О ПЕРЕСЕЧЕНИИ СОПРЯЖЕННЫХ НИЛЬПОТЕНТНЫХ ПОДГРУПП В ГРУППАХ ПОДСТАНОВОК

Р. К. Курмазов

Аннотация. Доказано, что кроме конечного числа явным образом указанных исключений для нильпотентной подгруппы симметрической или знакопеременной группы всегда найдется сопряженная с ней подгруппа такая, что их пересечение тривиально.

Ключевые слова: нильпотентная подгруппа, симметрическая группа, асимметрическое разбиение, пересечение сопряженных подгрупп.

§1. Введение

Пусть группа G действует транзитивно на множестве X и K- ядро этого действия. Также предположим, что существуют элементы $x_1, \ldots, x_k \in X$, для которых справедливо равенство $G_{x_1} \cap \cdots \cap G_{x_k} = K$. Тогда действие любого элемента $g \in G$ на множестве X полностью определяется его действием на наборе x_1,\dots,x_k , т. е. для любых двух элементов $g,h\in G$ справедливость равенств $x_1^g=x_1^h,\ldots,x_k^g=x_k^h$ влечет, что g,h действуют одинаково на X. Если набор $\{x_1, \dots, x_k\}$ имеет минимально возможную мощность, то множество $\{x_1, \dots, x_k\}$ называют $\mathit{базой}\ \mathit{группы}\ G$ относительно действия на X и записывают этот факт следующим образом: Base $(G) = \{x_1, \dots, x_k\}$. Если группа G действует на множестве X транзитивно, то это действие подстановочно эквивалентно действию группы G правыми умножениями на множестве правых смежных классов по стабилизатору точки исходного действия. Более того, в этом случае все стабилизаторы точек сопряжены. Таким образом, вопрос о размере базы в случае транзитивного действия можно переформулировать следующим образом: для данных группы G и ее подгруппы H найти минимальное число k элементов $g_1,\ldots,g_k\in G$ таких, что $H^{g_1}\cap\cdots\cap H^{g_k}=\mathrm{Core}_G(H).$

Настоящая работа посвящена изучению следующей проблемы, внесенной в 2002 г. Е. П. Вдовиным в «Коуровскую тетрадь» [1, проблема 15.40].

Проблема 1. Пусть H — нильпотентная подгруппа конечной простой группы G. Верно ли, что существует подгруппа H_1 , сопряженная c H, для которой $H \cap H_1 = \{e\}$?

Введем следующие обозначения. Символами Sym_n и Alt_n обозначены симметрическая и знакопеременная группы степени n соответственно, а символом

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 12–01–33102, 12–01–31222) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № 14.740.11.1510).

 ${
m Fix}(H)$ — множество неподвижных точек подгруппы H группы ${
m Sym}(\Omega)$, т. е. ${
m Fix}(H)=\{x\in\Omega\mid \forall g\in H,\ x\cdot g=x\}$. Подгруппа, порожденная подмножеством M группы G, обозначена через $\langle M\rangle$. Символами $A\leftthreetimes B$ и $A\wr C$, где $C\le {
m Sym}_n$ обозначены соответственно полупрямое произведение нормальной подгруппы A и подгруппы B и подстановочное сплетение групп A и C. Множество всех силовских p-подгрупп группы G обозначено через ${
m Syl}_p(G)$.

Понятно, что если проблема 1 имеет положительное решение, то $|H|^2 < |G|$. Отметим, что в [2] соответствующее неравенство доказано для всех нильпотентных подгрупп конечных простых групп. Этот результат дает надежду, что и проблема 1 будет иметь положительное решение для всех нильпотентных подгрупп конечных простых групп.

В настоящей работе доказаны следующие теоремы.

Теорема 1. Пусть H — произвольная нильпотентная подгруппа группы Sym_n и $n \geq 5$. Предположим также, что H не является 2-группой при n = 8. Тогда существует элемент $x \in \operatorname{Sym}_n$ такой, что $H \cap H^x = \{e\}$. Если n = 8 и H - 2-группа, то существуют $x, y \in \operatorname{Sym}_n$ такие, что $H \cap H^x \cap H^y = \{e\}$.

