ХАРАКТЕРИЗАЦИЯ ГРУПП $G_2(q)$ ДЛЯ $2 < q \equiv -1 (\bmod 3)$ ПОРЯДКОВЫМИ КОМПОНЕНТАМИ

П. Носратпур, М. Р. Дарафшех

Аннотация. Доказано, что простая группа $G_2(q)$, где $2 < q \equiv -1 \pmod 3$, распознаваема по множеству своих порядковых компонент. Другими словами, доказано, что если G — конечная группа и $OC(G) = OC(G_2(q))$, то $G \cong G_2(q)$.

Ключевые слова: граф простых чисел, порядковая компонента, конечная простая группа.

1. Введение

Пусть G — конечная группа. Обозначим символом $\pi(n)$ множество всех простых делителей натурального числа n. Граф простых чисел группы G — это граф $\Gamma(G)$ с множеством вершин, равным множеству $\pi(G)$ всех простых делителей |G|, и две различные вершины p и q соединены ребром, если в G имеется элемент порядка pq. Пусть $\pi_i = \pi_i(G), \ 1 \le i \le s(G), \ —$ порядковые компоненты $\Gamma(G)$. Для группы четного порядка полагаем $2 \in \pi_1(G)$. Тогда |G| может быть представлен в виде произведения $m_1, m_2, \ldots, m_{s(G)}$, где m_i — положительные целые числа такие, что $\pi(m_i) = \pi_i$. Эти числа m_i называются порядковыми компонентами G. Множество $OC(G) = \{m_1, m_2, \ldots, m_{s(G)}\}$ называется множеством порядковых компонент G.

Определение 1.1. Для конечной группы G обозначим через h(G) число классов изоморфных конечных групп S таких, что OC(G) = OC(S); h(G) называется h-функцией группы G. Группа G называется k-распознаваемой множеством ее порядковых компонент, если h(G) = k. Далее, если h(G) = 1, то говорят, что G характеризуема своими порядковыми компонентами. В этом случае G однозначно определяется множеством своих порядковых компонент.

Используя [1,2], перечисляем порядковые компоненты для неабелевых простых групп P в следующих ниже таблицах. Эта информация используется в доказательстве основной теоремы. Обозначения для названий простых групп взяты из [3]. В [4–7] доказано, что спорадические группы и конечные группы $PSL_2(q)$, $^3D_4(q)$, $^2D_n(3)$, где $9 \le n = 2^m + 1$ не простое, и группы $^2D_{p+1}(q)$, где $5 , характеризуются порядковыми компонентами их графов простых чисел. Распознаваемость групп <math>L_{p+1}(2)$, $^2D_p(3)$, где $p \ge 5$ — простое число, отличное от $2^m + 1$, $^2D_n(2)$, где $n = 2^m + 1 \ge 5$, $D_{p+1}(2)$, $D_{p+1}(3)$ и $D_p(q)$, где $p \ge 5$ — простое число и q = 2, 3 или 5, доказаны в [8–12]. Также характеризуемость групп $E_6(q)$, $^2E_6(q)$, $^2D_n(q)$, где $n = 2^m$, PSL(p,q), PSU(p,q), PSL(p+1,q), PSU(p+1,q), PSL(3,q), где q — степень нечетного простого числа, групп PSL(3,q) для $q = 2^n$ и групп PSU(3,q) для q > 5 их порядковыми

компонентами доказана в [13–22]. Кроме того, r-распознаваемость групп $B_n(q)$ и $C_n(q)$ для $n=2^m\geq 4$ доказана в [23].

Таблица 1. Порядковые компоненты конечных простых групп P таких, что s(P)=2

Р	Ограничения на <i>Р</i>	m_1	m_2
A_n	6 < n = p, p+1, p+2	n!/2p	p
	одно из чисел $n, n-2$ не простое		
$A_{p-1}(q)$	$(p,q) \neq (3,2), (3,4)$	$q^{p(p-1)/2} \prod_{i=1}^{p-1} (q^i - 1)$ $q^{p(p+1)/2} (q^{p+1} - 1) \prod_{i=2}^{p-1} (q^i - 1)$	$\frac{(q^p-1)}{((q-1)(p,q-1))}$
$A_p(q)$	$(q-1)\mid (p+1)$	$q^{p(p+1)/2}(q^{p+1}-1)\prod_{i=2}^{p-1}(q^i-1)$	$\frac{(q^p-1)}{(q-1)}$
$^2A_{p-1}(q)$		$q^{p(p-1)/2} \prod_{i=1}^{p-1} (q^i - (-1)^i)$ $q^{p(p+1)/2} (q^{p+1} - 1) \prod_{i=2}^{p-1} (q^i - 1)$	$\frac{(q^p+1)}{((q+1)(p,q+1))}$
$^2A_p(q)$	$(q+1)\mid (p+1)$	$q^{p(p+1)/2}(q^{p+1}-1)\prod_{i=2}^{p-1}(q^i-1)$	$rac{(q^p+1)}{(q+1)}$
	$(p,q) \neq (3,3), (5,2)$		
$^{2}A_{3}(2)$		$2^6.3^4$	5
$B_n(q)$	$n=2^m\geq 4,q$ нечетно	$q^{n^2}(q^n-1)\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{(q^n+1)}{2}$
$B_p(3)$		$3^{p^2}(3^p+1)\prod_{i=1}^{p-1}(3^{2i}-1)$	$\frac{(3^p-1)}{2}$
$C_n(q)$	$n=2^m\geq 2,q$ нечетно	$q^{n^{2}}(q^{n}-1) \prod_{i=1}^{n-1} (q^{2i}-1)$ $3^{p^{2}}(3^{p}+1) \prod_{i=1}^{p-1} (3^{2i}-1)$ $q^{n^{2}}(q^{n}-1) \prod_{i=1}^{n-1} (q^{2i}-1)$ $q^{p^{2}}(q^{p}+1) \prod_{i=1}^{p-1} (q^{2i}-1)$ $q^{p(p-1)} \prod_{i=1}^{p-1} (q^{2i}-1)$ $\frac{1}{(2,q-1)} q^{p(p+1)} (q^{p}+1)$	$\frac{(q^n+1)}{(2,q-1)}$
$C_p(q)$	q=2,3	$q^{p^2}(q^p+1)\prod_{i=1}^{p-1}(q^{2i}-1)$	$\frac{(q^p-1)}{(2,q-1)}$
$D_p(q)$	$p \geq 5, q=2,3,5$	$q^{p(p-1)} \prod_{i=1}^{p-1} (q^{2i} - 1)$	$\frac{(q^p-1)}{(q-1)}$
$D_{p+1}(q)$	q=2,3	$rac{1}{(2,q-1)}q^{p(p+1)}(q^p+1)$	$\frac{(q^p-1)}{(2,q-1)}$
		$(q^{p+1}-1)\prod_{\substack{i=1\\ i=1}}^{p-1}(q^{2i}-1)$ $q^{n(n-1)}\prod_{\substack{i=1\\ i=1}}^{n-1}(q^{2i}-1)$	
$^{2}D_{n}(q)$	$n=2^m \ge 4$	$q^{n(n-1)} \prod_{i=1}^{n-1} (q^{2i} - 1)$	$\frac{(q^n+1)}{(2,q+1)}$
$^{2}D_{n}(2)$	$n=2^m+1\geq 5$	$ \begin{array}{c} $	$2^{n-1}+1$
		$\prod_{i=1}^{n-2} (2^{2i} - 1)$	
$^{2}D_{p}(3)$	$5 \le p \ne 2^m + 1$	$ \prod_{i=1}^{n-2} (2^{2i} - 1) $ $ 3^{p(p-1)} \prod_{i=1}^{p-1} (3^{2i} - 1) $	$\frac{(3^p+1)}{4}$
$^{2}D_{n}(3)$	$9 \leq 2^m + 1 \neq p$	$\frac{1}{2}3^{n(n-1)}(3^n+1)(3^{n-1}-1)$	$\frac{(3^{n-1}+1)}{2}$
		$\prod_{i=1}^{n-2} (3^{2i} - 1)$	
$G_2(q)$	$2 < q \equiv \epsilon (\operatorname{mod} 3), \epsilon = \pm 1$	$q^6(q^3-\epsilon)(q^2-1)(q+\epsilon)$	$q^2 - \epsilon q + 1$
$^{3}D_{4}(q)$		$q^{12}(q^6-1)(q^2-1)(q^4+q^2+1)$	$q^4 - q^2 + 1$
$F_4(q)$	<i>q</i> нечетно	$q^{24}(q^8-1)(q^6-1)^2(q^4-1)$	$q^4 - q^2 + 1$
$^{2}F_{4}(2)'$		$2^{11}.3^3.5^2$	13
$E_6(q)$		$q^{36}(q^{12}-1)(q^8-1)(q^6-1)$	$\frac{(q^6+q^3+1)}{(3,q-1)}$
		$(q^5 - 1)(q^3 - 1)(q^2 - 1)$	

