УДВОЕННЫЕ ГРУППЫ ФРОБЕНИУСА, ИЗОСПЕКТРАЛЬНЫЕ ПРОСТОЙ ГРУППЕ $U_3(3)$

В. Д. Мазуров

Аннотация. Описывается строение удвоенных групп Фробениуса, изоспектральных конечной простой группе $U_3(3)$, и строятся соответствующие примеры.

 $DOI\,10.17377/smzh.2015.56.615$

Ключевые слова: спектр, распознаваемая группа, группа Фробениуса, простая унитарная группа.

В работе рассматриваются только конечные группы. Пусть G — группа. Обозначим через $\omega(G)$ спектр G, т. е. множество всех порядков элементов G. Группы с одинаковым спектром будем называть изоспектральными. Поскольку множество $\omega(G)$ замкнуто по отношению делимости, оно однозначно определяется своим подмножеством $\mu(G)$, состоящим из максимальных по делимости элементов спектра.

Будем говорить, что G распознаваема (более точно, распознаваема по спектру в классе конечных групп), если любая конечная группа, изоспектральная G, изоморфна G. Группа G нераспознаваема по спектру, если существует бесконечно много попарно не изоморфных групп, изоспектральных G.

В [1] доказано, что группа нераспознаваема в том и только в том случае, когда она изоспектральна группе, содержащей нетривиальную абелеву нормальную подгруппу.

Уд 600 енной группой Фробениуса называется группа G, содержащая нормальную подгруппу Фробениуса B с ядром A такую, что G/A является группой Фробениуса с ядром B/A.

 Γ рафом простых чисел или графом Γ рюнберга — Кегеля GK(G) группы G называется неориентированный граф, вершинами которого служат простые делители порядка G и два разных простых делителя p и q смежны, если G содержит элемент порядка pq.

В [2] доказано, что разрешимая группа G с несвязным графом GK(G) является группой Фробениуса или удвоенной группой Фробениуса. М. Р. Алеева (Зиновьева) показала [3], что список простых групп, изоспектральных группами Фробениуса, исчерпывается группами $L_3(3)$ и $U_3(3)$, а простыми группами, изоспектральными удвоенным группам Фробениуса, могут быть только группы $U_3(3)$ и $S_4(3)$, но вопрос о существовании таких удвоенных групп Фробениуса оставался открытым. В [4] доказано, что простая группа, изоспектральная разрешимой, изоморфна одной из групп $L_3(3), U_3(3), S_4(3)$ или A_{10} .

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта N=14-21-00065).

А. М. Старолетов [5] описал группы, изоспектральные A_{10} . Все они неразрешимы. А. В. Заварницин [6] построил пример удвоенной группы Фробениуса порядка $5648590729620=2^2\cdot 3^{24}\cdot 5$, изоспектральной $S_4(3)$.

В этой работе описана структура и даны примеры удвоенных групп Фробениуса, изоспектральных $U_3(3)$.

Теорема 1. Пусть G- удвоенная группа Фробениуса, изоспектральная $U_3(3)$. Тогда G=ABC, где A-2-группа и H=BC-группа Фробениуса порядка 21 или 42. В первом случае $H\simeq \langle b,c\mid 1=b^7=c^3=b^cb^5\rangle$ и порядок каждого G-главного фактора V из A равен 8. Рассматриваемый как H-модуль, V обладает базисом, в котором b и c c точностью до замены b на b^{-1} представляются матрицами

$$[b] = \left[egin{array}{ccc} . & 1 & . \ . & . & 1 \ 1 & 1 & . \end{array}
ight], \quad [c] = \left[egin{array}{ccc} 1 & . & . \ . & . & 1 \ . & 1 & 1 \end{array}
ight].$$

Кроме того, экспонента A равна 8, а экспонента $C_A(c)$ равна 4.

Во втором случае $H \simeq \langle b, c \mid 1 = b^7 = c^6 = b^c b^4 \rangle$ и порядок каждого G-главного фактора V из A равен 64. Рассматриваемый как H-модуль, V обладает базисом, в котором b и c представляются матрицами

$$[b] = egin{bmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad [c] = egin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ 1 & 1 & 1 & 1 & 1 & 1 \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \end{bmatrix}.$$

Оба случая реализуются.

Теорема 2. Существует изоспектральная $U_3(3)$ удвоенная группа Фробениуса G = ABC, где BC — группа Фробениуса порядка 21 и A — порядка 2^{18} .

Теорема 3. Существует изоспектральная $U_3(3)$ удвоенная группа Фробениуса G = ABC, где BC - группа Фробениуса порядка 42 и A - порядка 2^{18} .

