УДК 519.17

КОМБИНАТОРНОЕ СТРОЕНИЕ ГРАНЕЙ В ТРИАНГУЛИРОВАННЫХ 3-МНОГОГРАННИКАХ С МИНИМАЛЬНОЙ СТЕПЕНЬЮ 4 О. В. Бородин, А. О. Иванова

Аннотация. В 1940 г. Лебег доказал, что каждый 3-многогранник с минимальной степенью не менее 4 содержит 3-грань, набор степеней вершин которой мажорируется одной из следующих последовательностей: $(4, 4, \infty), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7).$ Это описание было усилено Бородиным (2002) следующим образом: $(4, 4, \infty), (4, 5, 17), (4, 6, 11), (4, 7, 8), (5, 5, 8), (5, 6, 6).$

Для триангуляций с минимальной степенью не менее 4 Йендроль (1999) дал такое описание граней: $(4, 4, \infty), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6).$

Мы даем следующее описание граней в плоских триангуляциях (в частности, для триангулированных 3-многогранников) с минимальной степенью не менее 4, в котором все параметры неулучшаемы и достигаются независимо от других: $(4, 4, \infty), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6).$

Попутно опровергается гипотеза Йендроля (1999) о комбинаторном строении граней в триангулированных 3-многогранниках.

Ключевые слова: плоская карта, плоский граф, 3-многогранник, структурные свойства, вес.

1. Введение

Степень d(v) вершины v (r(f) грани f) в плоской карте M есть число инцидентных ей ребер (петли учитываются дважды в d(v), а разделяющие ребра — дважды в r(f)). Через Δ и δ обозначим максимальную и минимальную степени вершин в M соответственно. k-Вершина (k-грань) есть вершина (грань) степени k, а k^+ -вершина имеет степень не менее k, и т. д.

Известно, что каждая нормальная плоская карта, в которой петли и кратные ребра разрешены, но степень каждой вершины и грани не менее 3, имеет 5⁻-вершину и 5⁻-грань. Далее через M обозначим нормальную плоскую карту. Таким образом, каждая M удовлетворяет $3 \le \delta \le 5$. Как доказано Штейницем [1], 3-многогранники (т. е. конечные выпуклые 3-мерные многогранники) взаимно однозначно соответствуют 3-связным плоским графам.

Весом грани в M называется сумма степеней ее граничных вершин, а через w(M), или просто w, обозначается минимальный вес 5⁻-граней в M. Будем говорить, что f является гранью muna $(k_1, k_2, ...)$ или просто $(k_1, k_2, ...)$ -гранью, если набор степеней инцидентных f вершин мажорируется вектором $(k_1, k_2, ...)$.

В 1940 г. Лебег [2] дал приближенное описание 5⁻-граней в нормальных плоских картах.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 12–01–00631, 12–01–00448 (первый автор), 12–01–00448, 12–01– 98510 (второй автор)).

Теорема 1 [2]. Каждая нормальная плоская карта содержит 5⁻-грань одного из следующих типов:

 $\begin{aligned} &(3,6,\infty),(3,7,41),(3,8,23),(3,9,17),(3,10,14),(3,11,13),\\ &(4,4,\infty),(4,5,19),(4,6,11),(4,7,9),(5,5,9),(5,6,7),\\ &(3,3,3,\infty),(3,3,4,11),(3,3,5,7),(3,4,4,5),(3,3,3,3,5). \end{aligned}$

Из теоремы 1 имеем

Следствие 2 [2]. Каждая нормальная плоская карта без 3-вершин имеет 3грань одного из следующих типов: $(4, 4, \infty)$, (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7).

Теорема 1 наряду с другими идеями Лебега в [2] имеет множество приложений к проблемам раскраски плоских графов (см. недавний обзор [3]).

Некоторые параметры в теореме Лебега были улучшены для узких классов плоских графов. Из теоремы Лебега [2, с. 36] следует, что каждая плоская триангуляция с $\delta = 5$ удовлетворяет условию $w \leq 18$. В 1963 г. Коциг [4] дал другое доказательство этого факта и предположил, что $w \leq 17$. В 1989 г. О. В. Бородин [5] доказал гипотезу Коцига в более общем виде.

Теорема 3 [5]. Каждая нормальная плоская карта с $\delta = 5$ содержит (5, 5, 7)грань или (5, 6, 6)-грань, где все параметры точны.