Следующая нерешенная проблема содержит все остальные случаи для доказательства того, что группы P со свойством s(P)=2 характеризуются простыми компонентами.

$^{2}E_{6}(q)$	q > 2	$q^{36}(q^{12}-1)(q^8-1)(q^6-1)(q^5+1)(q^3+1)(q^2-1)$	$(q^6 - q^3 + 1)/(3, q + 1)$
M_{12}		$2^6.3^3.5$	11
J_2		$2^7.3^3.5^2$	7
Ru		$2^{14}.3^3.5^3.7.13$	29
He		$2^{10}.3^3.5^2.7^3$	17
McL		$2^7.3^6.5^3.7$	11
Co_1		$2^{21}.3^{9}.5^{4}.7^{2}.11.13$	23
Co_3		$2^{10}.3^{7}.5^{3}.7.11$	23
Fi_{22}		$2^{17}.3^{9}.5^{2}.7.11$	13
HN		$2^{14}.3^{6}.5^{6}.7.11$	19

Продолжение таблицы 1

Нерешенная проблема [24]. Характеризуются ли группы $F_4(q)$ (q нечетно), $G_2(q)$ ($2 < q \equiv \pm 1 \pmod{3}$) и $C_p(2)$ своими порядковыми компонентами?

В данной работе мы рассматриваем простую группу $G_2(q)$, где $2 < q \equiv -1 \pmod{3}$, и доказываем, что она характеризуется порядковыми компонентами.

В силу [1] граф простых чисел группы $G_2(q)$ для $2 < q \equiv -1 \pmod 3$ имеет две компоненты $m_1 = q^6(q^3+1)(q^2-1)(q-1) = q^6(q+1)^2(q-1)^2(q^2-q+1)$ и $m_2 = q^2+q+1$.

Основная теорема. Если G — конечная группа такая, что $OC(G) = OC(G_2(q))$, где $2 < q \equiv -1 \pmod{3}$, то $G \cong G_2(q)$.

2. Предварительные сведения

Определение 2.1. Группа G называется 2-фробениусовой, если существует нормальный ряд $1 \le H \le K \le G$ группы G такой, что K и G/H — фробениусовы группы G ядрами G и G/H соответственно.

Следующие леммы взяты из [25, 26].

Лемма 2.1. (а) Пусть G — Фробениусова группа четного порядка, где H и K — фробениусово дополнение и фробениусово ядро группы G соответственно. Тогда s(G)=2 и компоненты графа простых чисел группы G суть $\pi(H)$ и $\pi(K)$.

(b) Пусть G-2-фробениусова группа четного порядка. Тогда s(G)=2 и G имеет нормальный ряд $1 \le H \le K \le G$ такой, что $|K/H|=m_2$, $|H||G/K|=m_1$, и |G/K| | (|K/H|-1) и H — нильпотентная π_1 -группа.

Лемма 2.2. Пусть G — конечная группа и $s(G) \geq 2$. Если $H \leq G$ — π_i -группа, то $\left(\prod_{j=1,\,j\neq i}^{s(G)}m_j\right)\mid (|H|-1).$

Строение конечных групп с несвязным графом простых чисел описывается следующей леммой.

Лемма 2.3. Пусть G — конечная группа и $s(G) \ge 2$. Справедливо одно из следующих утверждений:

- (a) $G \phi$ робениусова или 2-фробениусова группа;
- (b) G имеет нормальный ряд $1 \le H \le K \le G$ такой, что H и $G/K \pi_1$ -группы и K/H неабелева простая группа, где π_1 компонента графа простых чисел, содержащая 2, H нильпотентная группа и |G/K| | Out(K/H)|.

Таблица 2. Порядковые компоненты конечных простых групп P таких, что s(P)=3

P	Ограничения на Р	m_1	m_2	m_3
A_n	n > 6, n = p, p - 2 простые	$\frac{n!}{2n(n-2)}$	p	p-2
$A_1(q)$	$4\mid (q+1)$	q+1	q	(q-1)/2
$A_1(q)$	4 (q-1)	q-1	q	(q+1)/2
$A_1(q)$	$2 \mid q$	q	q+1	q-1
$A_2(2)$		8	3	7
$^{2}A_{5}(2)$		$2^{15}.3^{6}.5$	7	11
$^{2}D_{p}(3)$	$5 \le p = 2^m + 1$	$2.3^{p(p-1)}(3^{p-1}-1)$	$(3^{p-1}+1)/2$	$(3^p + 1)/4$
		$\prod_{i=1}^{p-2} (3^{2i} - 1)$		
$^{2}D_{p+1}(2)$	$n \ge 2, p = 2^n - 1$	$2^{p(p+1)}(2^p-1)$	$2^{p} + 1$	$2^{p+1}+1$
		$\prod_{i=1}^{p-1} (2^{2i} - 1)$		
$G_2(q)$	$q \equiv 0 \pmod{3}$	$q^6(q^2-1)^3$	q^2-q+1	q^2+q+1
$^{2}G_{2}(q)$	$q = 3^{2m+1} > 3$	$q^3(q^2-1)$		
$F_4(q)$	<i>q</i> четно	$q^{24}(q^6-1)^2(q^4-1)^2$		$q^4 - q^2 + 1$
$^{2}F_{4}(q)$	$q=2^{2m+1}>2$	$q^{12}(q^4-1)q^3+1)$	$q^2 - \sqrt{2q^3} +$	$q^2 + \sqrt{2q^3} +$
			$q-\sqrt{2q}+1$	$q + \sqrt{2q} + 1$
$E_7(2)$		$2^{36}.3^{11}.5^{2}.7^{3}.11.13$	73	127
		17.19.31.43		
$E_7(3)$		$2^{23}.3^{63}.5^2.7^3.11^2.13^2$	757	1093
		19.37.41.61.73.547		
M_{11}		$2^4.3^2$	5	11
M_{23}		$2^7.3^2.5.7$	11	23
M_{24}		$2^{10}.3^3.5.7$	11	23
J_3		$2^7.3^5.5$	17	19
HiS		$2^9.3^2.5^3$	7	11
Suz		$2^{13}.3^{7}.5^{2}.7$	11	13
Co_2		$2^{18}.3^6.5^3.7$	11	23
Fi_{23}		$2^{18}.3^{13}.5^{2}.7.11.13$	17	23
F_3		$2^{15}.3^{10}.5^{3}.7^{2}.13$	19	31
F_2		$2^{24}.3^{13}.5^{6}.7^{2}.$	31	47
		11.13.17.19.23		

Кроме того, всякая компонента нечетного порядка группы G также является компонентой нечетного порядка в K/H.

