ОБ АВТОМАТНЫХ ПРЕДСТАВЛЕНИЯХ ПРОЕКТИВНЫХ ПЛОСКОСТЕЙ

А. С. Денисенко, Н. Т. Когабаев

Аннотация. Изучаются автоматные представления проективных плоскостей. Доказывается, что произвольная свободно порожденная проективная плоскость не имеет автоматных представлений. Установлено, что произвольная дезаргова (паппова) проективная плоскость автоматно представима тогда и только тогда, когда она конечна.

Ключевые слова: автоматная модель, автоматное представление, проективная плоскость, свободно порожденная проективная плоскость, дезаргова проективная плоскость, паппова проективная плоскость.

Активное изучение автоматных структур в классических категориях алгебраических систем было инициировано в начале 1990-х гг. Нероудом и Б. М. Хусаиновым, предложившими в [1] общее определение автоматной модели предикатной сигнатуры. Особенность предложенного определения состоит в том, что для распознавания *п*-местного предиката читающие головки *п*-ленточного автомата должны двигаться вдоль лент *синхронно*. В рамках этого подхода за последние 20 лет были получены полные или частичные решения проблемы автоматной представимости во многих классах систем: линейные порядки, булевы алгебры, деревья, группы, кольца и др.

Обзор основных результатов, полученных в области изучения автоматных моделей, а также существующие открытые вопросы и основные направления исследований в данной области могут быть найдены в [2-4]. Как оказалось, в большинстве случаев требование существования автоматного представления накладывает существенные ограничения на алгебраическую сложность структуры — значительные семейства вычислимых структур не обладают автоматными представлениями. Так, например, любая абелева группа без кручения, являющаяся p-делимой для бесконечного числа простых p, не имеет автоматных представлений. В частности, не имеет автоматных представлений аддитивная группа рациональных чисел (см. [5]). Тем не менее стоить заметить, что относительно простое устройство автоматных структур не всегда позволяет снизить сложность алгоритмических проблем на классах систем. В [6] для нескольких естественных классов установлено, что проблема изоморфизма автоматных структур имеет такую же сложность, как проблема изоморфизма вычислимых структур из того же класса.

В настоящей статье изучается вопрос существования автоматных представлений в некоторых классах проективных плоскостей, при этом проективные

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 11–01–00236а и 13–01–91001– $AH\Phi$ _а) и Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта HIII–276.2012.1).

плоскости рассматриваются на основе алгебраического подхода, предложенного А. И. Ширшовым в [7]. Получено полное решение задачи об автоматной представимости счетных моделей из следующих классов проективных плоскостей: свободно порожденные плоскости, дезарговы плоскости, папповы плоскости.

Доказывается, что никакая свободно порожденная проективная плоскость не обладает автоматными представлениями ни над каким алфавитом. Для классов дезарговых и, в частности, папповых проективных плоскостей установлено, что только конечные модели из данных классов имеют автоматные представления.

В § 1 настоящей статьи изложены необходимые определения и результаты, относящиеся к теории автоматных моделей и к теории проективных плоскостей. В § 2 с помощью метода оценки функций роста локально конечных моделей доказывается результат об отсутствии автоматных представлений для свободно порожденных проективных плоскостей. В § 3 на основе относительной элементарной определимости ассоциативных тел (полей) в дезарговых (папповых) проективных плоскостях доказана теорема о том, что дезаргова (паппова) проективная плоскость автоматно представима тогда и только тогда, когда она конечна.

§ 1. Необходимые определения и утверждения

Приведем определения и утверждения из теории автоматных моделей, которые будут далее использованы в работе.

Пусть Σ — конечный алфавит и $\bot \notin \Sigma$. Обозначим через Σ_\bot алфавит $\Sigma \cup \{\bot\}$.

Конволюцией кортежса $\langle w_1, \dots, w_n \rangle \in (\Sigma^*)^n$ является кортеж $\langle w_1, \dots, w_n \rangle_{\perp}$ $\in (\Sigma^n_{\perp})^*$, полученный добавлением наименьшего числа символов \perp к правым концам слов w_i таким образом, чтобы длины всех слов стали одинаковыми.

Конволюция отношения $R \subseteq (\Sigma^*)^n$ — это отношение $R_{\perp} \subseteq (\Sigma_{\perp}^n)^*$, представляющее собой множество конволюций всех кортежей из R, т. е. $R_{\perp} = \{w_{\perp} \mid w \in R\}$.

Отношение $R \subseteq (\Sigma^*)^n$ называется автоматным над алфавитом Σ , если его конволюция R_{\perp} распознается некоторым конечным автоматом над алфавитом Σ^n_{\perp} .

Модель $\mathfrak{A}=\langle A,R_1,\ldots,R_s\rangle$ предикатной сигнатуры автоматна над ал-фавитом Σ , если ее носитель $A\subseteq \Sigma^*$ и отношения $R_i\subseteq (\Sigma^*)^{n_i},\ 1\leq i\leq s,$ автоматны над алфавитом Σ .

Модель $\mathfrak A$ автоматна, если она автоматна над некоторым алфавитом Σ . Модель $\mathfrak A$ автоматно представима, если существует автоматная модель $\mathfrak B$, изоморфная $\mathfrak A$.

Отношение $R \subseteq A^{k+l}$ локально конечно, если для любого кортежа $\bar{a} \in A^k$ существует лишь конечное число кортежей $\bar{b} \in A^l$ таких, что $\langle \bar{a}, \bar{b} \rangle \in R$. Модель $\mathfrak{A} = \langle A, R_1, \dots, R_s \rangle$ называют локально конечной, если каждое из ее основных отношений $R_i \subseteq A^{k_i+l_i}$ локально конечно для некоторых k_i и l_i .

Пусть $\mathfrak{A}=\langle A,R_1,\dots,R_s\rangle$ — локально конечная модель, G — конечное подмножество A. Индукцией по $n\in\omega$ определим множества $E_n(G)$, положив $E_0(G)=G$ и

$$E_{n+1}(G) = \bigcup_{1 \leq i \leq s} \big\{ b \in A \mid (\exists \bar{b} \in A^{l_i}) \big(\exists \bar{a} \in E_n^{k_i}(G) \big) [b \in \bar{b} \ \& \ \langle \bar{a}, \bar{b} \rangle \in R_i] \big\},$$

где k_i и l_i — местности, относительно которых R_i локально конечно. Определим для каждого $n \in \omega$ множество

$$L_n(G) = \bigcup_{0 \le m \le n} E_m(G).$$

Таким образом, $L_n(G)$ — это множество элементов модели \mathfrak{A} , которые могут быть получены из G не более чем n применениями основных отношений.

