ОБОБЩЕННЫЕ НОРМАЛЬНЫЕ ОДНОРОДНЫЕ СФЕРЫ S^{4n+3} С НАИБОЛЬШЕЙ СВЯЗНОЙ ГРУППОЙ ДВИЖЕНИЙ $Sp(n+1)\cdot U(1)$

В. Н. Берестовский

Аннотация. Найдены все (новые) δ -однородные, в том числе не являющиеся нормальными однородными, инвариантные римановы метрики на сферах размерностей $4n+3, n\geq 1$, с наибольшей связной группой Ли изометрий $Sp(n+1)\times U(1)$ и всех накрываемых ими однородных (неодносвязных) линзовых пространствах. Все рассматриваемые здесь δ -однородные римановы пространства имеют положительные секционные кривизны и нулевую эйлерову характеристику. Получены ответы на некоторые поставленные ранее вопросы.

Ключевые слова: геодезически орбитальное пространство, геодезический вектор, δ -однородное пространство, δ -вектор, сфера, естественно редуктивное пространство, (обобщенное) нормальное однородное риманово пространство, однородное риманово расслоение, риманова субмерсия, тело кватернионов, эйлерова характеристика.

Введение

В статье продолжены исследования, начатые в [1].

Метрическое пространство (M, ρ) называется δ -однородным [2, 3], если для любых точек $x,y\in M$ существует изометрия f (δ -x-nepenoc) пространства (M,ρ) на себя такая, что f(x)=y и f имеет максимальное смещение в точке x, т. е. $\rho(z,f(z))\leq \rho(x,f(x))=\rho(x,y)$ для любой точки $z\in M$. Очевидно, каждое δ -однородное метрическое пространство однородно. Связное риманово многообразие (M,μ) называется δ -однородным, если оно δ -однородно относительно своей внутренней метрики ρ_{μ} . При этом оно называется G- δ -однородным или обобщенным G-нормальным однородным [4], если изометрии f в определении δ -однородности можно брать из (под)группы Ли G изометрий пространства (M,μ) . Каждое нормальное однородное риманово многообразие [5] δ -однородно; каждое δ -однородное риманово многообразие геодезически орбитальное и имеет неотрицательную секционную кривизну [3]. Геодезически орбитальные римановы многообразия определены и изучались в [6].

Пусть \mathbb{H}^{n+1} — кватернионное векторное пространство с *каноническим скалярным произведением* $(v,w)=\Re(\bar{v}^Tw)$, где $v,w\in\mathbb{H}^{n+1}$ — вектор-столбцы, а T и $\overline{(\cdot)}$ — операции транспонирования и кватернионного сопряжения матриц; $S^{4n+3}=S^{4n+3}(1)\subset(\mathbb{H}^{n+1},(\cdot,\cdot))$ — единичная сфера с центром в нуле. Известно,

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (код проекта 11-01-00081-a).

что группа Ли Sp(n+1) действует слева изометриями на $(\mathbb{H}^{n+1},(\cdot,\cdot))$ и транзитивно и эффективно на сфере S^{4n+3} со стабилизатором $E_1\times Sp(n)\subset Sp(n+1)$ в точке $v_0=(1,0,\ldots,0)^T\in S^{4n+3}$.

В [1] доказано, что если какое-нибудь однородное риманово многообразие $(Sp(n+1)/Sp(n),\mu)$ еще и Sp(n+1)- δ -однородно, то его группа изометрий содержит группу $Sp(n+1)\times Sp(1)$. Отсюда следует, в частности, что любое однородное риманово многообразие $(Sp(n+1)/Sp(n),\nu)$ с полной связной группой Ли движений Sp(n+1) не δ -однородно.

Здесь группа Sp(1) единичных кватернионов действует справа на \mathbb{H}^{n+1} и S^{4n+3} по формуле

$$R_q((q_1, \dots, q_{n+1})^T) = (q_1 q, \dots, q_{n+1} q)^T, \quad q \in Sp(1).$$
 (1)

Каждая такая метрика μ гомотетична некоторой единственной метрике из 1-параметрического семейства $\mu_t,\ t>0.$ Метрики μ_t можно характеризовать следующими свойствами:

- 1) пространство орбит $(S^{4n+3}, \mu_t)/Sp(1)$ по описанному правому действию группы Sp(1) с фактор-метрикой изометрично кватернионному проективному пространству ($\mathbb{H}P^n, \eta$) с канонической метрикой η и секционными кривизнами в отрезке $\left[\frac{1}{4}, 1\right]$;
- 2) (вполне геодезические) слои возникающей таким образом римановой субмерсии рг : $(S^{4n+3},\mu_t) \to (\mathbb{H}P^n,\eta)$ изометричны 3-мерным сферам постоянной секционной кривизны $\frac{1}{t}$.

В частности, μ_1 индуцирована скалярным произведением (\cdot, \cdot) на \mathbb{H}^{n+1} и (S^{4n+3}, μ_1) имеет постоянную секционную кривизну 1.

В [1] доказано, что римановы многообразия (S^{4n+3}, μ_t) δ -однородны тогда и только тогда, когда $0 < t \le 1$, и не являются нормальными однородными относительно произвольной группы изометрий при $\frac{1}{2} < t < 1$.

Цель данной статьи — найти все δ -однородные римановы многообразия среди однородных римановых многообразий (S^{4n+3},μ) с наибольшей связной группой Ли движений $Sp(n+1)\times U(1)$ и стабилизатором $Sp(n)\times U(1)$ в точке v_0 , где $Sp(n+1)\subset Sp(n+1)\times U(1)\subset Sp(n+1)\times Sp(1)$.

Каждая метрика μ с такой группой движений гомотетична некоторой единственной метрике из 2-параметрического семейства $\mu_{t,s}$, t,s>0, $t\neq s$, которое можно характеризовать следующим образом [7].

Существует единственная риманова метрика ν_t на $\mathbb{C}P^{2n+1}$, для которой естественная проекция (расслоение Хопфа)

$$\mathrm{pr}_1: S^{4n+3} = Sp(n+1)/Sp(n) \to Sp(n+1)/(U(1) \times Sp(n)) = \mathbb{C}P^{2n+1} \eqno(2)$$

является римановой субмерсией относительно римановой метрики μ_t на S^{4n+3} (с вполне геодезическими слоями-окружностями длины $2\pi\sqrt{t}$). Метрика $\mu_{t,s}$ получается умножением скалярного произведения в слоях субмерсии pr_1 , индуцированного метрикой μ_t , на число $\frac{s}{t}, s \neq t$; во всех подпространствах $C_x \subset S_x^{4n+3}, x \in S^{4n+3}$, вещественной размерности 2(2n+1), ортогональных слоям субмерсии pr_1 , оставляется скалярное произведение, индуцированное метрическим тензором μ_t .

В данной статье доказано, что сферы $(S^{4n+3}, \mu_{t,s})$ при $s \neq t$ δ -однородны тогда и только тогда, когда 0 < s < t и $\frac{1}{2} \le t \le 1$, и эти пространства нормальны однородны только тогда, когда $0 < s < t = \frac{1}{2}$. Доказано, что секционные кривизны δ -однородных римановых многообразий $(S^{4n+3}, \mu_{t,s})$ положительны. Эти

результаты справедливы для всех накрываемых этими сферами (неодносвязных линзовых) пространств орбит относительно циклических подгрупп $\mathbb{Z}_k \subset U(1)$, k > 1.

Автор благодарен профессору Ю. Г. Никонорову за полезные дискуссии.

1. Предварительные результаты

Сначала дадим ${\rm Ad}(H)$ -инвариантное разложение алгебры Ли ${\mathfrak g}$ и описание римановых метрик $\mu_{t,s}$ для однородного пространства

$$S^{4n+3} = G/H = Sp(n+1)/Sp(n).$$

Вследствие простоты группы Ли Sp(n+1) всякое Ad(Sp(n+1))-инвариантное скалярное произведение на алгебре Ли $\mathfrak{sp}(n+1)$ пропорционально

$$\langle U, V \rangle := -\Re(\operatorname{trace}(UV)).$$
 (3)

Возникает $\mathrm{Ad}(Sp(n))$ -инвариантное $\langle\cdot,\cdot\rangle$ -ортогональное разложение

$$\mathfrak{g}=\mathfrak{sp}(n+1)=\mathfrak{p}\oplus\mathfrak{h}=\mathfrak{p}\oplus\mathfrak{sp}(n)=\mathfrak{p}_1\oplus\mathfrak{p}_2\oplus\mathfrak{sp}(n)=\mathfrak{p}_1\oplus\mathfrak{sp}(1)\oplus\mathfrak{sp}(n),$$
 (4)

где

$$\mathfrak{p}_1 = \left\{ \begin{pmatrix} 0 & -\bar{u}^T \\ u & 0_n \end{pmatrix}, u \in \mathbb{H}^n \right\}. \tag{5}$$

При этом $\mathfrak{sp}(1)\oplus\mathfrak{sp}(n)\subset\mathfrak{sp}(n+1)$ — алгебра Ли подгруппы Ли $Sp(1)\times Sp(n)$ и

$$[\mathfrak{p}_2,\mathfrak{p}_1] = \mathfrak{p}_1, \quad [\mathfrak{sp}(n),\mathfrak{p}_1] = \mathfrak{p}_1, \quad [\mathfrak{p}_2,\mathfrak{sp}(n)] = 0, \quad [\mathfrak{sp}(n),\mathfrak{sp}(n)] = \mathfrak{sp}(n).$$
 (6)

Второе и третье равенства в (6) означают, что группа Ad(Sp(n)) действует неприводимо на первом слагаемом суммы (4), а на $\mathfrak{p}_2 := \mathfrak{sp}(1) = \{u_1 \in \mathfrak{F}(\mathbb{H})\}$ действует тривиально.

