ОБ АППРОКСИМАЦИИ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ВРЕМЕНИ ПЕРВОГО ВЫХОДА СЛУЧАЙНОГО БЛУЖДАНИЯ ИЗ ИНТЕРВАЛА

В. И. Лотов

Аннотация. Найдены асимптотические разложения математического ожидания времени первого выхода траектории случайного блуждания из расширяющейся полосы. На распределение скачков блуждания накладывается условие Крамера о существовании экспоненциального момента.

 $DOI\,10.17377/smzh.2016.57.109$

Ключевые слова: случайное блуждание, последовательный критерий Вальда, асимптотические разложения.

Пусть $\{X_n\}$ — последовательность независимых одинаково распределенных случайных величин, $S_n = X_1 + \cdots + X_n$, $n \ge 1$. Для произвольных a > 0, b > 0 введем случайную величину N, равную моменту первого выхода блуждания S_1, S_2, \ldots из интервала (-a, b):

$$N = N(a, b) = \min\{n \ge 1 : S_n \notin (-a, b)\}.$$

Цель работы состоит в получении асимптотических разложений для $\mathbf{E} N$, имеющих экспоненциально малые остаточные члены вида $O(e^{-\varepsilon a}) + O(e^{-\varepsilon b})$ при $a \to \infty, \ b \to \infty, \ \varepsilon > 0$.

Подобная задача возникает прежде всего при использовании последовательного критерия отношения вероятностей (ПКОВ) Вальда [1]. Напомним кратко его содержание.

Пусть последовательно наблюдаются независимые одинаково распределенные случайные величины Y_1,Y_2,\ldots с неизвестной функцией распределения F. Проверяются простые гипотезы $H_1=\{F=F_1\}$ против $H_2=\{F=F_2\}$. Предположим, что распределения F_j обладают плотностью f_j относительно некоторой сигма-конечной меры, j=1,2. Если положить

$$X_n = \log \frac{f_2(Y_n)}{f_1(Y_n)}, \quad n = 1, 2, \dots,$$
 (1)

то нетрудно видеть, что при таком задании последовательности $\{X_n\}$ имеет место $\mathbf{E}_1\,X_n < 0,\,\mathbf{E}_2\,X_n > 0$ (предполагается существование этих ожиданий). Везде индексы 1 и 2 соответствуют справедливости гипотез H_1 и H_2 соответственно. Таким образом, траектория случайного блуждания $\{S_n\}$ с вероятностью единица уходит на минус бесконечность, если верна гипотеза H_1 , и на

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 14–01–00220).

плюс бесконечность, если верна H_2 . По этой причине ПКОВ предписывает следующее решающее правило: при подходящих значениях чисел a и b гипотеза H_1 отвергается, если $S_N \geq b$, в противном случае, т. е. когда $S_N \leq -a$, принимается.

ПКОВ, как известно, обладает следующим свойством оптимальности. Пусть ε_1 и ε_2 — допустимые значения вероятностей принятия ошибочных решений. Тогда среднее число наблюдений, необходимых для принятия решения этим критерием, минимально в классе всех критериев с теми же ограничениями на вероятности ошибок.

Использование ПКОВ требует умения вычислять вероятности принятия опибочных решений $\mathbf{P}_1(S_N \geq b)$ и $\mathbf{P}_2(S_N \leq -a)$, а также среднего числа наблюдений, необходимых для принятия решения. Интерес вызывает также вычисление оперативной характеристики критерия $\mathbf{P}(S_N \leq -a)$ и среднего числа наблюдений $\mathbf{E} N$ в предположении, что верна некоторая третья простая гипотеза, не исключающая случая $\mathbf{E} X_1 = 0$.

К сожалению, в общем случае точные формулы для указанных характеристик критерия недоступны, поэтому акцент в исследованиях естественным образом сместился на построение разного сорта аппроксимаций. Самые первые аппроксимации были предложены Вальдом [1]. Они просты и не зависят от рассматриваемых гипотез, однако при их получении пренебрегается эффект перескока случайным блужданием границы полосы, что влечет заметную потерю точности. Это относится и к полученным Вальдом приближениям для $\mathbf{E}_i N$. Впоследствии аппроксимация для вероятностей ошибок и $\mathbf{E}_i N$, учитывающая перескоки через границы полосы, была найдена в [2] для близких распределений F_1 и F_2 , вкладывающихся в некоторое экспоненциальное семейство. Наиболее точные приближения для вероятностей ошибок получены в [3] в виде асимптотических разложений по степеням e^{-a} и e^{-b} в условиях Краме́ра на распределение F при $a \to \infty$, $b \to \infty$. Мы сосредоточимся здесь на исследовании асимптотики $\mathbf{E} N$ в тех же условиях, уточняя тем самым результаты других авторов в этом направлении. Основные результаты работы содержатся в теоремах 2 и 3.

