координаты ξ_j^l , η_j^l ,

 ζ_m^l будут линейными комбинациями ξ_j^k , η_j^k , ζ_m^k с голоморфными коэффициентами на $U[\mu_0] \times (U_k \cap U_l)$. Таким образом, матрицы перехода $T_{k,l}$ голоморфны на $U[\mu_0] \times (U_k \cap U_l)$ и G' — голоморфное векторное расслоение над $\mathbf{T}_{g,n} \times (\mathrm{Hom}(\Gamma',\mathbf{C}^*) \setminus \{1\}$. Теорема 2.1 доказана.

Замечание 2.1. В случае n=0 эта теорема доказана в статье Ганнинга [1] для рода g=2 и в книге [2] для рода $g\geq 2$.

§ 3. Элементарные дифференциалы Прима

Для построения общей теории однозначных и мультипликативных дифференциалов большую роль играют так называемые элементарные дифференциалы [2,6] любого порядка, которые имеют минимальное количество полюсов, т. е. либо один полюс порядка ≥ 2 , либо два простых полюса, и голоморфно зависят от характеров ρ и от модулей $[\mu]$ римановых поверхностей. В этом параграфе будет найден общий вид элементарных (ρ,q) -дифференциалов Прима на F'_{μ} . Пространство $A_1(\rho)$ состоит из дифференциалов Прима для ρ на F', которые имеют конечное число полюсов на F' и допускают мероморфное продолжение на F. Пространство $A_2(\rho)$ состоит из дифференциалов для ρ , имеющих конечное число полюсов на F', и в проколах при аналитическом продолжении могут быть изолированные существенно особые точки.

Предложение 3.1. Дивизор D степени (2g-2)q является дивизором мероморфного (ρ,q) -дифференциала ω на компактной римановой поверхности F рода $g\geq 2$ для характера ρ при $q\geq 1$, если и только если $\varphi(D)=-2Kq+\psi(\rho)$ в J(F).

Доказательство проводится аналогично случаю q=1, рассмотренному в [2].

Предложение 3.2. Для любой точки Q и любого характера ρ на F'_{μ} типа $(g,n),\ g\geq 2,\ n\geq 1,\$ и любых $m\geq 2,\ q\geq 1$ существует элементарный (ρ,q) -дифференциал $au_Q^{(m)}(\rho)$ второго рода класса $A_1(\rho),\$ у которого общий вид дивизора $\left(au_Q^{(m)}(\rho)\right)=\frac{R_1...R_N}{Q^m}\frac{1}{P_1^{k_1}...P_n^{k_n}},\$ где $\varphi(R_1\ldots R_g)=-2K[\mu]q+\varphi(Q^m)-\varphi(R_{g+1}\ldots R_N)+\varphi(P_1^{k_1})+\cdots+\varphi(P_n^{k_n})+\psi(\rho),\ k_j\geq 0,\ j=1,\ldots,n,\$ при этом точки R_{g+1},\ldots,R_N выбираются произвольно на $F'_{\mu}\backslash\{Q\}$ и $N=(2g-2)q+m+k_1+\cdots+k_n$. Кроме того, эти дифференциалы локально голоморфно зависят от $[\mu]$ и ρ .

Доказательство. Найдем общий вид (ρ,q) -дифференциалов второго рода с единственным полюсом в точке Q точно порядка $m\geq 2$ на F'_u , где $q\geq 1$.

По теореме Римана — Роха для (ρ,q) -дифференциалов на F_{μ} [2] найдем размерность

$$i_{
ho,q}igg(rac{1}{Q^mP_1^{k_1}\dots P_n^{k_n}}igg)=\dim_{\mathbf{C}}\Omega_{
ho}^qigg(rac{1}{Q^mP_1^{k_1}\dots P_n^{k_n}}igg),$$

где $k_j \ge 0, \, k_j \in \mathbf{N}, \, j = 1, \dots, n$. Имеем

$$i_{
ho,q}(D) = (g-1)(2q-1) - \deg D + rigg(rac{(f[\mu])Z_{\mu}^{q-1}}{D}igg),$$

где $D=rac{1}{Q^mP_1^{k_1}...P_n^{k_n}}, Z_\mu^{q-1}$ — канонический класс дивизоров однозначных (q-1)- дифференциалов на $F_\mu, f[\mu]$ — любая мультипликативная функция для ρ на F_μ ,

локально голоморфно зависящая от $[\mu]$ и ρ [2]. Отсюда

$$i_{\rho,q}\left(\frac{1}{Q^m P_1^{k_1} \dots P_n^{k_n}}\right) = (g-1)(2q-1) + m + k_1 + \dots + k_n \ge 3.$$

Здесь $r\left(\frac{(f[\mu])Z_{\mu}^{q-1}}{D}\right)=0$, так как $\deg\left(\frac{(f[\mu])Z_{\mu}^{q-1}}{D}\right)>0$ при наших условиях. Действительно, $\deg(f[\mu])=0$, $\deg Z_{\mu}^{q-1}=(q-1)(2g-2)\geq 0$ и $\deg\left(\frac{1}{D}\right)\geq m>0$. Этот факт можно доказать по-другому. Если существует функция $g\neq 0$ для ρ на F_{μ} с условием $(g)\geq Q^{m}P_{1}^{k_{1}}\dots P_{n}^{k_{n}}(f[\mu])Z_{\mu}^{q-1}$, то $0=\deg(g)\geq \deg\left(Q^{m}P_{1}^{k_{1}}\dots P_{n}^{k_{n}}(f[\mu])Z_{\mu}^{q-1}\right)\geq 2$; противоречие. Ясно, что

$$i_{
ho,q}igg(rac{1}{Q^mP_1^{k_1}\dots P_n^{k_n}}igg)=i_{
ho,q}igg(rac{1}{Q^{m-1}P_1^{k_1}\dots P_n^{k_n}}igg)+1.$$

Следовательно, существует (ρ,q) -дифференциал $au_Q^{(m)}(\rho)$ с полюсом точно порядка m в точке Q на F_μ , т. е. $\left(au_Q^{(m)}(\rho)\right) = \frac{R_1 \dots R_N}{Q^m P_1^{k_1} \dots P_n^{k_n}}$ на $F_\mu, R_j \neq Q$, $j=1,\dots,N$, а значит, $\left(au_Q^{(m)}(\rho)\right) = \frac{R_1 \dots R_N}{Q^m}$ на F'_μ .