Можно считать, что алгебра Ли группы Ли K=U(1) имеет вид $\mathfrak{k}=\mathfrak{p}_{2,2}=\mathbb{R}i\subset\mathfrak{p}_2$. Ее $\langle\cdot,\cdot\rangle$ -ортогональным дополнением в \mathfrak{p}_2 является подпространство $\mathfrak{p}_{2,1}=\mathbb{R}j\oplus\mathbb{R}k$. При этом $[\mathfrak{k},\mathfrak{p}_{2,1}]=\mathfrak{p}_{2,1},\ [\mathfrak{k},\mathfrak{p}_{2,2}]=0$, что означает, что $\mathrm{Ad}(K)$ действует неприводимо на $\mathfrak{p}_{2,1}$ ($\langle\cdot,\cdot\rangle$ -ортогональными вращениями), а на $\mathfrak{p}_{2,2}$ тривиально.

Для каждого фиксированного элемента $U\in \mathfrak{sp}(n+1)$ вектор-функция $U(v)=Uv,\ v\in S^{4n+3},\ -$ киллингово векторное поле на S^{4n+3} для любой Sp(n+1)-инвариантной римановой метрики, в частности, для всех $\mu_{t,s}$. Вследствие транзитивности группы Sp(n+1) на S^{4n+3} $\{Uv:U\in \mathfrak{sp}(n+1)\}$ — касательное пространство к S^{4n+3} в точке v для фиксированного вектора $v\in S^{4n+3}$. При этом

$$Uv_0 = (u_1, u^T)^T, \quad v_0 = (1, 0, \dots, 0)^T,$$
 (7)

где $u_1 \in \mathfrak{p}_2 = \mathfrak{sp}(1)$, а u определяет элемент из \mathfrak{p}_1 по формуле (5).

В силу (7) соответствие $U \in \mathfrak{p} \to Uv_0$ определяет изоморфизм векторных пространств \mathfrak{p} и $S_{v_0}^{4n+3}$, посредством которого мы их отождествляем. Нетрудно заметить, что

$$\langle \cdot, \cdot \rangle |_{\mathfrak{p}_1 \times \mathfrak{p}_1} = 2(\cdot, \cdot)|_{\mathfrak{p}_1 \times \mathfrak{p}_1}, \quad \langle \cdot, \cdot \rangle |_{\mathfrak{p}_2 \times \mathfrak{p}_2} = (\cdot, \cdot)|_{\mathfrak{p}_1 \times \mathfrak{p}_1}. \tag{8}$$

Вследствие этого и сказанного ранее риманова метрика $\mu_{t,s} (:= \mu_{\frac{1}{2},t,s})$ определяется $\mathrm{Ad}(Sp(n))$ -инвариантным скалярным произведением

$$(\cdot, \cdot)_{t,s} := \frac{1}{2} \langle \cdot, \cdot \rangle |_{\mathfrak{p}_1 \times \mathfrak{p}_1} + t \langle \cdot, \cdot \rangle |_{\mathfrak{p}_{2,1} \times \mathfrak{p}_{2,1}} + s \langle \cdot, \cdot \rangle |_{\mathfrak{p}_{2,2} \times \mathfrak{p}_{2,2}}$$
(9)

на \mathfrak{p} . Норму, индупируемую римановой метрикой $\mu_{t,s}$ на каждом касательном пространстве S_v^{4n+3} , $v \in S^{4n+3}$ (соответственно каноническим скалярным произведением (\cdot, \cdot) на любом пространстве \mathbb{H}^m), будем обозначать через $\|\cdot\|$ (соответственно через $|\cdot|$). Пусть $u_{1,1}, u_{1,2}$ обозначают компоненты вектора $u_1 \in \mathfrak{p}_2$ в прямой сумме $\mathfrak{p}_2 = \mathfrak{p}_{2,1} \oplus \mathfrak{p}_{2,2}$. На основании формул (8) и (9) получаем, что

$$||Uv_0||^2 = t|u_{1,1}|^2 + s|u_{1,2}|^2 + |u|^2.$$
(10)

Теорема 1. Риманово пространство $((Sp(n+1)\times U(1))/(Sp(n)\times U(1)), \mu_{t,s})$ нормально однородно тогда и только тогда, когда $0 < s < t = \frac{1}{2}$, и естественно редуктивно [7] тогда и только тогда, когда $t = \frac{1}{2}$.

ДОКАЗАТЕЛЬСТВО. Нам нужна некоторая вариация доказательств теоремы 3 из статьи В. Циллера [9] и теоремы 1 из [1] (см. также [10]).

Группу $Sp(n+1) \times U(1)$ и пространство Sp(n+1)/Sp(n) обозначим через $\overline{G} = G \times K$ и G/H. Группа \overline{G} действует слева на G/H, где элемент $(g,k) \in \overline{G}$ действует левым умножением на g и правым умножением на k^{-1} . Группа изотропии \overline{H} этого действия изоморфна $H \times K$ с вложением $(h,k) \to (hk,k)$. Тогда $\bar{\mathfrak{g}} = \mathfrak{p}_1 \oplus \mathfrak{p}_{2,1} \oplus \mathfrak{p}_{2,2} \oplus \mathfrak{h} \oplus \mathfrak{k}$ вследствие (4) и разложения $\mathfrak{p}_2 = \mathfrak{p}_{2,1} \oplus \mathfrak{p}_{2,2}$ и

$$\bar{\mathfrak{h}} = \mathfrak{h} \oplus \{ (Y, Y) \in \mathfrak{p}_{2,2} \oplus \mathfrak{k} \mid Y \in \mathfrak{p}_{2,2} \cong \mathfrak{k} \}. \tag{11}$$

В качестве $\mathrm{Ad}(\overline{H})$ -инвариантного дополнения к $\bar{\mathfrak{h}}$ выбирается

$$\bar{\mathfrak{p}} = \mathfrak{p}_1 \oplus \mathfrak{p}_{2,1} \oplus \bar{\mathfrak{p}}_2, \quad \text{rge } \bar{\mathfrak{p}}_2 = \{(aX, bX) \in \mathfrak{p}_{2,2} \oplus \mathfrak{k} \mid X \in \mathfrak{p}_{2,2} \cong \mathfrak{k}\}.$$
 (12)

Здесь a>0 и a-b=1; тогда изоморфизм между $\overline{G}/\overline{H}$ и G/H на уровне алгебр Ли переводит $\mathfrak{p}_1\oplus\mathfrak{p}_{2,1}$ в себя тождественным отображением и $(aX,bX)\to aX-bX=X\in\mathfrak{p}_{2,2}$. На \mathfrak{p} рассматривается скалярное произведение $2(\cdot,\cdot)_{t,s}$ (см. (9)).

Так как подгруппы G и K группы \overline{G} взаимно коммутируют, G простая, а K одномерная, всякая $\mathrm{Ad}(\overline{G})$ -инвариантная симметричная билинейная форма $\{\cdot,\cdot\}$ на $\bar{\mathfrak{g}}=\mathfrak{g}\oplus\mathfrak{k}$ должна быть прямой суммой форм (на $\{\cdot,\cdot\}$ -ортогональных слагаемых $\mathfrak{g},\mathfrak{k}$), пропорциональных скалярным произведениям вида (3). Положим $a=2s,\ b=2s-1,$

$$\{\cdot,\cdot\}_{2s} = \langle\cdot,\cdot\rangle \oplus -\frac{a}{b}\langle\cdot,\cdot\rangle = \langle\cdot,\cdot\rangle \oplus -\frac{2s}{2s-1}\langle\cdot,\cdot\rangle,\tag{13}$$

предполагая, что $s \neq \frac{1}{2}$. Ясно, что тогда билинейная форма (13) невырожденна, $\mathrm{Ad}(\overline{G})$ -инвариантна,

$$\{\mathfrak{p}_1\oplus\mathfrak{p}_{2,1},\bar{\mathfrak{h}}\}_{2s}=0,\quad \{\mathfrak{p}_1\oplus\mathfrak{p}_{2,1},\bar{\mathfrak{p}}_2\}_{2s}=0$$

и вследствие (9)

$$2(\cdot, \cdot)_{t,s}|_{\mathfrak{p}_1 \times \mathfrak{p}_1} = \{\cdot, \cdot\}_{2s}|_{\mathfrak{p}_1 \times \mathfrak{p}_1}, \quad 2(\cdot, \cdot)_{t,s}|_{\mathfrak{p}_{2,1} \times \mathfrak{p}_{2,1}} = 2t\{\cdot, \cdot\}_{2s}|_{\mathfrak{p}_{2,1} \times \mathfrak{p}_{2,1}}. \tag{14}$$

Из формул (11)–(13) вытекает, что $\{\bar{\mathfrak p}_2,\bar{\mathfrak h}\}_{2s}=0$. Таким образом, при $s\neq\frac12$ получается $\{\cdot,\cdot\}_{2s}$ -ортогональное разложение в прямую сумму

$$\bar{\mathfrak{g}} = \mathfrak{p}_1 \oplus \mathfrak{p}_{2,1} \oplus \bar{\mathfrak{p}}_2 \oplus \bar{\mathfrak{h}}. \tag{15}$$