Теорема 3 также подтверждает гипотезу Грюнбаума [6] (1975) о том, что циклическая связность (определяемая как минимальное число ребер, при удалении которых из графа получаются две компоненты, каждая из которых содержит цикл) любого 5-связного плоского графа не превосходит 11. Эта оценка точна (граница 13 была ранее получена Пламмером [7]).

Заметим, что 3-многогранники с $(4, 4, \infty)$ -гранями могут иметь неограниченный w, как следует из n-пирамиды, двойной n-пирамиды и аналогичной конструкции, в которой каждая 3-грань инцидентна 3-вершине, 4-вершине и n-вершине. То же верно для $(3, 3, 3, \infty)$ -граней: возьмем двойную 2n-пирамиду и удалим все четные верхние ребра и все нечетные нижние, чтобы получить четырехангуляцию, имеющую только (3, 3, 3, 2n)-грани.

Для плоских триангуляций без 4-вершин Коциг [8] доказал $w \leq 39$, а Бородин [9], подтверждая гипотезу Коцига [8], доказал $w \leq 29$, что является точной оценкой благодаря дважды усеченному додекаэдру. Бородин [10] позднее показал, что каждый триангулированный 3-многогранник без $(4, 4, \infty)$ -граней удовлетворяет неравенству $w \leq 29$ и что для триангуляций без смежных между собой 4-вершин существует точная граница $w \leq 37$.

В 1999 г. Йендроль [11] обобщил теорему 3 и некоторые результаты из [9, 10] следующим образом.

Теорема 4 [11]. Каждая плоская триангуляция содержит грань одного из следующих типов:

(3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 9, 14), (3, 10, 13),

 $(4, 4, \infty), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6).$

Следствие 5 [11]. Каждая плоская триангуляция с $\delta \ge 4$ содержит грань одного из следующих типов: $(4, 4, \infty)$, (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6).

В 2002 г. Бородин [12] усилил теорему 1 Лебега следующим образом.

Теорема 6 [12]. Каждая нормальная плоская карта содержит 5⁻-грань одного из следующих типов:

 $\begin{array}{l}(3,6,\infty),(3,8,22),(3,9,15),(3,10,13),(3,11,12),\\(4,4,\infty),(4,5,17),(4,6,11),(4,7,8),(5,5,8),(5,6,6),\\(3,3,3,\infty),(3,3,4,11),(3,3,5,7),(3,4,4,5),(3,3,3,3,5).\end{array}$

Непосредственно из теоремы 1 Лебега следует, что если $\delta \geq 4$, то существует либо $(4, 4, \infty)$ -грань, либо 3-грань ограниченного веса. Из теоремы 6 получаем несколько большее.

Следствие 7 [12]. Каждая нормальная плоская карта без 3-вершин содержит 3-грань одного из следующих типов:

 $(4, 4, \infty), (4, 5, 17), (4, 6, 11), (4, 7, 8), (5, 5, 8), (5, 6, 6).$

Старые проблемы поиска наилучших из возможных версий важных теорем 1 и 6 остаются широко открытыми. До сих пор было известно полное решение только для $\delta = 5$ (см. теорему 3). Еще в 1999 г. Йендроль высказал следующую гипотезу, повторенную в недавнем обзоре Йендроля и Фосса [13, гипотеза 4.9].

Гипотеза 8 [11]. Каждая плоская триангуляция содержит грань одного из следующих типов:

(3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10, 12),

 $(4, 4, \infty), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6),$

причем все коэффициенты неулучшаемы.

Целью этой заметки является следующее точное описание граней в плоских триангуляциях с $\delta \ge 4$, обобщающее теорему 3 и усиливающее следствия 2, 5 и 7.

Теорема 9. Каждая плоская триангуляция без 3-вершин содержит грань одного из следующих типов:

(Ta) $(4, 4, \infty)$, (Tb) (4, 5, 11), (Tc) (4, 6, 10), (Td) (4, 7, 7), (Te) (5, 5, 7), (Tf) (5, 6, 6). Более того, все параметры в (Ta)–(Tf) являются точными.

В частности, мы впервые даем конструкцию (рис. 1), опровергающую гипотезу 8. Заметим, что теорема 9 не может быть расширена до произвольных нормальных карт с $\delta \geq 4$, поскольку имеет место следующий результат.