Теорема 2. Пусть H — нильпотентная подгруппа группы Alt_n и $n \geq 5$. Тогда существует элемент $x \in \mathrm{Alt}_n$ такой, что $H \cap H^x = \{e\}$.

Полученные теоремы обобщают результаты В. Д. Мазурова и В. И. Зенкова о пересечении силовских подгрупп симметрической группы, полученные в [3].

§ 2. Предварительные результаты

Следующая лемма доказывает теоремы 1 и 2 в случае p-групп.

Лемма 3 [3, теорема 1]. Пусть p — простое число. Тогда справедливы следующие утверждения.

- 1. Пусть $H \in \mathrm{Syl}_p(\mathrm{Sym}_n)$. Элемент $x \in \mathrm{Sym}_n$, для которого справедливо равенство $H \cap H^x = \{e\}$, существует в том и только в том случае, если $(n,p) \notin \{(2,2),(3,3),(4,2),(8,2)\}$. Более того, если (n,p) = (8,2), то существуют $x,y \in \mathrm{Sym}_n$ такие, что справедливо равенство $H \cap H^x \cap H^y = \{e\}$.
- 2. Пусть $H \in \mathrm{Syl}_p(\mathrm{Alt}_n)$. Элемент $x \in \mathrm{Alt}_n$, для которого справедливо равенство $H \cap H^x = \{e\}$, существует в том и только в том случае, если $(n,p) \notin \{(3,3),(4,2)\}$.

Также понадобятся несколько несложных лемм о строении централизатора транзитивной подгруппы симметрической группы. Эти результаты не являются новыми и приводятся здесь для полноты.

Лемма 4. Пусть G — транзитивная подгруппа группы Sym_n и $z{\in}C_{\mathrm{Sym}_n}(G)\setminus\{e\}$. Тогда z не имеет неподвижных точек.

Доказательство. Пусть i — неподвижная точка элемента z. Поскольку подгруппа G транзитивна, для любого j найдется элемент $g \in G$ такой, что $i \cdot g = j$. Тогда $i \cdot zg = i \cdot g = j$, с другой стороны, $i \cdot zg = i \cdot gz = j \cdot z$. Следовательно, $j \cdot z = j$ для любого j, т. е. z = e. \square

Лемма 5. Пусть G — транзитивная подгруппа группы Sym_n . Предположим, что существует элемент $g \in G$ такой, что g имеет в точности одну неподвижную точку. Тогда $C_{\operatorname{Sym}_n}(G) = \{e\}$.

Доказательство. Пусть $x \in C_{\mathrm{Sym}_n}(G)$. Множество неподвижных точек элемента g является x-инвариантным множеством, т. е. у x есть неподвижная точка. По лемме 4 получаем x=e, т. е. $C_{\mathrm{Sym}_n}(G)=\{e\}$. \square

Запишем разложение числа n в произведение по степеням различных простых чисел $p_1^{\nu_1}p_2^{\nu_2}\dots p_l^{\nu_l}$, где $p_i\neq p_j$ при $i\neq j$. Рассмотрим множество $\Xi=\Xi_1\times\dots\times\Xi_l$, где $\Xi_i=\{1,\dots,p_i^{\nu_i}\}$. Тогда существует биекция $\varphi:\Xi\to\{1,\dots,n\}$, задающая естественным образом вложение $\varphi:\mathrm{Sym}(\Xi_1)\times\dots\times\mathrm{Sym}(\Xi_l)\to\mathrm{Sym}_n$, причем $(\mathrm{Sym}(\Xi_1)\times\dots\times\mathrm{Sym}(\Xi_l))\varphi$ — транзитивная подгруппа Sym_n . Пусть $H^{(j)}$ — силовская p_j -подгруппа группы Sym_{Ξ_j} , обозначим подгруппу $(\{e\},\dots,H^{(j)},\dots,\{e\})\varphi$ через H_{p_j} . Очевидно, что группа $H_n=\langle H_{p_1},\dots,H_{p_l}\rangle=H_{p_1}\times\dots\times H_{p_l}$ транзитивна и нильпотентна. Справедлива следующая

Лемма 6 [4, теорема 1]. Пусть H — максимальная нильпотентная транзитивная подгруппа Sym_n и $n = p_1^{\nu_1} p_2^{\nu_2} \dots p_l^{\nu_l}$. Тогда H сопряжена c H_n .