Нетрудно проверить, что

$$\begin{bmatrix}
\bar{\mathfrak{h}}, \bar{\mathfrak{h}}\end{bmatrix} \subset \bar{\mathfrak{h}}, \quad [\bar{\mathfrak{h}}, \mathfrak{p}_1] \subset \mathfrak{p}_1, \quad [\bar{\mathfrak{h}}, \mathfrak{p}_{2,1}] \subset \mathfrak{p}_{2,1}, \quad [\bar{\mathfrak{h}}, \bar{\mathfrak{p}}_2] = 0, \\
[\bar{\mathfrak{p}}_2, \bar{\mathfrak{p}}_2] = 0, \quad [\bar{\mathfrak{p}}_2, \mathfrak{p}_1] \subset \mathfrak{p}_1, \quad [\bar{\mathfrak{p}}_2, \mathfrak{p}_{2,1}] \subset \mathfrak{p}_{2,1}, \quad [\mathfrak{p}_{2,1}, \mathfrak{p}_{2,1}] \subset \mathfrak{p}_{2,2}.
\end{cases} (16)$$

Предположим теперь, что $(aX,bX),(aY,bY)\in\bar{\mathfrak p}_2,$ где $X,Y\in{\mathfrak p}_{2,2}.$ Тогда вследствие формулы (13)

$$\{(aX, bX), (aY, bY)\}_{2s} = (a^2 - ab)\langle X, Y \rangle = a\langle X, Y \rangle = 2s\langle X, Y \rangle = 2(X, Y)_{t,s}.$$
(17)

По критерию Костанта [11, 12] однородное риманово пространство $(G/H, \mu)$ естественно редуктивно тогда и только тогда, когда существует $\mathrm{Ad}(H)$ -инвариантное разложение в прямую сумму $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{h}$ такое, что на связной подгруппе Ли $G' \subset G$ с алгеброй Ли — идеалом $\mathfrak{g}' = \mathfrak{p} + [\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{g}$ — существует невырожденная биинвариантная симметричная форма $\{\cdot, \cdot\}$, ограничение которой на $\mathfrak{p} \times \mathfrak{p}$ совпадает со скалярным произведением (\cdot, \cdot) , определяющим метрику μ , причем алгебра Ли \mathfrak{h}' стабилизатора $H' = H \cap G'$ группы Ли G' ортогональна \mathfrak{p} относительно $\{\cdot, \cdot\}$.

Проведенные рассуждения показывают, что форма, удовлетворяющая критерию Костанта, должна совпадать с формой $\{\cdot,\cdot\}_{2s}$. Вследствие формул (14), (17) пространство $((Sp(n+1)\times Sp(1))/(Sp(n)\times Sp(1)),2\mu_{t,s})$ естественно редуктивно при $s\neq\frac{1}{2}$ тогда и только тогда, когда $t=\frac{1}{2}$. Формула (13) показывает, что форма $\{\cdot,\cdot\}_{2s}$ положительно определена при $0< s<\frac{1}{2}$ и неопределенна при $s>\frac{1}{2}$. Поэтому пространство $((Sp(n+1)\times Sp(1))/(Sp(n)\times Sp(1)),2\mu_{t,s})$ нормально однородно тогда и только тогда, когда $0< s< t=\frac{1}{2}$. Очевидно, что все доказанные здесь утверждения справедливы и для однородного пространства $((Sp(n+1)\times Sp(1))/(Sp(n)\times Sp(1)),\mu_{t,s})$.

Если $s=\frac{1}{2}$, то $\mathfrak{p}_2=\mathfrak{p}_2$ и $\bar{p}=p$ вследствие формулы (12) и равенства b=2s-1=0, причем $(\{\cdot,\cdot\}_{2s})_{\bar{\mathfrak{p}}\times\bar{\mathfrak{p}}=\mathfrak{p}\times\mathfrak{p}}=\langle\cdot,\cdot\rangle_{\mathfrak{p}\times\mathfrak{p}}$. Поэтому на основании (4) и (6) все рассуждения в силе и для случая $s=\frac{1}{2}$.

Предложение 1. Пространство $(S^{4n+3}, \mu_{t,s})$ не слабо симметрично (см. [13]) относительно группы $Sp(n+1) \times U(1)$.

Доказательство. По определению риманово многообразие (M,μ) слабо симметрично (относительно группы движений G), если для любых двух точек в M существует изометрия (из группы G), переставляющая эти точки. Ясно, что каждое слабо симметрическое риманово многообразие однородно. Несложное рассуждение (см., например, [14]) показывает, что связное однородное риманово многообразие $(M=G/H,\mu)$ слабо симметрично относительно группы Ли G тогда и только тогда, когда для каждого касательного вектора u к M в точке x=H существует элемент $h\in H$ такой, что dh(u)=-u. Здесь dh- дифференциал отображения h. Стабилизатор $H:=Sp(n)\times U(1)$ группы Ли $G:=Sp(n+1)\times U(1)$ в точке $v_0=(1,0,\ldots,0)^T\in S^{4n+3}$ связен и переводит в себя точку v_0 и одномерный слой-окружность S^1 расслоения Хопфа рг $_1$ (см. формулу (2)), содержащий точку v_0 . Поэтому все элементы $h\in H$ фиксируют все точки в S^1 . Следовательно, для ненулевого касательного вектора u к S^1 в точке v_0 не существует элемента $h\in H$ такого, что dh(u)=-u, и пространство $(S^{4n+3},\mu_{t,s})$ не слабо симметрично относительно группы $Sp(n+1)\times U(1)$.

Замечание 1. Тем не менее все пространства $(S^{4n+3}, \mu_{t,s}), s \neq t$, слабо симметричны относительно полной (несвязной) группы Ли движений (см, например, [15] или [16]).

2. Геодезические векторы

Воспользуемся результатами, полученными в ходе доказательства теоремы 1. Если риманово пространство $(S^{4n+3}, \mu_{t,s})$ δ -однородно, то оно $Sp(n+1) \times$

U(1)- δ -однородно, так как $Sp(n+1) \times U(1)$ — наибольшая связная группа Ли изометрий пространства $(S^{4n+3}, \mu_{t,s})$.

Как и раньше, группу Ли $Sp(n+1)\times U(1)$ будем обозначать через $\overline{G}=G\times K$. Из определения пространства $\bar{\mathfrak p}$ в (12) следует, что каждый его элемент имеет вид

$$X + Y + W = \begin{pmatrix} u_{1,1} + 2su_{1,2} & -\bar{u}^T \\ u & 0_{nn} \end{pmatrix} + (2s - 1)u_{1,2},$$

$$u_{1,1} \in \mathbb{R}j \oplus \mathbb{R}k, \quad u_{1,2} \in \mathbb{R}i, \ u \in \mathbb{H}^n,$$
(18)

где

$$X = \begin{pmatrix} 0 & -\bar{u}^T \\ u & 0_{nn} \end{pmatrix} \in \mathfrak{p}_1, \tag{19}$$

$$Y = \begin{pmatrix} u_{1,1} & 0_n^T \\ 0_n & 0_{nn} \end{pmatrix} \in \mathfrak{p}_{2,1}, \tag{20}$$

$$W = \begin{pmatrix} 2su_{1,2} & 0_n^T \\ 0_n & 0_{nn} \end{pmatrix} + (2s-1)u_{1,2} \in \bar{\mathfrak{p}}_2.$$
 (21)

Аналогично каждый элемент алгебры Ли $\bar{\mathfrak{h}}$ имеет вид

$$Z = \left(egin{array}{cc} lpha & 0_n^T \ 0_n & U_{nn} \end{array}
ight) + lpha, \quad lpha \in \mathbb{R}i, \ U_{nn} \in \mathfrak{sp}(n). \ \end{array}$$

Выше нижние индексы указывают размер матрицы или вектор-столбца.

Будем обозначать через Uv значение в точке $v=(q_1,\ldots,q_{n+1})^T\in S^{4n+3}$ киллингова векторного поля на $(S^{4n+3},2\mu_{t,s})$, определяемого произвольным элементом $U\in \bar{\mathfrak{g}}$. Нетрудно вычислить, что $(X+Y+W)v_0=(u_{1,1}+u_{1,2},u^T)^T$ для $v_0=\left(1,0_n^T\right)^T\in S^{4n+3}$. Формула (18) показывает, что X+Y+W однозначно определяется этим условием.

Вследствие [3] интересующий нас вопрос эквивалентен следующему: для каких чисел t,s для каждого вектора $X+Y+W\in \bar{\mathfrak{p}}$ можно найти такой вектор $Z\in \bar{\mathfrak{h}}$, что элемент $U=X+Y+W+Z\in \bar{\mathfrak{g}}$ является δ -вектором, т. е. для всех точек $v\in S^{4n+3}$ выполняется неравенство

$$||Uv_0||^2 \ge ||Uv||^2, \tag{23}$$

где левая часть неравенства равна (10)?