Такие (ρ,q) -дифференциалы $\omega= au_Q^{(m)}(\rho)$ из $A_1(\rho)$ на F'_μ определяются неединственно на F'_μ из-за своих нулей и полюсов, т. е. $(\omega)=rac{R_1...R_N}{Q^m}rac{1}{P_1^{k_1}...P_n^{k_n}},$ $k_j\geq 0,\ j=1,\ldots,n.$ Зафиксируем k_1,\ldots,k_n как порядки возможных полюсов в точках P_1,\ldots,P_n соответственно. При этом $\deg(\omega)=(2g-2)q$ на F_μ . Отсюда следует, что $N=(2g-2)q+m+k_1+\cdots+k_n$.

По предложению 3.1 получаем уравнение

$$\varphi_{P_0}(R_1 \dots R_N) - \varphi_{P_0}(Q^m) - \varphi_{P_0}(P_1^{k_1} \dots P_n^{k_n}) = -2K[\mu]q + \psi(\rho)$$

в многообразии Якоби $J(F_{\mu})$, где $K[\mu]$ — вектор констант Римана, голоморфно зависящий от модулей римановых поверхностей F_{μ} и от выбора базисной точки. Следовательно,

$$\varphi(R_1 \dots R_N) = -2K[\mu]q + \varphi(Q^m) + k_1\varphi(P_1) + \dots + k_n\varphi(P_n) + \psi(\rho) = a$$

или $\varphi(R_1\dots R_g)=a-\varphi(R_{g+1}\dots R_N)$. Таким образом, для определения нулей нашего дифференциала имеем $N-g=m+(2g-2)q-g+k_1+\dots+k_n\geq 2$ свободных параметров, которые можно выбирать произвольно на F'_μ . Решая проблему обращения Якоби, найдем дивизор $R_1\dots R_g$, который будет единственным голоморфным решением уравнения, если правая сторона не принадлежит $W^1_g[\mu]$ [2,6]. Это можно сделать, так как $\dim W^1_g[\mu] \leq g-2$, но N-g>g-2 или $(2g-2)\cdot(q-1)+m+k_1+\dots+k_n\geq m>0$. Поэтому дивизор $(\tau^{(m)}_Q(\rho))=\frac{R_1\dots R_g}{Q^m}\frac{R_{g+1}\dots R_N}{P_1^{k_1}\dots P_n^{k_n}}$ имеет наиболее общий вид для (ρ,q) -дифференциалов $\tau^{(m)}_Q(\rho)$ класса $A_1(\rho)$ с единственным полюсом точно порядка $m\geq 2$ на $F'_\mu=F_\mu\backslash\{P_1,\dots,P_n\}$ для точки $Q\in F'_\mu$. Предложение 3.2 доказано.

Аналогично доказывается следующее

Предложение 3.3. Для любых различных точек Q_1,Q_2 на поверхности F'_μ типа $(g,n),\ g\geq 2,\ n\geq 1,\$ и любого характера ρ на F'_μ существует элементарный (ρ,q) -дифференциал $\tau_{Q_1Q_2}(\rho)$ третьего рода класса $A_1(\rho),$ имеющий общий вид дивизора $(\tau_{Q_1Q_2}(\rho))=\frac{R_1...R_N}{Q_1Q_2}\frac{1}{P_1^{k_1}...P_n^{k_n}},$ где $\varphi(R_1\dots R_g)=-2K[\mu]q+$

 $arphi(Q_1Q_2)-arphi(R_{g+1}\dots R_N)+arphiig(P_1^{k_1}ig)+\dots+arphiig(P_n^{k_n}ig)+\psi(
ho),\ k_j\geq 0,\ j=1,\dots,n,$ при этом точки R_{g+1},\dots,R_N выбираются произвольно на $F'_\muarkslash\{Q_1,Q_2\}$ и $N=(2g-2)q+2+k_1+\dots+k_n.$ Кроме того, эти дифференциалы локально голоморфно зависят от $[\mu]$ и ρ .

§ 4. Дифференциалы Прима для несущественного характера

Обозначим через $\Omega_{2,\rho}(F'_\mu)$ пространство мероморфных дифференциалов второго рода для характера ρ с конечным числом полюсов, а через $\Omega_{e,\rho}(F'_\mu)$ — подпространство всех мультипликативно точных дифференциалов Прима для ρ на F'_μ . Пусть $\tau^{(m)}_{\widetilde{P}_j}$ — абелев дифференциал второго рода на F_μ с единственным полюсом точно порядка m в точке $\widetilde{P}_j,\ j=1,\ldots,g,$ с нулевыми a-периодами соответственно. Точки $\widetilde{P}_1,\ldots,\widetilde{P}_g$ выбираются из условия $r_\rho(\frac{1}{\widetilde{P}_1\ldots\widetilde{P}_g})=1.$

Для любого характера $\rho \neq 1$ определим отображение из $\Omega_{2,\rho}(F_\mu^{'})$ в $H^1(\Gamma_\mu',\rho)$, сопоставляя дифференциалу ω его класс периодов $[\omega]$. Пусть $\omega \in \Omega_{2,\rho}(F_\mu')$ поднят на U, где $F_\mu' = U/\widetilde{\Gamma}$, и $\widetilde{\Gamma}$ — фуксова группа первого рода, униформизирующая F_μ' в U [10, 11]. Найдем классические периоды

$$\omega_{z_0}(T) = \int\limits_{z_0}^{Tz_0} \omega + m_{n+1} \int\limits_{\gamma_{n+1}} \omega + \cdots + m_{n+k} \int\limits_{\gamma_{n+k}} \omega,$$

где $m_j \in \mathbf{Z}, \ j=n+1,\ldots,n+k$. Здесь через $\gamma_{n+1},\ldots,\gamma_{n+k}$ обозначены петли, обходящие только вокруг полюсов Q_1,\ldots,Q_k для ω на F'_μ соответственно. При этом интеграл $\int\limits_{z_0}^{Tz_0} \omega$ берется по некоторому фиксированному специальному пути в круге U, не проходящему через полюсы для ω .

Так как ω — дифференциал Прима второго рода, все вычеты в полюсах равны нулю. Поэтому существует глобальная первообразная — мероморфная функция f(z) на U такая, что $\omega=df$ на $F'_{\mu}\backslash\{Q_1,\ldots,Q_k\}$. Теперь поднимем $\omega=df$ на U относительно $\widetilde{\widetilde{\Gamma}}$ и получим, что $\omega_{z_0}(T)=\int\limits_{-\infty}^{T_{z_0}}df(z)$ для любого

 $T\in\widetilde{\widetilde{\Gamma}}$, где $\widetilde{\widetilde{\Gamma}}$ — фуксова группа первого рода на U, униформизирующая поверхность F''_μ , которая получается из F'_μ удалением всех k полюсов Q_1,\dots,Q_k дифференциала ω .

