ОБ ОДНОМ КЛАССЕ НАСЛЕДСТВЕННЫХ НАСЫЩЕННЫХ СВЕРХРАДИКАЛЬНЫХ ФОРМАЦИЙ

С. Ф. Каморников, В. Н. Тютянов

Аннотация. Рассматривается специальный класс наследственных насыщенных формаций конечных групп. Анализируется роль таких формаций в проблеме классификации всех сверхрадикальных формаций.

Ключевые слова: конечная группа, критическая группа, сверхрадикальная насыщенная формация.

Светлой памяти Л. А. Шеметкова посвящается

1. Введение

В работе рассматриваются только конечные группы, используются определения и обозначения, принятые в [1].

Формация \mathfrak{F} называется формацией с условием Шеметкова, если любая \mathfrak{F} -критическая группа является либо группой Шмидта, либо группой простого порядка. Как показано в [2,3], любая разрешимая насыщенная формация \mathfrak{F} с условием Шеметкова обладает следующим свойством.

Если A и B — \mathfrak{F} -субнормальные \mathfrak{F} -подгруппы группы G = AB, то $G \in \mathfrak{F}$.

В связи с этим результатом (и его дальнейшим развитием в работе [4]) в «Коуровской тетради» [5] под номером 14.99 Л. А. Шеметковым сформулирована задача нахождения всех насыщенных сверхрадикальных формаций.

Первая серия таких неразрешимых формаций построена Л. А. Шеметковым в [6] (совместно с В. Н. Семенчуком): любая формация вида $\bigcap_{i,j\in I} \mathfrak{G}_{\pi_i}\mathfrak{G}_{\pi_j}$,

где \mathfrak{G}_{π_i} — формация всех π_i -групп, сверхрадикальна. В [7] доказано, что такими формациями исчерпываются все насыщенные наследственные сверхрадикальные формации \mathfrak{F} , у которых все \mathfrak{F} -критические группы разрешимы (в этом случае \mathfrak{F} -критические группы являются либо группами Шмидта, либо группами простого порядка, а значит, \mathfrak{F} является формацией с условием Шеметкова).

В то же время простые примеры показывают, что класс \mathfrak{F} -критических групп насыщенной сверхрадикальной формации \mathfrak{F} может содержать и неразрешимые группы. Поэтому в общем случае множество насыщенных сверхрадикальных формаций шире множества формаций с условием Шеметкова.

В настоящей работе с использованием классификации конечных простых неабелевых групп строится новая серия наследственных насыщенных сверхрадикальных формаций, включающая в себя многие известные примеры сверхрадикальных формаций: мы рассматриваем формации $\mathfrak{F}=LF(f)$, имеющие такое полное локальное формационное определение f, что $f(p)=\mathrm{E}_{f(p)}f(p)$ и f(p)

наследственная формация для любого $p \in \text{Supp}(f)$. Исчерпывающее описание §-критических групп для таких формаций приводится в теореме 1.

Теорема 1. Пусть $\mathfrak{F} = LF(f)$, где f — полная формационная функция такая, что $f(p) = \mathcal{E}_{f(p)} f(p)$ и f(p) — наследственная формация для любого $p \in$ $\mathrm{Supp}(f)$. Если $G-\mathfrak{F}$ -критическая группа c единичной подгруппой Фраттини, то справедливо одно из следующих утверждений:

- (I) группа G имеет простой порядок p, причем $p \notin \pi(\mathfrak{F})$;
- (II) группа G является группой Шмидта;
- (III) G простая неабелева группа;
- (IV) G примитивная группа c абелевым p-цоколем N и максимальной подгруппой M такой, что G = MN, (p, |M|) = 1 и $M/\Phi(M) - f(p)$ -критическая группа, являющаяся простой неабелевой группой;
- (V) G примитивная монолитическая группа c неабелевым цоколем N, $G=QN, |Q|=q, q\notin \pi(N),$ и Q-f(p)-критическая группа для некоторого p,делящего порядок подгруппы N.

Таким образом, в заключении теоремы 1 выделяются 5 типов 3-критических групп с единичной подгруппой Фраттини. Классификация их осуществляется по двум ключевым признакам:

- 1) композиционной длине группы (простая группа или не простая);
- 2) характеру цоколя группы (является он абелевым или неабелевым).

Главная цель работы — доказательство следующей теоремы.

Теорема 2. Пусть f — полная формационная функция такая, что f(p) = $\mathrm{E}_{f(p)}f(p)$ и f(p) — наследственная формация для любого $p\in\mathrm{Supp}(f)$. Если формация $\mathfrak{F} = LF(f)$ не имеет \mathfrak{F} -критических групп типа (IV), то \mathfrak{F} сверхрадикальная.

Следствие 1 [2–4]. Пусть f — полная формационная функция такая, что $f(p) = \mathfrak{S}_{\pi(f(p))}$ для любого $p \in \operatorname{Supp}(f)$. Тогда формация $\mathfrak{F} = LF(f)$ сверхра-

Следствие 2 [6, 7]. Пусть f — полная формационная функция такая, что $f(p) = \mathfrak{G}_{\pi(f(p))}$ для любого $p \in \operatorname{Supp}(f)$. Тогда формация $\mathfrak{F} = LF(f)$ сверхрадикальная.

2. Определения и предварительные результаты

Будем использовать следующие определения и обозначения:

Р — множество всех простых чисел;

 Z_p — циклическая группа порядка p;

 $\pi(G)$ — множество всех простых делителей порядка группы G;

если \mathfrak{F} — непустой класс групп, то $\pi(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \pi(G);$

 $\operatorname{Com}(G)$ — класс всех групп, изоморфных композиционным факторам группы G;

$$\operatorname{Com}(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \operatorname{Com}(G)$$

 $\mathrm{Com}(\mathfrak{F})=\bigcup_{G\in\mathfrak{F}}\mathrm{Com}(G);$ $\mathrm{E}\,\mathrm{Com}(\mathfrak{F})$ — класс всех групп G таких, что $\mathrm{Com}(G)\subseteq\mathfrak{F};$

 $\mathbf{E}_{\mathfrak{F}}\mathfrak{F}$ — класс всех групп G таких, что $G/N\in\mathfrak{F}$ и $N\in\mathfrak{F}$ для некоторой нормальной подгруппы N из G;

 $s\mathfrak{F}$ — класс всех групп G, для которых $G\subseteq H\in\mathfrak{F}$;

 $s_n \mathfrak{F}$ — класс всех групп G таких, что $G \triangleleft H \in \mathfrak{F}$;

 \mathfrak{G}_{π} — класс всех π -групп;

 \mathfrak{S}_{π} — класс всех разрешимых π -групп.