Предварительные результаты

Лемма 1. Пусть G — удвоенная группа Фробениуса. Тогда

- (1) G = ABC, где AB нормальная подгруппа Фробениуса c ядром A и циклическим дополнением B нечетного порядка, а BC группа Фробениуса c ядром B и циклическим дополнением C.
- (2) A нильпотентна и для каждого простого делителя p числа |A| и любого элемента $c \in C$ порядка n существуют такие элементы $a_1, a_2 \in A$, что c централизует a_1 , а порядок a_2c равен pn.

Доказательство. Утверждение (1) — часть леммы 2 в [7], (2) — часть леммы 4 в [8].

Лемма 2. Пусть $H\simeq \langle b,c\mid 1=b^7=c^3=b^cb^5\rangle$ и V — неприводимый H-модуль над полем F характеристики два, на котором $\langle b\rangle$ действует без нетривиальных неподвижных точек. Тогда V абсолютно неприводим размерности 3

и обладает базисом, в котором b и c c точностью до замены b на b^{-1} представляются матрицами

$$[b] = \left[egin{array}{ccc} . & 1 & . \ . & . & 1 \ 1 & 1 & . \end{array}
ight], \quad [c] = \left[egin{array}{ccc} 1 & . & . \ . & . & 1 \ . & 1 & 1 \end{array}
ight].$$

ДОКАЗАТЕЛЬСТВО. Рассмотрим соответствующее полупрямое произведение G=VH. Очевидно, что G — удвоенная группа Фробениуса и по п. (2) леммы 1 $C_V(c) \neq 1$, т. е. существует ненулевой вектор v_1 в V такой, что $v_1c=v_1$. Теперь $(v_1b^i)c=(v_1c)(c^{-1}b^ic)=v_1b^{2i}$ для любого натурального i, откуда следует, что линейная оболочка W векторов v_1b^i , $i=0,\ldots,6$, H-инвариантна, поэтому W=V. Поскольку $w=v+vb+\cdots+vb^6=v(1+b+\cdots+b^6)$ — неподвижный вектор для b при любом $v\in V$, то w=0, стало быть,

$$V(1+b+b^3)(1+b^2+b^3) = V(1+b+\cdots+b^6) = 0.$$
 (1)

Так как $U = V(1 + b + b^3) = Vb(1 + b + b^3) = Ub$ и

$$Uc = V(1 + b + b^3)c = Vc(1 + b + b^3)^c$$

$$= Vc(1 + b^2 + b^6) = Vcb^6(1 + b + b^3) = V(1 + b + b^3) = U,$$

U является H-подмодулем, значит, U=0 или U=V. Во втором случае по п. (1) леммы 1 $V(1+b^2+b^3)=0$ и после замены b на $d=b^{-1}$ получаем

$$0 = V(1 + d^{-2} + d^{-3}) = Vd^{3}(1 + d^{-2} + d^{-3}) = V(1 + d + d^{3}),$$

т. е. возвращаемся к первому случаю.

Итак, без потери общности можем считать, что $V(1+b+b^3)=0$. В частности, $v_1b^3=v_1+v_1b$, откуда следует, что $\dim(V)\leq 3$.

Пусть L — расширение F, содержащее нетривиальный корень полинома x^7-1 , и $V^L=V\otimes_F L$. Тогда V^L содержит собственный вектор v элемента b, т. е. $v\neq 0$ и $vb=\mu b$, $\mu\neq 1$. Отсюда $vcb=vb^2c=\mu^2vc$, $vc^2b=vb^4c^2=\mu^4vc^2$. Таким образом, v,vc,vc^2 линейно независимы как собственные векторы с различными собственными значениями, поэтому $\dim V=\dim V^L\geq 3$. Сравнив с предыдущим абзацем, получим, что $\dim(V)=3$, V абсолютно неприводим и $v_1,v_2=v_1b,v_3=v_1b^2$ — базис V. Так как

$$v_1c=v_1,\quad v_2c=v_3, \ v_3c=v_1b^2c=v_1c(b^2)^c=v_1b^4=(v_1b^3)b=(v_1+v_1b)b=v_2+v_3,$$

матрицы b и c в этом базисы такие, как в заключении леммы, поэтому лемма доказана.

Следующий результат доказывается аналогично.