Следующее утверждение часто служит инструментом для доказательства неавтоматности локально конечных моделей.

Предложение 1 (см. [1]). Пусть $\mathfrak{A} = \langle A, R_1, \dots, R_s \rangle$ — локально конечная автоматная модель, G — конечное помножество A. Тогда существует линейная функция $t: \omega \to \omega$ такая, что длина любого слова из $L_n(G)$ не превосходит t(n).

Важным свойством автоматно представимых моделей является их замкнутость относительно элементарной определимости в языке первого порядка.

Предложение 2 (см. [1]). Если модель \mathfrak{B} относительно элементарно определима в модели \mathfrak{A} (возможно, с параметрами), а \mathfrak{A} автоматно представима, то \mathfrak{B} тоже автоматно представима.

Приведем необходимые сведения из теории проективных плоскостей. Следуя [7], проективной плоскостью называем частичную алгебраическую систему $\langle A, (A^0, {}^0A), \cdot \rangle$ с разбиением носителя A на два подмножества $A^0 \cup {}^0A = A$, $A^0 \cap {}^0A = \varnothing$ и частичной бинарной коммутативной операцией «·» (произведение), удовлетворяющей следующим условиям:

- (1) произведение $a \cdot b$ определено тогда и только тогда, когда a, b различные однотипные элементы из A (элементы a, b называются однотипными, если $a, b \in A^0$ или $a, b \in {}^0A$);
 - (2) если определено произведение $a \cdot b$, то элементы a и $a \cdot b$ неоднотипные;
- (3) для любых $a,b,c\in A$, для которых определены произведения $a\cdot b, a\cdot c$ и $(a\cdot b)\cdot (a\cdot c)$, выполняется равенство $(a\cdot b)\cdot (a\cdot c)=a$;
- (4) существуют попарно различные $a, b, c, d \in A$ такие, что определены и попарно различны произведения $a \cdot b, b \cdot c, c \cdot d, d \cdot a$.

Используя общую терминологию теории проективных плоскостей, будем называть элементы A^0 точками, а элементы 0A — прямыми.

Другие основные определения и результаты, разработанные в рамках указанного подхода А. И. Ширшова, могут быть найдены читателем в [8].

Будем рассматривать произвольную проективную плоскость $\langle A, (A^0, {}^0A), \cdot \rangle$ как модель $\mathfrak{A} = \langle A, A^0, {}^0A, P^{\mathfrak{A}} \rangle$ предикатной сигнатуры

$$\sigma = \langle A^0, {}^0A, P \rangle$$

с носителем A, где A^0 и 0A — одноместные предикатные символы, интерпретируемые в $\mathfrak A$ как соответствующие элементы разбиения ее носителя, а P — трехместный предикатный символ, выделяющий график частичной операции, т. е.

$$P^{\mathfrak{A}} = \{\langle a, b, c \rangle \mid a, b, c \in A, a \cdot b \text{ определено и равно } c\}.$$

Таким образом, проективная плоскость $\mathfrak A$ автоматна над алфавитом Σ , если 1-местные отношения $A,\ A^0,\ ^0A$ и 3-местное отношение $P^{\mathfrak A}$ автоматны над Σ . Переход к предикатной сигнатуре позволяет использовать методы и понятия теории автоматных моделей.

§ 2. Свободно порожденные проективные плоскости

В данном параграфе покажем, что произвольная свободно порожденная проективная плоскость не обладает автоматными представлениями ни над каким конечным алфавитом.

Общее определение свободно порожденных проективных плоскостей и их основные свойства могут быть найдены в [8, 9]. Однако для доказательства результатов данного параграфа потребуется только предложенная в [9] конструкция свободно порожденной проективной плоскости, которую можно описать без обращения к исходному определению свободно порожденной плоскости. Напомним основные определения данной конструкции.

Конфигурацией называется алгебраическая система $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ с разбиением носителя A на два подмножества $A^0 \cup {}^0A = A$, $A^0 \cap {}^0A = \varnothing$ и бинарным симметричным отношением $I \subseteq A^2$, называемым *отношением инци-* дентности и удовлетворяющим следующим условиям:

- (1) если $\langle a, b \rangle \in I$, то a, b разнотипные элементы из A;
- (2) если $\langle a,c\rangle \in I, \langle b,c\rangle \in I, \langle a,d\rangle \in I$ и $\langle b,d\rangle \in I$, то a=b или c=d.

На любой конфигурации $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ дополнительно определим частичную бинарную коммутативную операцию «·» следующим образом:

(3) произведение $a \cdot b$ определено и $a \cdot b = c$ тогда и только тогда, когда a, b — различные однотипные элементы A такие, что $\langle a, c \rangle \in I$ и $\langle b, c \rangle \in I$.

Конфигурация $\mathfrak{A} = \langle A, (A^0, {}^0A), I_A \rangle$ является подконфигурацией конфигурации $\mathfrak{B} = \langle B, (B^0, {}^0B), I_B \rangle$, если $A^0 \subseteq B^0$, ${}^0A \subseteq {}^0B$ и $I_A = I_B \cap A^2$. Подконфигурация \mathfrak{A} конфигурации \mathfrak{B} является полной, если для любых различных однотипных $a, b \in A$ из того, что в \mathfrak{A} не определено произведение $a \cdot b$, следует, что в \mathfrak{B} произведение $a \cdot b$ тоже не определено.

Конфигурация \mathfrak{A} незамкнута, если в ней существуют различные однотипные a и b, для которых в \mathfrak{A} не определено произведение $a \cdot b$. Конфигурация \mathfrak{A} невырожденна, если ее свободное замыкание $\mathfrak{F}(\mathfrak{A})$ невырожденно, т. е. в $\mathfrak{F}(\mathfrak{A})$ выполняется условие (4) из определения проективной плоскости.

Пусть $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ — произвольная невырожденная незамкнутая конфигурация. Рассматривая элементы множества A как символы алфавита, определим по индукции множество W(A) неассоциативных слов над алфавитом A:

- (1) если $u \in A$, то $u \in W(A)$;
- (2) если $u, v \in W(A)$, то $(uv) \in W(A)$.