§ 3. Доказательства теорем 1 и 2

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 1. Если H является 2-группой, то теорема 1 следует из леммы 3. Поэтому далее считаем, что H не является 2-группой.

Для каждой нильпотентной подгруппы H найдется некоторая максимальная нильпотентная подгруппа K, содержащая H. Если теорема 1 доказана для всех максимальных нильпотентных подгрупп группы Sym_n , то она справедлива и вообще для всех нильпотентных подгрупп в силу включения $H \cap H^x \leq K \cap K^x$. Поэтому далее считаем, что подгруппа H является максимальной нильпотентной подгруппой группы Sym_n .

Обозначим орбиты естественного действия группы H через $\Omega_1, \ldots, \Omega_k$. В силу максимальности группа H совпадает с $H_1 \times \cdots \times H_k$, где H_i — проекция группы H на $\mathrm{Sym}(\Omega_i)$. Очевидно, что для каждого i группа H_i — максимальная транзитивная подгруппа группы $\mathrm{Sym}(\Omega_i)$.

Будем доказывать теорему индукцией по $n=|\Omega|$. Если H имеет более одной одноэлементной орбиты, то H не максимальна, так как можно рассмотреть $H\times K$, где K — нетривиальная нильпотентная подгруппа в $\mathrm{Sym}(\mathrm{Fix}(H))$. Если H имеет в точности одну одноэлементную орбиту, то $H\leq S_{n-1}$. В этом случае можно применить индукционное предположение, поскольку $n-1\geq 4$ и H не является 2-группой, в частности, при n=5 группа H не может иметь одну неподвижную точку.

Теперь рассмотрим случай, когда H не 2-группа и не имеет одноэлементных орбит. Поскольку у группы H нет одноэлементных орбит, группа H_i нетривиальна для каждого i. Так как H не является 2-группой, существует j, для которого H_j не является 2-группой. С точностью до перенумерации можно считать, что j=k. В силу того, что H_i нетривиальна, можно взять $z_i \in Z(H_i) \setminus \{e\}$ для всех i < k и $z_k \in Z(H_k) \cap P \setminus \{e\}$, где P — силовская p-подгруппа группы H_k и $p \neq 2$. Ввиду леммы 4 у элемента $z = z_1 \cdot z_2 \cdot \ldots \cdot z_k$ нет неподвижных точек.

Запишем z в виде произведения независимых циклов:

$$z = (a_1, a_1 + 1, \dots, a_1 + n_1 - 1)(a_2, a_2 + 1, \dots, a_2 + n_2 - 1)$$

 $\dots (a_l, a_l + 1, \dots, a_l + n_l - 1).$

С точностью до сопряжения в Sym, можно считать, что

$$1 = a_1 \le a_2 \le \cdots \le a_l, n_1 \le n_2 \le \cdots \le n_l.$$

Заметим также, что $n_l \ge 3$, поскольку z_k не является 2-элементом. Кроме того, у элемента z нет неподвижных точек, стало быть, при l=1 имеем $n_1=n\ge 5$.

Так как $n_l \ge 3$, можно выбрать элемент $y \in \text{Sym}_n$ следующего вида:

$$y = (a_2, a_1 + 1, a_1 + 2, \dots, a_1 + n_1 - 1) \dots (a_{i+1}, a_i + 1, \dots, a_i + n_i - 1)$$
$$\dots (a_1, a_l + 2, a_l + 1, a_l + 3, \dots, a_l + n_l - 1).$$

Циклическое строение элементов z и y совпадает, поэтому существует $x \in \operatorname{Sym}_n$ такой, что $y = z^x$. Покажем, что у элемента zz^x в точности одна неподвижная точка. Пусть точка a имеет вид $a_i + t$, где $0 \le t \le n_i - 1$. Тогда возможны следующие варианты.