Если $s\mathfrak{F} \subseteq \mathfrak{F}$ $(s_n\mathfrak{F} \subseteq \mathfrak{F})$, то класс \mathfrak{F} называется наследственным (нормально наследственным).

Напомним, что формацией является класс групп, замкнутый относительно взятия гомоморфных образов и конечных подпрямых произведений. Формация \mathfrak{F} называется насыщенной, если из условия $G/\Phi(G) \in \mathfrak{F}$ всегда следует, что $G \in \mathfrak{F}$. Пусть \mathfrak{F} — непустая формация. Тогда через $G^{\mathfrak{F}}$ обозначается пересечение всех тех нормальных подгрупп N группы G, для которых $G/N \in \mathfrak{F}$ (подгруппа $G^{\mathfrak{F}}$ называется \mathfrak{F} -корадикалом группы G).

Подгруппа H группы G называется \mathfrak{F} -субнормальной, если либо H=G, либо существует такая максимальная цепь подгрупп

$$G = H_0 \supset H_1 \supset \cdots \supset H_n = H$$
,

что $(H_{i-1})^{\mathfrak{F}} \subseteq H_i$ для всех $i=1,2,\ldots,n$.

Формация \mathfrak{F} называется ceepxpadukanьной, если она удовлетворяет следующим требованиям:

- 1) \mathfrak{F} нормально наследственная формация;
- 2) любая группа G = AB, где A и $B \mathfrak{F}$ -субнормальные \mathfrak{F} -подгруппы из G, принадлежит \mathfrak{F} .

Формация $\mathfrak F$ называется радикальной (или формацией Фиттинга), если она является нормально наследственной и из условия G=AB, где A и B — нормальные $\mathfrak F$ -подгруппы из G, всегда следует, что $G\in \mathfrak F$.

Группа G называется \mathfrak{F} -критической, если она не принадлежит \mathfrak{F} , а все ее собственные подгруппы принадлежат \mathfrak{F} . Группа \mathfrak{M} ми \mathfrak{d} та — это ненильпотентная группа, все собственные подгруппы которой нильпотентны.

Функция

$$f: P \to \{ \text{формации конечных групп} \}$$

называется формационной функцией. Следуя [1], через $\mathrm{Supp}(f)$ будем обозначать множество $\{p \in P \mid f(p) \neq \varnothing\}$. Формационная функция f называется полной, если $f(p) = \mathfrak{G}_p f(p)$ для всех $p \in P$. Для формационной функции f главный фактор A/B группы G называется f-центральным, если

$$G/C_G(A/B) \cong \operatorname{Aut}_G(A/B) \in f(p)$$

для всех $p \in \pi(A/B)$. Класс групп $\mathfrak{F} = LF(f)$ называется локальной формацией, если он состоит из всех групп G таких, что либо G=1, либо $G\neq 1$ и любой главный фактор A/B группы G f-центральный. При этом говорят, что локальная формация \mathfrak{F} определяется c помощью формационной функции f.

Приведем ряд утверждений, необходимых для доказательства основных результатов.

Лемма 2.1 [1, теорема IV.3.2]. Пусть f — формационная функция и π = Supp(f). Тогда следующие утверждения равносильны:

- (a) $G \in LF(f)$;
- (b) $G \in \bigcap_{p \in \pi} \mathfrak{G}_{p'} \mathfrak{G}_p f(p) \cap \mathfrak{G}_{\pi};$
- (c) все главные факторы группы G f-центральны.

Следующий результат известен как теорема Гашюца — Любезедер — Шмидта.

Лемма 2.2 [1, теорема IV.4.6]. Формация \mathfrak{F} насыщенна тогда и только тогда, когда она локальна.

Лемма 2.3 [1, предложение IV.3.14]. Пусть $\mathfrak{F} = LF(f)$. Если формация f(p) наследственная для любого $p \in \operatorname{Supp}(f)$, то формация \mathfrak{F} также наследственная. Если формация f(p) радикальная для любого $p \in \operatorname{Supp}(f)$, то формация \mathfrak{F} также радикальная.

Нам понадобится следующая информация о свойствах \mathfrak{F} -субнормальных подгрупп. Множество всех \mathfrak{F} -субнормальных подгрупп группы G будем обозначать через $sn_{\mathfrak{F}}(G)$.

Лемма 2.4 [8, лемма 3.1.4]. Пусть \mathfrak{F} — непустая формация, H и N — подгруппы группы G, причем N нормальна в G. Тогда

- 1) если $H \in sn_{\mathfrak{F}}(G)$, то $HN/N \in sn_{\mathfrak{F}}(G/N)$;
- 2) если $N\subseteq H$, то $H\in sn_{\mathfrak{F}}(G)$ тогда и только тогда, когда $H/N\in sn_{\mathfrak{F}}(G/N).$

Лемма 2.5 [8, лемма 3.1.3]. Пусть \mathfrak{F} — непустая наследственная формация. Тогда

- 1) если H подгруппа группы G и $G^{\mathfrak{F}} \subseteq H$, то $H \in sn_{\mathfrak{F}}(G)$;
- 2) если $H \in sn_{\mathfrak{F}}(G)$, то $H \cap K \in sn_{\mathfrak{F}}(K)$ для любой подгруппы K группы G.

Будем использовать также следующие результаты о \mathfrak{F} -критических группах.