Следующая лемма Жигмонди используется в доказательстве основной теоремы.

Лемма 2.4 [27]. Пусть n и a — целые числа, большие 1. Существует простой делитель p числа $a^n - 1$ такой, что p не делит $a^i - 1$ для всех $i, 1 \le i < n$, кроме следующих случаев: (a) $n=2, a=2^k-1,$ где $k\geq 2,$

(a)
$$n=2, a=2^k-1$$
, rue $k > 2$.

PОгранич. на P m_6 m_1 m_2 m_3 m_4 m_5 $A_{2}(4)$ 3 5 $q = 2^{2m+1} > 2$ $^2B_2(q)$ q-1 $q-\sqrt{2q}+1$ $q + \sqrt{2q} + 1$ $^{2}E_{6}(2)$ $2^{36}.3^{9}.5^{2}.7^{2}.11$ 17 19 13 $\frac{q^{10} \! + \! q^5 \! + \! 1}{q^2 \! + \! q \! + \! 1}$ $q^{120}(q^{20}-1)$ $q \equiv 2, 3 \pmod{5}$ $E_8(q)$ $(q^{18}-1)(q^{14}-1)$ $(q^{12} - 1)(q^{10} - 1)$ $(q^8 - 1)(q^4 + 1)$ $(q^4 + q^2 + 1)$ $2^{7}.3^{2}$ M_{22} 5 11 J_1 $2^3.3.5$ 7 11 19 $2^9.3^4.5.7^3$ O'N11 31 $2^8.3^7.5^6.7.11$ LyS31 37 67 $2^{21}.3^{16}.5^{2}$ Fi'_{24} 17 23 29 $7^3.11.13$ $2^{46}.3^{20}.5^{9}.7^{6}$ F_1 41 59 71 $11^2.13^3.17.19$ 23.29.31.47 $q^{120}(q^{18}-1)$ $q \equiv 0.1.4 \pmod{5}$ $E_8(q)$ $(q^{14} - 1)(q^{12} - 1)^2$ $(q^{10}-1)^2(q^8-1)^2$ $(q^4 + q^2 + 1)$

Таблица 3. Порядковые компоненты конечных простых групп P таких, что s(P)>3

(b) n = 6, a = 2.

 J_4

Простое число p из леммы 2.4 называется npocmым числом Жигмонди для $a^n-1.$

23

29

31

37

43

 $2^{21}.3^{3}.5.7.11^{3}$

3. Доказательство основной теоремы

Для доказательства теоремы используем лемму 2.3, но сначала докажем следующие леммы.

Лемма 3.1. Пусть G — конечная группа такая, что $OC(G) = OC(G_2(q))$, где $2 < q \equiv -1 \pmod 3$. Тогда G не является ни фробениусовой, ни 2-фробениусовой группой.

Доказательство. Если G — фробениусова группа, то G=HK имеет фробениусово дополнение H и фробениусово ядро K. По лемме 2.1(a) имеем $OC(G)=\{|H|,|K|\}$. Так как $|H|\mid (|K|-1)$, то |H|<|K|, и можем предполагать, что $|K|=m_1$ и $|H|=m_2$. Поскольку q=3k-1>2, по лемме 2.4 существует простое число Жигмонди p>3 для q^6-1 (в силу определения простого числа Жигмонди для a^n-1). Следовательно, $p\mid (q^3+1)=(q+1)(q^2-q+1)$, и если $p\mid (q+1)$, то $p\mid (q^2-1)$, что противоречит выбору p, откуда $p\mid (q^2-q+1)$. Поэтому $|G|_p\mid q^2-q+1$, откуда $|G|_p\leq q^2-q+1$. Имеем $|G|=m_1m_2, (m_1,m_2)=1$

и $|K|=m_1$. Если $S_p\in \mathrm{Syl}_p(G)$, то $S_p\in \mathrm{Syl}_p(K)$. Так как K — нильпотентная нормальная подгруппа в G, то $S_p\unlhd G$, и по лемме $2.2\ m_2\mid (|S_p|-1)$. Но $m_2=q^2+q+1$, что дает $|S_p|-1\geq q^2+q+1$, откуда следует, что $|S_p|\geq q^2+q+2$; противоречие.

Если G-2-фробениусова группа, то существует нормальный ряд $1 \le H \le K \le G$ для G такой, что H — нильпотентная π_1 -группа, $|K/H| = m_2$ и $|G/K| \mid (|K/H|-1)$ и, следовательно, $|G/K| \mid q(q+1)$. Если p — простое число Жигмонди для q^6-1 , то $p \mid q^2-q+1$. Поэтому $p \nmid |G/K|$, значит, по лемме 2.1(b) $p \mid |H|$. Если $S_p \in \operatorname{Syl}_p(H)$, то в силу нильпотентности H имеем $S_p \le G$ и потому по лемме $2.2 m_2 \mid (|S_p|-1)$. Значит, $|S_p| \ge q^2+q+1$; противоречие.

Лемма 3.2. Пусть $M = G_2(q)$, где $2 < q \equiv -1 \pmod{3}$, и пусть $D(q) = q^2 + q + 1$.

- (a) Если $p \in \pi(M)$, то $|S_p| \le q^6$, где $S_p \in \operatorname{Syl}_p(M)$.
- (b) Если $p \in \pi_1(M)$, $p^{\alpha} \mid |M|$ и $p^{\alpha} 1 \equiv 0 \pmod{D(q)}$, то $p^{\alpha} = q^3$ или $p^{\alpha} = q^6$. Доказательство. (a) Имеем

$$|G_2(q)| = q^6(q+1)^2(q-1)^2(q^2-q+1)(q^2+q+1).$$
(1)

Простое вычисление показывает, что

$$(q+1,q-1) = (2,q-1), \quad (q-1,q^2+q+1) = (3,q-1),$$

$$(q-1,q^2-q+1) = 1, \quad (q+1,q^2-q+1) = (3,q+1),$$

$$(q+1,q^2+q+1) = 1, \quad (q^2+q+1,q^2-q+1) = 1,$$
(2)