 \mathcal{A} линой слова $w \in W(A)$ назовем число |w| вхождений элементов A в слово w. Becom слова $w \in W(A)$ будем называть число $||w|| = n_1 + 2n_2$, где n_1 и n_2 — число вхождений в запись слова w символов из A^0 и A^0 соответственно.

Предположим, что на множестве A задан строгий полный порядок \prec . Продолжим этот порядок на множество W(A) следующим образом: для любых $w_1 \neq w_2$ из W(A) положим $w_1 \succ w_2$ тогда и только тогда, когда

- $(1) \|w_1\| > \|w_2\|,$ либо
- $(2) \|w_1\| = \|w_2\|$ и $|w_1| > |w_2|$, либо
- $(3) \|w_1\| = \|w_2\|, \ |w_1| = |w_2| = 1$ и $w_1 \succ w_2$, либо
- (4) $\|w_1\| = \|w_2\|, \, |w_1| = |w_2| > 1, \, w_1 = u_1u_2, \, w_2 = u_3u_4$ и $u_1 \succ u_3$, либо
- $(5) ||w_1|| = ||w_2||, |w_1| = |w_2| > 1, w_1 = u_1u_2, w_2 = u_3u_4, u_1 = u_3 \text{ if } u_2 \succ u_4.$

Множество $F^0 \subseteq W(A)$ правильных слов 1-го типа и множество ${}^0F \subseteq W(A)$ правильных слов 2-го типа определяются по индукции.

- 1^{0} . Если $w \in A^{0} \ (w \in {}^{0}A)$, то w называется npaвильным словом 1-го muna (2-го muna).
- 2^{0} . Если $w=w_{1}w_{2}$, то w называется *правильным словом* 1-го *типа* (2-го *типа*) тогда и только тогда, когда выполнены следующие условия:
 - (1) $w_1 \succ w_2$ и w_1, w_2 правильные слова 2-го типа (1-го типа);
 - (2) не существует u такого, что $\langle u, w_1 \rangle \in I$ и $\langle u, w_2 \rangle \in I$;
 - (3) если $w_1 = w_1'w_1''$, то $\langle w_1', w_2 \rangle \notin I$ и $\langle w_1'', w_2 \rangle \notin I$;
 - (4) если $w_2 = w_2'w_2''$, то $\langle w_2', w_1 \rangle \notin I$ и $\langle w_2'', w_1 \rangle \notin I$;
 - (5) если $w=(w_3w_4)(w_5w_6)$, то $\{w_3,w_4\}\cap\{w_5,w_6\}=\varnothing;$
 - (6) если $w = ((w_3w_4)w_5)w_2$ или $w = (w_5(w_3w_4))w_2$, то $w_2 \notin \{w_3, w_4\}$;
 - (7) если $w = w_1((w_3w_4)w_5)$ или $w = w_1(w_5(w_3w_4))$, то $w_1 \notin \{w_3, w_4\}$.

Если для слов $w_1, w_2 \in W(A)$ одно из слов w_1w_2 или w_2w_1 правильное, то это правильное слово будем обозначать через $\overline{w_1w_2}$.

На множестве $F = F^0 \cup {}^0F$ определим частичную бинарную коммутативную операцию «·» следующим образом. Пусть w_1, w_2 — различные однотипные правильные слова. Тогда

- (1) если существует u такое, что $\langle u, w_1 \rangle \in I$ и $\langle u, w_2 \rangle \in I$, то полагаем $w_1 \cdot w_2 = w_2 \cdot w_1 = u$;
- (2) если одно из слов w_1w_2 или w_2w_1 правильное, то полагаем $w_1\cdot w_2=w_2\cdot w_1=\overline{w_1w_2};$
- (3) если $w_1=w_3w_4,\ w_2=w_5w_6$ и существует $w\in\{w_3,w_4\}\cap\{w_5,w_6\},$ то полагаем $w_1{\cdot}w_2=w_2{\cdot}w_1=w;$
- (4) если существуют такие слова $w_1', w_1'',$ что $w_1 = \overline{(\overline{w_1'w_2})w_1''},$ то полагаем $w_1 \cdot w_2 = w_2 \cdot w_1 = \overline{w_1'w_2};$
 - (5) если $w_1 = \overline{w_1'w_1''}$ и пара $\langle w_2, w_1' \rangle \in I$, то полагаем $w_1 \cdot w_2 = w_2 \cdot w_1 = w_1'$;
 - (6) во всех остальных случаях будем считать, что $w_1 \cdot w_2$ не определено.

Определенная таким образом алгебраическая система $\mathfrak{F}(\mathfrak{A}) = \langle F, (F^0, {}^0F), \cdot \rangle$ с точностью до изоморфизма является проективной плоскостью, свободно порожденной конфигурацией \mathfrak{A} .

Если в конфигурации $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ отношение индицентности I и одно из множеств A^0 или 0A пустые, то правильные относительно конфигурации \mathfrak{A} слова будем называть *правильными относительно множества* A.

Изложим две конструкции, необходимые для непосредственного доказательства основного результата параграфа.

Конструкция А. Пусть $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ — невырожденная незамкнутая конфигурация, содержащая в себе полную подконфигурацию $\mathfrak{A}_0 = \langle A_0, (A_0^0, {}^0A_0), I_0 \rangle$, где $A_0^0 = \{a_1, a_2, a_3, a_4, b_1, b_4\}$, ${}^0A_0 = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$, $A_0 = A_0^0 \cup {}^0A_0$, а отношение инцидентности I_0 определяется следующей таблицей (для каждой прямой перечислены инцидентные ей точки):

```
\alpha_1: a_1, a_3, b_2; \quad \alpha_2: a_2, a_3, b_1; \quad \alpha_3: a_1, a_4, b_1; \quad \alpha_4: a_2, a_4, b_2; \quad \alpha_5: b_1, b_2.
```

Конфигурация \mathfrak{A}_0 изображена на рис. 1.

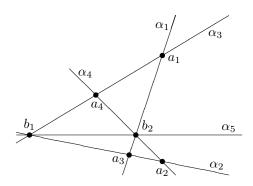


Рис. 1.