- 1. $t < n_i 1$ и $a \notin \{a_l, a_l + 1\}$. Тогда $a \cdot zz^x = a + 2$.
- 2. $t = n_i 1$ и $a \neq a_1 + n_1 1$. Тогда $(a_i + n_i 1) \cdot zz^x = a_{i-1} + 1$.
- $3.\ a\in\{a_1+n_1-1,a_l+1\}.\$ Тогда $(a_1+n_1-1)\cdot zz^x=a_l+2,\ a_l\cdot zz^x=a_l+3$ и $(a_l+1)\cdot zz^x=a_l+1.$
 - 4. $a=a_l$. Тогда если $n_l=3$, то $a_l\cdot zz^x=a_1$. Иначе $a_l\cdot zz^x=a_l+3$.

Поскольку при l=1 выполнено $n_1 \geq 4$, получаем, что $a_1+2 \neq a_1+n_1-1$ и $a_1 \neq a_1+3$.

Таким образом, a_l+1 — единственная неподвижная точка элемента zz^x . Покажем, что группа $G=\langle z,z^x\rangle$ транзитивна. Обозначим через A_j орбиту группы $\langle z\rangle$, содержащую точку a_j , а через B_j — орбиту группы $\langle z^x\rangle$, содержащую точку a_j+1 . По построению $A_j\cap B_j\neq\varnothing$ и $A_{j+1}\cap B_j\neq\varnothing$. Пусть O— орбита группы G, содержащая точку a_1 . Ясно, что если $O\cap A\neq\varnothing$, где A— это одна из орбит $A_1,\ldots,A_l,B_1,\ldots,B_l$, то $A\subseteq O$. Из построения O следует, что $a_1\in O\cap A_1$ и, значит, $A_1\subseteq O$. Предположим, что $O\neq\{1,\ldots,n\}$, и выберем наименьшее j, для которого $A_j\cap O=\varnothing$. Как замечено ранее, $A_1\subseteq O$, т. е. $j\neq 1$. Стало быть, $A_{j-1}\cap O\neq\varnothing$, т. е. $A_{j-1}\subseteq O$. Тогда $B_{j-1}\cap O\supseteq B_{j-1}\cap A_{j-1}\neq\varnothing$, т. е. $B_{j-1}\subseteq O$. Теперь $A_j\cap O\supseteq A_j\cap B_{j-1}\neq\varnothing$, что противоречит выбору j, следовательно, группа G транзитивна. Таким образом, в транзитивной группе G есть элемент с ровно одной неподвижной точкой. Из леммы 5 следует, что $C_{\operatorname{Sym}_n}(\langle z,z^x\rangle)=\{e\}$. Из построения элемента z замечаем, что $H\leq C_{\operatorname{Sym}_n}(z)$ и соответственно $H^x\leq C_{\operatorname{Sym}_n}(z^x)$. Окончательно получаем цепочку включений $H\cap H^x\leq C_{\operatorname{Sym}_n}(z)\cap C_{\operatorname{Sym}_n}(z^x)\leq C_{\operatorname{Sym}_n}(\langle z,z^x\rangle)=\{e\}$. \square

Теорема 2 получается как следствие теоремы 1.

Доказательство теоремы 2. Как и в доказательстве теоремы 1, можно считать, что H — максимальная нильпотентная подгруппа группы G. В силу теоремы 1 существует элемент $x \in \operatorname{Sym}_n$ такой, что $H \cap H^x = \{e\}$. Если $x \in \operatorname{Alt}_n$, то теорема доказана. Поэтому далее будем предполагать, что $x \in \operatorname{Sym}_n \setminus \operatorname{Alt}_n$, и покажем, что существует элемент $y \in N_{\operatorname{Sym}_n}(H) \setminus \operatorname{Alt}_n$. Тогда $yx \in \operatorname{Alt}_n$ и $H \cap H^{yx} = H \cap H^x = \{e\}$, т. е. элемент yx искомый.