Зададим отображение

$$\Omega_{2,\rho}(F'_{\mu}) \ni \omega \to [\omega] = \{\omega_{z_0}(A_1), \dots, \omega_{z_0}(B_g), \omega_{z_0}(\gamma_1), \dots, \\ \omega_{z_0}(\gamma_n), \omega_{z_0}(\gamma_{n+1}), \dots, \omega_{z_0}(\gamma_{n+k})\} \in H^1(\widetilde{\widetilde{\Gamma}}, \rho'),$$

где $\rho'(\gamma_s)=1,\ s=n+1,\ldots,n+k,$ и $\rho'=\rho$ на $\Gamma'_{\mu}\cong\widetilde{\Gamma}.$ Так как все $\omega_{z_0}(\gamma_s),$ $s=n+1,\ldots,n+k,$ равны нулю, то $[\omega]$ выражается только через $\omega_{z_0}(A_1),\ldots,$ $\omega_{z_0}(B_g),\,\omega_{z_0}(\gamma_1),\ldots,\omega_{z_0}(\gamma_n),$ удовлетворяющие уравнению (1), а для $\rho\neq 1$ имеем $\omega_{z_0}(A_k)=0$ при $\rho(A_k)\neq 1$ и $\omega_{z_0}(B_k)=0$ при $\rho(B_k)\neq 1.$ Значит, отображение $\Omega_{2,\rho}(F'_{\mu})\ni\omega\to[\omega]\in H^1(\Gamma'_{\mu},\rho)$ корректно определено.

Если класс периодов $[\omega]$ равен 0 в $H^1(\Gamma'_\mu, \rho)$ для $\omega \in \Omega_{2,\rho}(F'_\mu)$, то дифференциал ω является мультипликативно точным для ρ на F'_μ , а значит, $\omega \in \Omega_{e,\rho}(F'_\mu)$.

Если $\omega \in \Omega_{e,\rho}(F'_{\mu})$, то, как раньше, $\omega_{z_0}(\gamma_s)=0$, $s=n+1,\ldots,n+k$, где γ_s — петля, обходящая только полюс Q_s для ω . По условию $\omega=df$, где f — мультипликативная мероморфная функция на F'_{μ} , а значит, все периоды по Ганнингу для ω на F'_{μ} равны нулю. Следовательно, $[\omega]=0$ в $H^1(\Gamma'_{\mu},\rho)$.

Поэтому для любого $\rho \neq 1$ отображение периодов из $\Omega_{2,\rho}(F'_{\mu})/\Omega_{e,\rho}(F'_{\mu})$ в $H^1(\Gamma'_{\mu},\rho)$, задаваемое по правилу $\omega + \Omega_{e,\rho}(F'_{\mu}) \to [\omega + \Omega_{e,\rho}(F'_{\mu})] = [\omega]$, корректно определено, взаимно однозначно и линейно. Следовательно,

$$\dim_{\mathbf{C}} \Omega_{2,\rho}(F'_{\mu})/\Omega_{e,\rho}(F'_{\mu}) \leq 2g + n - 2$$

для любого $\rho \neq 1$.

Теорема 4.1. Векторное расслоение $E_1 = \bigcup \Omega_{2,\rho}(F'_{\mu})/\Omega_{e,\rho}(F'_{\mu})$ является голоморфным векторным расслоением ранга 2g+n-2 над базой $\mathbf{T}_{g,n} \times (L_g \setminus \{1\})$ при $g \geq 2, n \geq 2$. При этом следующие наборы классов смежности дифференциалов Прима:

$$f_0\zeta_1, \dots, \widehat{f_0\zeta_k}, \dots, f_0\zeta_g, \ f_0\tau_{\widetilde{P}_1}^{(n_1+1)}, \dots, f_0\tau_{\widetilde{P}_1}^{(n_g+1)}, \ f_0\tau_{P_2P_1}, \dots, f_0\tau_{P_nP_1}$$
 (2)

либо

$$f_0\zeta_1,\ldots,\widehat{f_0\zeta_k},\ldots,f_0\zeta_g,\ f_0\tau_{\widetilde{P}_1}^{(2)},\ldots,f_0\tau_{\widetilde{P}_g}^{(2)},\ f_0\tau_{P_2P_1},\ldots,f_0\tau_{P_nP_1},$$
 (3)

задают базис локально голоморфных сечений этого расслоения, где f_0 — мультипликативная единица на F_μ для ρ , а числа n_1,\ldots,n_g — мультипликативные пробелы Вейерштрасса в точке \widetilde{P}_1 на F_μ для ρ и $i_{\rho^{-1}}(\widetilde{P}_1\ldots\widetilde{P}_g)=0$ на F_μ , $\widetilde{P}_1,\ldots,\widetilde{P}_g\in F'_\mu$ и $\rho(a_k)\neq 1$.

Доказательство. Это расслоение корректно определено над такой базой по лемме 2.2. Докажем обратное неравенство $\dim_{\mathbf{C}} \Omega_{2,\rho}(F'_{\mu})/\Omega_{e,\rho}(F'_{\mu}) \geq 2g+n-2$ и построим базис этого фактор-пространства.

Докажем, что при $\rho \neq 1$, $\rho(A_k) \neq 1$ дифференциалы из набора (3) представляют линейно независимые над ${\bf C}$ классы смежности в нашем фактор-пространстве. При $\rho_0 \neq 1$ на $\pi_1(F'_{\mu_0})$ существует $A_k \in \Gamma'_{\mu_0}$ с условием, что $\rho_0(A_k) = \exp 2\pi i c_k \neq 1$. Поэтому $c_k \neq 0$ для любого ρ из достаточно малой окрестности $U(\rho_0) \subset L_g \setminus \{1\}$ и любого $[\mu] \in U[\mu_0]$. Так как $df_0 = 2\pi i c_1 f_0 \zeta_1 + \cdots + 2\pi i c_g f_0 \zeta_g$ на F_μ , то $f_0 \zeta_k$ выражается линейно через df_0 и остальные слагаемые последней суммы. Следовательно, вместо одного из дифференциалов $f_0 \zeta_1, \ldots, f_0 \zeta_g$ можно взять df_0 , который представляет нулевой класс смежности. Предположим, что существует линейная комбинация с ненулевыми коэффициентами

$$C_{1}f_{0}\zeta_{1} + \dots + \widehat{C_{k}f_{0}\zeta_{k}} + \dots + C_{g}f_{0}\zeta_{g} + \tilde{c}_{1}f_{0}\tau_{\tilde{P}_{1}}^{(2)} + \dots + \tilde{c}_{g}f_{0}\tau_{\tilde{P}_{g}}^{(2)} + \tilde{c}_{1}f_{0}\tau_{P_{2}P_{1}} + \dots + \tilde{c}_{n-1}f_{0}\tau_{P_{n}P_{1}} = df,$$