Упорядочим элементы A_0 , положив по определению

$$a_1 \prec a_2 \prec a_3 \prec a_4 \prec \alpha_1 \prec \alpha_2 \prec \alpha_3 \prec \alpha_4 \prec b_1 \prec b_2 \prec \alpha_5$$

и определим следующие слова в алфавите A_0 :

$$\begin{split} e_1 &= (a_2a_1)\alpha_5, \quad e_3 = [((a_4a_3)(a_2a_1))b_1]\alpha_1, \quad e_5 = [((a_4a_3)(a_2a_1))b_2]\alpha_2, \\ e_2 &= (a_4a_3)\alpha_5, \quad e_4 = [((a_4a_3)(a_2a_1))b_1]\alpha_4, \quad e_6 = [((a_4a_3)(a_2a_1))b_2]\alpha_3, \\ g_1 &= (e_2a_2)(e_1a_4), \quad g_3 = (e_6a_2)(e_1a_3), \quad g_5 = (e_5a_1)(e_4a_3), \\ g_2 &= (e_3a_2)(e_2a_1), \quad g_4 = (e_4a_1)(e_3a_4), \quad g_6 = (e_6a_3)(e_5a_4). \end{split}$$

Используя полноту подконфигурации \mathfrak{A}_0 в конфигурации \mathfrak{A} , непосредственно можно установить, что слова e_1, e_2, \ldots, e_6 и g_1, g_2, \ldots, g_6 правильные относительно конфигурации \mathfrak{A} , причем $e_1 \prec e_2 \prec \cdots \prec e_6$ и $g_1 \prec g_2 \prec \cdots \prec g_6$.

Результатом конструкции A будем считать множество $G = \{g_1, g_2, \dots, g_6\}$. В условиях конструкции A справедлива

Лемма 3. Любое правильное относительно множества G слово правильное относительно конфигурации \mathfrak{A} .

ДОКАЗАТЕЛЬСТВО. Пусть w — правильное относительно множества G слово. Допустим, w не правильное относительно конфигурации $\mathfrak A$. Возможен один из следующих случаев.

- (1) $w=w_1w_2$ и существует u такое, что $\langle w_1,u\rangle\in I$ и $\langle w_2,u\rangle\in I$. В этом случае |w|=2, но каждое из слов g_1,\ldots,g_6 имеет длину не меньше чем 8. Следовательно, данный случай невозможен.
- $(2)\ w=w_1(w_2w_3)$ или $w=(w_2w_3)w_1$, где $\langle w_1,w_2\rangle\in I$ или $\langle w_1,w_3\rangle\in I$. Поскольку w является словом в алфавите A_0 , а конфигурация \mathfrak{A}_0 полна в \mathfrak{A} , заключаем, что $\langle w_1,w_2\rangle\in I_0$ или $\langle w_1,w_3\rangle\in I_0$. Заметим, что любое из слов g_1,\ldots,g_6 начинается и заканчивается буквой из набора $\{a_1,a_2,a_3,a_4\}$. Следовательно, если $w=w_1(w_2w_3)$, то $w_1=a_i$ для некоторого $i,\ \langle w_1,w_2\rangle\in I_0$ и $w_2=\alpha_j$ для некоторого j. Если же $w=(w_2w_3)w_1$, то $w_1=a_i$ для некоторого $i,\ \langle w_1,w_3\rangle\in I_0$ и $w_3=\alpha_j$ для некоторого j. Другими словами, $w=a_i(\alpha_jw_3)$ или $w=(w_2\alpha_j)a_i$, причем $\langle a_i,\alpha_j\rangle\in I_0$. Вариант $w=a_i(\alpha_jw_3)$ невозможен, так как у любого из слов g_1,\ldots,g_6 первые две буквы содержатся в наборе $\{a_1,a_2,a_3,a_4\}$. Вариант $w=(w_2\alpha_j)a_i$ также невозможен, поскольку каждое слово $g_k\ (1\leq k\leq 6)$ имеет суффикс α_ma_n с условием $\langle a_n,\alpha_m\rangle\notin I_0$.

- (3) $w = (w_1w_2)(w_3w_4)$ и существует $u \in \{w_1, w_2\} \cap \{w_3, w_4\}$. Поскольку w правильное относительно G, такой случай возможен лишь тогда, когда не все слова из w_1 , w_2 , w_3 , w_4 являются словами в алфавите G. Это, в свою очередь, возможно лишь в одном из следующих подслучаев.
- (3a) $w = g_i$ для некоторого i. Этот случай невозможен, поскольку каждое g_i является правильным относительно \mathfrak{A} .
- (36) $w_1w_2=g_i$ и $w_3w_4=g_j$ для некоторых $i\neq j$. Легко видеть из определения g_1,\ldots,g_6 , что в таком случае $\{w_1,w_2\}\cap\{w_3,w_4\}=\varnothing$.
- (3в) $w_1w_2=g_i$ для некоторого i, а w_3w_4 является словом в алфавите G таким, что $|w_3w_4|_G\geq 2$ (через $|v|_G$ мы обозначаем длину слова v относительно алфавита G). В этом случае слова w_3 и w_4 правильные относительно G, но при этом одно из них совпадает с собственным префиксом или суффиксом слова g_i , что невозможно.
- $(3\Gamma)\ w_3w_4=g_i$ для некоторого $i,\ a\ w_1w_2$ является словом в алфавите G таким, что $|w_1w_2|_G\geq 2$. Данный случай аналогичен п. (3в).
- (4) $w=w_1w_2$ и существуют такие w_3 , w_4 и w_5 , что $w_1=(w_3w_4)w_5$ или $w_1=w_5(w_3w_4)$, причем $w_2 \in \{w_3,w_4\}$. Отсюда так же, как и выше, заключаем, что не все слова из w_3 , w_4 , w_5 являются словами в алфавите G. Следовательно возможен один из следующих подслучаев.
 - $(4a) w = g_i$ для некоторого i. См. п. (3a).
- (46) $w_1 = g_i$ и $w_2 = g_j$ для некоторых $i \neq j$. Тогда g_j является собственным подсловом в g_i , что невозможно по определению слов g_1, \ldots, g_6 .
- (4в) $w_2=g_i$ для некоторого i, а w_1 является словом в алфавите G таким, что $|w_1|_G\geq 2$. Учитывая однотипность w_1 и w_2 , заключаем, что $|w_1|_G\geq 4$. Следовательно, слова w_3 , w_4 и w_5 правильные над G. Последнее противоречит правильности w над G.
- $(4\Gamma)\ w_1=g_i$ для некоторого i, а w_2 является словом в алфавите G таким, что $|w_2|_G\geq 2.$ В этом случае $1=|w_1|_G>|w_2|_G,$ что невозможно.
- (4д) w_1 и w_2 являются словами в алфавите G такими, что $|w_1|_G \geq 2$ и $|w_2|_G \geq 2$. Так как $|w_1|_G \geq 2$, то w_3w_4 и w_5 являются словами в алфавите G. Поскольку $|w_2|_G \geq 2$, заключаем $|w_3w_4|_G \geq 2$. Следовательно, w_3 и w_4 являются словами в алфавите G, что невозможно в наших предположениях.
- (5) $w=w_1w_2$ и существуют такие w_3, w_4 и w_5 , что $w_2=(w_3w_4)w_5$ или $w_2=w_5(w_3w_4)$, причем $w_1\in\{w_3,w_4\}$. Этот случай разбирается аналогично п. (4). \square

Следующая конструкция использовалась в [7] для доказательства теоремы вложения произвольной свободной проективной плоскости конечного ранга в свободную проективную плоскость ранга 8.