Обозначим через $\Omega_1, \dots, \Omega_k$ орбиты группы H. Тогда $H \leq H_1 \times \dots \times H_k$, где H_i — максимальная нильпотентная транзитивная подгруппа $\operatorname{Sym}(\Omega_i)$, более того, $H = H_1 \times \dots \times H_k \cap \operatorname{Alt}_n$. Ясно, что $N_{\operatorname{Sym}_n}(H) \geq N_{\operatorname{Sym}(\Omega_1)}(H_1) \times \dots \times N_{\operatorname{Sym}(\Omega_k)}(H_k)$. Пусть $|\Omega_1| = t = p_1^{\nu_1} \dots p_l^{\nu_l}$. Из леммы 6 следует, что группа H_1 сопряжена прямому произведению $P_1 \times \dots \times P_l$, где P_i — силовская p_i -подгруппа группы $\operatorname{Sym}_{p_i^{\nu_i}}$. Очевидно, что $N_{\operatorname{Sym}_{p_i^{\nu_i}}}(P_1) \leq N_{\operatorname{Sym}_n}(H)$. Будем искать элемент $x \in N_{\operatorname{Sym}_{p_1^{\nu_1}}}(P_1) \setminus \operatorname{Alt}_n$. Если $P_1 \nleq A_{p_1^{\nu_1}}$, то подойдет любой $x \in P_1 \setminus \operatorname{Alt}_{p_1^{\nu_1}}$. Иначе P_1 — силовская подгруппа группы $\operatorname{Alt}_{p_1^{\nu_1}}$. По аргументу Фраттини $\operatorname{Sym}_{p_1^{\nu_1}} = \operatorname{Alt}_{p_1^{\nu_1}} \cdot N_{\operatorname{Sym}_{p_1^{\nu_1}}}(P_1)$ и, значит, существует $y \in N_{\operatorname{Sym}_{p_1^{\nu_1}}}(P_1) \setminus \operatorname{Alt}_{p_1^{\nu_1}}$. Таким образом, искомый элемент $y \in N_{\operatorname{Sym}_n}(H) \setminus \operatorname{Alt}_n$ существует всегда. \square

§ 4. Асимметрическое разбиение

Проблема 15.40 в некотором смысле является базой индукции для проблемы 17.40, внесенной Е. П. Вдовиным в «Коуровскую тетрадь» в 2010 г.

Проблема 2. Пусть H — нильпотентная подгруппа конечной группы G. Всегда ли существуют такие $x, y \in G$, что $H \cap H^x \cap H^y < F(G)$?

В 1966 г. Пассман доказал [5], что в p-разрешимой группе G всегда найдутся три силовские p-подгруппы P_1, P_2, P_3 такие, что $P_1 \cap P_2 \cap P_3 = O_p(G)$. Позднее В. И. Зенков, используя классификацию конечных простых групп, показал [6], что в любой конечной группе G существуют три силовские p-подгруппы P_1, P_2, P_3 такие, что $P_1 \cap P_2 \cap P_3 = O_p(G)$.

При исследовании этой проблемы [1, проблема 17.40] возникает необходимость рассматривать подстановочное сплетение $G \wr H$, где H — нильпотентная подгруппа группы Sym_n . При этом важную роль играет асимметрическое разбиение для группы H.

Определение 7. Пусть G — подгруппа группы $\operatorname{Sym}(\Omega)$. A симметрическим разбиением A группы G называется разбиение множества $\Omega = A_1 \sqcup \cdots \sqcup A_k$ такое, что только единица группы G стабилизирует A. Другими словами, разбиение $\Omega = A_1 \sqcup \cdots \sqcup A_k$ называется a симметрическим, если из того, что $A_i \cdot g = A_i$ для любого i, вытекает, что g = e.

Теорема 8. Пусть H — нильпотентная подгруппа группы Sym_n . Тогда существует асимметрическое разбиение $A_1 \sqcup A_2 \sqcup A_3 = \{1, \ldots, n\}$ группы H.

В доказательстве теоремы 8 будем следовать доказательству теоремы 1.2 из [7].

Ясно, что если A — асимметрическое разбиение группы H, то A будет асимметрическим разбиением и для любой подгруппы K группы H. Значит, можно считать, что H — максимальная нильпотентная подгруппа группы Sym_n . Тогда подгруппа H равна прямому произведению $H_1 \times \cdots \times H_k$ и H_i — максимальная транзитивная нильпотентная подгруппа группы $\operatorname{Sym}(\Omega_i)$, где $\Omega_1, \ldots, \Omega_k$ — орбиты группы H. Предположим, что имеем асимметрические разбиения A_i^1, A_2^i, A_3^i для каждой группы H_i относительно ее действия на множестве Ω_i . Тогда можно рассмотреть множества $A_j = \bigcup_{i=1}^k A_j^i$ и очевидно, что A_1, A_2, A_3 — асимметрическое разбиение для группы H. Таким образом, можно считать, что H — максимальная нильпотентная транзитивная подгруппа группы Sym_n .