где f — мультипликативная мероморфная функция для несущественного характера ρ на $F'_{\mu}, \ \rho(A_k) \neq 1.$

Обойдем точку P_2 по малой петле γ_2 , выходящей из $\widetilde{P}_{2,0}$. Тогда выражение слева будет иметь вычет $\widetilde{c}_1 f_0(\widetilde{P}_{2,0}) \rho(\gamma_2)$, а для правой стороны этот вычет равен нулю. Но $f_0(\widetilde{P}_{2,0}) \neq 0$, $\rho(\gamma_2) = 1$, а значит, $\widetilde{c}_1 = 0$. Аналогично считаем вычет по малым петлям обходящим отдельно вокруг точек P_3, \ldots, P_n и получаем, что $\widetilde{c}_2 = \cdots = \widetilde{c}_{n-1} = 0$. После этого остается сумма

$$C_1f_0\zeta_1+\cdots+\widehat{C_kf_0\zeta_k}+\cdots+C_gf_0\zeta_g+\widetilde{c}_1f_0 au_{\widetilde{P}_1}^{(2)}+\cdots+\widetilde{c}_gf_0 au_{\widetilde{P}_q}^{(2)}=df.$$

Рассмотрим коэффициенты $\tilde{c}_j, j=1,\ldots,g$.

- 1. Если df имеет устранимые особые точки во всех проколах, то это равенство на F'_μ влечет, что существует мероморфная мультипликативная функция на F_μ с простыми полюсами в $\widetilde{P}_1,\dots,\widetilde{P}_g$, но это невозможно из-за выбора этих точек и $r_\rho(\frac{1}{\widetilde{P}_1\dots\widetilde{P}_g})=0$.
- 2. Если df при продолжении на F_{μ} имеет в проколах хотя бы один полюс или существенно особую точку, то для комбинации слева эта точка (прокол) не будет особой, а для df она особая. Получили противоречие.

Таким образом, $\tilde{c}_{j} = 0, j = 1, \dots, g$.

Рассмотрим коэффициенты C_1,\ldots,C_g и равенство $C_1f_0\zeta_1+\cdots+\widehat{C_kf_0\zeta_k}+\cdots+C_qf_0\zeta_q=df$ при $\rho(A_k)\neq 1$.

1. Если f при продолжении с F'_{μ} на F_{μ} имеет во всех проколах устранимые особые точки, то из этого равенства следует, что f является мультипликативной единицей на F_{μ} и $f=C'_1f_0$. Если $C'_1=0$, то $\zeta_1,\ldots,\hat{\zeta}_k,\ldots,\zeta_g$ будут линейно зависимы на F_{μ} ; противоречие.

Если $C_1'\neq 0$, то $C_1'df_0=df=\sum_{j\neq k}C_jf_0\zeta_j$. Для $ho_0\neq 1,\
ho_0(A_k)\neq 1$ имеем

$$C_1'df_0=2\pi i\Bigl(\sum_{j
eq k}C_1'c_jf_0\zeta_j\Bigr)+2\pi iC_1'c_kf_0\zeta_k$$

на F_{μ} , где $C_1'c_k \neq 0$. Отсюда получаем на F_{μ} равенство вида

$$\left(\sum_{j
eq k} (C_1' 2\pi i c_j - C_j) \zeta_j
ight) + C_1' 2\pi i c_k \zeta_k = 0.$$

Противоречие с линейной независимостью абелевых дифференциалов ζ_1, \ldots, ζ_g .

2. Если f при продолжении с F'_{μ} на F_{μ} имеет в проколах полюс или существенно особую точку, то слева и справа получаем разные особые точки. Следовательно, $C_j=0,\ j=1,\ldots,g,\ j\neq k.$

Таким образом, дифференциалы из набора (3) представляют линейно независимые над \mathbf{C} классы смежности в нашем фактор-пространстве.

Покажем, что дифференциалы из набора (2) представляют линейно независимые классы смежности. Действительно, если существует линейная комбинация с ненулевыми коэффициентами

$$C_1 f_0 \zeta_1 + \dots + \widehat{C_k f_0 \zeta_k} + \dots + C_g f_0 \zeta_g + \tilde{c}_1 f_0 \tau_{\widetilde{P}_1}^{(n_1+1)} + \dots + \tilde{c}_g f_0 \tau_{\widetilde{P}_1}^{(n_g+1)} + \tilde{\tilde{c}}_1 f_0 \tau_{P_2 P_1} + \dots + \tilde{\tilde{c}}_{n-1} f_0 \tau_{P_n P_1} = df,$$

то $\tilde{ ilde{c}}_1 = \cdots = \tilde{ ilde{c}}_{n-1} = 0,$ как и в предыдущем случае.

Получаем равенство

$$C_1f_0\zeta_1+\cdots+\widehat{C_kf_0\zeta_k}+\cdots+C_gf_0\zeta_g+\widetilde{c}_1f_0\tau_{\widetilde{P}_1}^{(n_1+1)}+\cdots+\widetilde{c}_gf_0\tau_{\widetilde{P}_1}^{(n_g+1)}=df.$$

Рассмотрим коэффициенты \tilde{c}_i :

- 1) если f при продолжении имеет устранимые особые точки во всех проколах, то существует мультипликативная функция с единственным полюсом в \widetilde{P}_1 точно некоторого порядка n_j , но это невозможно из-за мультипликативных пробелов Вейерштрасса в точке \widetilde{P}_1 на F_μ ;
- 2) если f при продолжении имеет полюс или существенно особую точку хотя бы в одном из проколов, то слева и справа будут особенности разных типов.

Поэтому $\tilde{c}_1 = \cdots = \tilde{c}_g = 0$.

Продолжая, как в предыдущем случае, показываем, что $C_j=0$ для любого $j\neq k$ при ρ с условием, что $\rho(A_k)\neq 1$. Теорема 4.1 доказана.

Обозначим через $\Omega_{\rho}\left(\frac{1}{Q_1...Q_s};F'_{\mu}\right)$ пространство дифференциалов для ρ , кратных дивизору $\frac{1}{Q_1...Q_s}$ на F'_{μ} , а через $\Omega_{e,\rho}(1;F'_{\mu})$ — подпространство голоморфных мультипликативно точных дифференциалов для ρ на F'_{μ} .