Конструкция Б. Пусть $G = \{g_1, g_2, \dots, g_n\}$ — множество однотипных элементов, упорядоченных в соответствии с индексами, т. е. $g_1 \prec g_2 \prec \cdots \prec g_n$, и $n \geq 6$.

Для каждого набора натуральных чисел $\{i_1,i_2,i_3,i_4\}$ такого, что $1 \le i_1 < i_2 < i_3 < i_4 \le n$, определим слово

$$h_G(i_1, i_2, i_3, i_4) = ((g_{i_4}g_{i_3})(g_{i_2}g_{i_1}))((g_{i_4}g_{i_2})(g_{i_3}g_{i_1})).$$

Каждое такое слово $h_G(i_1, i_2, i_3, i_4)$ правильное относительно множества G. Результатом конструкции \mathcal{B} будем считать множество

$$H = \{h_G(i_1, i_2, i_3, i_4) \mid 1 \le i_1 < i_2 < i_3 < i_4 \le n\}.$$

Будем считать, что на множестве H задан порядок, индуцированный порядком на G. Заметим, что мощность |H| множества H равна $C_n^4=(n(n-1)(n-2)(n-3))/24$ и при $n\geq 6$ справедливо |H|>|G|. Конструкция Б обладает следующим свойством.

Лемма 4 [7]. Любое правильное относительно множества H слово правильное относительно множества G.

Теорема 5. Произвольная свободно порожденная проективная плоскость не имеет автоматных представлений.

Доказательство. Пусть $\mathfrak{A} = \langle A, (A^0, {}^0A), I \rangle$ — невырожденная незамкнутая конфигурация, $\mathfrak{F}(\mathfrak{A})$ — проективная плоскость, свободно порожденная конфигурацией \mathfrak{A} . По лемме 1 из [10] существует конфигурация \mathfrak{B} , свободно эквивалентная \mathfrak{A} и содержащая в себе полную подконфигурацию \mathfrak{A}_0 из конструкции А. Поскольку плоскости, свободно порожденные свободно эквивалентными конфигурациями, совпадают, можно считать, что \mathfrak{A} содержит полную подконфигурацию \mathfrak{A}_0 . В частности, \mathfrak{A} содержит конечное подмножество $A_0 = \{a_1, a_2, a_3, a_4, b_1, b_4, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$.

Допустим, что $\mathfrak{F}(\mathfrak{A})$ имеет автоматное представление над некоторым алфавитом Σ . Не ограничивая общности, можно считать, что $\mathfrak{F}(\mathfrak{A})$ автоматна над Σ . Ясно, что модель $\mathfrak{F}(\mathfrak{A})$ локально конечна. Следовательно, для выбранного выше конечного множества A_0 по предложению 1 найдутся $a,b\in\omega$ такие, что для любого $n\in\omega$ в случае $|\Sigma|=1$ имеет место $|L_n(A_0)|\leq an+b$, а в случае $|\Sigma|\geq 2$ справедливо $|L_n(A_0)|\leq |\Sigma|^{an+b}$.

Определим последовательность множеств $L'_n \subseteq L_n(A_0)$, применив сначала конструкцию A, а затем многократно конструкцию Б.

Для $n \le 6$ последовательно положим

$$L'_0 = A_0 = \{a_1, a_2, a_3, a_4, b_1, b_4, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\},$$

$$L'_1 = \{a_4 a_3, a_2 a_1\},$$

$$L'_2 = \{(a_4 a_3)(a_2 a_1), (a_4 a_3)\alpha_5, (a_2 a_1)\alpha_5\},$$

$$L'_3 = \{((a_4 a_3)(a_2 a_1))b_1, ((a_4 a_3)(a_2 a_1))b_2\},$$

$$\begin{split} L_4' &= \{ [((a_4a_3)(a_2a_1))b_1]\alpha_1, [((a_4a_3)(a_2a_1))b_1]\alpha_4, \\ &\qquad [((a_4a_3)(a_2a_1))b_2]\alpha_2, [((a_4a_3)(a_2a_1))b_2]\alpha_3 \}, \end{split}$$

$$L_5' = \{e_1a_3, e_1a_4, e_2a_1, e_2a_2, e_3a_2, e_3a_4, e_4a_1, e_4a_3, e_5a_1, e_5a_4, e_6a_2, e_6a_3\},$$

$$L_6' = \{g_1, g_2, g_3, g_4, g_5, g_6\},$$

где e_1, \ldots, e_6 и g_1, \ldots, g_6 — слова из конструкции А. По лемме 3 каждое правильное относительно множества L_6' слово правильно относительно конфигурации \mathfrak{A} , значит, принадлежит плоскости $\mathfrak{F}(\mathfrak{A})$.

Пусть для n=3t+6, где $t\geq 0$, уже определено множество L'_n такое, что $L'_n\subseteq L_n(A_0),\ k=|L'_n|\geq 6$, и каждое правильное относительно множества L'_n слово правильно относительно конфигурации $\mathfrak A$.