Лемма 2.6 [9, теорема 26.1]. Пусть G — группа Шмидта. Тогда справедливы следующие утверждения:

- 1) $|G| = p^{\alpha}q^{\beta}$, где $\alpha \geq 1$, $\beta \geq 1$;
- 2) силовская p-подгруппа P группы G нормальна в G;
- 3) если Q силовская q-подгруппа G, то она является циклической группой;
- 4) если $\Phi(G)=1,$ то P- минимальная нормальная подгруппа группы G и |Q|=q.
- **Лемма 2.7** [9, лемма 24.5]. Пусть \mathfrak{F} насыщенная формация, G \mathfrak{F} -критическая группа, имеющая неединичную нормальную силовскую p-подгруппу P. Тогда $P = G^{\mathfrak{F}}$.

Доказательство следующего результата осуществляется простой проверкой.

Лемма 2.8. Пусть \mathfrak{F} — наследственная формация такая, что $\mathfrak{F} = \mathrm{E}_{\mathfrak{F}}\mathfrak{F}$. Тогда справедливы следующие утверждения:

- 1) $\mathfrak{F} = \mathrm{E}\,\mathrm{Com}(\mathfrak{F});$
- 2) если $\pi = \pi(\mathfrak{F})$, то $\mathfrak{S}_{\pi} \subseteq \mathfrak{F}$;
- 3) формация \mathfrak{F} насыщенна.

Лемма 2.9. Пусть \mathfrak{F} — наследственная формация такая, что $\mathfrak{F} = \mathrm{E}_{\mathfrak{F}}\mathfrak{F}$. Если $G - \mathfrak{F}$ -критическая группа c единичной подгруппой Фраттини, то справедливо одно из следующих утверждений:

- 1) |G| = p, где $p \notin \pi(\mathfrak{F})$;
- 2) G простая неабелева группа и $\pi(G) \subseteq \pi(\mathfrak{F})$.

Доказательство. По лемме 2.8 $\mathfrak{F} = \mathrm{E}\,\mathrm{Com}(\mathfrak{F})$ и $\mathfrak{S}_\pi \subseteq \mathfrak{F}$, где $\pi = \pi(\mathfrak{F})$. Пусть $p \notin \pi$ для некоторого простого $p \in \pi(G)$. Если |G| > p, то группа G содержит подгруппу P порядка p. Тогда из определения \mathfrak{F} -критической группы

следует, что $P \in \mathfrak{F}$ и $p \in \pi$. Пришли к противоречию. Следовательно, |G| = p и $p \notin \pi(\mathfrak{F})$.

Пусть $\pi(G)\subseteq \pi$ и N — минимальная нормальная подгруппа группы G. Так как $\Phi(G)=1$, существует максимальная подгруппа M такая, что G=MN. Тогда из $M\in \mathfrak{F}$ и $G/N\cong M/M\cap N$ следует, что $G/N\in \mathfrak{F}$. Если $N\neq G$, то из $N\in \mathfrak{F}$ и $\mathfrak{F}=\mathbb{E}_{\mathfrak{F}}\mathfrak{F}$ имеем $G\in \mathfrak{F}$; противоречие. Значит, N=G, и G — простая группа. Лемма доказана.

Лемма 2.10. Пусть \mathfrak{F} — наследственная формация такая, что $\mathfrak{F} = \mathrm{E}_{\mathfrak{F}}\mathfrak{F}$. Тогда и только тогда группа G \mathfrak{F} -критическая, когда либо |G| = p, где $p \notin \pi(\mathfrak{F})$, либо $G/\Phi(G) - \mathfrak{F}$ -критическая группа, являющаяся простой неабелевой группой.

Доказательство. Пусть $G-\mathfrak{F}$ -критическая группа. По лемме 2.8 формация \mathfrak{F} насыщенна. Поэтому $G/\Phi(G)\notin\mathfrak{F}$. Так как $G-\mathfrak{F}$ -критическая группа и \mathfrak{F} — формация, все собственные подгруппы группы $G/\Phi(G)$ принадлежат \mathfrak{F} . Значит, $G/\Phi(G)-\mathfrak{F}$ -критическая группа.

По лемме 2.9 справедливо одно из следующих утверждений:

- 1) $|G/\Phi(G)| = p$, где $p \notin \pi(\mathfrak{F})$;
- 2) $G/\Phi(G)$ простая неабелева группа.

Если $|G/\Phi(G)|=p$ и $p\notin\pi(\mathfrak{F})$, то, очевидно, G является p-группой. Предположим, что $|G|=p^n$, где n>1. Если P — подгруппа группы G, имеющая порядок p, то из определения \mathfrak{F} -критической группы следует, что $P\in\mathfrak{F}$ и $p\in\pi(\mathfrak{F})$; противоречие. Значит, n=1 и |G|=p.

Докажем обратное утверждение. Если |G|=p, где $p\notin\pi(\mathfrak{F})$, то, очевидно, $G-\mathfrak{F}$ -критическая группа.

Пусть $G/\Phi(G)-\mathfrak{F}$ -критическая группа, являющаяся простой неабелевой группой. По лемме $2.9\ \pi(G/\Phi(G))\subseteq\pi(\mathfrak{F})$. Значит, из свойств подгруппы Фраттини следует, что $\pi(\Phi(G))\subseteq\pi(\mathfrak{F})$. Так как по лемме $2.8\ \mathfrak{S}_\pi\subseteq\mathfrak{F}$, то $\Phi(G)\in\mathfrak{F}$. Пусть M — максимальная подгруппа группы G. Поскольку $G/\Phi(G)-\mathfrak{F}$ -критическая группа, $M/\Phi(G)\in\mathfrak{F}$. Из того, что $\mathfrak{F}=\mathrm{E}_{\mathfrak{F}}\mathfrak{F}$, имеем $M\in\mathfrak{F}$. Значит, $G-\mathfrak{F}$ -критическая группа. Лемма доказана.

3. Доказательство теоремы 1

Доказательство теоремы 1 проведем в несколько этапов.

(1) Группа G обладает единственной минимальной нормальной подгруппой N.