Итак, пусть $\{X_n, n \geq 1\}$ — произвольная последовательность независимых одинаково распределенных случайных величин (не обязательно представимых в виде логарифма отношения правдоподобия). Будем предполагать везде, что выполнены следующие условия.

- (C_1) Распределение X_1 содержит абсолютно непрерывную (относительно меры Лебега) компоненту.
- (C₂) $\mathbf{E} e^{\lambda X_1} < \infty$ при $-\gamma \le \lambda \le \beta$, $\gamma > 0$, $\beta > 0$. Если $\mathbf{E} X_1 < 0$, то дополнительно предполагаем, что $\mathbf{E} e^{\beta X_1} > 1$. Если $\mathbf{E} X_1 > 0$, то предполагаем, что $\mathbf{E} e^{-\gamma X_1} > 1$.

Положим $\varphi(\lambda)=\mathbf{E}\,e^{\lambda X_1}$. Пусть $\mathbf{E}\,X_1<0$, тогда, очевидно, найдется число $q,\,0< q<\beta$, такое, что $\varphi(q)=1$. Если $\mathbf{E}\,X_1>0$, то $\varphi(-q)=1$ при некотором $q,\,0< q<\gamma$.

Если случайные величины X_n задаются как логарифмы отношения правдоподобия (1), то в этом случае

$$\mathbf{E}_1 e^{\lambda X_1} < \infty$$
 при $0 < \lambda < 1$, $\mathbf{E}_1 e^{X_1} = 1$, $\mathbf{E}_2 e^{(\lambda - 1)X_1} = \mathbf{E}_1 e^{\lambda X_1}$,

т. е. всегда выполнено одностороннее условие Краме́ра (правостороннее при справедливости H_1 и левостороннее при H_2) и q=1.

Введем лестничные величины

$$\eta_{+} = \min\{n \geq 1 : S_n \geq 0\}, \quad \eta_{-} = \min\{n \geq 1 : S_n < 0\}, \quad \chi_{\pm} = S_{\eta_{+}}.$$

Полагаем $\eta_+ = \infty$, если $S_n < 0$ при всех n, и $\eta_- = \infty$, если $S_n \ge 0$ для любого n; лестничные высоты χ_\pm будем считать не определенными на событии $\{\eta_\pm = \infty\}$. Пусть для $|z| \le 1$, Re $\lambda = 0$

$$R_{\pm}(z,\lambda) = 1 - \mathbf{E}(z^{\eta_{\pm}} \exp{\{\lambda \chi_{\pm}\}}; \eta_{\pm} < \infty).$$

Хорошо известно (см., например, [4]) следующее представление (факторизация Винера — Хопфа):

$$R(z,\lambda) := 1 - z\varphi(\lambda) = R_+(z,\lambda)R_-(z,\lambda), \quad |z| \le 1, \text{ Re } \lambda = 0.$$

При выполнении условия (C_2) указанная факторизация справедлива и в более широкой области $-\gamma \leq \operatorname{Re} \lambda \leq \beta$.

Для z, близких к единице, $z \le 1$, условие (C_2) обеспечивает наличие двух вещественных нулей $\lambda_-(z) \le 0$ и $\lambda_+(z) \ge 0$ функции $R(z,\lambda)$ (если $\mathbf{E}\,X_1=0$, то $\lambda_-(1)=\lambda_+(1)=0$ являет собой корень кратности два). Это легко понять, поскольку график выпуклой вниз функции $\varphi(\lambda)$ дважды пересекает горизонтальную прямую на уровне $1/z \ge 1$. При некотором $\delta>0$ функция $R(z,\lambda)$ не имеет других нулей в полосе $\lambda_-(z)-\delta \le \mathrm{Re}\,\lambda \le \lambda_+(z)+\delta$. Здесь с необходимостью $R_+(z,\lambda_+(z))=R_-(z,\lambda_-(z))=0$. Функции $\lambda_\pm(z)$ могут быть аналитически продолжены в некоторую δ -окрестность единицы (с разрезом по лучу $z \ge 1$, если $\mathbf{E}\,X_1=0$). При этом $\lambda_\pm(z)$ по-прежнему остаются нулями функций $R(z,\lambda)$ и $R_\pm(z,\lambda)$. Более подробно об этом см. [5].