Теорема 4.2. Векторное расслоение $E_2 = \bigcup \Omega_{\rho} \left(\frac{1}{Q_1 \dots Q_s}; F_{\mu}' \right) / \Omega_{e,\rho} (1; F_{\mu}')$ является голоморфным векторным расслоением ранга 2g + n - 2 + s над базой $\mathbf{T}_{g,n} \times (L_g \setminus \{1\})$ при $g \geq 2, \ n \geq 2, \ s \geq 1$. При этом набор классов смежности дифференциалов

$$f_0\zeta_1, \dots, \widehat{f_0\zeta_k}, \dots, f_0\zeta_g, f_0\tau_{P_1}^{(n_1+1)}, \dots, f_0\tau_{P_1}^{(n_g+1)}, f_0\tau_{P_2P_1}, \dots, f_0\tau_{P_nP_1}, f_0\tau_{Q_1P_1}, \dots, f_0\tau_{Q_sP_1}$$

$$(4)$$

будет базисом локально голоморфных сечений этого расслоения, где n_1,\ldots,n_g — мультипликативные пробелы Вейерштрасса в P_1 для ρ на $F_\mu,\, \rho(a_k)\neq 1,\, Q_1,\ldots,Q_s$ — различные точки на F'_μ , голоморфно зависящие от $[\mu]$.

Доказательство. Рассмотрим отображение периодов

$$\Omega_{\rho}\left(\frac{1}{Q_1\dots Q_s}; F'_{\mu}\right) \ni \omega \to [\omega] \in H^1(\Gamma'', \rho).$$

Класс $[\omega]$ задается набором классических периодов

$$(\omega(A_1)=0,\omega(A_2),\ldots,\omega(A_g),\omega(B_1),\ldots,\omega(B_g),\ \omega(\gamma_1),\ldots,\omega(\gamma_{n-1}),\omega(ilde{\gamma}_1),\ldots,\omega(ilde{\gamma}_s)).$$

Здесь период $\omega(\gamma_n)$ выражается через остальные 2g+n+s-2 периодов и $F''_\mu=F'_\mu\backslash\{Q_1,\dots,Q_s\}=F_\mu\backslash\{P_1,\dots,P_n\}\cup\{Q_1,\dots,Q_s\},\ F''_\mu=U/\Gamma''.$ Если $\Omega\left(\frac{1}{Q_1\dots Q_s};F'_\mu\right)\ni\omega\to[\omega]=0$ в $H^1(\Gamma'',\rho)$, то дифференциал ω мульти-

Если $\Omega\left(\frac{1}{Q_1...Q_s}; F'_{\mu}\right) \ni \omega \to [\omega] = 0$ в $H^1(\Gamma'', \rho)$, то дифференциал ω мультипликативно точный на F'_{μ} . Точки Q_1, \ldots, Q_s — устранимые особые точки для ω , так как $2\pi i(\operatorname{res}_{Q_j}\omega) = \int\limits_{\tilde{\gamma}_j}\omega = 0, \ j=1,\ldots,s.$ Поэтому $\omega \in \Omega_{e,\rho}(1; F'_{\mu})$. Сле-

довательно, отображение периодов корректно определено, взаимно однозначно, линейно отображает $\Omega_{\rho}(\frac{1}{Q_1...Q_s};F'_{\mu})/\Omega_{e,\rho}(1;F'_{\mu})$ в $H^1(\Gamma'',\rho)$. Поэтому

$$\dim \Omega_{\rho}\bigg(\frac{1}{Q_1\dots Q_s};F_{\mu}'\bigg)/\Omega_{e,\rho}(1;F_{\mu}')\leq 2g+n+s-2.$$

Докажем обратное неравенство для размерностей и построим базис. Набор классов смежности дифференциалов из (4) будет линейно независим над **С**. Действительно, если

$$C_1 f_0 \zeta_1 + \dots + \widehat{C_k f_0 \zeta_k} + \dots + C_g f_0 \zeta_g + \tilde{c}_1 f_0 \tau_{P_1}^{(n_1+1)} + \dots + \tilde{c}_g f_0 \tau_{P_1}^{(n_g+1)} + \tilde{\tilde{c}}_1 f_0 \tau_{P_2 P_1} + \dots + \tilde{\tilde{c}}_{n-1} f_0 \tau_{P_n P_1} + c_1' f_0 \tau_{Q_1 P_1} + \dots + c_s' f_0 \tau_{Q_s P_1} = df,$$

то $\tilde{\tilde{c}}_1=\cdots=\tilde{\tilde{c}}_{n-1}=c_1'=\cdots=c_s'=0$ ввиду того, что f — мультипликативная мероморфная функция для ρ на F_μ' и ее вычет равен нулю относительно точек P_2,\ldots,Q_s . Остается равенство

$$C_1 f_0 \zeta_1 + \dots + \widehat{C_k f_0 \zeta_k} + \dots + C_g f_0 \zeta_g + \widetilde{c}_1 f_0 \tau_{P_1}^{(n_1+1)} + \dots + \widetilde{c}_g f_0 \tau_{P_1}^{(n_g+1)} = df.$$

Отсюда сразу получаем, что $\tilde{c}_1=\cdots=\tilde{c}_g=0$, так как нет мультипликативной функции f для несущественного характера ρ с одним полюсом в P_1 точно порядка n_j для некоторого j. Теперь $C_1f_0\zeta_1+\cdots+\widehat{C_kf_0\zeta_k}+\cdots+C_gf_0\zeta_g=df$ и, как в доказательстве теоремы 4.1, получаем, что $C_j=0$ для всех $j\neq k$. Отсюда размерность фактор-пространства больше или равна 2g+n+s-2 и построен базис. Теорема 4.2 доказана.

Следствие 4.1. Векторное расслоение (со слоями, состоящими из первых голоморфных групп когомологий де Рама для ρ на F'_{μ})

$$E_2' = igcup_{[\mu],
ho
eq 1} H^1_{\mathrm{hol},
ho}(F_\mu') = igcup \Omega_
ho(1;F_\mu')/\Omega_{e,
ho}(1;F_\mu')$$

аналитически эквивалентно тривиальному векторному расслоению ранга 2g+n-2 над базой $\mathbf{T}_{g,n}\times (L_g\backslash\{1\})$ при $g\geq 2,\ n\geq 2.$

Зададим отображение периодов χ из $\Omega_{\rho}(1;F')$ на $H^1(\Gamma',\rho)$, сопоставляя ω его класс периодов $[\omega]$, который определяется набором классических периодов $(\int\limits_{a_1}\omega,\ldots,\int\limits_{a_g}\omega,\int\limits_{b_1}\omega,\ldots,\int\limits_{b_g}\omega,\int\limits_{\gamma_1}\omega,\ldots,\int\limits_{\gamma_{n-1}}\omega)$. Выбираем представитель в $[\omega]$, определенный условием $\int\limits_{a_1}\omega=\omega(A_1)=0$.