Так как $\Phi(G)=1$, существует максимальная подгруппа M такая, что G=MN. Поэтому из $M\in\mathfrak{F}$ и $G/N\cong M/M\cap N$ следует, что $G/N\in\mathfrak{F}$. Если L — минимальная нормальная подгруппа группы G, отличная от N, то аналогично показывается, что $G/L\in\mathfrak{F}$. Тогда $G\cong G/N\cap L\in\mathfrak{F}$. Получили противоречие с тем, что $G\notin\mathfrak{F}$. Значит, N — единственная минимальная нормальная подгруппа группы G.

(2) Справедливо включение $C_G(N) \subseteq N$, причем $C_G(N) = N$, если N — абелева группа, и $C_G(N) = 1$, если N — неабелева группа.

Утверждение вытекает из того, что N — единственная минимальная нормальная подгруппа группы G и $\Phi(G) = 1$.

(3) Подгруппа N является \mathfrak{F} -корадикалом группы G.

Утверждение следует из определения \mathfrak{F} -критической группы и того, что $G/N\in\mathfrak{F}.$

(4) Если $G^{\mathfrak{F}}=G$, то G либо группа простого порядка p, где $p\notin\pi(\mathfrak{F})$, либо простая неабелева группа.

Если $G^{\mathfrak{F}}=G$, то из равенства $G^{\mathfrak{F}}=N$ следует, что G — простая группа. При этом если G — абелева группа порядка p, то из $G\notin \mathfrak{F}$ вытекает $p\notin \pi(\mathfrak{F})$.

(5) Если N — собственная подгруппа группы G и $|N| = p^k$, то G = MN, где M — максимальная подгруппа группы G, являющаяся f(p)-критической группой. При этом либо |M| = q, где $q \notin \pi(f(p))$, либо $M/\Phi(M) - f(p)$ -критическая группа, являющаяся простой неабелевой группой.

Так как N — абелева подгруппа, то $M \cap N = 1$. Если $M \in f(p)$, то

$$M \cong G/N = G/C_G(N) \in f(p)$$

и $G \in \mathfrak{F}$. Пришли к противоречию. Значит, $M \notin f(p)$.

Пусть R — максимальная подгруппа группы M. Ввиду $C_G(N)=N$ имеем, что $F_p(RN)=O_p(RN)$. Так как $RN\in\mathfrak{F}$, по лемме 2.1

$$RN/F_p(RN) \cong R/R \cap O_p(RN) \in f(p).$$

Поэтому $R/O_p(R) \in f(p)$. Поскольку f — полная формационная функция, $f(p) = \mathfrak{G}_p f(p)$, а значит, $R \in f(p)$. Таким образом, подгруппа M не принадлежит формации f(p), а все ее собственные подгруппы входят в f(p), т. е. M — f(p)-критическая группа.

По лемме 2.10 либо |M|=q, где $q\notin\pi(f(p))$, либо $M/\Phi(M)-f(p)$ -критическая группа, являющаяся простой неабелевой группой.

(6) Если G — разрешимая группа непростого порядка, то она является группой Шмидта.

Так как группа G разрешима, из п. (5) следует, что G=MN, где $|N|=p^k$, |M|=q и $p\neq q$. Простая проверка показывает, что в группе G все максимальные подгруппы нильпотентны. Поскольку сама группа не нильпотентна, G — группа Шмидта.

(7) Если G — неразрешимая группа c абелевым p-цоколем N, то G=MN, (p,|M|)=1 и $M/\Phi(M)-f(p)$ -критическая группа, являющаяся простой неабелевой группой.

Так как группа G не разрешима, из п. (5) следует, что $M/\Phi(M) - f(p)$ -критическая группа, являющаяся простой неабелевой группой. Предположим, что p делит порядок подгруппы M. Поскольку $M/\Phi(M) \in \mathfrak{F}$, из того, что $M/\Phi(M)$ — простая неабелева группа, следует $M/\Phi(M) \in f(p)$. Так как M-f(p)-критическая группа, $\Phi(M) \in f(p)$. Из условия $f(p) = \mathrm{E}_{f(p)} f(p)$ имеем $M \in f(p)$; противоречие. Следовательно, p не делит |M|.

(8) Если G — неразрешимая группа c неабелевым цоколем N, то G/N — f(p)-критическая группа для некоторого простого p, делящего порядок подгруппы N. При этом $(G/N)^{f(p)} = G/N$ и |G/N| = q, где q — простое число, не принадлежащее $\pi(f(p))$.

Если $G \in f(p)$ для любого простого p, делящего порядок подгруппы N, то минимальная нормальная подгруппа N группы G f-центральна в группе G и $G \in \mathfrak{F}$; противоречие. Значит, $G \notin f(p)$ для некоторого простого p, делящего

порядок подгруппы N. Отсюда следует, что группа G содержит некоторую f(p)-критическую подгруппу D. Так как $N \in f(p)$, то D не содержится в N.

Рассмотрим подгруппу DN. Если DN — собственная подгруппа группы G, то $DN \in \mathfrak{F}$. Отсюда и из равенства $C_G(N)=1$ следует, что $DN \in f(p)$. Так как формация f(p) наследственна, то $D \in f(p)$. Пришли к противоречию. Таким образом, DN = G. По лемме 2.10 либо |D| = q, где $q \notin \pi(f(p))$, либо $D/\Phi(D) - f(p)$ -критическая группа, являющаяся простой неабелевой группой. При этом из равенства $f(p) = \mathrm{E}_{f(p)} f(p)$ вытекает, что $D^{f(p)} = D$.

Если |D|=q, где $q\notin\pi(f(p))$, то из $G/N=DN/N\cong D$ имеем, что G/N-f(p)-критическая группа. В частности, |G/N|=q, и справедливо равенство $(G/N)^{f(p)}=G/N$.

Предположим, что f(p)-критическая группа $D/\Phi(D)$ является простой неабелевой группой. Тогда из $D\cap N\subset D$ следует, что $D\cap N\subseteq \Phi(D)$. По лемме 2.10 $G/N\cong D/D\cap N-f(p)$ -критическая группа. При этом

$$(G/N)/\Phi(G/N) \cong D/\Phi(D)$$

— простая неабелева группа. Отсюда, в частности, получаем $(G/N)^{f(p)} = G/N$. Допустим, что p делит |D|. Тогда, очевидно, p делит $|D/\Phi(D)|$. Так как $D/\Phi(D)$ — простая неабелева группа, из $D/\Phi(D) \in \mathfrak{F}$ вытекает, что $D/\Phi(D) \in f(p)$. Пришли к противоречию с тем, что $D/\Phi(D) - f(p)$ -критическая группа. Следовательно, (p,|D|) = 1.