- где (,) обозначает наибольший общий делитель двух чисел. Если $p^{\alpha} \mid |M|$, то, рассматривая (1) и (2), получаем, что p^{α} делит q^{6} , $2^{2}.3(q+1)^{2}$, $2^{2}.3(q-1)^{2}$, $q^{2}+q+1$ или $q^{2}-q+1$. Отсюда сразу получаем (a).
- (b) Если $p^{\alpha}-1\equiv 0 (\text{mod}\,D(q)),$ то $p^{\alpha}>D(q).$ Так как $q\geq 5,$ получаем, что $p^{\alpha}>31.$ Рассмотрим следующие случаи.
- (1) Если $p^{\alpha} \mid 3^2(q^2-q+1)$, то $p^{\alpha} \mid 3^3$ или $p^{\alpha} \mid q^2-q+1$. Если $p^{\alpha} \mid 3^3$, то $p^{\alpha} < 3^3$; противоречие. Если $p^{\alpha} \mid q^2-q+1$, то $p^{\alpha} < D(q)$; противоречие.
- (2) Если $p^{\alpha} \mid 2^2.3.(q\pm 1)^2$, то $p^{\alpha} \mid 4(q\pm 1)^2$ или $p^{\alpha} \mid 3.(q\pm 1)^2$. Так как доказательства этих двух случаев полностью аналогичны, рассмотрим только один из них. Если $p^{\alpha} \mid 4(q+1)^2$, то $tp^{\alpha} = 4(q+1)^2$, т. е. $p^{\alpha} = 4(q+1)^2/t$, где t- натуральное число. Имеем также $p^{\alpha} 1 = r.D(q)$, где r- натуральное число, и тогда $D(q) = \frac{4(q+1)^2-t}{tr}$. Но так как $\frac{4(q+1)^2}{5} < D(q) = \frac{4(q+1)^2-t}{tr} < \frac{4(q+1)^2}{tr}$, то tr < 5 и $(tr-4)q^2+(tr-8)q+(tr+t-4)=0$. Из этого уравнения выводим, что $q \mid (tr+t-4)$. Теперь, используя, что tr=1,2,3,4, получаем противоречие.
- (3) Если $p^{\alpha}\mid q^6$, то $q=p^n,\ n>0$. Имеем $p^{\alpha}>D(q)>q^2$. Поэтому $q^2\mid p^{\alpha}$. Имеем также $p^{\alpha}-1=r.D(q)$, тогда $p^{\alpha}=rq^2+rq+r+1$, а следовательно, $q^2\mid (rq+r+1)$, откуда $r\geq q-1$. Из этого получаем, что $p^{\alpha}-1=r(q^2+q+1)\geq (q-1)(q^2+q+1)=q^3-1$. Поэтому $p^{\alpha}\geq q^3$, тем самым $p^{\alpha}=q^3.p^m,\ m\geq 0$. Тогда $p^{\alpha}=q^3$ или $r.D(q)=p^{\alpha}-1=p^m.q^3-1=p^m.q^3-p^m+p^m-1=p^m(q-1)D(q)+p^m-1$, откуда следует, что $p^m-1\equiv 0 \pmod{D(q)}$. Тогда $p^m=q^3$ и $p^{\alpha}=q^6$.

Продолжим доказательство основной теоремы. По лемме 2.3(b) существует нормальный ряд $1 \le H \le K \le G$ для G такой, что K/H — неабелева простая группа, H и G/K — π_1 -группы и H — нильпотентная группа. Кроме того,

 $|G/K| \mid |\operatorname{Out}(K/H)|$, и каждая нечетная компонента G является одной из нечетных компонент K/H и $s(K/H) \geq 2$.

Так как P = K/H — неабелева простая группа с несвязным графом простых чисел, в силу классификации конечных простых групп имеем одну из возможностей для P из табл. 1–3.

Случай 1: P изоморфна $^2A_3(2)$, $^2F_4(2)'$, $A_2(2)$, $A_2(4)$, $^2A_5(2)$, $E_7(2)$, $E_7(3)$, $^2E_6(2)$ или одной из 26 спорадических групп из табл. 1–3.

Компонента нечетного порядка группы G равна $m_2=q^2+q+1$ и должна быть равна одной из компонент нечетного порядка перечисленных выше групп. Анализ табл. 1–3 показывает, что наибольший нечетный порядок компонент указанных выше групп равен 1093. Поэтому $q^2+q+1\leq 1093$, откуда $q\leq 32$. Стало быть, имеем следующие возможности для $q\colon q=5,8,11,17,23,29,32$ (отметим, что $q\equiv -1 \pmod{3}$). Если q=11,17,23,29,32, то $m_2=123,307,553,871,1057$ соответственно. Однако никакая группа из табл. 1–3 не имеет таких нечетных компонент. Поэтому q=5,8. Для q=5,8 имеем $m_2=31,73$ соответственно. Тем самым получаем следующие возможности для P. Если q=5, то $m_2=31$ соответствует тому, что P изоморфна $F_3,F_2,O'N$ или J_4 , и если q=8, то $m_2=73$ соответствует $P\cong E_7(2)$. Но во всех случаях видно, что $|P|\nmid |G|$. Поэтому указанные возможности исключены.

Случай 2: $P \cong A_n$, где $n=p,p+1,p+2,\,n$ или n-2 простое и n=p,p-2 оба простые, где $p\geq 6$ — простое число.

В силу табл. 1, 2 компоненты нечетного порядка группы A_n суть p и p-2, откуда $q^2+q+1=p$ или p-2. Значит, $p\geq q^2+q+1\geq 31$. Поэтому

$$q^{2} + q + 1 = p \Rightarrow p - 2 = q^{2} + q - 1 \Rightarrow q^{2} + q - 1 \mid |G|,$$

$$q^2 + q + 1 = p - 2 \Rightarrow p = q^2 + q + 3 \Rightarrow q^2 + q + 3 \mid |G|.$$

Оба случая невозможны.

Случай 3: $P\cong E_6(q')$. Из табл. 1 имеем $\frac{q'^6+{q'}^3+1}{(3,q'-1)}=q^2+q+1$. Если (3,q'-1)=1, то

$${q'}^6 + {q'}^3 + 1 = q^2 + q + 1 \Rightarrow {q'}^3 ({q'}^3 + 1) = q(q+1) \Rightarrow {q'}^3 = q \Rightarrow {q'}^{36} = q^{12} > q^6.$$

Поэтому у группы P имеется силовская подгруппа порядка больше q^6 , что невозможно по лемме 3.2(a). Однако если (3,q'-1)=3, то $\frac{q'^6+q'^3+1}{3}=q^2+q+1\Rightarrow q'^9-1\equiv 0 (\bmod D(q))\Rightarrow q'^9\equiv 1 (\bmod D(q))$. Значит, по лемме 3.2(b) имеем $q'^9=q^3$ или $q'^9=q^6$. Поэтому $q'^{36}=q^{12}>q^6$ или $q'^{36}=q^{24}>q^6$. Тогда в обоих случаях P имеет силовскую подгруппу порядка больше q^6 , что невозможно по лемме 3.2(a).

Случай 4: $P\cong{}^2E_6(q'),\ q'>2.$ Из табл. 1 имеем $\frac{q'^6-q'^3+1}{(3,q'+1)}=q^2+q+1.$ Если (3,q'+1)=1, то

$${q'}^6 - {q'}^3 + 1 = q^2 + q + 1 \Rightarrow {q'}^3 ({q'}^3 - 1) = q(q+1).$$

Поэтому ${q'}^3=q$ или ${q'}^3=q+1$. Если ${q'}^3=q$, то

$${q'}^3 - 1 = q - 1 \Rightarrow {q'}^3 ({q'}^3 - 1) = q(q - 1) < q(q + 1);$$

противоречие. Поэтому ${q'}^3=q+1,$ тогда |P|>|G|; противоречие.

Если (3,q'+1)=3, то $\frac{q'^6-q'^3+1}{3}=q^2+q+1$, откуда ${q'}^7>q^2+q+1>q^2$ и потому ${q'}^{35}>q^{10}>q^6$. Следовательно, ${q'}^{36}>q^6$, что невозможно по лемме 3.2(a).

Случай 5: $P \cong G_2(q'), q' \equiv 0 \pmod{3}$. Из табл. 2 имеем

$${q'}^2 - q' + 1 = q^2 + q + 1 \Rightarrow q'(q' - 1) = q(q + 1).$$

Так как $q \neq q'$, а тогда q' = q + 1 > q, получаем, что |P| > |G|; противоречие, или

$$q'^2 + q' + 1 = q^2 + q + 1 \Rightarrow q'(q'+1) = q(q+1), q' \neq q \Rightarrow q' = q+1$$

 $\Rightarrow q'(q'+1) = q(q+2) > q(q+1);$

противоречие.