Будем рассматривать разбиение множества Ω на части A_1, \ldots, A_r как раскраску $F: \Omega \to \mathbb{Z}_r$. Для транзитивной группы H введем определение $cmpy\kappa$ - $myphoro\ depeba$ для группы H относительно действия на множестве Ω .

Определение 9. Для группы H, действующей транзитивно на множестве Ω , определим cmpykmyphoe depeso spynnu H следующим образом. Корнем структурного дерева является одноэлементное множество $\{\Omega\}$, и все узлы дерева являются подмножествами множества Ω . Если узел X построен, то рассмотрим стабилизатор H_X подмножества X в группе H, т. е. $H_X = \{g \in H \mid X \cdot g = X\}$. Сыновьями узла X являются блоки максимальной собственной системы импримитивности для подгруппы H_X , действующей на множестве X. В частности, листьями структурного дерева являются одноэлементные подмножества множества Ω .

Ясно, что действие группы H на множестве Ω можно естественным образом продолжить до действия группы H на ее структурном дереве T и это действие будет транзитивным на каждом уровне дерева T.

По построению множество $\Omega(X)$ сыновей узла X является максимальной системой импримитивности стабилизатора H_X узла X, действующего на X, следовательно, H_X действует примитивно на $\Omega(X)$. Зафиксируем узел X и зададим раскраску множества его сыновей $F_X:\Omega(X)\to\mathbb{Z}_2$. Для этого зафиксируем также некоторый элемент $M\in\Omega(X)$. Тогда

$$F_X(Y) = \left\{egin{array}{ll} 0, & Y = M, \ 1, & Y
eq M. \end{array}
ight.$$

Известно, что примитивная нильпотентная подгруппа группы Sym_n существует лишь в том случае, если n простое, при этом она изоморфна \mathbb{Z}_n . Поэтому если элемент $g \in H_X$ сохраняет раскраску F_X , то он действует на $\Omega(X)$ тривиально.

Доказательство теоремы 8. Рассмотрим структурное дерево T группы H. Обозначим через T_j уровень высоты j дерева T. Определим раскраску $F:T\to\mathbb{Z}_3$ дерева T по индукции. Уровень T_0 состоит из одной вершины $\{\Omega\}$. Раскрасим ее в цвет 0. Предположим, что мы уже раскрасили уровень T_{j-1} . Пусть $Y\in T_j$, тогда существует узел $X\in T_{j-1}$ такой, что $Y\in\Omega(X)$. Зададим цвет узла Y следующим образом:

$$F(Y) = F(X) + F_X(Y) \pmod{3}$$
.

Множество $F(\Omega(X))$ всех цветов сыновей узла X всегда имеет один недостающий цвет, по которому можно однозначно восстановить цвет узла X. Следовательно, из раскраски уровня T_j можно однозначно восстановить раскраску уровня T_{j-1} . Предположим, что элемент g сохраняет раскраску уровня T_j и, в частности, множества $\Omega(X)\subseteq T_j$. Тогда для каждого $Y\in \Omega(X)$ выполнено $F(Y)=F(Y^g)$ и, значит, множества $\Omega(X)$ и $\Omega(X^g)$ раскрашены в одинаковые цвета. Следовательно, $F(X)=F(X^g)$. В частности, если элемент g сохраняет раскраску уровня T_m , то он сохраняет раскраску всего дерева T и, в частности, каждую раскраску F_X .