Подсчитаем $||Uv||^2$ для произвольных элементов $U \in \bar{\mathfrak{g}}$ и $v \in S^{4n+3}$. Сначала предположим, что s=t>0. Каждый вектор, касательный к слою $\operatorname{pr}^{-1}(\operatorname{pr}(v))=\{vq\mid q\in Sp(1)\}$ в точке v, имеет вид $vu,\ u\in \mathfrak{sp}(1)=\mathfrak{F}(\mathbb{H})$. Для каждого чисто мнимого кватерниона $u=u_{1,1}+u_{1,2}\in \mathfrak{F}(\mathbb{H})$ скалярное произведение векторов vu и Uv в пространстве $(\mathbb{H}^{n+1},(\cdot,\cdot))$ равно

$$\Re(\overline{v}\overline{u}^TUv) = \Re(\bar{u}\cdot\bar{v}^TUv) = \Re(-u(\bar{v}^TUv)).$$

Кроме того, $\bar{v}^T U v$ — чисто мнимый кватернион, так как матричная часть элемента U содержится в $\mathfrak{sp}(n+1)$, а действие его нематричной части на v сводится к умножению справа на кватернион из $\mathbb{R}i$. Тогда $|\bar{v}^T U v|^2$ — квадрат евклидовой нормы ортогональной проекции касательного вектора $Uv \in S_v^{4n+3}$ на касательное пространство к слою проекции рг в точке v. По теореме Пифагора $\|Uv\|^2 = |Uv|^2 + (t-1)|\bar{v}^T U v|^2$. Предположим теперь, что $s \neq t$. Снова применяя теорему Пифагора, видим, что к правой части последнего равенства нужно добавить $(s-t)|(\bar{v}^T U v,i)|^2$.

Учитывая все сказанное выше, получаем, что неравенство (23) приобретает вил

$$t|u_{1,1}|^2 + s|u_{1,2}|^2 + |u_2|^2 > |Uv|^2 + (t-1)|\bar{v}^T Uv|^2 + (s-t)|(\bar{v}^T Uv, i)|^2. \tag{24}$$

Всякий δ -вектор $U \in \bar{\mathfrak{g}}$ является и *геодезическим вектором*, т. е. орбита точки v_0 относительно 1-параметрической подгруппы в \overline{G} с касательным вектором $U \in \bar{\mathfrak{g}}$ есть геодезическая в $(S^{4n+3}, \mu_{t,s})$ с касательным вектором Uv_0 [3].

Предложение 2. Элемент $U = X + Y + W + Z \in \bar{g}$ является геодезическим вектором для $(S^{4n+3}, \mu_{t,s})$ тогда и только тогда, когда выполняются равенства

$$[X, Z] = (2t - 1)[X, Y], \quad [Z, Y] = -\frac{2t - 1}{2t}[W, Y].$$
 (25)

Для каждого вектора $X+Y+W\in \bar{p}$ существует элемент $Z\in \bar{h}$, удовлетворяющий условиям (25). Следовательно, риманово многообразие ($S^{4n+3}, \mu_{t,s}$) геодезически орбитально [6].

ДОКАЗАТЕЛЬСТВО. Предположим, что $s \neq \frac{1}{2}$. Тогда $\mathrm{Ad}(Sp(n+1) \times U(1))$ - инвариантная билинейная форма (13) корректно определена и невырожденна, но является неопределенной при $s > \frac{1}{2}$. Напомним, что разложение (15) $\{\cdot,\cdot\}_{2s}$ - ортогонально и удовлетворяет соотношениям (16).

Вследствие [6, 3] элемент $U=X+Y+W+Z\in \bar{g}$ является геодезическим вектором для $(S^{4n+3},2\mu_{t,s})$ тогда и только тогда, когда для каждого $V\in \bar{g}$ соблюдается равенство $2(X+Y+W,[V,X+Y+W+Z]_{\bar{p}})_{t,s}=0$ (см. (9)). В силу формул (14), (17) и $\{\cdot,\cdot\}_{2s}$ -ортогональности разложения (15)

$$\begin{split} 0 &= 2(X+Y+W,[V,X+Y+W+Z]_{\bar{p}})_{t,s} \\ &= \{X,[V,X+Y+W+Z]\}_{2s} + 2t\{Y,[V,X+Y+W+Z]\}_{2s} + \{W,[V,X+Y+W+Z]\}_{2s} \\ &= \{[X+Y+W+Z,X],V\}_{2s} + 2t\{[X+Y+W+Z,Y],V\}_{2s} + \{[X+Y+W+Z,W],V\}_{2s} \\ &= \{(2t-1)[X,Y] + [Z,X] + (2t-1)[W,Y] + 2t[Z,Y],V\}_{2s}. \end{split}$$

Сумма первых двух слагаемых и сумма последних двух слагаемых в левом сомножителе скалярного произведения лежат во взаимно $\{\cdot,\cdot\}_{2s}$ -ортогональных пространствах \mathfrak{p}_1 и $\mathfrak{p}_{2,1}$. Вследствие произвольности $V\in \bar{g}$ получаем два равенства в (25).

Покажем, что всегда можно найти вектор $Z \in \bar{h}$, удовлетворяющий равенствам (25), и найдем все такие векторы. Используя формулы (19)–(22), находим

$$\begin{split} [X,Y] &= \begin{pmatrix} 0 & u_{1,1}\bar{u}^T \\ uu_{1,1} & 0_{nn} \end{pmatrix}, \quad [X,Z] &= \begin{pmatrix} 0 & \alpha\bar{u}^T - \bar{u}^T U_{nn} \\ u\alpha - U_{nn}u & 0_{nn} \end{pmatrix}, \\ [Z,Y] &= \begin{pmatrix} [\alpha,u_{1,1}] & 0_n^T \\ 0_n & 0_{nn} \end{pmatrix}, \quad [W,Y] &= \begin{pmatrix} 2s[u_{1,2},u_{1,1}] & 0_n^T \\ 0_n & 0_{nn} \end{pmatrix}. \end{split}$$

Вследствие этих вычислений и формул (25), (18), (22)

$$\alpha = -\frac{s(2t-1)}{t}u_{1,2}, \quad U_{nn}u = u(\alpha - (2t-1)u_{1,1}) = -(2t-1)u\left(\frac{s}{t}u_{1,2} + u_{1,1}\right). \tag{26}$$

Остается убедиться, что можно найти матрицу $U_{nn} \in \mathfrak{sp}(n)$, удовлетворяющую второму равенству в (26), и найти все такие матрицы.

Если u=0, можно взять любую матрицу $U_{nn} \in \mathfrak{sp}(n)$. Предположим, что $u \neq 0$, и рассмотрим сначала случай, когда $u=(u_2,0,\ldots,0)^T \in \mathbb{H}^n$, где $0 < u_2 \in \mathbb{R}$. Легко видно, что в этом случае все нужные матрицы имеют вид

$$U_{nn} = \begin{pmatrix} -(2t-1)\left(\frac{s}{t}u_{1,2} + u_{1,1}\right) & 0_{n-1}^T \\ 0_{n-1} & U_{(n-1)(n-1)} \end{pmatrix}, \tag{27}$$

где $U_{(n-1)(n-1)}$ — произвольная матрица из $\mathfrak{sp}(n-1)$. С учетом формул (26), опуская детали вычислений, получаем, что

$$U = \begin{pmatrix} u_{1,1} + \frac{s}{t}u_{1,2} & -u_2 & 0_{n-1}^T \\ u_2 & -(2t-1)\left(u_{1,1} + \frac{s}{t}u_{1,2}\right) & 0_{n-1}^T \\ 0_{n-1} & 0_{n-1} & U_{(n-1)(n-1)} \end{pmatrix} + \left(\frac{s}{t} - 1\right)u_{1,2}. \tag{28}$$

Пусть $u \in \mathbb{H}^n$, |u| > 0. Группа Sp(n) действует транзитивно на каждой сфере в $(\mathbb{H}^n, (\cdot, \cdot))$ с центром в нуле. Поэтому существует элемент $g \in Sp(n)$ такой, что $g(|u|, 0, \dots, 0)^T = u$. Тогда все нужные матрицы имеют вид $U'_{nn} = \mathrm{Ad}(g)(U_{nn})$, где U_{nn} из (27). Применяя последний абзац доказательства теоремы 1, видим, что предложение 2 и полученные формулы верны и в случае $s = \frac{1}{2}$.

Ясно, что предложение 2 справедливо и для риманова пространства (S^{4n+3} , $\mu_{t,s}$); все формулы для геодезического вектора X+Y+W+Z для заданного элемента $X+Y+W\in \bar{\mathfrak{p}}=\mathfrak{p}$ сохраняются.

Замечание. Ю. Г. Никоноров доказал последнее утверждение предложения 2 другим способом (в еще не опубликованной статье).

3. Априорные ограничения

Предложение 3. Если сфера $(S^{4n+3}, \mu_{t,s})$, где $s \neq t$, δ -однородна, то $\frac{1}{2} \leq t < 1$ и 0 < s < t.