Случай 6: $P \cong G_2(q'), \, 2 < q' \equiv \pm 1 \pmod{3}$. Согласно табл. 1 если $\epsilon = 1$, то

$${q'}^2 - q' + 1 = q^2 + q + 1 \Rightarrow q'(q' - 1) = q(q + 1), q' \neq q \Rightarrow q' = q + 1 \Rightarrow q' = 3k;$$

противоречие. Если $\epsilon = -1$, то ${q'}^2 + q' + 1 = q^2 + q + 1$, откуда следует, что q = q'. Поэтому $P \cong G_2(q)$. Так как $|P| \mid |G|$ и $|P| = |G_2(q)| = |G|$, то $P \cong G$. Отсюда получаем, что $G \cong G_2(q)$. Это единственная возможность доказать, что G изоморфна $G_2(q)$, и это подтверждает основной результат статьи.

Случай 7: $P \cong B_p(3)$. Из табл. 1 имеем $q^2 + q + 1 = \frac{3^p - 1}{2}$. Тогда $3^p \equiv 1 \pmod{D(q)}$ и потому по лемме 3.2(b) 3^p равно q^3 или q^6 . В обоих случаях $q \equiv 0 \pmod{3}$; противоречие.

Случай 8: $P \cong C_p(q'), q'=2,3$. Если q'=3, то из табл. 1 имеем $\frac{3^p-1}{2}=q^2+q+1$ и потому $3^p\equiv 1 \pmod{D(q)}$. Тем самым по лемме 3.2(b) 3^p равно q^3 или q^6 . В обоих случаях получаем, что $q\equiv 0 \pmod{3}$; противоречие.

Если q'=2, то из табл. 1 имеем $2^p-1=q^2+q+1$ и потому $2^p\equiv 1 (\bmod D(q))$. Тем самым по лемме $3.2(\mathbf{b})$ 2^p равно q^3 или q^6 ; в обоих случаях $q\equiv 0 (\bmod 2)$. Имеем также

$$2^{p} - 1 = q^{2} + q + 1 \Rightarrow q(q+1) = 2(2^{p-1} - 1) \Rightarrow 4 \nmid q \Rightarrow q = 2;$$

противоречие.

Случай 9: $P\cong D_p(q'),\ p\geq 5,\ q'=2,3$ и 5. Из табл. 1 имеем $q^2+q+1=\frac{q'^p-1}{q-1},$ поэтому $q'^p\equiv 1(\mathrm{mod}\,D(q)).$ Тогда по лемме $3.2(\mathrm{b})\ q'^p$ равно q^3 или $q^6.$ Так как $p\geq 5,$ то $p(p-1)\geq 20.$ Стало быть, $q'^{p(p-1)}>q^6,$ что невозможно по лемме $3.2(\mathrm{a}).$

Случай 10: $P\cong D_{p+1}(q'), q'=2,3$. Из табл. 1 для q'=2 имеем $q^2+q+1=2^p-1$, поэтому $2^p\equiv 1(\bmod D(q))$. Тогда по лемме 3.2(b) 2^p равно q^3 или q^6 , значит, $q\equiv 0(\bmod 2)$. Имеем также $q^2+q+1=2^p-1$, тогда $q(q+1)=2(2^{p-1}-1)$. Поэтому $4\nmid q$, откуда q=2; противоречие. Если q'=3, то $q^2+q+1=\frac{3^p-1}{2}$ и потому $3^p\equiv 1(\bmod D(q))$. Тогда в силу леммы 3.2(b) получаем, что 3^p равно q^3 или q^6 , значит, $q\equiv 0(\bmod 3)$; противоречие.

Случай 11: $P\cong F_4(q')$. В силу табл. 1, 2 компоненты нечетного порядка группы $F_4(q')$ равны ${q'}^4-{q'}^2+1$ и ${q'}^4+1$. Если ${q'}^4-{q'}^2+1=q^2+q+1$, то ${q'}^2({q'}^2-1)=q(q+1)$ и потому $q={q'}^2$ или $q={q'}^2-1$. Если $q={q'}^2$, то $q(q+1)={q'}^2({q'}^2+1)>{q'}^2({q'}^2-1)$; противоречие. Если $q={q'}^2-1$, то |P|>|G|; противоречие. Если $q^2+q+1={q'}^4+1$, то $q(q+1)={q'}^4$, что невозможно.

Случай 12: $P\cong {}^2G_2(q'),\ q'=3^{2m+1}>3.$ Из табл. 2 имеем $q^2+q+1=q'\pm\sqrt{3q'}+1=3^{2m+1}\pm\sqrt{3^{2(m+1)}}+1,$ откуда $q(q+1)=3^{m+1}(3^m\pm1).$ Поэтому $q=3^{m+1}$ или $q=3^m\pm1.$

Если $q = 3^{m+1}$, то $q \equiv 0 \pmod{3}$; противоречие.

Если $q=3^m\pm 1$, то из $q=3^m+1$ получаем, что $q(q+1)=(3^m+1)(3^m+2)$, значит, $(3^m+1)(3^m+2)=3^m(3^m+1)$. Поэтому $3^{m+1}=3^m+2$, что невозможно, и из $q=3^m-1$ вытекает, что $q(q+1)=(3^m-1)3^m$; тогда $3^m(3^m-1)=3^{m+1}(3^m-1)$. Поэтому $3^m=3^{m+1}$, что невозможно.

Случай 13: $P\cong E_8(q')$. В силу табл. 3 компоненты нечетного порядка группы $E_8(q')$ имеют вид ${q'}^8-{q'}^4+1,\, {q'^{10}\pm {q'}^5+1\over {q'}^2\pm {q'}+1}$ и ${q'^{10}+1\over {q'}^2+1}$.

Если $q^2+q+1=q'^8-q'^4+1$, то $q(q+1)=q'^4(q'^4-1)$. Поэтому $q=q'^4$ или q'^4-1 . Если $q=q'^4$, то $q(q+1)=q'^4(q'^4+1)>q'^4(q'^4-1)$; противоречие. Если $q=q'^4-1$, то |P|>|G|; противоречие.

Если $q=q'^4-1$, то |P|>|G|; противоречие. Если $q^2+q+1=\frac{{q'}^{10}+{q'}^5+1}{{q'}^2+{q'}+1}$, то ${q'}^{15}\equiv 1 \pmod{D(q)}$. По лемме 3.2(b) ${q'}^{15}=q^3$ или ${q'}^{15}=q^6$. Тогда ${q'}^5=q$ или ${q'}^5=q^2$. Для двух случаев имеем ${q'}^{120}>q^6$, что невозможно по лемме 3.2(a).

что невозможно по лемме 3.2(a). Если $q^2+q+1=\frac{q'^{10}-q'^5+1}{q'^2-q'+1},$ то $q'^{30}\equiv 1(\bmod D(q)).$ В силу леммы 3.2(b) имеем $q'^{30}=q^3$ или $q'^{30}=q^6;$ значит, $q'^{10}=q$ или $q'^5=q$. Для двух случаев имеем $q'^{120}>q^6,$ что невозможно по лемме 3.2(a).

имеем $q'^{120} > q^6$, что невозможно по лемме 3.2(a). Если $q^2 + q + 1 = \frac{{q'}^{10} + 1}{{q'}^2 + 1}$, то ${q'}^{20} \equiv 1 \pmod{D(q)}$. По лемме 3.2(b) ${q'}^{20}$ равно q^3 или q^6 . Для двух случаев имеем ${q'}^{120} > q^6$, что невозможно по лемме 3.2(a).

Случай 14: $P \cong {}^2D_n(2)$, $n=2^m+1 \geq 5$. В силу табл. 1 $q^2+q+1=2^{n-1}+1$ и, следовательно, $q(q+1)=2^{n-1}$; противоречие.