Теорема 10 [14]. Каждая нормальная плоская карта без 3-вершин содержит 3-грань одного из следующих типов:

 $(4, 4, \infty), (4, 5, 14), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6).$

Более того, все параметры в каждом типе точные.

2. Точность теоремы 9

Верхние оценки в (Tb)–(Tf) теоремы 9 точны, что следует из конструкций на рис. 1 и 2.

А именно, рис. 1 показывает, как из плосконосого додекаэдра (т. е. 5однородного плоского графа, в котором каждая вершина инцидентна одной 5грани и четырем 3-граням) получить триангуляцию с вершинами степени 4, 5, 8 и 11, которая из перечисленных в теореме 9 типов граней содержит только тип (4, 5, 11), фигурирующий в (Tb).

На рис. 2(Td) видим, как трансформировать октаэдр в триангуляцию, все вершины которой имеют степень 4, 7 или 8, так, что из перечисленных в (Ta)–(Tf) имеются только грани типа (4,7,7). На рис. 2(Te) показана половина плоской триангуляции, содержащей 5- и 7-вершины, но не имеющей (5,5,5)-граней. Необходимость и точность условий (Tc) и (Tf) подтверждается простыми конструкциями, получающимися из икосаэдра (см. рис. 2). Что касается (Ta), то достаточно напомнить вышеупомянутую двойную пирамиду.

Рис. 1. Конструкция, показывающая неулучшаемость условия (Tb) в теореме 9.

Рис. 2. Конструкции, показывающие неулучшаемость условий (Tc)-(Tf) в теореме 9.

3. Доказательство основного утверждения теоремы 9

Предположим, что триангуляция T не содержит ни одной из конфигураций (Ta)–(Tf). Множество вершин, ребер и граней триангуляции T обозначим через V, E и F соответственно.

3.1. Перераспределение зарядов. Формула Эйлера|V|-|E|+|F|=2для Tвлечет

$$\sum_{v \in V} (d(v) - 6) = -12.$$
(1)

Каждой вершине v присвоим начальный заряд $\mu(v) = d(v) - 6$, так что только 5⁻-вершины имеют отрицательный заряд. Используя свойства контрпримера T, определим локальное перераспределение зарядов, сохраняя их сумму, так, что новый заряд $\mu'(v)$ окажется неотрицательным для всех $v \in V$. Последнее будет противоречить тому факту, что сумма новых зарядов по формуле (1) равна -12. Техника перераспределения эйлеровых вкладов часто используется при решении структурных задач и задач раскраски плоских графов.

Сначала дадим несколько определений. Через $v_1, \ldots, v_{d(v)}$ обозначим соседей вершины v в циклическом порядке вокруг v. Назовем 7-вершину сильной, если она смежна с не более чем двумя 5⁻-вершинами, иначе 7-вершина является слабой. Заметим, что слабая 7-вершина смежна в точности с тремя 5⁻-вершинами. Другими обозначениями для сильной и слабой вершин будут 7_s -и 7_w -вершины соответственно. Назовем 7_w -вершину v бедной, если $d(v_1) = 4$, $4 \le d(v_3) \le 5$ и $d(v_5) = 5$ или если $d(v_1) = d(v_3) = d(v_5) = 4$. Через 7_p -вершину обозначаем бедную вершину.

Будем использовать следующие правила перераспределения зарядов (рис. 3). **R1.** Пусть T = uvw — треугольник, где v бедная, $d(u) \ge 8$ и $d(w) \ge 6$.

(а) Если $d(w) \leq 7$ и w не является бедной, то v получает $\frac{1}{4}$ от u через T.

(b) Если w бедная, то каждая из v и w получает $\frac{1}{8}$ от u через T.

(c) Если $d(w) \ge 8$, то v получает $\frac{1}{4}$ от каждой из u и w через T.

R2. Пусть v - 7-вершина.

(a) Каждая v дает $\frac{1}{2}$ каждой смежной 4-вершине, и каждая сильная v дает $\frac{1}{2}$ каждой смежной 5-вершине.

(b) Если $d(v_1) = d(v_3) = d(v_5) = 5$, то v дает $\frac{1}{3}$ каждой из v_1 , v_3 и v_5 .

(с) Если $d(v_1) = 4$ и $d(v_3) = d(v_5) = 5$, то v дает $\frac{1}{4}$ вершине v_3 ; кроме того, v дает $\frac{3}{8}$ вершине v_5 , если v_6 бедная, и $\frac{1}{2}$ в противном случае.