Обозначим элементы L'_n через g_1,g_2,\ldots,g_k таким образом, что $g_1\prec g_2\prec\cdots\prec g_k$. Применяя к $G=L'_n=\{g_1,g_2,\ldots,g_k\}$ конструкцию B, определим множества

$$L'_{n+1} = \{g_j g_i \mid 1 \le i < j \le k\},$$

$$L'_{n+2} = \{(g_{i_4} g_{i_3})(g_{i_2} g_{i_1}), (g_{i_4} g_{i_2})(g_{i_3} g_{i_1}) \mid 1 \le i_1 < i_2 < i_3 < i_4 \le k\},$$

$$L'_{n+3} = \{h_G(i_1, i_2, i_3, i_4) \mid 1 \le i_1 < i_2 < i_3 < i_4 \le k\},$$

где $h_G(i_1,i_2,i_3,i_4)$ — слова из конструкции Б, примененной к множеству $G=L'_n$. Заметим, что $|L'_{n+3}|>|L'_n|\geq 6$. В силу леммы 4 каждый элемент L'_{n+3} является правильным словом относительно множества L'_n и тем самым правильным относительно конфигурации $\mathfrak A$. Таким образом, L'_{n+3} является подмножеством в плоскости $\mathfrak F(\mathfrak A)$. Следовательно, $L'_{n+3}\subseteq L_{n+3}(A_0)$.

Докажем индукцией по $t \ge 1$, что для n = 3t + 6 имеет место неравенство

$$|L'_n| > 4 \cdot \left(\frac{3}{2}\right)^{2^t}.$$

Действительно, для n=9 имеем $|L_9'|=C_6^4=15>9=4\cdot(3/2)^2$. Для произвольного n=3t+6, где t>1, используя справедливое при всех $m\geq 6$ неравенство $C_m^4\geq \left(\frac{m}{2}\right)^2$, а также индукционное предположение, заключаем

$$|L'_{n+3}| = C^4_{|L'_n|} \geq \left(\frac{|L'_n|}{2}\right)^2 > \left(\frac{4\cdot (3/2)^{2^t}}{2}\right)^2 = 4\cdot \left(\frac{3}{2}\right)^{2^{t+1}}.$$

Таким образом, с учетом включения $L_n'\subseteq L_n(A_0)$ для всех $t\geq 1$ в случае $|\Sigma|=1$ имеет место неравенство

$$4\cdot\left(\frac{3}{2}\right)^{2^t} < a(3t+6)+b,$$

а в случае $|\Sigma| \geq 2$ справедливо неравенство

$$4 \cdot \left(\frac{3}{2}\right)^{2^t} < |\Sigma|^{a(3t+6)+b}.$$

В любом случае для достаточно больших t последнее неравенство неверное. Полученное противоречие окончательно доказывает теорему. \square

§ 3. Дезарговы проективные плоскости

В данном параграфе докажем, что произвольная дезаргова (паппова) проективная плоскость автоматно представима тогда и только тогда, когда она конечна.

Для доказательства данного результата потребуются некоторые сведения из теории дезарговых и папповых проективных плоскостей.

Проективная плоскость \mathfrak{A} *дезаргова* тогда и только тогда, когда для любых ее однотипных элементов $a_1,\ b_1,\ c_1,\ a_2,\ b_2,\ c_2$ таких, что определены произведения $a_1 \cdot a_2,\ b_1 \cdot b_2,\ c_1 \cdot c_2,\ (a_1 \cdot b_1) \cdot (a_2 \cdot b_2),\ (a_1 \cdot c_1) \cdot (a_2 \cdot c_2),\ (b_1 \cdot c_1) \cdot (b_2 \cdot c_2),\ a$ тройки $\{a_1,b_1,c_1\},\ \{a_2,b_2,c_2\}$ образуют невырожденные треугольники, если $a_1 \cdot a_2,\ b_1 \cdot b_2,\ c_1 \cdot c_2$ инцидентны одному и тому же элементу, то $(a_1 \cdot b_1) \cdot (a_2 \cdot b_2),\ (a_1 \cdot c_1) \cdot (a_2 \cdot c_2),\ (b_1 \cdot c_1) \cdot (b_2 \cdot c_2)$ тоже инцидентны одному и тому же элементу.

Проективная плоскость $\mathfrak A$ nannosa тогда и только тогда, когда для любых ее однотипных элементов $a_1,\ b_1,\ c_1,\ a_2,\ b_2,\ c_2$ таких, что $a_1\cdot b_1=a_1\cdot c_1=b_1\cdot c_1,\ a_2\cdot b_2=a_2\cdot c_2=b_2\cdot c_2,\ a_1\cdot b_1\neq a_2\cdot b_2,\ a$ четверка $\{a_1,b_1,a_2,b_2\}$ образует невырожденный четырехугольник, если определены произведения $a_3=(b_1\cdot c_2)\cdot (b_2\cdot c_1),\ b_3=(a_1\cdot c_2)\cdot (a_2\cdot c_1),\ c_3=(a_1\cdot b_2)\cdot (a_2\cdot b_1),\$ то $a_3,\ b_3,\ c_3$ инцидентны одному и тому же элементу.

Пусть $\mathfrak{A} = \langle A, (A^0, {}^0A), \cdot \rangle$ — произвольная проективная плоскость. Каждому ее элементу a поставим в соответствие множество $T_a = \{b \in A \mid \exists c(b \cdot c = a)\}.$

Известно (см. [8]), что все множества вида T_a равномощны. Если $\mathfrak A$ конечна, то натуральное n такое, что $|T_a|=n+1$, называют $nopsd\kappa om$ проективной плоскости $\mathfrak A$. Если $\mathfrak A$ бесконечна, то $nopsdo\kappa$ проективной плоскости $\mathfrak A$ совпадает с мощностью множества T_a .

Следуя [11], определим координатизацию проективной плоскости \mathfrak{A} . Для этого выберем множество R такое, что мощность R совпадает с порядком плоскости \mathfrak{A} , R содержит символы 0 и 1, $0 \neq 1$, но символ ∞ не принадлежит R.

Пусть $l_1, l_2, l_\infty \in {}^0A$ — произвольные прямые такие, что $l_1 \cdot l_2 \neq l_1 \cdot l_\infty$. Обозначим $o = l_1 \cdot l_2$, $x = l_1 \cdot l_\infty$, $y = l_2 \cdot l_\infty$. Выберем также произвольную точку $i \in A^0$, не инцидентную ни одной из прямых l_1 , l_2 , l_∞ . Обозначим $a = (i \cdot y) \cdot l_1$, $b = (i \cdot x) \cdot l_2$, $j = (a \cdot b) \cdot l_\infty$.

Сопоставим (произвольным образом) элементы из R элементам из $T_{l_1} \setminus \{x\}$ так, чтобы 0 был сопоставлен точке o, а 1 — точке a. Если $r \in R$ сопоставлен $c \in T_{l_1} \setminus \{x\}$, то говорим, что c имеет координаты (r,0).