Случай 15: P изоморфна $^2A_{p-1}(q')$ или $^2A_p(q')$. В силу табл. 1 q^2+q+1 равно $\frac{q'^p+1}{q'+1}$ или $\frac{q'^p+1}{(q'+1)(p,q'+1)}$. Тогда ${q'}^{2p}\equiv 1 \pmod{D(q)}$, поэтому из леммы 3.2(b) заключаем, что ${q'}^{2p}$ равно q^3 или q^6 .

Имеем

$$q'^{2p}=q^6\Rightarrow q'^p=q^3\Rightarrow q^2+q+1=rac{q'^p+1}{(q'+1)(p,q'+1)}=rac{q^3+1}{(q'+1)(p,q'+1)} =rac{(q+1)(q^2-q+1)}{(q'+1)(p,q'+1)}\Rightarrow (q^2+q+1)\mid (q+1)$$
 или $(q^2+q+1)\mid (q^2-q+1).$

Оба эти утверждения противоречивы.

Далее,

$$q'^{2p}=q^3\Rightarrow q^2+q+1=\frac{{q'}^p+1}{(q'+1)(p,q'+1)}=\frac{{q'}^{2p}-1}{(q'^p-1)(q'+1)(p,q'+1)}$$

$$=\frac{q^3-1}{(q'^p-1)(q'+1)(p,q'+1)}\frac{(q-1)(q^2+q+1)}{(q'^p-1)(q'+1)(p,q'+1)}$$

$$\Rightarrow\frac{(q-1)}{(q'^p-1)(q'+1)(p,q'+1)}=1\Rightarrow (q-1)=({q'}^p-1)(q'+1)(p,q'+1)>q-1;$$
 противоречие.

Случай 16: $P\cong A_p(q')$, где $(q'-1)\mid (p+1)$. Из табл. 1 имеем $q^2+q+1=\frac{q'^p-1}{q'-1}$. Следовательно, ${q'}^p\equiv 1 \pmod{D(q)}$. Поэтому по лемме 3.2(b) ${q'}^p$ равно q^3 или q^6 .

Если $q'^p=q^6$, то ${q'}^{p(p+1)/2}>q^6$, что невозможно по лемме 3.2(a).

Если $q'^p=q^3$ и p>3, то $q'^{p(p+1)/2}>q^6$, что невозможно по лемме 3.2(a). Если $P\cong A_3(q)$, то |P|>|G|; противоречие.

Случай 17: $P \cong {}^2D_p(3)$, где $5 \leq p$. В силу табл. 1, 2 компоненты нечетного порядка группы ${}^2D_p(3)$ суть $\frac{3^p+1}{4}$ и $\frac{3^{p-1}+1}{2}$. Если $q^2+q+1=\frac{3^p+1}{4}$, то $3^{2p}\equiv 1 \pmod{D(q)}$, поэтому по лемме $3.2(\mathbf{b})$ 3^{2p} равно q^3 или q^6 . Тогда $q\equiv 0 \pmod{3}$; противоречие. Если $q^2+q+1=\frac{3^{p-1}+1}{2}$, то $3^{2p-2}\equiv 1 \pmod{D(q)}$, и по лемме $3.2(\mathbf{b})$ имеем $3^{2p-2}=q^3$ или q^6 . Поэтому $q\equiv 0 \pmod{3}$; противоречие.

Случай 18: $P\cong {}^2D_n(3)$, где $5\leq p\neq 2^m+1$. Из табл. 1 имеем $q^2+q+1=\frac{3^{n-1}+1}{2}$. Получаем, что $3^{2n-2}\equiv 1(\bmod D(q))$. Тогда по лемме $3.2(\mathbf{b})$ 3^{2n-2} равно q^3 или q^6 , поэтому $q\equiv 0(\bmod 3)$; противоречие.

Случай 19: $P \cong {}^3D_4(q')$. Из табл. 1 имеем $q^2+q+1={q'}^4-{q'}^2+1$; тогда $q(q+1)={q'}^2({q'}^2-1)$. Значит, $q={q'}^2$ или $q={q'}^2-1$. Если $q={q'}^2$, то $q(q+1)={q'}^2({q'}^2+1)>{q'}^2({q'}^2-1)$; противоречие. Если $q={q'}^2-1$, то ${q'}^2=q+1$, откуда |P|>|G|; противоречие.

Случай 20: $P\cong {}^2B_2(q')$, где $q'=2^{2m+1}>2$. В силу табл. 3 компоненты нечетного порядка группы ${}^2B_2(q')$ суть q'-1, $q'-\sqrt{2q'}+1$ и $q'+\sqrt{2q'}+1$. Если $q^2+q+1=q'-1$, то $q'\equiv 1(\bmod D(q))$. Значит, по лемме 3.2(b) $q'=q^3$ или $q'=q^6$. Если $q'=q^6$, то ${q'}^2=q^{12}>q^6$, что невозможно по лемме 3.2(a). Если $q'=q^3$, то |P|>|G|; противоречие.

Если $q^2+q+1=q'\pm\sqrt{2q'}+1$, то $q(q+1)=2^{m+1}(2^m\pm1)$. Поэтому $2^{m+1}\mid q$ или $2^{m+1}\mid (q+1)$. Если $2^{m+1}\mid q$, то $q=2^{m+1}$ и потому $q(q+1)=2^{m+1}(2^{m+1}+1)>2^{m+1}(2^m-1)$; противоречие. Если $2^{m+1}\mid (q+1)$, то $q+1=2^{m+1}=3k$, что невозможно.

Случай 21: $P\cong {}^2F_4(q')$, где $q'=2^{2m+1}>2$. Согласно табл. 2 компоненты нечетного порядка группы ${}^2F_4(q')$ суть $q'\pm\sqrt{2{q'}^3}+q'\pm\sqrt{2{q'}}+1$. Тогда $q^2+q+1=q'\pm\sqrt{2{q'}^3}+q'\pm\sqrt{2{q'}}+1$, значит, $q(q+1)=2^{m+1}(2^{3m+1}\pm2^{2m+1}+2^m\pm1)$. Из этого уравнения получаем, что $2^{m+1}\mid q$ или $2^{m+1}\mid (q+1)$. Если $2^{m+1}\mid q$, то $q=2^{m+1}$, откуда $2^{m+1}(2^{m+1}+1)=2^{m+1}(2^{3m+1}\pm2^{2m+1}+2^m\pm1)$, что невозможно. Аналогично случаю, рассмотренному выше, выводим, что $2^{m+1}\mid (q+1)$ также невозможно.

Случай 22: $P\cong {}^2D_n(q'),\ n=2^m\geq 4;\ P\cong C_n(q'),\ n=2^m\geq 4$ или $P\cong B_n(q'),\ n=2^m\geq 4,\ q'$ нечетно. В упомянутых выше случаях компоненты нечетного порядка суть $\frac{q'^n+1}{(2,q'+1)},\ \frac{q'^n+1}{(2,q'-1)}$ или $\frac{q'^n+1}{2}$ соответственно. Так как q' нечетно, во всех этих случаях компонентой нечетного порядка во всех этих группах является $\frac{q'^n+1}{2}$. Если $q^2+q+1=\frac{q'^n+1}{2},\$ то $q^2+q+1=\frac{q'^n+1}{2}< q'^n,\ n\geq 4,$ значит, $(q^2+q+1)^3< q'^{n(n-1)},$ откуда $q'^{n(n-1)}>q^6;$ противоречие.

Случай 23: $P \cong {}^2D_n(q'), n=2^m \geq 4$ и q' четно. В силу табл. 1 компонента нечетного порядка группы ${}^2D_n(q')$ есть ${q'}^n+1$. Поэтому $q^2+q+1={q'}^n+1$ и $q(q+1)={q'}^n$, что невозможно.