Покажем, что если некоторый элемент $g \in G$ стабилизирует раскраску уровня T_m , то g=e. Как заметили ранее, элемент g стабилизирует раскраску дерева T. Ясно, что если элемент g стабилизирует узел X и сохраняет раскраску F_X , то g действует тривиально на множестве $\Omega(X)$ сыновей узла X. Очевидно, что элемент g стабилизирует корень дерева $\{\Omega\}$. Значит, он действует тривиально на множестве сыновей корня дерева. В частности, он стабилизирует каждый узел уровня T_1 . Аналогично по индукции получим, что элемент g стабилизирует каждый узел уровня T_m . Таким образом, g оставляет неподвижными все точки множества Ω , т. е. g=e.

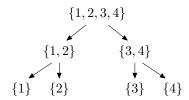
Определим множество $A_i = \{x \in \Omega \mid F(\{x\}) = i\}$. Тогда A_1, A_2, A_3 — искомое асимметрическое разбиение группы H. \square

Замечание. Если порядок |H| нечетен, то существует асимметрическое разбиение $\Omega=A_1\sqcup A_2$. Действительно, поскольку порядок блока всегда делит порядок группы, все блоки группы H имеют нечетный порядок и, в частности, множество сыновей любого узла структурного дерева также имеет нечетный порядок. Зададим раскраску $F:T\to \mathbb{Z}_2$ структурного дерева по правилу

$$F(Y) = F(X) + F_X(Y) \pmod{2}.$$

В каждом множестве сыновей лишь один элемент имеет цвет, отличный от цветов других элементов этого множества, и по цвету этого выделенного элемента однозначно восстанавливается цвет родительского узла. Поэтому если элемент сохраняет раскраску множества сыновей некоторого узла, то этот элемент сохраняет цвет данного узла. В частности, если элемент сохраняет раскраску уровня T_m , то он сохраняет раскраску дерева T. Далее, как в доказательстве теоремы 8, получаем, что только единичный элемент сохраняет раскраску уровня T_m .

Рассмотрим процесс раскраски из доказательства теоремы 8 на примере силовской 2-подгруппы H группы Sym_4 . С точностью до сопряжения можно считать, что группа H совпадает с группой $\langle (1,2), (1,3,2,4) \rangle$. Тогда структурное дерево T группы H будет иметь вид



Корень $\{1,2,3,4\}$ дерева T цвета 0. Группа H действует примитивно на множестве $\{\{1,2\},\{3,4\}\}$. Множество $\Omega(\{1,2,3,4\})$ совпадает с множеством $\{\{1,2\},\{3,4\}\}$. Тогда по алгоритму раскрасим узел $\{1,2\}$ в цвет 0+0=0, а узел $\{3,4\}$ в цвет 0+1=1. Из тех же соображений раскрасим узел $\{1\}$ в цвет 0+0, узел $\{2\}$ — в цвет 1, узел $\{3\}$ — в цвет 1+0=1, а узел $\{4\}$ — в цвет 1+1=2. В итоге получим разбиение $A_0=\{1\}$, $A_1=\{2,3\}$, $A_2=\{4\}$.

ЛИТЕРАТУРА

- Коуровская тетрадь. Нерешенные проблемы теории групп / под ред. В. Д. Мазурова, Е. И. Хухро. 17-е. изд. Новосибирск: Ин-т математики СО РАН, 2010.
- **2.** Вдовин Е. П. Большие нильпотентные подгруппы конечных простых групп // Алгебра и логика. 2000. Т. 39, № 5. С. 526–546.
- 3. Мазуров В. Д., Зенков В. И. Пересечения силовских подгрупп в конечных простых группах // Алгебра и логика. 1996. Т. 35, № 4. С. 424–432.
- 4. Супруненко Д. А. Группы матриц. М.: Наука, 1972.
- Passman D. S. Groups with normal solvable Hall p'-subgroups // Trans. Amer. Math. Soc. 1996. V. 123, N 1, P. 99–111.
- Zenkov V. I. Intersections of nilpotent subgroups in finite groups // Fund. Prikl. Mat. 1996.
 V. 2, N 1. P. 1–92.
- 7. Seress A. The minimal base size of primitive solvable permutation groups // J. London Math. Soc. 1996. V. 53, N 2. P. 243–255.

Cтатья поступила 21 августа 2012 г.

Курмазов Роман Константинович Новосибирский гос. университет, ул. Пирогова 2, Новосибирск 630090 vvvkamper@gmail.com