Пусть P — силовская p-подгруппа группы N. По лемме Фраттини имеет место равенство $N_G(P)N=G$. Отсюда и из изоморфизма $G/N\cong N_G(P)/N_G(P)\cap N$ следует, что подгруппа $N_G(P)$ принадлежит формации \mathfrak{F} , но не принадлежит формации f(p). Значит, подгруппа $N_G(P)$ содержит некоторую f(p)-критическую подгруппу D_1 . Так как $N\in\mathfrak{F}$, то $N\in f(p)$. Поэтому D_1 не содержится в N и D_1N/N — неединичная подгруппа группы G/N. Если $D_1N/N\neq G/N$, то $D_1N/N\in f(p)$, а значит, $D_1/D_1\cap N\in f(p)$. Однако это невозможно, поскольку $D_1^{f(p)}=D_1$. Тем самым $D_1N=G$ и $D_1/\Phi(D_1)$ — простая неабелева группа, изоморфная группе $(G/N)/\Phi(G/N)$.

Рассмотрим подгруппу PD_1 . Как выше, показывается, что $(p,|D_1|)=1$. Пусть H/K — произвольный PD_1 -главный фактор подгруппы P. Так как $PD_1 \in \mathfrak{F}$, то $PD_1/C_{PD_1}(H/K) \in f(p)$. Поскольку $P \triangleleft PD_1$, имеем $C_{PD_1}(H/K) \supseteq P$. Поэтому

$$PD_1/C_{PD_1}(H/K) = D_1C_{PD_1}(H/K)/C_{PD_1}(H/K) \cong D_1/D_1 \cap C_{PD_1}(H/K) \in f(p).$$

Так как $D_1^{f(p)} = D_1$, то $D_1 \subseteq C_{PD_1}(H/K)$, а значит, $C_{PD_1}(H/K) = PD_1$.

Итак, все PD_1 -главные факторы подгруппы P центральны в P. Отсюда и из условия $(p,|D_1|)=1$ следует, что $PD_1=P\times D_1$.

Поскольку подгруппа N неабелева, она представима в виде прямого произведения изоморфных простых неабелевых групп N_i , где $i=1,2,\ldots,m$. Тогда $P=(N_1)_p\times (N_2)_p\times \cdots \times (N_m)_p$, где $(N_i)_p$ — силовская p-подгруппа группы N_i для любого $i=1,2,\ldots,m$. Из условия $PD_1=P\times D_1$ следует, что $(N_i)_p\subseteq N_i\cap N_i^x$ для каждого $x\in D_1$. Значит, $N_i=N_i^x$ для всех $x\in D_1$. Так как $ND_1=G$, то $N_i \triangleleft G$. Отсюда N— простая группа.

Таким образом, G/N — группа внешних автоморфизмов простой неабелевой группы N. По теореме 4.241 из [10] группа G/N разрешима. Пришли к противоречию.

Следовательно, |G/N|=q по лемме 2.10, где q — простое число, не принадлежащее $\pi(f(p))$.

(9) Если G — группа c неабелевым цоколем N, то G=QN, |Q|=q, $q\notin\pi(N).$

Из п. (8) следует, что G/N-f(p)-критическая группа для некоторого простого p, делящего порядок подгруппы N. При этом |G/N|=q — простое число, не принадлежащее $\pi(f(p))$. Так как $N\in f(p)$, то $q\notin \pi(N)$. По теореме Шура — Цассенхауза существует подгруппа Q такая, что G=QN и |Q|=q. Теорема доказана.

Следующие примеры показывают, что в теореме 1 все классы (I)–(V) \mathfrak{F} -критических групп непусты.

ПРИМЕР 1. Если \mathfrak{F} — формация всех нильпотентных π -групп, то \mathfrak{F} -критические группы являются либо группами Шмидта, либо группами простого порядка $p \notin \pi(\mathfrak{F})$.

ПРИМЕР 2. Если \mathfrak{F} — формация всех разрешимых групп и G — \mathfrak{F} -критическая группа с условием $\Phi(G)=1$, то G принадлежит следующему списку групп, установленных в ряде работ Дж. Томпсона:

 $PSL_2(2^p), p$ — простое число;

 $PSL_2(3^p)$, p — нечетное простое число;

 $PSL_{2}(p), p$ — простое число, большее 3, для которого $p^{2} + 1 \equiv 0 \pmod{5}$;

 $Sz(2^p)$, p — нечетное простое число;

 $PSL_3(3)$.

ПРИМЕР 3. Пусть $\pi = \{2, 3, 5, 7, 19\}$. Рассмотрим формационную функцию f такую, что

$$f(p)=\mathrm{E}(PSU_3(8),PSL_2(8),Z_2,Z_3,Z_7,Z_{19}), \quad$$
если $p\in\{2,3,7,19\},$
$$f(5)=\mathrm{E}(PSL_2(8),Z_2,Z_3,Z_5,Z_7,Z_{19}),$$
 $f(p)=arnothing,\quad$ если $p\notin\pi.$

Пусть $H\cong PSU_3(8)$ и V — точный неприводимый $\mathrm{F}_5[H]$ -модуль. Рассмотрим группу G=VH.

Из определения формационной функции f следует, что $G \notin \mathfrak{F} = LF(f)$, а все собственные подгруппы группы G входят в \mathfrak{F} , т. е. $G - \mathfrak{F}$ -критическая группа типа (IV).

ПРИМЕР 4. Пусть $H=Sz(2^3)$ и $\pi=\pi(H)=\{2,5,7,13\}$. Группа $Sz(2^3)$ имеет полевой автоморфизм α порядка 3. Рассмотрим группу $G=H\langle\alpha\rangle$, являющуюся расширением группы H с помощью $\langle\alpha\rangle$.