Случай 24: $P\cong C_2(q'), \ q'$ нечетно. В силу табл. 1 компонента нечетного порядка группы $C_2(q')$ есть $\frac{q'^2+1}{2}$. Поэтому $q^2+q+1=\frac{q'^2+1}{2}$ и ${q'}^2=2q^2+2q+1$. Отсюда $|C_2(q')|=q'^4({q'}^2-1)^2({q'}^2+1)/2=4q^2(q+1)^2(q^2+q+1)(2q^2+2q+1)^2$. Так как $|P|\mid |G|$, то $(2q^2+2q+1)\mid q^6(q-1)^2(q+1)^2(q^2-q+1)$. Поскольку $(2q^2+2q+1,q-1)=(5,q-1), \quad (2q^2+2q+1,q^2-q+1)=1, \quad (2q^2+2q+1,q+1)=1,$ (3)

имеем $(2q^2 + 2q + 1) \mid 5^2$, что невозможно.

Случай 25: $P\cong A_1(q')$, где q' — степень 2. В силу табл. 2 компоненты нечетного порядка группы $A_1(q')$ суть q'+1 и q'-1. Поэтому если $q^2+q+1=q'+1$, то q(q+1)=q', что невозможно. Если $q^2+q+1=q'-1$, то $q'\equiv 1 \pmod {D(q)}$. Следовательно, по лемме 3.2(b) имеем $q'=q^3$ или $q'=q^6$. Если $q'=q^3$, то $q^2+q+1=q'-1=q^3-1=(q-1)(q^2+q+1)$, значит, (q-1)=1, что невозможно, потому что $q\geq 5$. Аналогично вышеизложенному можно показать, что $q'\neq q^6$. Поэтому $P\ncong A_1(q')$, где q' — степень 2.

Случай 26: $P\cong A_1(q'),\ q'$ не является степенью 2. В силу табл. 2 компоненты нечетного порядка группы $A_1(q')$ суть $q',\ (q'+1)/2$ и (q'-1)/2. Поэтому если $q^2+q+1=q'$, то $|A_1(q')|=q'(q'+1)(q'-1)/2=(q^2+q+1)(q^2+q+2)q(q+1)/2$. Так как $|P|\mid |G|$, получаем $\frac{(q^2+q+2)}{2}\mid q^6(q-1)^2(q+1)^2(q^2-q+1)$. Простое вычисление показывает, что

$$(q^2+q+2,q+1) = (2,q+1), \quad (q^2+q+2,q-1) = (4,q-1),$$

 $(q^2+q+2,q^2-q+1) = (7,q^2+5).$ (4)

Поэтому $(q^2+q+2)/2\mid 2^6.7$, откуда $(q^2+q+2)/2=2^4.7$. Следовательно, для этого уравнения имеем q=10, что невозможно (q=3k-1). Имеем также $(q^2+q+2)/2\mid 2^6$. Отсюда $q^2+q+2=2^5$, значит, q(q+1)=6.5. Поэтому q=5 и q'=31. Таким образом, $P\cong A_1(31)$. Согласно [3] $|\operatorname{Out}(P)|=2$, и по лемме 2.3(b) имеем $|G/K|\mid |\operatorname{Out}(P)|$. Полагая |G/K|=t, получаем t=1 или t=2 и t|H||P|=|G|, откуда $t|H|(2^5.3.5.31)=2^6.3^3.5^6.7.31$. Поэтому $|H|=2.3^2.5^5.7/t$, где t=1 или t=2. Пусть $S\in\operatorname{Syl}_7(H)$. Тогда |S|=7. Так как H нильпотентна, $S\unlhd G$ и лемма 2.2 влечет, что $m_2\mid |S|-1$, т. е. $31\mid 7-1$, что невозможно.

Если $4\mid q'+1$, то $q^2+q+1=q'-1/2$, и тогда $q'=2q^2+2q+3$. Отсюда $|A_1(q')|=2(q^2+q+1)(q^2+q+2)(2q^2+2q+3)$. Так как $|P|\mid |G|$, то $(q^2+q+2)\mid q^6(q-1)^2(q+1)^2(q^2-q+1)$. В силу $(4)\cdot (q^2+q+2)\mid 2^6.7$, откуда $(q^2+q+2)=2^5.7$. Из этого уравнения имеем q=10, что невозможно (q=3k-1). Также имеем $(q^2+q+2)\mid 2^6$. Отсюда $q^2+q+2=2^5$, значит, q(q+1)=6.5. Поэтому q=5 и $q'=63=3^2.7$, что невозможно, так как q'— степень простого числа.

Если $4\mid q'-1$, то $q^2+q+1=q'+1/2$, и тогда $q'=2q^2+2q+1$. Отсюда $|A_1(q')|=2q(q+1)(q^2+q+1)(2q^2+2q+1)$. Так как $|P|\mid |G|$, то $(2q^2+2q+1)\mid q^6(q-1)^2(q+1)^2(q^2-q+1)$. Поэтому в силу (3) имеем $2q^2+2q+1\mid 5^2$. Тогда $2q^2+2q+1=25$, откуда 2q(q+1)=24, что дает q=3 (противоречие) или $2q^2+2q+1=5$. Из последнего вытекает, что 2q(q+1)=4, откуда q=1; противоречие.

Случай 27: $P\cong {}^2D_{p+1}(2)$, где $n\geq 2$ и $p=2^n-1$. В силу табл. 2 компоненты нечетного порядка группы ${}^2D_{p+1}(2)$ суть 2^p+1 и $2^{p+1}+1$. Если $q^2+q+1=2^p+1$, то $q(q+1)=2^p$, что невозможно. Если $q^2+q+1=2^{p+1}+1$, то $q(q+1)=2^{p+1}$, что невозможно.

Случай 28: $P\cong A_{p-1}(q'), (p,q')\neq (3,2), (3,4)$. В силу табл. 1 $q^2+q+1=\frac{q'^p-1}{(p,q'-1)(q'-1)}$. Тогда $q'^p\equiv 1 \pmod{D(q)}$. Поэтому из леммы 3.2(b) получаем, что q'^p равно q^3 или q^6 . Если $q'^p=q^6$ и $p\geq 5$, то $q'^{\frac{p(p-1)}{2}}>q^6$, что невозможно по лемме 3.2(a). Если $q'^p=q^3$ и $p\geq 5$, то $q'^{\frac{p(p-1)}{2}}>q^6$, что невозможно по лемме 3.2(a).

Для ${q'}^5=q^3$ имеем $q^2+q+1=\frac{q^3-1}{q-1}=\frac{{q'}^5-1}{(q'-1)(5,q'-1)},$ и тогда q-1=(q'-1)(5,q'-1). Рассмотрим два случая. Если (5,q'-1)=1, то q-1=q'-1, поэтому q=q'; противоречие. Если (5,q'-1)=5, то q=5q'-4. Так как q=3k-1, то 5q'=3k+3=3(k+1). Отсюда $3\mid q';$ противоречие.