Лемма 3. Пусть $H \simeq \langle b,c \mid 1 = b^7 = c^6 = b^c b^4 \rangle$ и V — неприводимый H-модуль над полем F характеристики два, на котором $\langle b \rangle$ действует без нетривиальных неподвижных точек. Тогда V абсолютно неприводим размерности 6 и обладает базисом, в котором b и c представляются матрицами

$$[b] = egin{bmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad [c] = egin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ 1 & 1 & 1 & 1 & 1 & 1 \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}.$$

Доказательство основных результатов

Доказательство теоремы 1. По п. (1) леммы 1 G=ABC, где AB — нормальная подгруппа Фробениуса с ядром A и циклическим дополнением B нечетного порядка, а BC — группа Фробениуса с ядром B и циклическим дополнением C. По п. (2) леммы 1 |A||C| не может делиться на 7, поэтому |B| делится на 7. Поскольку B циклическая, она порядка 7. Отсюда следует, что порядок C равен 2, 3 или 6.

Предположим, что |C|=2. Тогда |A| делится на 3. Пусть c — инволюция из C. По п. (2) леммы 1 c централизует элемент $r\in A$ порядка 3. Так как A нильпотентна, r централизует силовскую 2-подгруппу из G, поэтому G содержит элемент порядка 24; противоречие.

Итак, порядок $C=\langle c\rangle$ равен 3 или 6 и H=BC — группа Фробениуса порядка 21 или 42. В обоих случаях по п. (2) леммы 1 A является 2-группой. В первом случае $H\simeq \langle b,c\mid 1=b^7=c^3=b^cb^5\rangle$ и заключение теоремы 1 вытекает из леммы 2. Во втором случае $H\simeq \langle b,c\mid 1=b^7=c^6=b^cb^4\rangle$ и заключение следует из леммы 3.

Доказательство теоремы 2. Пусть A — группа, порожденная элементами $x_1, x_2, x_3, y_1, y_2, y_3$, со следующими соотношениями:

$$x_i^4 = y_i^4 = 1, \quad i \in \{1, 2, 3\},$$
 (2)

$$[x_i, x_j] = [y_i, y_j] = 1, \quad i, j \in \{1, 2, 3\},$$
 (3)

$$[x_i, y_i] = 1, \quad i \in \{1, 2, 3\},$$
 (4)

$$[x_i, y_j][x_j, y_i] = 1, \quad 1 \le i < j \le 3,$$
 (5)

$$[[x_i, y_i], x_k] = [[x_i, y_i], y_k] = 1, \quad i, j, k \in \{1, 2, 3\}.$$
 (6)

Лемма 4. (1) Ступень нильпотентности A равна двум, и A-2-группа.

- (2) Подгруппы $X = \langle x_1, x_2, x_3 \rangle$ и $Y = \langle y_1, y_2, y_3 \rangle$ изоморфны прямому про-изведению трех циклических групп порядка 4 и $A = \langle X, Y \rangle$.
- (3) Коммутант Z группы A порождается элементами $z_1 = [x_1, y_2], z_2 = [x_1, y_3], z_3 = [x_2, y_3]$ порядка 4 и изоморфен прямому произведению трех циклических групп порядка 4.
 - (4) Порядок A равен 2^{18} .
 - (5) Экспонента A равна 8.

Доказательство. Проверка пп. (1)–(4) леммы не представляет труда. Докажем п. (5). Пусть $g\in A$. Тогда g=xyz для некоторых $x\in X,\ y\in Y,\ z\in Z$ и $g^2=(xy)^2z^2=x^2[x,y^{-1}]y^2z^2$. Так как по соотношениям (2), (3) и (5) $[x^2,y^2]=[x,y^2]^2=[x,y]^4=1$, то $g^8=(g^2)^4=[x,y^{-1}]^4x^8y^8z^8=1$, т. е. 8 является периодом A. С другой стороны, $\left(x_1y_2^{-1}\right)^4=x_1^4y_2^{-4}[x_1,y_2]^2=z_1^2\neq 1$, поэтому экспонента A равна 8. Лемма доказана.

Пусть r_x и r_y — автоморфизмы групп X и Y такие, что их матрицы в базисах x_1,x_2,x_3 и y_1,y_2,y_3 этих групп равны матрице $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$. Эти автоморфизмы единственным образом продолжаются до автоморфизма r порядка 7

группы A. Матрица ограничения r на Z в базисе z_1,z_2,z_3 равна $\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 2 \\ 0 & -1 & 1 \end{bmatrix}.$

Автоморфизм r действует на A без неподвижных точек.