(d) Если $d(v_1) = d(v_5) = 5$ и $d(v_3) = 4$, то v дает $\frac{1}{4}$ каждой из v_1 и v_5 .

(е) Если $d(v_1) = d(v_5) = 4$ и $d(v_3) = 5$, то v ничего не дает вершине v_5 .

(f) Если $d(v_1) = d(v_3) = 4$ и $d(v_5) = 5$, то v дает $\frac{1}{8}$ вершине v_5 , если v_6 бедная; в противном случае v дает $\frac{1}{4}$ вершине v_5 .

R3. Пусть T = uvw — треугольник, где d(v) = 5.

(а) Если d(w) = 5, то каждая из v и w получает $\frac{1}{8}$ от (8⁺-вершины) u через T.

(b) Если $d(w) \ge 6$, то v получает $\frac{1}{4}$ через T от каждой вершины u, если $8 \le d(u) \le 11$, и получает $\frac{1}{2}$ от каждой 12^+ -вершины в T.

R4. Пусть T = uvw — треугольник, где d(v) = 4.

(a) Если $5 \le d(w) \le 6$, то *v* получает $\frac{1}{2}$ от (11⁺-вершины) *u* через *T*.

Рис. 3. Правила перераспределения зарядов.

(b) Если $d(w) \ge 7$ и $d(u) \ge 8$, то v получает $\frac{1}{4}$ от каждой 8^+ -вершины в T.

3.2. Доказательство $\mu'(v) \ge 0$ для всех $v \in V$.

Случай 1. $d(v) \ge 12$. Поскольку наша v посылает не более $\frac{d(v)-6}{d(v)}$ через каждую инцидентную грань по R1, R3 и R4, имеем $\mu'(v) \ge d(v) - 6 - d(v) \times \frac{d(v)-6}{d(v)} = 0.$

Случай 2. d(v) = 11. Если v дает $\frac{1}{2}$ по R4a не более 9 раз, то $\mu'(v) \ge 11 - 6 - 9 \times \frac{1}{2} - 2 \times \frac{1}{4} = 0$ по R1, R3 и R4. В противном случае v имеет двух смежных 6-соседей, в этом случае $\mu'(v) = 11 - 6 - 10 \times \frac{1}{2} = 0$.

Случай З.
8 $\leq d(v) \leq 10.$ Здесь $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{d(v) - 6}{d(v)} = 0$ согласно R1, R3 и R4.

Случай 4. d(v) = 7. Заметим, что если $d(v_1) = 4$, то $d(v_2) \ge 8$ в $d(v_7) \ge 8$ благодаря отсутствию (4,7,7)-граней в *T*. Кроме того, если $d(v_1) = 5$, то $d(v_2) \ge 6$ в $d(v_7) \ge 6$ благодаря отсутствию (5,5,7)-граней. Таким образом, наша v инцидентна с не более чем тремя 5⁻-вершинами. Если v сильная, т. е. имеет не более двух 5⁻-соседей, то $\mu'(v) \ge 7 - 6 - 2 \times \frac{1}{2} = 0$ по R2a.

Пусть *v* слабая. Если *v* смежна с тремя 4-вершинами, v_1, v_3 и v_5 , то $d(v_6) \ge 8$ и $d(v_7) \ge 8$ и *v* получает не менее $2 \times \frac{1}{4}$ по R1с, так что $\mu'(v) \ge 1 - 3 \times \frac{1}{2} + 2 \times \frac{1}{4} = 0$ по R2a. Итак, пусть *v* смежна с не более чем двумя 4-вершинами, и мы имеем

семь случаев для рассмотрения (см. R2 на рис. 3).

Заметим, что общая передача вершины v превышает 1 только в R2с и R2f. В первом случае (R2c) v бедная и получает $\frac{1}{8}$ по R1b, если v_6 тоже бедная, и $\frac{1}{4}$ по R1a в противном случае. Пусть $d(v_1) = d(v_3) = 4$ и $d(v_5) = 5$ (т. е. находимся в условиях R2f). Здесь $d(v_7) \ge 8$. Если v_6 бедная, то $\mu'(v) \ge 1 - 2 \times \frac{1}{2} - \frac{1}{8} + \frac{1}{8} = 0$ благодаря R2f и R1b, иначе $\mu'(v) \ge 1 - 2 \times \frac{1}{2} - \frac{1}{4} + \frac{1}{4} = 0$ по R1a.