Пусть $\mathfrak{F}=LF(f)$, где f — формационная функция такая, что

$$f(3) = \mathfrak{S}_{\pi}, \quad f(5) = \mathrm{E}(Sz(2^3), Z_2, Z_5, Z_7, Z_{13}),$$

$$f(2) = f(7) = f(13) = \mathrm{E}(Sz(2^3), Z_2, Z_3, Z_5, Z_7, Z_{13}).$$

Так как $Z_3 \notin f(5)$, подгруппа H не f-центральная в G, а значит, $G \notin \mathfrak{F}$. Отметим, что все собственные подгруппы из H разрешимы. Поэтому если M — максимальная подгруппа группы G, то либо M=H, либо M разрешима. Так как

$$Sz(2^3) \in f(2) = f(5) = f(7) = f(13),$$

в случае M=H имеем $M\in\mathfrak{F}.$ Если максимальная подгруппа M разрешима, то из

$$\mathfrak{S}_{\pi} \subseteq f(2) = f(3) = f(7) = f(13)$$

следует, что все главные p-факторы подгруппы M для $p \in \{2,3,7,13\}$ f-центральны в M. Так как $|H|=2^6\cdot 5\cdot 7\cdot 13$, а любая подгруппа порядка 15 циклическая, главный 5-фактор подгруппы M также f-централен в M. Следовательно, $M\in\mathfrak{F}$.

Итак, сама группа G не принадлежит \mathfrak{F} , а все ее собственные подгруппы входят в \mathfrak{F} , т. е. $G-\mathfrak{F}$ -критическая группа типа (V).

4. Доказательство теоремы 2

Предположим, что формация $\mathfrak F$ не сверхрадикальна. В этом случае существует не принадлежащая формации $\mathfrak F$ группа, которая представима в виде произведения двух $\mathfrak F$ -субнормальных $\mathfrak F$ -подгрупп. Выберем среди всех таких групп группу R наименьшего порядка. Тогда R обладает такими подгруппами A и B, что $A \in sn_{\mathfrak F}(R), B \in sn_{\mathfrak F}(R), A \in \mathfrak F, B \in \mathfrak F, R = AB$, но $R \notin \mathfrak F$.

Так как $A \in sn_{\mathfrak{F}}(R)$, существует максимальная цепь подгрупп

$$R = A_0 \supset A_1 \supset \cdots \supset A_k = A$$

такая, что $(A_{i-1})^{\mathfrak{F}}\subseteq A_i$ для всех $i=1,2,\ldots,k$. Из предложения А.1.3 в [1] следует, что $A_1=A(A_1\cap B)$. По лемме 2.3 формация \mathfrak{F} наследственна. Поэтому $A_1\cap B\in \mathfrak{F}$. Кроме того, по лемме 2.5 $A\in sn_{\mathfrak{F}}(A_1)$ и $A_1\cap B\in sn_{\mathfrak{F}}(A_1)$. Поскольку $|A_1|<|R|$, подгруппа A_1 принадлежит формации \mathfrak{F} .

Далее будем считать, что A и $B-\mathfrak{F}$ -нормальные максимальные \mathfrak{F} -подгруппы группы R. Тогда $1 \neq R^{\mathfrak{F}} \subseteq A \cap B \subset R$ по определению \mathfrak{F} -нормальной максимальной подгруппы.

Пусть L — минимальная нормальная подгруппа группы R. По лемме 2.4 ввиду выбора группы R имеем $R/L \in \mathfrak{F}$. Так как \mathfrak{F} — формация, L — единственная минимальная нормальная подгруппа группы R и $L = R^{\mathfrak{F}}$. В силу насыщенности формации $\mathfrak{F} \Phi(R) = 1$. Поэтому $C_R(L) \subseteq L$.

Пусть p — простое число, делящее порядок подгруппы L. Из включения $C_R(L)\subseteq L$ следует, что $O_{p'}(A)=1$. Поскольку формационная функция f полная, по лемме 2.1 формация $\mathfrak{F}=LF(f)$ представима в виде

$$\mathfrak{F} = \bigcap_{r \in \pi(\mathfrak{F})} \mathfrak{G}_{r'} f(r) \cap \mathfrak{G}_{\pi(\mathfrak{F})}.$$

Так как подгруппа A принадлежит формации $\mathfrak{F} = LF(f)$ и $O_{n'}(A) = 1$, то

$$A \in f(p) \subseteq \mathfrak{G}_{\pi(f(p))}$$
.

Аналогично показывается, что

$$B \in f(p) \subseteq \mathfrak{G}_{\pi(f(p))}$$
.

Так как R=AB, то $R-\pi(f(p))$ -группа для любого простого p, делящего порядок подгруппы L.

Поскольку группа R не принадлежит формации \mathfrak{F} , она содержит некоторую подгруппу D, являющуюся \mathfrak{F} -критической группой. В силу насыщенности формации \mathfrak{F} группа $D/\Phi(D)$ также \mathfrak{F} -критическая.

Ввиду теоремы 1 справедливо одно из следующих утверждений:

- 1) группа $D/\Phi(D)$ имеет простой порядок p, причем $p \notin \pi(\mathfrak{F})$;
- 2) группа $D/\Phi(D)$ является группой Шмидта;
- 3) $D/\Phi(D)$ простая неабелева группа;
- 4) $D/\Phi(D)$ примитивная монолитическая группа с неабелевым цоколем $N/\Phi(D)$, причем

$$D/\Phi(D) = (Q/\Phi(D))(N/\Phi(D)), \quad |Q/\Phi(D)| = q,$$

 $q \notin \pi(N/\Phi(D))$ и $Q/\Phi(D) - f(p)$ -критическая группа для некоторого простого p, делящего порядок подгруппы $N/\Phi(D)$.

Рассмотрим каждый из четырех возможных случаев.