Пусть s_x и s_y — автоморфизмы групп X и Y, матрицы которых в базисах x_1,x_2,x_3 и y_1,y_2,y_3 этих групп равны $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix}$. Эти автоморфизмы

однозначно продолжаются до автоморфизма s порядка $\overline{3}$ группы A. Матрица ограничения s на Z в базисе z_1,z_2,z_3 равна $\begin{bmatrix} 0 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$. Группа неподвиж-

ных точек s в X равна $\langle x_1 \rangle$, группа неподвижных точек s в Y равна $\langle y_1 \rangle$, группа неподвижных точек s в Z равна $\langle z_1^2 z_2^2 z_3 \rangle$. Отсюда вытекает, что группа C неподвижных точек автоморфизма s в A порождается элементами $x_1, y_1, z_1^2 z_2^2 z_3$. По (3) и лемме 1 C — коммутативная группа экспоненты 4. Кроме того, $s^{-1}rs = r^2$, т. е. $F = \langle r, s \rangle$ — группа Фробениуса порядка 21.

Пусть теперь G — естественное полупрямое произведение A на F. Так как r действует на A без неподвижных точек, $A\langle r\rangle$ является группой Фробениуса с ядром A. Далее, G/A изоморфна группе Фробениуса F, поэтому G — удвоенная группа Фробениуса. Кроме того, это означает, что в G нет элементов порядка 7k для k>1. Поскольку C — группа экспоненты 4, в G есть элемент порядка 12, но нет элементов порядка 24. Так как экспонента A равна 8, то $\mu(G)=\{7,8,12\}=\mu(U_3(3))$. Теорема 2 доказана.

Доказательство теоремы 3. Пусть $H\simeq \langle b,c\mid 1=b^7=c^6=b^cb^4\rangle$ — группа Фробениуса порядка 42 и V — абсолютно неприводимый H-модуль над F=GF(8), на котором b действует без неподвижных точек. По лемме $3\dim(V)=6$.

Пусть $v_1 \in V$ — собственный вектор элемента b. Тогда $v_1^b = \mu v_1$, $\mu^7 = 1$, $\mu \neq 1$. Положим $v_3 = v_1^c$, $v_2 = v_3^c$, $v_6 = v_2^c$, $v_4 = v_6^c$, $v_5 = v_4^c$. Тогда $v_3^b = v_1^{cb} = v_1^{b^3c} = (\mu^3 v_1)^c = \mu^3 v_3$. Аналогично $v_i^b = \mu^i v_i$, $i = 1, \ldots, 6$. Таким образом, v_i , $i = 1, \ldots, 6$, — собственные векторы для b с различными собственными значениями, поэтому они составляют базис пространства V. Пусть L = VH — соответствующее полупрямое произведение.

Пусть $W = V \wedge V$ — внешний квадрат модуля V, т. е. $W = V \otimes V/J$, где J — подмодуль, порожденный множеством $\{v \otimes v \mid v \in V\}$. Так как v_1, \ldots, v_6 — базис V, то $\{ij = v_i \wedge v_j \mid 1 \leq i < j \leq 6\}$ — базис W. В частности, $\dim(W) = 15$. Группа H действует на W по правилу: $(x \wedge y)^h = x^h \wedge y^h$, где $x, y \in V$, $h \in H$.

Пусть $U=V\oplus W$. Будем записывать элементы U как пары (v,w), где $v\in V$, $w\in W$. Определим действие L на U правилом $(u,w)^v=(u,w+u\wedge v),\,(u,w)^h=(u^h,w^h)$, где $u,v\in V,\,w\in W,\,h\in H$. Легко проверить, что это определение корректно. Рассмотрим соответствующее полупрямое произведение UL.

Пусть N — подпространство W, натянутое на векторы 13,15,16,23,25,26,34,45,46. Простая проверка показывает, что N является L-подмодулем, следовательно, N — нормальная подгруппа в UL. Положим G = UL/N и докажем, что G — удвоенная группа Фробениуса и $\mu(G) = \mu(U_3(3))$. Поскольку $(ij)^b = \mu^{i+j}(ij)$, подпространство $C_W(b)$ неподвижных точек элемента b в W натянуто на 16,25,34 и поэтому содержится в N. Отсюда вытекает, что $C_G(b) = \langle b \rangle$, стало быть, G = AH, где A = (UV/N) — удвоенная группа Фробениуса. Таким образом, остается доказать, что $\mu(A\langle c \rangle) = \{8,12\}$.

Положим $t=c^3,\ u=(v_1,0)\in U$ и рассмотрим элемент $g=uv_2t\in UL$. Тогда $g^2=uv_2(uv_2)^t=uv_2u^tv_5=(v_1,0)v_2(v_6,0)v_5=((v_1,0)+(v_6,26))(v_2+v_5)$ и $g^4=(0,(v_1+v_6)\wedge(v_2+v_5))=(0,12+15+26+56)\in U\setminus N$. Значит, порядок

образа g в G равен 8. Так как $1 < U < UV < UV \langle t \rangle$ — нормальный ряд в $UV \langle t \rangle$ с элементарными абелевыми факторами и $UV \langle t \rangle$ — силовская 2-подгруппа в UL, группа G не содержит элементов порядка 16.