Случай 5. d(v) = 6. Поскольку v не участвует в перераспределении зарядов, имеем $\mu'(v) = \mu(v) = 0$.

Случай 6. d(v) = 5. Заметим, что v смежна с не более чем двумя 5⁻вершинами благодаря отсутствию (5,5,7) в контрпримере.

Подслучай 6.1. Существует ровно два 5⁻-соседа. Если $d(v_1) = d(v_3) = 5$, то каждая из v_2 , v_4 , v_5 является 8⁺-вершиной благодаря отсутствию (5, 5, 7)-граней, так что $\mu'(v) \ge -1+4 \times \frac{1}{8} + 2 \times \frac{1}{4} = 0$ по R3. Если $d(v_1) = 5$ и $d(v_3) = 4$, то каждая из v_2 , v_4 является 12⁺-вершиной благодаря отсутствию (4, 5, 11)-граней, а $d(v_5) \ge 8$ благодаря отсутствию (5, 5, 7)-граней и $\mu'(v) \ge -1+2 \times \frac{1}{8} + \frac{1}{4} + \frac{1}{2} = 0$ по R3. Наконец, если $d(v_1) = d(v_3) = 4$, то v получает не менее $2 \times \frac{1}{2}$ от v_4 и v_5 по R3b.

Подслучай 6.2. Существует ровно один 5⁻-сосед. Если $d(v_2) = 4$, то $\mu'(v) \ge -1 + 2 \times \frac{1}{2} = 0$ по R3b.

Теперь предположим, что $d(v_2) = 5$. Каждая из v_1 , v_3 дает $\frac{1}{8}$ вершине vчерез грани v_1v_2v , v_3v_2v по R3a и не менее $\frac{1}{4}$ через грани v_3v_4v , v_1v_5v по R3b, и нам остается найти еще $\frac{1}{4}$.

Заметим, что хотя бы одна из v_4 , v_5 является 7⁺-вершиной согласно отсутствию (5, 6, 6)-граней, скажем v_5 . Тогда v получает не менее $\frac{1}{4}$ от v_5 и v_4 вместе по R2. Действительно, если v_5 дает $\frac{1}{8}$ по R2f, то v_4 является бедной 7-вершиной и отдает не менее $\frac{1}{8}$ вершине v тоже. Если R2е применяется к v_5 , то v_4 есть 8⁺-вершина и дает вершине v более чем достаточно. В противном случае v_5 дает не менее $\frac{1}{4}$ по R2.

Подслучай 6.3. Нет 5⁻-соседей. Заметим, что v смежна с не менее чем тремя 7⁺-вершинами благодаря отсутствию (5, 6, 6). Если существует не менее двух 8⁺-вершин, то $\mu'(v) \ge -1 + 4 \times \frac{1}{4} = 0$ по R3b.

Если существует ровно одна 8⁺-вершина, скажем v_2 , то v получает $\frac{1}{2}$ от v_2 по R3b. Заметим, что R2e здесь не применимо. Из симметрии между $\{v_3, v_4\}$ и $\{v_5, v_1\}$ достаточно заметить, что v получает не менее $\frac{1}{4}$ от $\{v_3, v_4\}$. Если $d(v_4) = 6$, то $d(v_3) = 7$ благодаря отсутствию (5,6,6)-граней и v_3 дает вершине v не менее $\frac{1}{4}$ по R2. Допустим, что $d(v_4) = 7$. Если $d(v_3) = 6$, то v получает не менее $\frac{1}{4}$ от v_4 , потому что R2f не применимо к v_4 . Если $d(v_3) = 7$, то R2f не применимо к v_4 снова (и к v_3 тоже) и v получает не менее $\frac{1}{4}$ от них, что и требовалось.

Итак, допустим, что v смежна только с 6- или 7-вершинами. Заметим, что R2f с передачей в $\frac{1}{8}$ и R2e снова не применимы, поскольку v не имеет 8⁺-соседей и v получает не менее $\frac{1}{4}$ от каждой смежной 7-вершины. Если имеется не менее четырех 7-вершин, то $\mu^*(v) \ge 0$ по R2. Наконец, пусть $d(v_1) = d(v_3) = d(v_4) = 7$ и $d(v_2) = d(v_5) = 6$. Теперь проверкой R2 убеждаемся, что v получает не менее $\frac{1}{3}$ от каждой из v_1 , v_3 и v_4 , что и требуется.