Следствие 4.2. На любой поверхности F' типа $(g,n), g \geq 2, n \geq 2$, для несущественного характера ρ имеет место изоморфизм $\Omega_{\rho}(1;F') \cong \operatorname{Ker} \chi \oplus H^1_{\operatorname{hol},\rho}(F')$, где $\operatorname{Ker} \chi = \Omega_{e,\rho}(1;F')$ — бесконечномерное векторное пространство и $\dim_{\mathbf{C}} H^1_{\operatorname{hol},\rho}(F') = 2g + n - 2$.

§ 5. Дифференциалы Прима для существенного характера

Лемма 5.1. На поверхности F'_{μ} типа $(g,n), g \geq 2, n \geq 1$, для существенного характера ρ существует $(\rho,1)$ -дифференциал $\tau_{Q^2P_1}$, где $Q \in F'_{\mu}$, у которого $(\tau) = \frac{R_1 \dots R_N}{Q^2 P_1 P_2^{k_2} \dots P_n^{k_n}}$ на F_{μ} , где $k_j \in \mathbf{N}, \ j=2,\dots,n, \ R_k \neq P_1,Q, \ k=1,\dots,N, \ N=2g-2+3+k_2+\dots+k_n$, локально голоморфно зависящий от $[\mu]$ и ρ .

Доказательство проводится, как в §3.

Теорема 5.1. Векторное расслоение $E_3 = \bigcup \Omega_{2,\rho}(F'_{\mu})/\Omega_{e,\rho}(F'_{\mu})$ есть голоморфное векторное расслоение ранга 2g-2+n над базой $\mathbf{T}_{g,n} \times \mathrm{Hom}(\Gamma', \mathbf{C}^*) \backslash L_g$ при $g \geq 2, \ n \geq 2$. При этом следующие наборы классов смежности дифференциалов Прима:

$$\tilde{\zeta}_1, \dots, \tilde{\zeta}_{g-1}, \ \tau_{\widetilde{P}_1}^{(2)}, \dots, \tau_{\widetilde{P}_{g-1}}^{(2)}, \ \tau_{P_2 P_1}, \dots, \tau_{P_n P_1}, \tau_{Q_0^2 P_1}$$
 (5)

либо

$$\tilde{\zeta}_1, \dots, \tilde{\zeta}_{g-1}, \ \tau_{\widetilde{P}_1}^{(n_1+1)}, \dots, \tau_{\widetilde{P}_1}^{(n_{g-1}+1)}, \ \tau_{P_2P_1}, \dots, \tau_{P_nP_1}, \tau_{Q_0^2P_1},$$
 (6)

задают базис локально голоморфных сечений этого расслоения, где $Q_0 \in F'_{\mu}$, числа n_1,\ldots,n_{g-1} — мультипликативные пробелы Вейерштрасса в точке \widetilde{P}_1 $(\in F'_{\mu})$ на поверхности F_{μ} и $i_{\rho^{-1}}(\widetilde{P}_1\ldots\widetilde{P}_{g-1})=0,\ \widetilde{P}_1,\ldots,\widetilde{P}_{g-1}\in F'_{\mu}.$

ДОКАЗАТЕЛЬСТВО. Пусть ρ — существенный характер на F'_{μ} . Зададим отображение Φ из пространства $\Omega_{2,\rho}(F'_{\mu})$ в $H^1(\Gamma'_{\mu},\rho)$ по правилу: сопоставим дифференциалу ω его класс периодов $[\omega] \in H^1(\Gamma'_{\mu},\rho)$.

Если $\omega \in \Omega_{2,\rho}(F'_\mu)$ имеет класс периодов $[\omega]=0$ в $H^1(\Gamma'_\mu,\rho)$, то дифференциал ω является мультипликативно точным для ρ на F'_μ , а значит, $\omega \in \Omega_{e,\rho}(F'_\mu)$. Ясно также, что любой дифференциал ω из $\Omega_{e,\rho}(F'_\mu)$ имеет нулевой класс периодов. Таким образом, ядро отображения Φ совпадает с $\Omega_{e,\rho}(F'_\mu)$. Следовательно, это отображение корректно определено на фактор-пространстве $\Omega_{2,\rho}(F'_\mu)/\Omega_{e,\rho}(F'_\mu)$. При этом Φ взаимно однозначно и линейно. Отсюда получаем, что $\dim_{\mathbf{C}}\Omega_{2,\rho}(F'_\mu)/\Omega_{e,\rho}(F'_\mu) \leq 2g+n-2$.

Докажем, что верно обратное неравенство для размерностей, и построим два вида базисов в нашем фактор-пространстве. Из [2, с. 105] следует существование базиса $\tilde{\zeta}_1,\dots,\tilde{\zeta}_{g-1}$ в пространстве голоморфных дифференциалов Прима на F_μ для существенного характера ρ , локально голоморфно зависящих от $[\mu]$ и ρ . По теореме [2, с. 74] существует g-1 различных точек $\tilde{P}_1,\dots,\tilde{P}_{g-1}$ на F_μ таких, что $r_\rho(\frac{1}{\tilde{P}_1\dots\tilde{P}_{g-1}})=0$. Если некоторые из этих точек попали в проколы, то, применяя технику шевеления дивизоров, как в [2, с. 111], можно получить набор $\tilde{P}_1,\dots,\tilde{P}_{g-1}\in F'_\mu$ с таким же свойством.

Кроме того, по теореме о мультипликативных пробелах Вейерштрасса для существенного характера ρ в точке \widetilde{P}_1 ($\in F'_{\mu}$) на F_{μ} имеется точно g-1 пробелов n_1,\ldots,n_{g-1} , удовлетворяющих условию $1\leq n_1< n_2<\cdots< n_{g-1}< 2g$ на поверхности F_{μ} [2, с. 69].

В предложениях 3.2 и 3.3 доказано, что существуют два набора дифференциалов Прима для ρ на $F'_{\mu}:\tau^{(2)}_{\widetilde{P}_1},\ldots,\tau^{(2)}_{\widetilde{P}_{g-1}}$, а именно элементарные дифференциалы второго рода с единственными полюсами второго порядка в точках $\widetilde{P}_1,\ldots,\widetilde{P}_{g-1}$ соответственно и элементарные дифференциалы третьего рода $\tau_{P_2P_1},\ldots,\tau_{P_nP_1}$ с простыми полюсами в точках P_j и $P_1,\ j=2,\ldots,n$, соответственно

Предположим, что набор (5) будет представлять линейно зависимые классы смежности в нашем фактор-пространстве для существенного характера ρ , т. е. существует линейная комбинация с не равными нулю коэффициентами:

$$c_{1}\tilde{\zeta}_{1} + \dots + c_{g-1}\tilde{\zeta}_{g-1} + \tilde{c}_{1}\tau_{\widetilde{P}_{1}}^{(2)} + \dots + \tilde{c}_{g-1}\tau_{\widetilde{P}_{g-1}}^{(2)} + \tilde{\tilde{c}}_{1}\tau_{P_{2}P_{1}} + \dots + \tilde{\tilde{c}}_{n-1}\tau_{P_{n}P_{1}} + \tilde{\tilde{c}}_{n}\tau_{O_{2}^{2}P_{1}} = df,$$

при фиксированном $Q_0 \in F'_{\mu}$, где f — мультипликативная функция на F'_{μ} (возможно, с полюсами любых порядков и существенно особыми точками на F_{μ} для ветвей этой функции).