Обозначим

$$\begin{split} u_z(\lambda) &= \frac{R_-(z,\lambda)}{(\lambda-\lambda_-(z))R'_-(z,\lambda_-(z))}, \quad v_z(\lambda) = \frac{R_+(z,\lambda)}{(\lambda-\lambda_+(z))R'_+(z,\lambda_+(z))}, \\ H(z) &= v_z(\lambda_-(z))u_z(\lambda_+(z)), \quad \mu(z) = \exp\{\lambda_-(z)-\lambda_+(z)\}. \end{split}$$

В приведенных формулах производная у функций $R_{\pm}(z,\lambda)$ берется по второму аргументу, существование производных обеспечивается условием (C_2) .

Следующий результат есть непосредственное следствие теорем 1.1 и 1.2 из [6].

Теорема 1. Пусть выполнены условия (C_1) и (C_2) . Тогда существуют числа $\varepsilon>0$ и $\delta>0$ такие, что для любых $z\in (1-\delta,1),\, x\geq 0$ при $a\to\infty,\, b\to\infty$ равномерно по z

$$\mathbf{E}(z^N; S_N \ge b + x) = H_1(z, x)e^{-\lambda_+(z)b} \frac{1 - u_z(\lambda_+(z))\mu^a(z)}{1 - H(z)\mu^{a+b}(z)} + O(e^{-(\lambda_+(1) + \varepsilon)(b+x)}),$$
(2)

$$\mathbf{E}(z^N; S_N \le -a - x) = H_2(z, x) e^{\lambda_-(z)a} \frac{1 - v_z(\lambda_-(z))\mu^b(z)}{1 - H(z)\mu^{a+b}(z)} + O(e^{(\lambda_-(1) - \varepsilon)(a+x)}). \tag{3}$$

Функции $H_1(z,x), H_2(z,x)$ определяются соотношениями

$$H_1(z,x)=\int\limits_x^\infty h_1(z,y)\,dy,\quad H_2(z,x)=\int\limits_{-\infty}^{-x} h_2(z,y)\,dy,$$

где

$$v_z(\lambda) = \int\limits_0^\infty e^{\lambda y} h_1(z,y) \, dy, \quad u_z(\lambda) = \int\limits_{-\infty}^0 e^{\lambda y} h_2(z,y) \, dy.$$

Найдем $H_1(z,x)$. Имеем по определению

$$v_z(\lambda) = rac{\mathbf{E}(z^{\eta_+}e^{\lambda\chi_+};\eta_+<\infty)-1}{(\lambda-\lambda_+(z))\mathbf{E}(z^{\eta_+}\chi_+e^{\lambda_+(z)\chi_+};\eta_+<\infty)}.$$

Далее, при $\operatorname{Re} \lambda = 0$

$$\frac{\mathbf{E}(z^{\eta_+}e^{\lambda\chi_+};\eta_+<\infty)-1}{\lambda-\lambda_+(z)} = \int_0^\infty e^{(\lambda-\lambda_+(z))y} dy$$
$$-\int_0^\infty e^{\lambda y} \int_0^y e^{-\lambda_+(z)(y-t)} \sum_{n=1}^\infty z^n \mathbf{P}(\eta_+=n,\chi_+\in dt) dy,$$