Пусть $r=c^2$. Тогда $C_A(r)=C_{UV}(r)/N$ и подгруппа $C=C_{UV}(r)$ порождена $v_1+v_2+v_4,\ v_3+v_5+v_6$ и $C_U(r)$. Поскольку C порождена инволюциями и

$$[C, C] = \langle (v_1 + v_2 + v_4) \land (v_3 + v_5 + v_6) \rangle$$

= $\langle 13 + 15 + 16 + 23 + 25 + 26 + 34 + 45 + 46 \rangle \le N$,

образ C в G — элементарная абелева группа, поэтому экспонента $C_G(r)$ равна 12. Следовательно, G содержит элемент порядка 12, но не может содержать элементов порядка 24. Стало быть, $\mu(G)=\{7,8,12\}=\mu(U_3(3))$. Теорема 3 доказана.

Замечание. Можно было бы доказать теорему 3, основываясь на H-модуле V над полем порядка 2, описанном в лемме 3, вместо H-модуля V из доказательства теоремы 3, и получить пример удвоенной группы Фробениуса, изоспектральной группе $U_3(3)$ и имеющей вид $2^{12}:2^6:7:6$.

Опишем этот пример, опуская подробности построения.

Пусть W — векторное пространство размерности 12 над полем порядка 2, B — базис W и a_1,b,c — линейные преобразования W, матрицы которых в B имеют вид

Пусть $L = \langle a_1, b, c \rangle$.

Проверка в GAP [9] показывает, что имеют место следующие утверждения.

- 1. Порядки b, c и b^cb^4 равны соответственно 7, 6 и 1, т. е. $K = \langle b,c \rangle$ группа Фробениуса порядка 42.
- 2. Подгруппа $A=\left\langle a_1^K\right\rangle$ является элементарной абелевой группой порядка 64, на которой b действует без неподвижных точек, т. е. L удвоенная группа Фробениуса порядка 2688.
- 3. L содержит 448 элементов порядка 12, и для каждого элемента $x \in L$ порядка 12 выполняется равенство $x + x^2 + x^3 + \cdots + x^{12} = 0$. Это означает,

что естественное полупрямое произведение G=WL не содержит элементов порядка 24.

- 4. Если $t=a_1^bc^3$, то порядок t равен четырем, $t+t^2+t^3+t^4\neq 0$, поэтому G содержит элемент порядка 8.
 - 5. Элемент b действует на W без неподвижных точек.

Итак, G — удвоенная группа Фробениуса, $|G|=2688|W|=2^{18}42$ и $\mu(G)=\{7,8,12\}=\mu(U_3(3)).$

ЛИТЕРАТУРА

- Мазуров В. Д., Ши В. Дж. Признак нераспознаваемости конечной группы по спектру // Алгебра и логика. 2012. Т. 51, № 2. С. 239–243.
- Williams J. S. Prime graph components of finite groups // J. Algebra. 1981. V. 69, N 2. P. 487–513.
- 3. *Алеева М. Р.* О конечных простых группах с множеством порядков элементов, как у группы Фробениуса или двойной группы Фробениуса // Мат. заметки. 2003. Т. 73, № 3. С. 323–339.
- Lucido M. S., Moghaddamfar A. R. Groups with complete prime graph connected components // J. Group Theory. 2004. V. 73, N 3. P. 373–384.
- Старолетов А. М. Неразрешимость конечных групп, изоспектральных знакопеременной группе степени 10 // Сиб. электрон. мат. изв. 2008. Т. 5. С. 20–24.
- 6. Заварницин А. В. Разрешимая группа, изоспектральная группе $S_4(3)$ // Сиб. мат. журн. 2010. Т. 51, № 1. С. 26–31.
- Зиновьева М. Р., Мазуров В. Д. О конечных группах с несвязным графом простых чисел // Тр. Ин-та математики и механики УрО РАН. 2012. Т. 18, № 3, С. 99–105.
- 8. Мазуров В. Д. Распознавание конечных простых групп $S_4(q)$ по порядкам их элементов // Алгебра и логика. 2002. Т. 41, № 2. С. 166–198.
- 9. GAP: Groups, algorithms, and programming (http://www/gap-system.org).

Cтатья поступила 8 июля $2015\ г$.

Мазуров Виктор Данилович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 mazurov@math.nsc.ru