Пусть $d \in T_{l_2} \setminus \{y\}$. Положим $d' = (j \cdot d) \cdot l_1$. Отображение $d \mapsto d'$ является биекцией $T_{l_2} \setminus \{y\}$ на $T_{l_1} \setminus \{x\}$. Тогда если d' имеет координаты (r,0), то говорим, что d имеет координаты (0,r).

Пусть далее $e \notin T_{l_{\infty}}$. Положим $e' = (y \cdot e) \cdot l_1$, $e'' = (x \cdot e) \cdot l_2$. Отображение $e \mapsto \langle e', e'' \rangle$ является биекцией $A^0 \backslash T_{l_{\infty}}$ на $(T_{l_1} \backslash \{x\}) \times (T_{l_2} \backslash \{y\})$. Тогда если e' имеет координаты (r, 0), а e'' имеет координаты (0, q), где $r, q \in R$, то говорим, что e имеет координаты (r, q).

Определим координаты элементов вида $c \in T_{l_{\infty}}$. Если $c \neq y$ и точка $(c \cdot a) \cdot l_2$ имеет координаты (0, m) для некоторого $m \in R$, то говорим, что c имеет координату (m). Элементу y по определению приписываем координату (∞) .

Таким образом, каждый элемент первого типа получил единственные координаты, которые зависят от выбора o, x, y, i и от выбора соответствия между R и $T_{l_1}\setminus\{x\}$.

Координаты элементов второго типа определяются следующим образом.

Если $\alpha \in {}^{0}A$ и $y \notin T_{\alpha}$, то $\alpha \cdot l_{\infty}$ имеет координату (m), а $\alpha \cdot l_{2}$ имеет координаты (0,k) для некоторых $m,k \in R$. В этом случае говорим, что α имеет координаты [m,k].

Если $\alpha \in {}^{0}A$ и $y \in T_{\alpha}$, но $\alpha \neq l_{\infty}$, то $\alpha \cdot l_{1}$ имеет координаты (r,0). Тогда говорим, что α имеет координату [r].

Наконец, элементу l_{∞} по определению приписываем координату $[\infty]$.

Зададим на множестве R тернарную операцию T, положив для любых $a,b,c,k\in R$ по определению

$$T(a,b,c)=k$$

 \Leftrightarrow (точка с координатами (b,c) инцидентна прямой с координатами [a,k]).

Определим две бинарные операции на R, положив для всех $a, b \in R$

$$a + b = T(1, a, b), \quad a \cdot b = T(a, b, 0).$$

Алгебраическая система $(R, +, \cdot, 0, 1)$ называется натуральным телом проективной плоскости $\mathfrak A$ (зависящим от выбора o, x, y, i и соответствия между R и $T_{l_1} \setminus \{x\}$).

Справедливо следующее

Предложение 6 [8,11]. Пусть $\langle R,+,\cdot,0,1\rangle$ — произвольное натуральное тело проективной плоскости $\mathfrak A$. Тогда справедливы следующие утверждения:

- (a) $\langle R, +, \cdot, 0, 1 \rangle$ является ассоциативным телом тогда и только тогда, когда $\mathfrak A$ дезаргова;
 - (б) $\langle R, +, \cdot, 0, 1 \rangle$ является полем тогда и только тогда, когда $\mathfrak A$ паппова.

Основной результат настоящего параграфа основан на относительной элементарной определимости ассоциативных тел и полей в дезарговых и папповых плоскостях соответственно. В [12] доказана теорема о том, что не существует бесконечных автоматных областей целостности. Легко видеть, что изложенное в [12] доказательство данной теоремы без каких-либо изменений годится для некоммутативного случая, а именно для случая ассоциативных тел. Другими словами, справедливо

Предложение 7 [12]. Не существует бесконечных автоматных ассоциативных тел.

Перейдем к изложению основного результата о неавтоматности бесконечных дезарговых плоскостей.

Теорема 8. Дезаргова проективная плоскость имеет автоматное представление тогда и только тогда, когда она конечна.

Доказательство. Допустим, что бесконечная дезаргова плоскость $\mathfrak{A} = \langle A, A^0, {}^0A, P^{\mathfrak{A}} \rangle$ является автоматной моделью над некоторым алфавитом Σ .

Рассмотрим некоторую координатизацию плоскости $\mathfrak A$ и соответствующее натуральное тело $\langle R,+,\cdot,0,1\rangle$, которое в силу предложения 6 является ассоциативным телом, причем бесконечным. Заметим, что выбор точек $o,\ x,\ y,\ i$ и биекции $\nu:R\to T_{l_1}\backslash\{x\}$ полностью и однозначно определяет тернарную операцию T и операции натурального тела.

Заменим операции натурального тела их графиками и докажем, что полученная предикатная модель $\mathfrak{R}=\langle R,P_+,P_*\rangle$, где P_+ и P_* — соответственно графики операций сложения и умножения, относительно элементарно определима в \mathfrak{A} .

Используя обозначения из определения координатизации, приведенного выше, определим следующие формулы сигнатуры $\sigma = \langle A^0, {}^0A, P \rangle$, зависящие от параметров $l_1, l_2, l_\infty, x, y, a, j$:

$$\Theta(s) = P(s, x, l_1),$$

$$\Phi(s_1, s_2, s_3) = \Theta(s_1) \& \Theta(s_2) \& \Theta(s_3) \& \exists v_1 \exists v_2 \dots \exists v_7 (P(s_1, y, v_1) \& P(s_2, j, v_2)) \\ \& P(v_2, l_2, v_3) \& P(v_3, x, v_4) \& P(v_1, v_4, v_5) \& P(s_3, j, v_6) \& P(v_5, v_7, v_6)),$$

$$\Psi(s_1, s_2, s_3) = \Theta(s_1) \& \Theta(s_2) \& \Theta(s_3) \& \exists v_1 \exists v_2 \dots \exists v_8 (P(s_1, j, v_1) \\ \& P(v_1, l_2, v_2) \& P(v_2, a, v_3) \& P(v_3, l_\infty, v_4) \& P(s_3, j, v_5) \& P(v_5, l_2, v_6) \\ \& P(v_4, v_6, v_7) \& P(s_2, v_8, v_7)).$$

Определим в модели 21 отношения

$$R' = \{ s \in A \mid \mathfrak{A} \models \Theta(s) \},$$

$$P'_{+} = \{ \langle s_{1}, s_{2}, s_{3} \rangle \in A^{3} \mid \mathfrak{A} \models \Phi(s_{1}, s_{2}, s_{3}) \},$$

$$P'_{*} = \{ \langle s_{1}, s_{2}, s_{3} \rangle \in A^{3} \mid \mathfrak{A} \models \Psi(s_{1}, s_{2}, s_{3}) \}.$$

По предложению 2 модель $\Re' = \langle R', P'_+, P'_* \rangle$ автоматно представима.