поэтому

$$\begin{split} \int\limits_x^\infty e^{-\lambda_+(z)y}\,dy - \int\limits_x^\infty \int\limits_0^y e^{-\lambda_+(z)(y-t)} \sum_{n=1}^\infty z^n \mathbf{P}(\eta_+ = n, \chi_+ \in dt)\,dy \\ = \int\limits_x^\infty e^{-\lambda_+(z)y}\,dy - \int\limits_0^x e^{\lambda_+(z)t} \sum_{n=1}^\infty z^n \mathbf{P}(\eta_+ = n, \chi_+ \in dt) \int\limits_x^\infty e^{-\lambda_+(z)y}\,dy \\ - \int\limits_x^\infty e^{\lambda_+(z)t} \sum_{n=1}^\infty z^n \mathbf{P}(\eta_+ = n, \chi_+ \in dt) \int\limits_t^\infty e^{-\lambda_+(z)y}\,dy \\ = \frac{1}{\lambda_+(z)} e^{-\lambda_+(z)x} (1 - \mathbf{E}(z^{\eta_+} e^{\lambda_+(z)\chi_+}; \chi_+ < x; \eta_+ < \infty)) \\ - \frac{1}{\lambda_+(z)} \mathbf{E}(z^{\eta_+}; \chi_+ \ge x; \eta_+ < \infty) \\ = \frac{1}{\lambda_+(z)} e^{-\lambda_+(z)x} \mathbf{E}(z^{\eta_+} e^{\lambda_+(z)\chi_+}; \chi_+ \ge x; \eta_+ < \infty) - \frac{1}{\lambda_+(z)} \mathbf{E}(z^{\eta_+}; \chi_+ \ge x; \eta_+ < \infty). \end{split}$$

Здесь использовалось равенство

$$1 - \mathbf{E}(z^{\eta_+} e^{\lambda_+(z)\chi_+}; \eta_+ < \infty) = R_+(z, \lambda_+(z)) = 0.$$

Таким образом,

$$H_1(z,x) = \frac{\mathbf{E}(z^{\eta_+}(e^{\lambda_+(z)(\chi_+ - x)} - 1); \chi_+ \ge x; \eta_+ < \infty)}{\lambda_+(z)\mathbf{E}(z^{\eta_+}\chi_+ e^{\lambda_+(z)\chi_+}; \eta_+ < \infty)}.$$
 (4)

Используя формулу

$$u_z(\lambda) = \frac{\mathbf{E}(z^{\eta_-}e^{\lambda\chi_-};\eta_-<\infty)-1}{(\lambda-\lambda_-(z))\mathbf{E}(z^{\eta_-}\chi_-e^{\lambda_-(z)\chi_-};\eta_-<\infty)},$$

аналогичными рассуждениями находим

$$H_2(z,x) = \frac{\mathbf{E}(z^{\eta_-} (e^{\lambda_-(z)(\chi_- + x)} - 1); \chi_- < -x; \eta_- < \infty)}{\lambda_-(z) \mathbf{E}(z^{\eta_-} \chi_- e^{\lambda_-(z)\chi_-}; \eta_- < \infty)}.$$
 (5)

Пусть $\mathbf{E} X_1=0$, тогда $\mathbf{P}(\eta_{\pm}<\infty)=1$ и z=1 является точкой ветвления второго порядка функций $\lambda_{\pm}(z)$, а значит, и функций $H_1(z,x),\ H_2(z,x),\ H(z).$

Следовательно, имеют место разложения, справедливые в малой окрестности точки z=1 с разрезом по лучу $z\geq 1$ (корень квадратный всюду понимается в смысле главного значения):

$$H_1(z,x) = \sum_{j=0}^{\infty} b_j(x)(1-z)^{j/2}, \quad H_2(z,x) = \sum_{j=0}^{\infty} a_j(x)(1-z)^{j/2},$$
 $H(z) = 1 + \sum_{j=1}^{\infty} c_j(1-z)^{j/2}, \quad \lambda_{\pm}(z) = \pm \psi_1(1-z)^{1/2} + \psi_2(1-z) + \dots,$
 $\mu(z) = 1 - 2\psi_1(1-z)^{1/2} + \dots, \quad u_z(\lambda_+(z)) = 1 + \sum_{j=1}^{\infty} u_j(1-z)^{j/2},$
 $v_z(\lambda_-(z)) = 1 + \sum_{j=1}^{\infty} v_j(1-z)^{j/2}.$

Здесь

$$\psi_{1} = \sqrt{\frac{2}{\sigma^{2}}}, \quad \psi_{2} = \frac{\mu_{3}}{3\sigma^{4}}, \quad \mu_{k} = \mathbf{E} X_{1}^{k}, \quad \sigma^{2} = \mu_{2} - \mu_{1}^{2},$$

$$b_{0}(x) = \mathbf{E}(\chi_{+} - x; \chi_{+} \geq x)(\mathbf{E}\chi_{+})^{-1}, \quad a_{0}(x) = \mathbf{E}(\chi_{-} + x; \chi_{-} < -x)(\mathbf{E}\chi_{-})^{-1},$$

$$u_{1} = \psi_{1} \frac{\mathbf{E}\chi_{-}^{2}}{\mathbf{E}\chi_{-}}, \quad v_{1} = -\psi_{1} \frac{\mathbf{E}\chi_{+}^{2}}{\mathbf{E}\chi_{+}}, \quad c_{1} = u_{1} + v_{1}.$$