- 1. Пусть $D/\Phi(D)$ имеет простой порядок p и $p \notin \pi(\mathfrak{F})$. Тогда по аналогии с леммой 2.10 показывается, что группа D также имеет простой порядок p. Тем самым либо $D \cong DL/L$, либо $D \subseteq L$. Так как $R/L \in \mathfrak{F}$ и $L \in \mathfrak{F}$, в обоих случаях из наследственности формации \mathfrak{F} имеем $D \in \mathfrak{F}$. Это противоречит условию $p \notin \pi(\mathfrak{F})$.
- 2. Пусть $D/\Phi(D)$ является группой Шмидта. По лемме 2.6 группа D имеет порядок $r^{\alpha}q^{\beta}$, где $\alpha \geq 1$, $\beta \geq 1$. Обозначим через D_r нормальную силовскую подгруппу группы D. В силу леммы 2.7 имеет место равенство $D_r = D^{\mathfrak{F}}$. Так как формация \mathfrak{F} наследственная, $D^{\mathfrak{F}} \subseteq L = R^{\mathfrak{F}}$. Поэтому r делит порядок группы L. Как отмечено выше, R является $\pi(f(r))$ -группой. Стало быть, из того, что формация f(r) наследственная, ввиду леммы 2.8 имеем

$$\mathfrak{G}_q \subseteq \mathrm{E}\,\mathrm{Com}(f(r)) = f(r)$$

для всех $q \in \pi(f(r))$.

Пусть X/Y-D-главный фактор группы $D^{\mathfrak{F}}$. Так как $D^{\mathfrak{F}}-r$ -группа, $D^{\mathfrak{F}}=D_r\subseteq C_D(X/Y)$. Поэтому $D/C_D(X/Y)\in \mathfrak{G}_q\subseteq f(r)$ и все D-главные факторы группы $D^{\mathfrak{F}}$ f-центральны. Отсюда и из равенства $\mathfrak{F}=LF(f)$ получаем, что $D\in \mathfrak{F}$. Пришли к противоречию с тем, что $D-\mathfrak{F}$ -критическая группа.

- 3. Пусть $D/\Phi(D)$ простая неабелева группа. Так как $L \in \mathfrak{F}$, подгруппа D не содержится в L. В силу простоты группы $D/\Phi(D)$ из $D\cap N\subset D$ следует, что $D\cap L\subseteq \Phi(D)$. Поскольку формация \mathfrak{F} наследственная, $DL/L\cong D/D\cap L\in \mathfrak{F}$. Из насыщенности формации \mathfrak{F} вытекает, что $D\in \mathfrak{F}$; противоречие.
- 4. Пусть $D/\Phi(D)$ примитивная монолитическая группа с неабелевым цоколем $N/\Phi(D)$, причем

$$D/\Phi(D) = (Q/\Phi(D))(N/\Phi(D)), \quad |Q/\Phi(D)| = q,$$

 $q \notin \pi(N/\Phi(D))$ и $Q/\Phi(D) - f(p)$ -критическая группа для некоторого простого p, делящего порядок подгруппы $N/\Phi(D)$.

Пусть R_q — силовская q-подгруппа группы R, содержащая силовскую q-подгруппу D_q группы D. Ввиду лемм 11.5 и 11.6 из [9] можно считать, что $R_q = A_q B_q$, где A_q — силовская q-подгруппа группы A, B_q — силовская q-подгруппа группы B. Рассмотрим подгруппу $R_q L$. Очевидно, что $R_q L = (A_q L)(B_q L)$. Так как $A_q L = A \cap R_q L$ и $B_q L = B \cap R_q L$, из свойств \mathfrak{F} -субнормальных подгрупп следует, что подгруппы $A_q L$ и $B_q L$ \mathfrak{F} -субнормальны в подгруппе $R_q L$. Кроме того, в силу наследственности формации \mathfrak{F} $A_q L \in \mathfrak{F}$ и $B_q L \in \mathfrak{F}$. Если $|R_q L| < |R|$, то $R_q L \in \mathfrak{F}$ ввиду выбора группы R. Но тогда $D \in \mathfrak{F}$. Приходим к противоречию с тем, что D — \mathfrak{F} -критическая группа.

Итак, $R_qL=R$. Отсюда $A=A_qL$ и $B=B_qL$ — нормальные максимальные подгруппы группы R. Так как формация f(p) радикальная для всех $p\in \mathrm{Supp}(f)$, по лемме 2.3 формация $\mathfrak F$ также радикальна, а значит, $R\in \mathfrak F$. Получили противоречие с выбором группы R. Теорема доказана.

5. Следствия и пример

Работы [2–4, 6, 7] выделяют две серии насыщенных наследственных формаций, которые являются сверхрадикальными:

- 1) $\mathfrak{F} = LF(f)$, где f полная формационная функция такая, что $f(p) = \mathfrak{S}_{\pi(f(p))}$ для любого $p \in \operatorname{Supp}(f)$;
- 2) $\mathfrak{F}=LF(f)$, где f полная формационная функция такая, что $f(p)=\mathfrak{G}_{\pi(f(p))}$ для любого $p\in \mathrm{Supp}(f).$

Обе эти серии укладываются в схему теоремы 2.

Действительно, в обоих случаях, очевидно, для любого $p \in \text{Supp}(f)$ формация f(p) наследственная и замкнутая относительно расширений.

Так как в первом случае формация $\mathfrak{F} = LF(f)$ разрешима, по теореме 1 \mathfrak{F} -критические группы, имеющие единичную подгруппу Фраттини, являются либо группами простого порядка, либо группами Шмидта, либо простыми неабелевыми группами с разрешимыми собственными подгруппами.

Предположим, что во втором случае имеется \mathfrak{F} -критическая группа G типа (IV). Тогда G — примитивная группа с абелевым p-цоколем N и максимальной подгруппой M такой, что G=NM, (p,|M|)=1 и $M/\Phi(M)-f(p)$ -критическая группа, являющаяся простой неабелевой группой. Пусть Q — силовская q-подгруппа группы G. Так как $NQ\in\mathfrak{F}$ и $C_G(N)=1$, то $q\in\pi(f(p))$. Отсюда $\pi(M)\subseteq\pi(f(p))$. Из $f(p)=\mathfrak{G}_{\pi(f(p))}$ следует, что $M\in f(p)$. Пришли к противоречию с тем, что $M/\Phi(M)-f(p)$ -критическая группа.