Рассмотрим коэффициенты \tilde{c}_j , $j=1,\ldots,n-1$. Пусть γ_j — петля, обходящая только точку P_j , $j=2,\ldots,n$. Тогда классический период $\int\limits_{\gamma_j} df$ равен $c\sigma(\gamma_j)$ и, выбирая вместо f функцию (f-c), получим, что $\int\limits_{\gamma_j} d(f-c)=0$. Следовательно $\tilde{c}_j=\cdots=\tilde{c}_{j-1}=0$

Следовательно, $\tilde{c}_1=\cdots=\tilde{c}_{n-1}=0$. Таким образом, $c_1\tilde{\zeta}_1+\cdots+c_{g-1}\tilde{\zeta}_{g-1}+\tilde{c}_1\tau_{\widetilde{P}_1}^{(2)}+\cdots+\tilde{c}_{g-1}\tau_{\widetilde{P}_{g-1}}^{(2)}+\tilde{c}_n\tau_{Q_0^2P_1}=df$. Функция f не может иметь полюсов в точках P_2,\ldots,P_n и существенно особых точек в P_1,\ldots,P_n , так как их нет в левой части. Стало быть, f может иметь либо только устранимые особые точки во всех проколах, либо только полюс в проколе P_1 .

1. Если P_1 — устранимая особая точка для f, то все проколы в этом случае суть устранимые особые точки для f на F_μ . Значит, $\tilde{\tilde{c}}_n=0$ и из оставшегося ра-

венства получаем $\tilde{c}_1=\dots=\tilde{c}_{g-1}=0$, так как не существует мультипликативной функции с простыми полюсами $\widetilde{P}_1,\dots,\widetilde{P}_{g-1}$ на F_μ по условию $r_\rho(\frac{1}{\widetilde{P}_1\dots\widetilde{P}_{g-1}})=0$.

2. Если P_1 — полюс порядка $m \geq 1$ для функции f, где P_2, \ldots, P_n — устранимые особые точки, то df имеет полюс в P_1 порядка $m+1 \geq 2$. Но в выражении слева в точке P_1 полюс первого порядка, а значит, $\tilde{c}_n = 0$. Продолжая, как в первом случае, получим $\tilde{c}_1 = \cdots = \tilde{c}_{q-1} = 0$.

Осталось рассмотреть равенство $c_1\tilde{\zeta}_1+\cdots+c_{g-1}\tilde{\zeta}_{g-1}=df.$

- 1. Если f имеет в проколах P_j все устранимые особые точки, то f мультипликативная единица на F_μ для существенного характера ρ . Поэтому $f\equiv 0$. Остается равенство $c_1\tilde{\zeta}_1+\cdots+c_{g-1}\tilde{\zeta}_{g-1}=0$, и в силу линейной независимости таких дифференциалов на F_μ для ρ получаем, что $c_1=\cdots=c_{g-1}=0$.
- 2. Если f имеет хотя бы в одном проколе полюс или существенно особую точку, то особенности слева и справа различны, а значит, df=0. Как и в первом случае, получаем, что $c_1=\cdots=c_{g-1}=0$.

Рассмотрим линейную комбинацию для набора (6) с ненулевыми коэффициентами

$$c_{1}\tilde{\zeta}_{1} + \dots + c_{g-1}\tilde{\zeta}_{g-1} + \tilde{c}_{1}\tau_{\widetilde{P}_{1}}^{(n_{1}+1)} + \dots + \tilde{c}_{g-1}\tau_{\widetilde{P}_{1}}^{(n_{g-1}+1)} + \tilde{\tilde{c}}_{1}\tau_{P_{2}P_{1}} + \dots + \tilde{\tilde{c}}_{n-1}\tau_{P_{n}P_{1}} + \tilde{\tilde{c}}_{n}\tau_{Q_{0}^{2}P_{1}} = df$$

на F'_μ . Так же, как для предыдущего базиса, получаем, что $\tilde{\tilde{c}}_1=\dots=\tilde{\tilde{c}}_{n-1}=0$. Осталось рассмотреть равенство

$$c_1\tilde{\zeta}_1+\dots+c_{g-1}\tilde{\zeta}_{g-1}+\tilde{c}_1\tau_{\widetilde{P}_1}^{(n_1+1)}+\dots+\tilde{c}_{g-1}\tau_{\widetilde{P}_1}^{(n_{g-1}+1)}+\tilde{\tilde{c}}_n\tau_{Q_0^2P_1}=df$$

на F'_{μ} . Снова f имеет либо только устранимые особые точки во всех проколах, либо только полюс в проколе P_1 :

- 1) если P_1 устранимая особая точка для f, то все проколы устранимые особые точки для f на F_μ и $\tilde{\tilde{c}}_n=0$;
- 2) если P_1 полюс порядка $m \ge 1$ для f, снова P_2, \dots, P_n устранимые особые точки для f, то df имеет в P_1 полюс порядка $m+1\ge 2$ и $\tilde{\tilde{c}}_n=0$.

После этого получаем равенство

$$c_1\tilde{\zeta}_1 + \dots + c_{g-1}\tilde{\zeta}_{g-1} + \tilde{c}_1 au_{\widetilde{P}_1}^{(n_1+1)} + \dots + \tilde{c}_{g-1} au_{\widetilde{P}_1}^{(n_{g-1}+1)} = df.$$

Если в проколах есть хотя бы один полюс или существенно особая точка для f, то получаем противоречие, так как их нет в выражении слева. Поэтому f имеет единственный полюс в \widetilde{P}_1 некоторого порядка n_j на F_μ , что противоречит мультипликативным пробелам в \widetilde{P}_1 на F_μ . Следовательно, $\widetilde{c}_1 = \cdots = \widetilde{c}_{g-1} = 0$. Осталось равенство $c_1\widetilde{\zeta}_1 + \cdots + c_{g-1}\widetilde{\zeta}_{g-1} = df$ на F'_μ . Как и раньше, показывается, что $c_1 = \cdots = c_{g-1} = 0$. Теорема 5.1 доказана.