ДОКАЗАТЕЛЬСТВО. Доказательство начнем со случая n=1. Тогда форма (28) геодезического вектора редуцируется к виду

$$U = \begin{pmatrix} u_{1,1} + \frac{s}{t}u_{1,2} & -u_2 \\ u_2 & -(2t-1)(u_{1,1} + \frac{s}{t}u_{1,2}) \end{pmatrix} + \left(\frac{s}{t} - 1\right)u_{1,2}, \tag{29}$$

где $u_2 \geq 0$. Для точки $v = (q_1, q_2)^T \in S^7$ получаем

$$U\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} (u_{1,1} + \frac{s}{t}u_{1,2})q_1 - u_2q_2 + (1 - \frac{s}{t})q_1u_{1,2} \\ u_2q_1 - (2t-1)(u_{1,1} + \frac{s}{t}u_{1,2})q_2 + (1 - \frac{s}{t})q_2u_{1,2} \end{pmatrix},$$
(30)

$$\bar{v}^T U v = \overline{q_1} \left[\left(u_{1,1} + \frac{s}{t} u_{1,2} \right) q_1 - u_2 q_2 + \left(1 - \frac{s}{t} \right) q_1 u_{1,2} \right]$$

$$+ \overline{q_2} \left[u_2 q_1 - (2t - 1) \left(u_{1,1} + \frac{s}{t} u_{1,2} \right) q_2 + \left(1 - \frac{s}{t} \right) q_2 u_{1,2} \right]. \quad (31)$$

Нам нужно исследовать неравенство (24).

Пусть $u_{1,1}=j,\ u_{1,2}=\bar{0},\ u_2=0,\ q_1=\bar{\frac{1}{\sqrt{2}}}(1+k),\ q_2=0.$ Тогда

$$Uv = rac{1}{\sqrt{2}} \left(egin{array}{c} i+j \ 0 \end{array}
ight), \quad ar{v}^T Uv = rac{1}{2} (1-k)(i+j) = rac{1}{2} (i+j-j+i) = i.$$

Неравенство (24) приобретает вид $t \ge 1 + (t-1) \cdot 1 + (s-t) \cdot 1 = s \iff s \le t$. С учетом условия $s \ne t$ выводим, что 0 < s < t. Это доказательство предложил Ю. Г. Никоноров.

Положим

$$u_{1,1}=j,\ u_{1,2}=i,\ u_2=rac{s}{\sigma},\ q_1=rac{\sigma i}{\sqrt{1+\sigma^2}},\ q_2=rac{1}{\sqrt{1+\sigma^2}},$$
 где $\sigma\in\mathbb{R},\ \sigma>0.$

Опуская некоторые детали вычислений, получаем

$$\begin{split} Uv &= \frac{1}{\sqrt{1+\sigma^2}} \left(\frac{-\frac{s}{\sigma} - \sigma - \sigma k}{(1-s)i - (2t-1)j} \right), \\ |Uv|^2 &= \frac{1}{1+\sigma^2} \bigg[\left(\frac{s}{\sigma} + \sigma \right)^2 + \sigma^2 + (1-s)^2 + (2t-1)^2 \bigg] = 2 + \frac{s^2}{\sigma^2} + \frac{4t(t-1)}{1+\sigma^2}, \\ \bar{v}^T Uv &= \frac{1}{1+\sigma^2} [-\sigma^2 j + (s+\sigma^2)i + (1-s)i - (2t-1)j] = i - \frac{2t-1+\sigma^2}{1+\sigma^2}j, \\ &\qquad \qquad (\bar{v}^T Uv, i) = 1. \end{split}$$

Неравенство (25) приобретает вид

$$t+s+\frac{s^2}{\sigma^2} \geq 2+\frac{s^2}{\sigma^2} + \frac{4t(t-1)}{1+\sigma^2} + (t-1) \left[1+\frac{(2t-1+\sigma^2)^2}{(1+\sigma^2)^2}\right] + (s-t) \cdot 1.$$

После перенесения левой части в правую получим неравенство

$$0 \ge (t-1) \left[-1 + \frac{4t}{1+\sigma^2} + \frac{(2t-1+\sigma^2)^2}{(1+\sigma^2)^2} \right] = \frac{4(t-1)}{1+\sigma^2} \left[\frac{t^2+\sigma^2(2t-1)}{1+\sigma^2} \right].$$

Следовательно, при всех $\sigma > 0$ должно выполняться неравенство

$$(t-1)\left\lceil\frac{t^2+\sigma^2(2t-1)}{1+\sigma^2}\right\rceil \leq 0.$$

Переходя к пределу при $\sigma \to +\infty$, получаем соотношения $(t-1)(2t-1) \le 0 \Longleftrightarrow \frac{1}{2} \le t \le 1$.

Рассмотрим теперь общий случай $n \geq 2$. Возьмем касательный вектор к S^{4n+3} вида $(u_{1,1}+u_{1,2},u_2,0,\dots,0)^T$ в точке v_0 . Из формулы (28) видим, что для любого геодезического вектора $U=X+Y+W+Z\in \bar{\mathfrak{g}}$, где X+Y+W из формулы (18) определяется вектором $(u_{1,1}+u_{1,2},u_2,0,\dots,0)^T$, последние n-1 элементов первых двух строк и первых двух столбцов $((n+1)\times(n+1))$ -матрицы, входящей в запись вектора U, равны нулю. При этом входящая в нее (2×2) -матрица в левом верхнем углу, как и элемент из $\mathfrak{k}=\mathfrak{u}(1)$ вне всей матрицы, входящий в запись вектора U, имеют тот же вид, что и в случае n=1. Вследствие этого при тех же выборах точек вида $(q_1,q_2,0,\dots,0)^T$ в $S^7\subset S^{4n+3}$ и элементов $u_{1,1},u_{1,2},u_2$, что и выше, неравенство (25) дает требуемые неравенства $0< s< t, \frac{1}{2} \leq t \leq 1$, если риманова сфера $(S^{4n+3},\mu_{t,s})$ δ -однородна.

4. Сфера
$$(S^7, \mu_{t,s})$$
 при $0 < s < t, \frac{1}{2} \le t \le 1$

Начнем вычисления со случая n = 1.

Известно, что множество δ -векторов для однородного риманова многообразия с полной связной транзитивной группой Ли движений в данной точке

инвариантно относительно линейной группы изотропии в этой точке [3]. Группы $\mathrm{Ad}(U(1)),\,Sp(1)\subset\overline{H}$ действуют транзитивно на каждом множестве векторов данной длины относительно скалярного произведения (3) соответственно в $\mathfrak{p}_{2,1}$ и \mathbb{H} . Поэтому достаточно выяснить, выполняется ли при $n=1,\,0< s< t,\,\frac{1}{2}\leq t\leq 1$ неравенство (25) при произвольных заданных

$$u_{1,1} = lj, \quad l \ge 0; \quad u_{1,2} = mi, \quad m \in \mathbb{R}; \quad u_2 \ge 0; \quad v = (q_1, q_2)^T \in S^7$$
 (32)

для соответствующего геодезического вектора U.

Вследствие формул (30) и (31) для точки $v=(q_1,q_2)^T\in S^7$ получаем

$$U\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} (lj + \frac{s}{t}mi)q_1 - u_2q_2 + (1 - \frac{s}{t})q_1mi \\ u_2q_1 - (2t-1)(lj + \frac{s}{t}mi)q_2 + (1 - \frac{s}{t})q_2mi \end{pmatrix},$$
(33)

$$\bar{v}^T U v = \overline{q_1} \left[\left(lj + \frac{s}{t} mi \right) q_1 - u_2 q_2 + \left(1 - \frac{s}{t} \right) q_1 mi \right]
+ \overline{q_2} \left[u_2 q_1 - (2t - 1) \left(lj + \frac{s}{t} mi \right) q_2 + \left(1 - \frac{s}{t} \right) q_2 mi \right].$$
(34)

Достаточно проверить, что неравенство (25) выполняется в случае $q_1 \neq 0$, $q_2 \neq 0$; тогда по непрерывности оно будет выполняться и при $q_1 = 0$ и $q_2 = 0$. Введем обозначения

$$q_1 = rac{|q_1|}{|q_2|}qq_2, \ q \in \mathbb{H}, \ |q| = 1; \quad w = rac{q_2}{|q_2|}.$$

Отсюда и из (34) следует, что

$$\bar{v}^T U v = |q_1|^2 \overline{w} \cdot \bar{q} \left(lj + \frac{s}{t} mi \right) q \cdot w - (2t - 1)|q_2|^2 \overline{w} \left(lj + \frac{s}{t} mi \right) w + 2u_2|q_1||q_2|\Im(\overline{w}qw) + \left(1 - \frac{s}{t} \right) mi. \quad (35)$$

Вследствие (33)

$$\begin{split} |Uv|^2 &= |q_1|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) + |u_2|^2 |q_2|^2 + |q_1|^2 \bigg(\frac{t-s}{t} \bigg)^2 m^2 \\ &+ |u_2|^2 |q_1|^2 + (2t-1)^2 |q_2|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) + |q_2|^2 \bigg(\frac{t-s}{t} \bigg)^2 m^2 \\ &- 2u_2 |q_1| |q_2| \bigg(lj + \frac{s}{t} mi, \bar{q} \bigg) + 2 \bigg(\frac{t-s}{t} \bigg) |q_1|^2 m \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, wi \overline{w} \bigg) \\ &- 2u_2 |q_1| |q_2| \bigg(\frac{t-s}{t} \bigg) m(\bar{q}, wi \overline{w}) - 2u_2 (2t-1) |q_1| |q_2| \bigg(lj + \frac{s}{t} mi, q \bigg) \\ &+ 2u_2 |q_1| |q_2| \bigg(\frac{t-s}{t} \bigg) m(q, wi \overline{w}) - 2 (2t-1) \bigg(\frac{t-s}{t} \bigg) |q_2|^2 m \bigg(lj + \frac{s}{t} mi, wi \overline{w} \bigg) \\ &= \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) + 4t(t-1) |q_2|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) + |u_2|^2 + \bigg(\frac{t-s}{t} \bigg)^2 m^2 \\ &+ 4u_2 (1-t) |q_1| |q_2| \bigg(lj + \frac{s}{t} mi, q \bigg) + 2 \bigg(\frac{t-s}{t} \bigg) |q_1|^2 m \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, wi \overline{w} \bigg) \end{split}$$

$$+4u_2|q_1||q_2|\bigg(rac{t-s}{t}\bigg)m(\Im(q),wi\overline{w})-2(2t-1)\bigg(rac{t-s}{t}\bigg)|q_2|^2m\bigg(lj+rac{s}{t}mi,wi\overline{w}\bigg).$$