Таким образом, в обоих случаях выполняются все условия теоремы 2, значит, формации $\mathfrak{F} = LF(f)$ из пп. 1 и 2 сверхрадикальны.

Следующий пример показывает, что требование теоремы 2 о том, чтобы формация $\mathfrak{F} = LF(f)$ не имела \mathfrak{F} -критических групп типа (IV), является существенным и его отбросить нельзя, т. е. формация $\mathfrak{F} = LF(f)$, обладающая \mathfrak{F} -критическими группами типа (IV), может не являться сверхрадикальной.

ПРИМЕР 5. Пусть $\pi = \{2, 3, 5, 7, 19\}$. Рассмотрим формационную функцию f такую, что

$$f(p)=\mathrm{E}(PSU_3(8),PSL_2(8),Z_2,Z_3,Z_7,Z_{19}), \quad$$
если $p\in\{2,3,7,19\},$
$$f(5)=\mathrm{E}(PSL_2(8),Z_2,Z_3,Z_5,Z_7,Z_{19}),$$
 $f(p)=arnothing,\quad$ если $p\notin\pi.$

Очевидно, что f — полная формационная функция, причем $f(p) = \mathrm{E}_{f(p)} f(p)$ и f(p) — наследственная формация для любого $p \in \pi$. Тогда

$$\begin{split} \mathfrak{F} &= LF(f) = \bigcap_{p \in \pi} \mathfrak{G}_{p'}f(p) \cap \mathfrak{G}_{\pi} \\ &= \mathfrak{G}_{5'} \mathrm{E}(PSL_2(8), Z_2, Z_3, Z_5, Z_7, Z_{19}) \cap \mathfrak{G}_{2'} \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \\ &\quad \cap \mathfrak{G}_{3'} \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \\ &\quad \cap \mathfrak{G}_{7'} \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \\ &\quad \cap \mathfrak{G}_{19'} \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \cap \mathfrak{G}_{\pi} \\ &= \mathfrak{G}_{5'} \mathrm{E}(PSL_2(8), Z_2, Z_3, Z_5, Z_7, Z_{19}) \\ &\quad \cap \mathfrak{G}_5 \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \cap \mathfrak{G}_{\pi}. \end{split}$$

Пусть $H\cong PSU_3(8).(Z_3\times Z_3)< {
m Aut}(\,PSU_3(8))$ и V — точный неприводимый ${
m F}_5[H]$ -модуль.

Рассмотрим группу G = VH. Из равенства

$$\mathfrak{F} = \mathfrak{G}_{5'} \mathrm{E}(PSL_2(8), Z_2, Z_3, Z_5, Z_7, Z_{19}) \\ \cap \mathfrak{G}_5 \mathrm{E}(PSU_3(8), PSL_2(8), Z_2, Z_3, Z_7, Z_{19}) \cap \mathfrak{G}_{\pi}$$

следует, что $G \notin \mathfrak{F}$ и $V = G^{\mathfrak{F}}$.

Из табл. 5 в [11] вытекает, что группа H представима в виде $H=A_1B_1$, где A_1 и B_1 — разрешимые максимальные подгруппы группы H. Тогда G=AB, где $A=VA_1$ и $B=VB_1$. Так как $V=G^{\mathfrak{F}}\subseteq A$ и $V=G^{\mathfrak{F}}\subseteq B$, то $A\in sn_{\mathfrak{F}}(G)$ и $B\in sn_{\mathfrak{F}}(G)$. Поскольку подгруппы A и B разрешимы, $A\in\mathfrak{F}$ и $B\in\mathfrak{F}$. Так как $G\notin\mathfrak{F}$, формация \mathfrak{F} не сверхрадикальная.

Пусть H_1 — подгруппа из H, изоморфная $PSU_3(8)$. Рассмотрим подгруппу $G_1=VH_1$ группы G. Из строения формации $\mathfrak F$ следует, что $G_1\notin \mathfrak F$. Поэтому группа G_1 (а значит, и группа G) содержит некоторую $\mathfrak F$ -критическую группу D. При этом $D\cap V$ — силовская 5-подгруппа группы D и $D/D\cap V\cong PSU_3(8)$. Таким образом, D — $\mathfrak F$ -критическая группа типа (IV).

ЛИТЕРАТУРА

- 1. Doerk K., Hawkes T. Finite soluble groups. Berlin; New York: Walter de Gruyter, 1992.
- Ballester-Bolinches A. A note on saturated formations // Arch. Math. 1992. V. 58, N 2. P. 110–113.
- 3. Семенчук В. Н. Характеризация Ў-формаций // Вопросы алгебры. 1992. № 7. С. 103–107.
- 4. Семенчук В. Н. Разрешимые \mathfrak{F} -радикальные формации // Мат. заметки. 1996. Т. 59, № 2. С. 261–266.
- Нерешенные вопросы теории групп. Коуровская тетрадь. Новосибирск: Институт математики СО РАН, 2006.
- Семенчук В. Н., Шеметков Л. А. Сверхрадикальные формации // Докл. НАН Беларуси. 2000. Т. 44, № 5. С. 24–26.
- 7. Семенчук В. Н., Мокеева О. А. О проблеме классификации сверхрадикальных формаций // Изв. вузов. Математика. 2008. № 12. С. 70–75.
- Каморников С. Ф., Селькин М. В. Подгрупповые функторы и классы конечных групп. Мн.: Белорусская наука, 2003.
- 9. Шеметков Л. А. Формации конечных групп. М.: Наука, 1978.
- 10. Горенстейн Д. Конечные простые группы. Введение в их классификацию. М.: Мир, 1985.
- 11. Liebeck M. W., Prager C. E., Saxl J. The maximal factorizations of the finite simple groups and their automorphism groups // Amer. Math. Soc. 1990. V. 86, N 432. P. 1–150.

Cтатья поступила 18 апреля 2013 г.

Каморников Сергей Федорович, Тютянов Валентин Николаевич Международный университет «МИТСО», пр. Октября, 46a, Гомель 246029, Беларусь sfkamornikov@mail.ru, tyutyanov@front.ru