Случай 7. d(v) = 4. Заметим, что нет смежных 4-вершин согласно отсутствию $(4, 4, \infty)$ -граней. Покажем, что v получает не менее 1 от v_2 и v_1 , v_3 через грани v_1v_2v , v_3v_2v . (Из симметрии v получает не менее 1 от v_4 и v_1 , v_3 через грани v_1v_4v , v_3v_4v .)

Подслучай 7.1. $5 \le d(v_2) \le 6$. В этом случае $d(v_1) \ge 11$ и $d(v_2) \ge 11$ благодаря отсутствию (4, 6, 10)-граней, поэтому каждая из v_1 , v_3 дает $\frac{1}{2}$ вершине v через грань по R4a.

Подслучай 7.2. $d(v_2) = 7$. Здесь $d(v_1) \ge 8$ и $d(v_2) \ge 8$ благодаря отсутствию (4,7,7), откуда v получает не менее $2 \times \frac{1}{4}$ от v_1 , v_2 через грани v_1v_2v , v_3v_2v по R4b и $\frac{1}{2}$ от v_2 по R2a.

Подслучай 7.3. $d(v_i) \ge 8, 1 \le i \le 4$. Теперь каждая v_i дает не менее $\frac{1}{4}$ нашей v через каждую из двух инцидентных ей граней по R4.

Таким образом, доказано, что $\mu'(v) \ge 0$ для каждой $v \in V$, что противоречит (1) и завершает доказательство теоремы 9.

ЛИТЕРАТУРА

- Steinitz E. Polyheder und Raumeinteilungen // Enzykl. math. Wiss. (Geometrie). 1922. V. 3AB, N 12. P. 1–139.
- Lebesgue H. Quelques conséquences simples de la formule d'Euler // J. Math. Pures Appl. 1940. V. 19. P. 27–43.
- Borodin O. V. Colorings of plane graphs: a survey // Discrete Math. 2013. V. 313, N 4. P. 517–539.
- 4. Kotzig A. From the theory of Eulerian polyhedra (Russian) // Mat. Čas. 1963. V. 13. P. 20–34.
- Бородин О. В. Решение задач Коцига и Грюнбаума об отделимости цикла в плоском графе // Мат. заметки. 1989. V. 46, N 5. P. 9–12.
- Grünbaum B. Polytopal graphs // Studies in Graph Theory. Washington, D.C.: Math. Assoc. Amer., 1975. V. 12. P. 201–224. (MAA Stud. Math.).
- Plummer M. D. On the cyclic connectivity of planar graphs // Graph Theory and Applications. Berlin: Springer-Verl., 1972. P. 235–242.
- 8. Kotzig A. Extremal polyhedral graphs // Ann. New York Acad. Sci. 1979. V. 319. P. 569–570.
- 9. Бородин О. В. Минимальный вес грани в плоских триангуляциях без 4-вершин // Мат. заметки. 1992. Т. 51, № 1. С. 16–19.
- Borodin O. V. Triangulated 3-polytopes with restricted minimal weight of faces // Discrete Math. 1998. V. 186. P. 281–285.
- Jendrol' S. Triangles with restricted degrees of their boundary vertices in plane triangulations // Discrete Math. 1999. V. 196. P. 177–196.
- 12. Бородин О. В. Усиление теоремы Лебега о строении младших граней в выпуклых многогранниках // Дискрет. анализ и исслед. операций. 2002. Т. 9, № 3. С. 29–39.
- Jendrol' S., Voss H.-J. Light subgraphs of graphs embedded in the plane and in the projective plane: a survey // Discrete Math. 2013. V. 313. P. 406–421.
- 14. Borodin O. V., Ivanova A. O. Describing 3-faces in normal plane maps with minimum degree 4 // Discrete Math. 2013. V. 313, N 23. P. 2841–2847.

Статья поступила 30 апреля 2013 г.

Бородин Олег Вениаминович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 brdnoleg@math.nsc.ru

Иванова Анна Олеговна Северо-Восточный федеральный университет им. М. К. Аммосова, ул. Кулаковского, 48, Якутск 677891, Республика Саха (Якутия) shmgnanna@mail.ru