На основании формулы (35) получаем

$$\begin{split} |\bar{v}^T U v|^2 &= |q_1|^4 \left(l^2 + \frac{s^2}{t^2} m^2 \right) + (2t-1)^2 |q_2|^4 \left(l^2 + \frac{s^2}{t^2} m^2 \right) + \left(\frac{t-s}{t} \right)^2 m^2 \\ &+ 4 |u_2|^2 |q_1|^2 |q_2|^2 |\Im(q)|^2 - 2(2t-1) |q_1|^2 |q_2|^2 \left(\bar{q} \left(lj + \frac{s}{t} mi \right) q, lj + \frac{s}{t} mi \right) \\ &+ 4 u_2 |q_1|^3 |q_2| \left(lj + \frac{s}{t} mi, q \right) + 2 |q_1|^2 \left(\frac{t-s}{t} \right) m \left(\bar{q} \left(lj + \frac{s}{t} mi \right) q, wi \overline{w} \right) \\ &- 4 u_2 (2t-1) |q_1| |q_2|^3 \left(lj + \frac{s}{t} mi, q \right) \\ &- 2 (2t-1) \left(\frac{t-s}{t} \right) |q_2|^2 m \left(lj + \frac{s}{t} mi, wi \overline{w} \right) + 4 u_2 |q_1| |q_2| \left(\frac{t-s}{t} \right) m (\Im(q), wi \overline{w}) \\ &= \left(l^2 + \frac{s^2}{t^2} m^2 \right) - 2 |q_1|^2 |q_2|^2 \left(l^2 + \frac{s^2}{t^2} m^2 \right) \\ &+ 4 t (t-1) |q_2|^4 \left(l^2 + \frac{s^2}{t^2} m^2 \right) + \left(\frac{t-s}{t} \right)^2 m^2 \\ &+ 4 |u_2|^2 |q_1|^2 |q_2|^2 |\Im(q)|^2 - 2 (2t-1) |q_1|^2 |q_2|^2 \left(\bar{q} \left(lj + \frac{s}{t} mi \right) q, lj + \frac{s}{t} mi \right) \\ &+ 4 u_2 |q_1| |q_2| \left(lj + \frac{s}{t} mi, q \right) - 8 u_2 t |q_1| |q_2|^3 \left(lj + \frac{s}{t} mi, q \right) \\ &+ 2 |q_1|^2 \left(\frac{t-s}{t} \right) m \left(\bar{q} \left(lj + \frac{s}{t} mi \right) q, wi \overline{w} \right) \\ &- 2 (2t-1) \left(\frac{t-s}{t} \right) |q_2|^2 m \left(lj + \frac{s}{t} mi, wi \overline{w} \right) + 4 u_2 |q_1| |q_2| \left(\frac{t-s}{t} \right) m (\Im(q), wi \overline{w}). \end{split}$$

В рассматриваемом случае левая часть неравенства (25) равна $tl^2+sm^2+u_2^2$. При перенесении ее в правую часть и приведении подобных неравенство (25) с учетом полученных выше выражений приобретает вид

$$\begin{split} 0 &\geq m^2 s \left(\frac{s-t}{t}\right) + 4t^2(t-1)|q_2|^4 \left(l^2 + \frac{s^2}{t^2} m^2\right) \\ &\quad + 4t(t-1)|q_1|^2|q_2|^2 \left(l^2 + \frac{s^2}{t^2} m^2\right) - 2(t-1)|q_1|^2|q_2|^2 \left(l^2 + \frac{s^2}{t^2} m^2\right) \\ &\quad + \frac{(t-s)^2}{t} m^2 + 4|u_2|^2(t-1)|q_1|^2|q_2|^2 |\Im(q)|^2 \\ &\quad + 2|q_1|^2(t-s)m \left(\bar{q}\left(lj + \frac{s}{t}mi\right)q,wi\overline{w}\right) - 2(t-1)(2t-1)|q_1|^2|q_2|^2 \left(\bar{q}\left(lj + \frac{s}{t}mi\right)q,wi\overline{w}\right) \\ &\quad + 4u_2|q_1||q_2|(t-s)m(\Im(q),wi\overline{w}) - 2(2t-1)(t-s)|q_2|^2 m \left(lj + \frac{s}{t}mi,wi\overline{w}\right) \\ &\quad - 8t(t-1)|q_1||q_2|^3 \left(lj + \frac{s}{t}mi,q\right) + (s-t)|(\bar{v}^TUv,i)|^2 \\ &\quad = (s-t)\left[\left(\frac{2s}{t}-1\right)m^2 + |(\bar{v}^TUv,i)|^2\right] - 2(s-t)m \end{split}$$

$$\begin{split} &\times \left[|q_1|^2 \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, wi\overline{w} \bigg) + 2u_2 |q_1| |q_2| (\Im(q), wi\overline{w}) \right. \\ &- (2t-1) |q_2|^2 \bigg(lj + \frac{s}{t} mi, wi\overline{w} \bigg) \bigg] + 4t(t-1) |q_1|^2 |q_2|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) \\ &+ 4t^2 (t-1) |q_2|^4 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) - 2(t-1) |q_1|^2 |q_2|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) \\ &+ 4 |u_2|^2 (t-1) |q_1|^2 |q_2|^2 |\Im(q)|^2 - 2(t-1) (2t-1) |q_1|^2 |q_2|^2 \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, lj + \frac{s}{t} mi \bigg) \\ &- 8 u_2 t (t-1) |q_1| |q_2|^3 \bigg(lj + \frac{s}{t} mi, q \bigg) = (s-t) \bigg[\bigg(\frac{2s}{t} - 1 \bigg) m^2 + |(\bar{v}^T U v, i)|^2 \bigg] - 2(s-t) m \\ &\times \bigg[|q_1|^2 \bigg(\overline{w} \cdot \bar{q} \bigg(lj + \frac{s}{t} mi \bigg) qw, i \bigg) + 2 u_2 |q_1| |q_2| (\Im(\bar{w} q w), i) \\ &- (2t-1) |q_2|^2 \bigg(\overline{w} \bigg(lj + \frac{s}{t} mi \bigg) w, i \bigg) \bigg] (t-1) 4 |q_2|^2 \bigg[t^2 |q_2|^2 \bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) + u_2^2 |q_1|^2 |\Im(q)|^2 \\ &- 2 t u_2 |q_1| |q_2| \bigg(lj + \frac{s}{t} mi \bigg) q, lj + \frac{s}{t} mi \bigg) \bigg] = (s-t) [(\bar{v}^T U v, i) - m]^2 \\ &- \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, lj + \frac{s}{t} mi \bigg) \bigg] = (s-t) [(\bar{v}^T U v, i) - m]^2 \\ &+ (t-1) 4 |q_2|^2 \bigg| t |q_2| \bigg(lj + \frac{s}{t} mi \bigg) - u_2 |q_1| \Im(q) \bigg|^2 \\ &+ (t-1) 2 (2t-1) |q_1|^2 |q_2|^2 \bigg[\bigg(l^2 + \frac{s^2}{t^2} m^2 \bigg) - \bigg(\bar{q} \bigg(lj + \frac{s}{t} mi \bigg) q, lj + \frac{s}{t} mi \bigg) \bigg]. \end{split}$$

Выражение в последней квадратной скобке неотрицательно, так как вследствие неравенства Коши — Буняковского — Шварца

$$\left|\left(\bar{q}\bigg(lj+\frac{s}{t}mi\bigg)q,lj+\frac{s}{t}mi\bigg)\right|\leq \bigg(l^2+\frac{s^2}{t^2}m^2\bigg).$$

Следовательно, требуемое неравенство выполняется, если $s \le t$ и $\frac{1}{2} \le t \le 1$. Из доказанных ранее утверждений следует

Теорема 2. Однородное риманово многообразие $(S^7, \mu_{t,s})$, где $s \neq t$, δ -однородно тогда и только тогда, когда $\frac{1}{2} \leq t \leq 1$ и 0 < s < t.

5. Общий случай

Переходим к рассмотрению общего случая $n \geq 2$. Определим вложение emb : $S^7 \to S^{4n+3}$ как композицию вложений $S^7 \subset \mathbb{H}^2$ и $\mathbb{H}^2 \subset \mathbb{H}^{n+1}$. Последнее вложение осуществляется по обычной формуле $(q_1,q_2)^T \to (q_1,q_2,0,\ldots,0)^T$. Инвариантные римановы метрики $\mu_{t,s}$ на S^7 и S^{4n+3} будем обозначать одинаково.