Пусть p=3. Если $q'^3=q^6$, то $q'=q^2$. Отсюда следует, что |P|>|G|; противоречие. Если $q'^3=q^3$, то q=q' и $P\cong A_2(q)$. Из табл. 1 имеем $q^2+q+1=\frac{q^3-1}{(q-1)(3,q-1)}$, откуда (3,q-1)=1. Пусть $q=r^f$, где r — простое число. Так как $3\nmid q$, то $3\nmid r$ и $r\equiv -1 \pmod 3$. Поэтому $r^2\equiv 1 \pmod 3$. Покажем, что f нечетно. Предположим, что f четно. Тогда $f=2\alpha$ для некоторого натурального α , откуда следует, что $q=r^f=r^{2\alpha}\equiv 1^\alpha=1 \pmod 3$. Значит, $q\equiv 1 \pmod 3$; противоречие. Следовательно, (f,2)=1. Согласно [3] имеем $|\operatorname{Out}(P)|=2f$, а по лемме 2.3(b) получаем, что $|G/K|\mid |\operatorname{Out}(P)|$. Положим |G/K|=t и получим, что t|H||P|=|G| и $t\mid 2f$. Поскольку доказали, что (f,2)=1, то (t,2)=1 или t=2. Используя табл. 1 и подставляя порядки P и G в равенство t|H||P|=|G|, получим

$$t|H|q^{3}(q-1)^{2}(q+1)(q^{2}+q+1) = q^{6}(q-1)^{2}(q+1)^{2}(q^{2}+q+1)(q^{2}-q+1)$$
$$\Rightarrow t|H| = q^{3}(q+1)(q^{2}-q+1).$$

Так как q=3k-1, имеем q+1=3k и q^2-q+1 нечетно. Если t=2, q четно и $S\in \mathrm{Syl}_2(H)$, то q+1 нечетно. Поэтому $t|S|=q^3$ или $|S|=q^3/2$. Но H нильпотентна, значит, $S\unlhd G$. Из леммы 2.2 следует, что $m_2\mid |S|-1$, т. е. $q^2+q+1\mid q^3/2-1$, что невозможно. Если q нечетно, то q+1 четно и $t|S|=(q+1)_2$. Поэтому $|S|=(q+1)_2/2$. Так как H нильпотентна, то $S\unlhd G$ и из леммы 2.2 следует, что $m_2\mid |S|-1$, т. е. $q^2+q+1\mid (q+1)_2/2-1$, что невозможно.

Если t=1, то $|H|=q^3(q+1)(q^2-q+1)$. Имеем $(q+1,q^2-q+1)=3$, и потому если $S\in \mathrm{Syl}_3(H)$, то $|S|=3(q+1)_3$. Так как H нильпотентна, то $S\unlhd G$ и из леммы 2.2 следует, что $m_2\mid |S|-1$, т. е. $q^2+q+1\mid 3(q+1)_3-1$, что невозможно.

Так как мы рассмотрели все простые группы из табл. 1–3, основная теорема доказана.

ЛИТЕРАТУРА

- **1.** Кондратьев А. С. О компонентах графа простых чисел конечных простых групп // Мат. сб. 1989. Т. 180, № 6. С. 787–797.
- Williams J. S. Prime graph components of finite groups // J. Algebra. 1981. V. 69, N 2. P. 487–513.
- **3.** Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. Oxford: Clarendon Press, 1985.
- 4. Chen G. Y. A new characterization of $PSL_2(q)$ // Southeast Asian Bull. Math. 1998. V. 22, N 3. P. 257–263.
- 5. Chen G. Y. Characterization of ${}^3D_4(q)$ // Southeast Asian Bull. Math. 2001. V. 25. P. 389–401.
- 6. Chen G. Y., Shi H. ${}^2D_n(3)$ ($9 \le n = 2^m + 1$ not a prime) can be characterized by its order components // J. Appl. Math. Comput. 2005. V. 19, N 1–2. P. 353–362.
- 7. Shi H., Chen G. Y. $^2D_{p+1}(2)$ (5 $\leq p \neq 2^m-1$) can be characterized by its order components // Kumamoto J. Math. 2005. V. 18. P. 1–8.
- 8. Darafsheh M. R., Mahmiani A. A quantitative characterization of the linear groups $L_{p+1}(2)$ // Kumamoto J. Math. 2007. V. 20. P. 33–50.
- 9. Darafsheh M. R. Characterizability of the group ${}^2D_p(3)$ by its order components, where $p \ge 5$ is a prime number not of the form $2^m + 1$ // Acta Math. Sin. (Engl. Ser). 2008. V. 24, N 7. P. 1117–1126.

- 10. Darafsheh M. R., Mahmiani A. A characterization of the group $^2D_n(2)$, where $n=2^m+1\geq 5$ // J. Appl. Math. Comput. 2009. V. 31, N 1–2. P. 447–457.
- 11. Darafsheh M. R. Characterization of the groups $D_{p+1}(2)$ and $D_{p+1}(3)$ using order components // J. Korean Math. Soc. 2010. V. 47, N 2. P. 311–329.
- 12. Darafsheh M. R., Khademi M. Characterization of the groups $D_p(q)$ by order components, where $p \ge 5$ is a prime and q = 2, 3 or 5 // South East Asian Bull. Math. (accepted).
- 13. Iranmanesh A., Alavi S. H., Khosravi B. A characterization of PSL(3,q), where q is an odd prime power // J. Pure Appl. Algebra. 2002. V. 170, N 2–3. P. 243–254.
- 14. Iranmanesh A., Alavi S. H., Khosravi B. A characterization of PSL(3,q) for $q=2^n$ // Acta Math. Sin. (Engl. Ser.) 2002. V. 18, N 3. P. 463–472.
- 15. Iranmanesh A., Khosravi B., Alavi S. H. A characterization of PSU(3,q) for q>5 // South Asian Bull. Math. 2002. V. 26, N 2. P. 33–44.
- 16. Behrooz Khosravi, Bahnam Khosravi. A characterization of $E_6(q)$ // Algebras, Groups Geom. 2002. V. 19. P. 225–243.
- 17. Behrooz Khosravi, Bahnam Khosravi. A characterization of $^2E_6(q)$ // Kumamoto J. Math. 2003. V. 16. P. 1–11.
- 18. Khosravi A., Khosravi B. A characterization of ${}^2D_n(q)$, where $n=2^m$ // Int. J. Math. Game Theory Algebra. 2003. V. 13. P. 253–265.
- 19. Khosravi A., Khosravi B. A new characterization of PSL(p,q) // Comm. Alg. 2004. V. 32. P. 2325–2339.
- **20.** Bahman Khosravi, Behnam Khosravi, Khosravi B. A new characterization of PSU(p,q) // Acta Math. Hungar. 2005. V. 107, N 3. P. 235–252.
- **21.** Behrooz Khosravi, Bahman Khosravi, Behnam Khosravi. Characterizability of PSL(p+1,q) by its order components // Houston J. Math. 2006. V. 32, N 3. P. 683–700.
- **22.** Khosravi A., Khosravi B. Characterizability of PSU(p+1,q) by its order components // Rocky Mount. J. Math. 2006. V. 36, N 5. P. 1555–1575.
- **23.** Khosravi A., Khosravi B. r-Recognizability of $B_n(q)$ and $C_n(q)$, where $n = 2^m \ge 4$ // J. Pure Appl. Algebra. 2005. V. 199. P. 149–165.
- 24. Khademi M. Characterizability of finite simple groups by their order components: a summary of results // Int. J. Algebra. 2010. V. 4, N 9. P. 413–420.
- Chen G. Y. A new characterization of sporadic simple groups // Algebra Colloq. 1996. V. 3, N 1. P. 49–58.
- Chen G. Y. On Frobenius and 2-Frobenius group // J. Southwest China Normal Univ. 1995. (in Chinese). V. 20, N 5. P. 485–487.
- 27. Zsigmondy K. Zür Theorie der Potenzreste // Monatsh. Math. Phys. 1892. Bd 3. S. 265-284.

Статья поступила 9 ноября 2011 г.

Parivas Nosratpour (Носратпур Паривас) Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran p.nosratpour@ilam-iau.ac.ir

Mohammad Reza Darafsheh (Дарафшех Мохаммед Реза) School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran darafsheh@ut.ac.ir