Очевидно, что $R'=T_{l_1}\backslash\{x\}$ и отображение ν биективно отображает R на R'. Покажем, что для любых $r_1,r_2,r_3\in R$ имеет место эквивалентность

$$\langle r_1, r_2, r_3 \rangle \in P_+ \iff \langle \nu(r_1), \nu(r_2), \nu(r_3) \rangle \in P'_+$$

Действительно, обозначим $s_1=\nu(r_1),\ s_2=\nu(r_2),\ s_3=\nu(r_3).$ Следовательно, точки $s_1,\ s_2,\ s_3$ имеют координаты $(r_1,0),\ (r_2,0)$ и $(r_3,0)$ соответственно. Тогда в плоскости $\mathfrak A$ определены следующие произведения: $v_1=s_1\cdot y,\ v_2=s_2\cdot j,\ v_3=v_2\cdot l_2,\ v_4=v_3\cdot x,\ v_5=v_1\cdot v_4$ и $v_6=s_3\cdot j.$ При этом координаты указанных произведений соответственно равны $[r_1],\ [1,r_2],\ (0,r_2),\ [0,r_2],\ (r_1,r_2)$ и $[1,r_3].$

Стало быть, условие $\mathfrak{A} \models \Phi(s_1, s_2, s_3)$ равносильно тому, что для некоторого v_7 справедливо $v_5 \cdot v_7 = v_6$, а это, в свою очередь, эквивалентно тому, что точка с координатами (r_1, r_2) инцидентна прямой с координатами $[1, r_3]$. Последнее условие равносильно тому, что $T(1, r_1, r_2) = r_3$, т. е. $r_1 + r_2 = r_3$, что и требовалось.

Теперь покажем, что для любых $r_1, r_2, r_3 \in R$ имеет место эквивалентность

$$\langle r_1, r_2, r_3 \rangle \in P_* \iff \langle \nu(r_1), \nu(r_2), \nu(r_3) \rangle \in P'_*.$$

Так же, как и выше, обозначим $s_1=\nu(r_1),\ s_2=\nu(r_2),\ s_3=\nu(r_3).$ Точки $s_1,\ s_2,\ s_3$ имеют координаты $(r_1,0),\ (r_2,0)$ и $(r_3,0)$ соответственно. Тогда в плоскости $\mathfrak A$ определены произведения $v_1=s_1\cdot j,\ v_2=v_1\cdot l_2,\ v_3=v_2\cdot a,\ v_4=v_3\cdot l_\infty,\ v_5=s_3\cdot j,\ v_6=v_5\cdot l_2$ и $v_7=v_4\cdot v_6.$ При этом координаты указанных произведений соответственно равны $[1,r_1],\ (0,r_1),\ [r_1,r_1],\ (r_1),\ [1,r_3],\ (0,r_3)$ и $[r_1,r_3].$

Следовательно, условие $\mathfrak{A} \models \Psi(s_1,s_2,s_3)$ равносильно тому, что для некоторого v_8 справедливо $s_2 \cdot v_8 = v_7$, что, в свою очередь, эквивалентно тому, что точка с координатами $(r_2,0)$ инцидентна прямой с координатами $[r_1,r_3]$. Последнее условие равносильно тому, что $T(r_1,r_2,0)=r_3$, т. е. $r_1 \cdot r_2=r_3$, что и требовалось.

Таким образом, отображение ν является изоморфизмом ассоциативного кольца \mathfrak{R} на ассоциативное кольцо \mathfrak{R}' . Следовательно, \mathfrak{R} тоже автоматно представимо, что противоречит предложению 7. \square

Следствие 9. Паппова проективная плоскость имеет автоматное представление тогда и только тогда, когда она конечна.

ЛИТЕРАТУРА

- Khoussainov B., Nerode A. Automatic presentations of structures // Logic and computational complexity. Proc. LCC-1994. Berlin: Springer-Verl., 1995. P. 367–392. (Lect. Notes Comput. Sci.; V. 960).
- Khoussainov B., Nerode A. Open questions in the theory of automatic structures // Bull. Eur. Assoc. Theor. Comput. Sci. 2008. V. 94. P. 181–204.
- 3. Rubin S. Automata presenting structures: A survey of the finite string case // Bull. Symb. Log. 2008. V. 14, N 2. P. 169–209.
- Khoussainov B., Minnes M. Three lectures on automatic structures // Logic colloquium 2007. Cambridge: Cambridge Univ. Press, 2010. P. 132–176. (Lect. Notes in Logic; V. 35).
- Tsankov T. The additive group of the rationals does not have an automatic presentation // J. Symb. Logic. 2011. V. 76, N 4. P. 1341–1351.
- Kuske D., Liu J., Lohrey M. The isomorphism problem on classes of automatic structures with transitive relations // Trans. Amer. Math. Soc. 2013. V. 365, N 10. P. 5103-5151.
- 7. Ширшов А. И., Никитин А. А. К теории проективных плоскостей // Алгебра и логика. 1981. Т. 20, № 3. С. 330–356.
- 8. Ширшов А. И., Никитин А. А. Алгебраическая теория проективных плоскостей. Новосибирск: Новосибирск. гос. ун-т, 1987.

- 9. Никитин А. А. О свободно порожденных проективных плоскостях // Алгебра и логика. 1983. Т. 22, № 1. С. 61–77.
- **10.** Никитин А. А. О гомоморфизмах свободно порожденных проективных плоскостей // Алгебра и логика. 1981. Т. 20, № 4. С. 419–426.
- Hughes D. R., Piper F. C. Projective planes. New York; Heidelberg; Berlin: Springer-Verl., 1973
- 12. Khoussainov B., Nies A., Rubin S., Stephan F. Automatic structures: richness and limitations // Logical methods in computer science. 2007. V. 3, N 2. P. 1–18.

Cтатья поступила 29 августа 2012 г.

Денисенко Анастасия Сергеевна, Когабаев Нурлан Талгатович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 nastya0887@yandex.ru, kogabaev@math.nsc.ru