Вложению emb соответствуют вложения подгруппы Ли Emb × Id : $Sp(2) \times U(1) \to Sp(n+1) \times U(1)$ и подалгебры Ли $\mathfrak{Emb} \oplus \mathfrak{Id} : \mathfrak{sp}(2) \oplus \mathfrak{u}(1) \to \mathfrak{sp}(n+1) \oplus \mathfrak{u}(1)$. Вложение Emb сопоставляет (2×2) -матрице A блочно-диагональную матрицу с блоком A в левом верхнем углу и единичной матрицей размера $[(n-1) \times (n-1)]$ в качестве дополнительного блока; а вложение $\mathfrak{Emb} - (2 \times 2)$ -матрице W блочно-диагональную матрицу с блоком W в левом верхнем углу и с нулевой

 $[(n-1)\times (n-1)]$ -матрицей в дополнительном блоке; Id и \mathfrak{Id} обозначают тождественные отображения. Элементы групп (соответственно алгебр Ли) будем отождествлять с их образами при этих вложениях.

Лемма 1. Если элемент $U \in \mathfrak{sp}(2) \oplus \mathfrak{u}(1) \subset \mathfrak{sp}(n+1) \oplus \mathfrak{u}(1)$ является δ-вектором для пространства $(Sp(2) \times U(1)/(Sp(1) \times U(1)), \mu_{t,s})$, где $0 < s \le t$ и $\frac{1}{2} \le t \le 1$, то он является и δ-вектором для пространства $(Sp(n+1) \times U(1)/(Sp(n) \times U(1)), \mu_{t,s})$.

Доказательство. Для любых $V \in S^{4n+3}$ и $U \in \mathfrak{sp}(2) \oplus \mathfrak{u}(1)$ справедлива формула

$$||UV||^2 = |UV_1|^2 + t|UV_2|^2 + s|UV_3|^3,$$

где UV_3, UV_2, UV_1 — ортогональные проекции вектора UV на векторное подпространство всех векторов вида $Vu, u \in \mathbb{R}i$ соответственно, на его ортогональное дополнение в подпространстве всех векторов вида $Vu, u \in \Im(\mathbb{H})$, и на ортогональное дополнение в \mathbb{H}^{n+1} к последнему подпространству (для стандартного скалярного произведения (\cdot, \cdot) в \mathbb{H}^{n+1} и его нормы $|\cdot|$).

Каждый такой вектор V можно представить в виде

$$V = s_1 v + s_2 w$$
, rge $v \in S^7$, $w \in S^{4(n-1)-1} \subset (\mathbb{H}^2)^{\perp}$, $s_1, s_2 \ge 0$, $s_1^2 + s_2^2 = 1$.

Вследствие формулы (29) δ -вектор U имеет вид $W + (\frac{s}{t} - 1)u_{1,2} \in \mathfrak{sp}(2) \oplus \mathfrak{u}(1)$. Тогда

$$UV = U(s_1v + s_2w) = s_1Uv + s_2Uw = s_1Uv + s_2\left(\frac{t-s}{t}\right)wu_{1,2} \in \mathbb{H}^2 \oplus \mathbb{H}^{n-1}.$$

Так как $U-\delta$ -вектор для $(Sp(2)\times U(1)/Sp(1)\times U(1),\mu_{t,s})$ и $0< s\leq t,$ в силу сказанного и формулы (10)

$$\|UV\|^2 = s_1^2 \|Uv\|^2 + s_2^2 \left(\frac{t-s}{t}\right)^2 s|u_{1,2}|^2 \le s_1^2 \|Uv_0\|^2 + s_2^2 \|Uv_0\|^2 = \|Uv_0\|^2.$$

Следовательно, U является δ -вектором для $(Sp(n+1)\times U(1)/(Sp(n)\times U(1), \mu_{t,s}).$

Лемма 2. Для любых векторов $(u_1,u_2,\ldots,u_{n+1})^T\in S^{4n+3}_{v_0}$ и $(u_1,\tilde{u}_2)^T\in S^7_{v_0}$ с условием $|(u_2,\ldots,u_{n+1})^T|=|\tilde{u}_2|$ существует некоторый элемент g из подгруппы Sp(n) стабилизатора $Sp(n)\times U(1)\subset Sp(n+1)\times U(1)$ (точки v_0 в $Sp(n+1)\times U(1)$) такой, что $g(u_1,u_2,\ldots,u_{n+1})^T=(u_1,\tilde{u}_2)^T.$

ДОКАЗАТЕЛЬСТВО. Лемма следует из известного факта, что Sp(n) действует транзитивно на каждой сфере $S^{4n-1}(r), r \geq 0$, в \mathbb{H}^n с центром в нуле.

Теорема 3. Однородное риманово многообразие $(S^{4n+3}, \mu_{t,s})$, где $s \neq t$, δ -однородно тогда и только тогда, когда 0 < s < t и $\frac{1}{2} \le t \le 1$. При этом оно $Sp(n+1) \times U(1)$ -нормально однородно тогда и только тогда, когда $0 < s < t = \frac{1}{2}$, и не является нормальным однородным для произвольной связной транзитивной группы Ли движений во всех остальных случаях.

Доказательство. Необходимость для первого утверждения доказана в предложении 3.

Пусть $u=(u_1=u_{1,1}+u_{1,2},\ldots,u_{n+1})^T$ — произвольный касательный вектор к S^{4n+3} в точке v_0 . По лемме 2 существует элемент $g\in Sp(n)\subset Sp(n)\times U(1)\subset Sp(n+1)\times U(1)$ такой, что $gu=(u_1,\tilde{u}_2)^T\in S^7_{v_0}$. Вследствие теоремы 2 существует δ -вектор $U\in \mathfrak{sp}(2)\oplus \mathfrak{u}(1)$ такой, что $Uv_0=(u_1,\tilde{u}_2)^T$. На основании

леммы 1 вектор $U \in \mathfrak{sp}(2) \oplus \mathfrak{u}(1) \subset \mathfrak{sp}(n+1) \oplus \mathfrak{u}(1)$ является δ -вектором и на $(S^{4n+3},\mu_{t,s})$. Тогда вектор

$$U' := g^{-1}Ug = \operatorname{Ad}(g^{-1})(U) \in \mathfrak{sp}(n+1) \oplus \mathfrak{u}(1)$$

является δ -вектором на $(S^{4n+3},\mu_{t,s})$, причем $U'v_0=u$. Следовательно, пространство $(S^{4n+3}=Sp(n+1)\times U(1)/(Sp(n)\times U(1)),\mu_{t,s})$ обобщенно $Sp(n+1)\times U(1)$ -нормально однородно, а следовательно, и δ -однородно при 0< s< t и $\frac{1}{2}\leq t\leq 1$.

Второе утверждение следует из теоремы 1 и того, что $Sp(n+1) \times U(1)$ — наибольшая связная группа Ли движений риманова многообразия $(S^{4n+3}, \mu_{t,s})$ при $s \neq t$ [7].

6. Неодносвязные δ -однородные римановы многообразия

Далее будет нужно следующее предложение, доказанное в [1].

Предложение 4. Пусть $p:(M,\mu)\to (N,\nu)$ — риманова субмерсия, являющаяся однородным расслоением относительно некоторой группы Ли G изометрий пространства (M,μ) , и пространство (M,μ) G- δ -однородно. Тогда и (N,ν) G- δ -однородно.

Теорема 4. Пусть $\Gamma = \mathbb{Z}_k$ — циклическая подгруппа порядка k>1 в $U(1)\subset Sp(n+1)\times U(1)$ и $(S^{4n+3},\mu_{t,s})/\Gamma$, где $s\neq t$, — пространство орбит для правого действия (1) группы $\Gamma\subset U(1)\subset Sp(1)$ (линзовое пространство). Тогда

- 1. Существует проекция $\widetilde{\mathrm{pr}}_1: S^{4n+3}/\Gamma \to \mathbb{C}P^{2n+1}$ (см. (2)), являющаяся однородным римановым расслоением (и тем самым римановой субмерсией) относительно группы изометрий $Sp(n+1)\times U(1)$ для римановых метрик: $\mu_{t,s,\Gamma}$, индуцированной метрикой $\mu_{t,s}$, и ν_t , с вполне геодезическими слоями, изометричными окружности длины $\frac{2\pi\sqrt{s}}{k}$.
- 2. Пространство $(S^{4n+3}, \mu_{t,s})/\Gamma$ $Sp(n+1) \times U(1)$ - δ -однородно тогда и только тогда, когда 0 < s < t и $\frac{1}{2} \le t \le 1$, но не нормально однородно относительно произвольной транзитивной группы Ли своих движений при 0 < s < t и $\frac{1}{2} < t \le 1$.
- 3. Пространство $(S^{4n+3}, \mu_{t,s})/\Gamma$ при $s \neq t$ не слабо симметрично относительно наибольшей связной группы Ли изометрий $Sp(n+1) \times U(1) = \overline{G}$, естественно редуктивно относительно \overline{G} тогда и только тогда, когда $t = \frac{1}{2}$, и \overline{G} -нормально однородно тогда и только тогда, когда $0 < s < t = \frac{1}{2}$.

Доказательство. Далее учитывается, что U(1) действует справа на $(S^{4n+3},\mu_{t,s})$ изометриями, \mathbb{Z}_k коммутирует с группой $Sp(n+1)\times U(1)$. Поэтому полной связной транзитивной группой изометрий при всех $s\neq t$ для пространств $(S^{4n+3},\mu_{t,s})/\mathbb{Z}_k$ является группа $Sp(n+1)\times U(1)$ (с ядром неэффективности \mathbb{Z}_k).