Теорема 5.2. Векторное расслоение $E_4 = \bigcup \Omega_{\rho} \left(\frac{1}{Q_1...Q_s}; F_{\mu}'\right) / \Omega_{e,\rho}(1, F_{\mu}')$ является голоморфным векторным расслоением ранга 2g-2+n+s над базой $\mathbf{T}_{g,n} \times \mathrm{Hom}(\Gamma', \mathbf{C}^*) \backslash L_g$ при попарно различных точках $Q_1, \ldots, Q_s, \ s \geq 1$, на поверхности F_{μ}' типа $(g,n), \ g \geq 2, \ n \geq 2$. При этом набор классов смежности дифференциалов Прима

$$\tilde{\zeta}_{1}, \dots, \tilde{\zeta}_{g-1}, \tau_{P_{1}}^{(n_{1}(P_{1})+1)}, \dots, \tau_{P_{1}}^{(n_{g-1}(P_{1})+1)},
\tau_{P_{2}P_{1}}, \dots, \tau_{P_{n}P_{1}}, \tau_{O_{1}P_{1}}, \dots, \tau_{O_{n}P_{1}}, \tau_{P_{n}^{2}P_{1}},$$
(7)

где n_1, \ldots, n_{g-1} — мультипликативные пробелы Вейерштрасса в P_1 на F_μ для ρ , задает базис локально голоморфных сечений этого расслоения.

Доказать только линейную независимость классов смежности дифференциалов из набора (7). Предположим, что существует линейная комбинация, у которой не все коэффициенты равны нулю, следующего вида:

$$c_{1}\tilde{\zeta}_{1} + \dots + c_{g-1}\tilde{\zeta}_{g-1} + \tilde{c}_{1}\tau_{P_{1}}^{(n_{1}(P_{1})+1)} + \dots + \tilde{c}_{g-1}\tau_{P_{1}}^{(n_{g-1}(P_{1})+1)} + \tilde{c}_{2}\tau_{P_{2}P_{1}} + \dots + \tilde{c}_{n}\tau_{P_{n}P_{1}} + \tilde{c}_{n+1}\tau_{Q_{1}P_{1}} + \dots + \tilde{c}_{n+s}\tau_{Q_{s}P_{1}} + c'\tau_{P_{2}^{2}P_{1}} = df.$$

Если f имеет существенно особые точки в проколах, то сразу получаем противоречие, так как их нет в выражении слева. Как и в доказательстве предыдущей теоремы, с помощью вычетов и периодов получим, что $\tilde{\tilde{c}}_j=0,$ $j=2,\ldots,n+s.$ Остается рассмотреть равенство

$$c_1\tilde{\zeta}_1 + \dots + c_{g-1}\tilde{\zeta}_{g-1} + \tilde{c}_1\tau_{P_1}^{(n_1(P_1)+1)} + \dots + \tilde{c}_{g-1}\tau_{P_1}^{(n_{g-1}(P_1)+1)} + c'\tau_{P_2^2P_1} = df.$$

Так как $n_1(P_1)+1\geq 2$, все остальные показатели не менее двух [2]. Вычет при обходе только вокруг P_1 будет кратен c', т. е. имеет вид Mc', $M\neq 0$, а справа из-за мультипликативной точности df классический период при обходе только вокруг P_1 можно сделать нулевым. Отсюда c'=0. Продолжая доказательство, как в предыдущей теореме, получаем, что все остальные коэффициенты равны нулю. Классы смежности дифференциалов из набора (7) образуют базис в нашем фактор-пространстве. Теорема 5.2 доказана.

Следствие 5.1. Векторное расслоение

$$E_4' = \bigcup H^1_{\mathrm{hol},\rho}(F_\mu') = \bigcup \Omega_\rho(1;F_\mu')/\Omega_{e,\rho}(1;F_\mu')$$

является голоморфным векторным расслоением ранга 2g+n-2 над базой $\mathbf{T}_{g,n} \times (\operatorname{Hom}(\Gamma', \mathbf{C}^*) \setminus L_g)$ при $g \geq 2, \ n \geq 2.$

ЛИТЕРАТУРА

- 1. Gunning R. C. On the period classes of Prym differentials // J. Reine Angew. Math. 1980. Bd 319. S. 153–171.
- Чуешев В. В. Мультипликативные функции и дифференциалы Прима на переменной компактной римановой поверхности. Кемерово: КемГУ, 2003. Ч. 2.
- 3. Чуешев В. В., Якубов Э. X. Мультипликативные точки Вейерштрасса на компактной римановой поверхности // Сиб. мат. журн. 2002. Т. 43, № 6. С. 1408–1429.
- 4. Dick R. Krichever–Novikov-like bases on punctured Riemann surface // Deutsches Elektronen–Synchrotron (DESY) 89-059. May, 1989. 11 p.
- Dick R. Holomorphic differentials on punctured Riemann surface // Differ. Geom. Math. Theor. Phys.: Phys. and Geom. / Proc. NATO Adv. Res. Workshop and 18 Int. Conf. Davis. Calif. 2–8 June. New York; London, 1990. P. 475–483.
- Farkas H. M., Kra I. Riemann surfaces. New-York: Springer-Verl., 1992. (Grad. Text's Math.; V. 71).
- Кричевер И. М. Методы алгебраической геометрии в теории нелинейных уравнений // Успехи мат. наук. 1977. Т. 32, № 6. С. 180–208.
- Fay J. Analytic torsion and Prym differential // Proc. of the 1978 Stony Brook Conf. Princeton: Princeton Univ. Press, 1980. P. 107–122.
- Kempf G. A property of the periods of Prym differentials // Proc. Amer. Math. Soc. 1976.
 V. 54. P. 181–184.
- Альфорс Л. В., Берс Л. Пространства римановых поверхностей и квазиконформные отображения. М.: Изд-во иностр. лит., 1961.

- **11.** *Крушкаль С. Л.* Квазиконформные отображения и римановы поверхности. Новосибирск: Наука, 1975.
- 12. Earle C. J. Families of Riemann surfaces and Jacobi varieties $/\!/$ Ann. Math. 1978. V. 107. P. 255–286.

Статья поступила 8 февраля 2011 г.

Казанцева Алека Алексеевна Горно-Алтайский гос. университет, математический факультет, кафедра математического анализа, ул. Ленкина, 1, Горно-Алтайск 649000

albesik@mail.ru

vvchueshev@ngs.ru

Чуешев Виктор Васильевич Кемеровский гос. университет, математический факультет, кафедра математического анализа, ул. Красная, 6, Кемерово 650043