- 1. Очевидно.
- 2. Следует из утверждения 1, предложения 4, теоремы 3 и того, что при римановом накрытии подъем киллингова векторного поля на базе является киллинговым векторным полем на накрывающем пространстве.
- 3. Ссылки те же, что в доказательстве утверждения 2, но с заменой теоремы 3 предложением 1 и теоремой 1.

7. Секционные кривизны римановых многообразий $(S^{4n+3}, \mu_{t,s})$

Как сказано во введении, все δ -однородные римановы многообразия имеют неотрицательную секционную кривизну. В [1] на основе работ Д. Е. Вольпера [17] и Вердиани — Циллера [18] установлена положительность секционных кривизн и указаны точные значения δ -защемленностей обобщенных нормальных однородных римановых многообразий (S^{4n+3}, μ_t) . В [18] найдены необходимые и достаточные условия положительности секционных кривизн для всех однородных римановых многообразий $(S^{4n+3} = Sp(n+1)/Sp(n), \mu_{t_1,t_2,t_3})$, определяемых положительными параметрами t_1, t_2, t_3 . Эти пространства характеризуются условиями:

- а) в ортогональных дополнениях к слоям-сферам S^3 расслоения рг из введения значения метрического тензора μ_{t_1,t_2,t_3} совпадают со значениями тензоров $\mu_{t,s}$ и μ_t ;
- б) каждый слой (S^3,μ_{t_1,t_2,t_2}) изометричен группе Ли $Sp(1)\cong SU(2)$ с лево-инвариантной римановой метрикой, допускающей ортогональный левоинвариантный базис векторных полей с квадратами длин t_1,t_2,t_3 и ортонормированный относительно некоторой левоинвариантной римановой метрики с постоянной секционной кривизной 1.

Ясно, что

$$\mu_t = \mu_{t,t,t}, \quad \mu_{t,s} = \mu_{t,t,s}.$$
 (36)

С помощью [18] удается доказать положительность секционных кривизн для всех δ -однородных сфер ($S^{4n+3}, \mu_{t,s}$). Тогда вследствие однородности (или компактности) каждое такое пространство имеет положительную δ -защемленность. К сожалению, насколько известно автору, имеющиеся в литературе результаты не позволяют указать их значения.

В теореме В из [18] доказан следующий критерий.

Теорема 5. Однородное риманово многообразие $(S^{4n+3}, \mu_{t_1,t_2,t_3})$ имеет положительную секционную кривизну тогда и только тогда, когда для всех циклических перестановок (i,j,k) индексов (1,2,3)

$$V_i>0, \quad H_i>0, \quad 3|t_jt_k-t_j-t_k+t_i| < t_jt_k+\sqrt{H_iV_i},$$
где $V_i=\left(t_j^2+t_k^2-3t_i^2+2t_it_j+2t_it_k-2t_jt_k
ight)/t_i, \ H_i=4-3t_i.$

Предложение 5. Каждая δ -однородная сфера $(S^{4n+3}, \mu_{t,s})$, где $s \neq t$, имеет положительную секционную кривизну.

Доказательство. Вычисления на основе второй формулы в (36) и теоремы 5 дают

$$H_1 = H_2 = 4 - 3t, \quad H_3 = 4 - 3s,$$

$$V_2 = V_1 = (t^2 + s^2 - 3t^2 + 2t^2 + 2ts - 2ts)/t = \frac{s^2}{t},$$

$$V_3 = (t^2 + t^2 - 3s^2 + 2ts + 2ts - 2t^2)/s = 4t - 3s.$$

Вследствие теоремы 3 имеем $0 < s < t \le 1$. Тогда все H_i и $V_i, i = 1, 2, 3,$ положительны.

Проверим три остальных условия из теоремы 5. Первое и второе из них совпадают и дают соотношения

$$3|ts-t-s+t| = 3s|t-1| = 3s(1-t) < ts + \sqrt{(4-3t)s^2/t},$$

что эквивалентно неравенству

$$3(1-t) < t + \sqrt{\left(\frac{4}{t} - 3\right)}.$$

Правая часть этого неравенства больше t+1 или равна этому выражению, только когда t=1, но тогда левая часть неравенства равна нулю и неравенство выполняется. Остается проверить неравенство $3(1-t) \le t+1$, когда t<1. Очевидно, что оно эквивалентно неравенству $\frac{1}{2} \le t$, которое выполняется вследствие теоремы 3.

Последнее условие дает неравенство

$$3|t^2 - t - t + s| = 3[t(1-t) + (t-s)] < t^2 + \sqrt{(4-3s)(4t-3s)},$$

эквивалентное неравенству

$$(4t-3s)+2t(1-2t)<\sqrt{(4-3s)(4t-3s)}$$

или

$$(4t - 3s) - \sqrt{(4 - 3s)(4t - 3s)} < 2t(2t - 1).$$

Правая часть этого неравенства неотрицательна, а левая неположительна и равна нулю, только если t=1, но тогда правая часть положительна и неравенство выполняется. Таким образом, все неравенства верны при условиях на t,s из теоремы 3.

Ясно, что утверждение предложения 5 распространяется на все неодносвязные δ -однородные пространства из предыдущего раздела.

Заключение

На основании предложения 5 и результатов статей [3,4,1] все известные неразложимые в прямое метрическое произведение обобщенные нормальные однородные, но не нормальные однородные, римановы многообразия компактны и имеют положительную секционную кривизну и, следовательно, положительную δ -защемленность. Неизвестно, всегда ли это верно.

В этой статье и статье [1] найдены неразложимые в прямое метрическое произведение обобщенные нормальные однородные, но не нормальные однородные, в том числе неодносвязные, римановы многообразия нулевой эйлеровой характеристики. Это дает положительный ответ на вопрос 1 из [4].

Отметим, что в [1] впервые построены (компактные односвязные) обобщенные нормальные однородные, естественно редуктивные, слабо симметричные, но тем не менее не нормальные однородные римановы многообразия. Заметим, что каждое из этих трех условий, как и условие нормальной однородности, влечет геодезическую орбитальность пространства.

ЛИТЕРАТУРА

- Берестовский В. Н. Обобщенные нормальные однородные сферы // Сиб. мат. журн. 2013.
 Т. 54, № 4. С. 742–761.
- Berestovskii V. N., Plaut C. Homogeneous spaces of curvature bounded below // J. Geom. Anal. 1999. V. 9. N 2. P. 203–219.
- 3. Berestovskii V. N., Nikonorov Yu. G. On δ -homogeneous Riemannian manifolds // Differ. Geom. Appl. 2008. V. 26, N 5. P. 514–535.

- Berestovskii V. N., Nikitenko E. V., Nikonorov Yu. G. Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic // Differ. Geom. Appl. 2011. V. 29, N 4. P. 533–546.
- Berger M. Les varietes riemanniennes homogenes normales a courbure strictement positive // Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 3. 1961. V. 15, N 3. P. 179–246.
- Kowalski O., Vanhecke L. Riemannian manifolds with homogeneous geodesics // Boll. Unione Mat. Ital. Ser. B. 1991. V. 5, N 1. P. 189–246.
- Ziller W. Homogeneous Einstein metrics on spheres and projective spaces // Math. Ann. 1982.
 V. 259. P. 351–358.
- Nomizu K. Invariant affine connections on homogeneous spaces // Amer. J. Math. 1954. V. 76, N 1. P. 33–65.
- Ziller W. The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces // Comment. Math. Helv. 1977. V. 52. P. 573–590.
- 10. Grove K., Ziller W. Cohomogeneity one manifolds with positive Ricci curvature // Inv. Math. 2002. V. 149. P. 619–646.
- Kostant B. On differential geometry and homogeneous spaces. I, II // Proc. Nat. Acad. Sci. USA. 1956. V. 42. P. 258–261; 354–357.
- **12.** Бессе А. Многообразия Эйнштейна. М.: Мир, 1990. Т. 1, 2.
- Selberg A. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series // J. Indian Math. Soc. 1956. V. 20. P. 47–87.
- 14. Ziller W. Weakly symmetric spaces // Topics in geometry: in memory of Joseph D'Atri. Boston: Birkhäuser, 1996. P. 355–368. (Prog. Nonlinear Differ. Equations; V. 20).
- 15. Якимова О. С. Слабо симметрические римановы многообразия с редуктивной группой изометрий // Мат. сб. 2004. Т. 195, № 4. С. 143–160.
- Wolf J. A. Harmonic analysis on commutative spaces. Providence, RI: Amer. Math. Soc., 2007.
- 17. Вольпер Д. Е. Секционные кривизны диагонального семейства Sp(n+1)-инвариантных метрик на (4n+3)-мерных сферах // Сиб. мат. журн. 1994. Т. 35, № 6. С. 1230–1242.
- Verdiani L., Ziller W. Positively curved homogeneous metrics on spheres // Math. Z. 2009. Bd 261, Hefte 3. S. 473–488.

Статья поступила 20 сентября 2012 г.

Берестовский Валерий Николаевич Омский филиал Института математики им. С. Л. Соболева СО РАН, ул. Певцова, 13, Омск 644099 berestov@ofim.oscsbras.ru