Устремляя $z \to 1$ в (2) и (3), получаем

Следствие 1. Пусть **Е** $X_1 = 0$. Тогда в условиях теоремы 1

$$\mathbf{P}(S_N \ge b + x) = b_0(x) rac{u_1 + 2\psi_1 a}{c_1 + 2\psi_1 (a + b)} + O(e^{-\varepsilon(b + x)}),$$
 $\mathbf{P}(S_N \le -a - x) = a_0(x) rac{v_1 + 2\psi_1 b}{c_1 + 2\psi_1 (a + b)} + O(e^{-\varepsilon(a + x)}).$

Для нахождения асимптотической формулы для ${\bf E}\,N$ в случае, когда ${\bf E}\,X_1=0$, воспользуемся тождеством Вальда ${\bf E}\,S_N^2={\bf E}\,N\,{\bf E}\,X_1^2$. Пусть τ — величина перескока траектории случайного блуждания через границу полосы, т. е.

$$au = \left\{ egin{array}{ll} S_N + a, & ext{ecли } S_N \leq -a, \\ S_N - b, & ext{ecли } S_N \geq b. \end{array}
ight.$$

Тогда

$$\begin{aligned} \mathbf{E} \, S_N^2 &= \mathbf{E}((-a+\tau)^2; S_N \le -a) + \mathbf{E}((b+\tau)^2; S_N \ge b) \\ &= a^2 \mathbf{P}(S_N \le -a) + b^2 \mathbf{P}(S_N \ge b) - 2a \, \mathbf{E}(\tau; S_N \le -a) + 2b \, \mathbf{E}(\tau; S_N \ge b) \\ &+ \mathbf{E}(\tau^2; S_N \le -a) + \mathbf{E}(\tau^2; S_N \ge b). \end{aligned}$$

Далее заметим, что $a_0(0)=b_0(0)=1$, и воспользуемся следующими формулами:

$$\mathbf{E}(Y;S) = \int\limits_0^\infty \mathbf{P}(Y \geq x;S) \, dx, \quad \mathbf{E}(Y^2;S) = 2 \int\limits_0^\infty x \mathbf{P}(Y \geq x;S) \, dx$$

для любой неотрицательной случайной величины Y и для любого события S. Обозначим

$$A_1 = \int\limits_0^\infty a_0(x)\,dx, \quad A_2 = 2\int\limits_0^\infty x a_0(x)\,dx, \quad B_1 = \int\limits_0^\infty b_0(x)\,dx, \quad B_2 = 2\int\limits_0^\infty x b_0(x)\,dx$$

и сформулируем полученный результат.

Теорема 2. Пусть выполнены условия (C_1) , (C_2) и **E** $X_1=0$. Тогда существует число $\varepsilon>0$ такое, что при $a\to\infty,\,b\to\infty$

$$egin{aligned} \mathbf{E}\,S_N^2 &= \mu_2\,\mathbf{E}\,N = (a^2 + 2aA_1 + A_2)rac{v_1 + 2\psi_1 b}{c_1 + 2\psi_1 (a+b)} \ &\qquad + (b^2 + 2bB_1 + B_2)rac{u_1 + 2\psi_1 a}{c_1 + 2\psi_1 (a+b)} + O(e^{-arepsilon a}) + O(e^{-arepsilon b}). \end{aligned}$$

Рассмотрим случай $\mu_1=\mathbf{E}\,X_1<0$. Тогда $\lambda_-(1)=0,\ \lambda_+(1)=q>0$ и представление (2) имеет вид

$$\mathbf{E}(z^{N}; S_{N} \ge b + x) = H_{1}(z, x)e^{-b\lambda_{+}(z)} \frac{1 - u_{z}(\lambda_{+}(z))\mu^{a}(z)}{1 - H(z)\mu^{a+b}(z)} + O(e^{-(q+\varepsilon)(b+x)})$$

$$= H_{1}(z, x)e^{-b\lambda_{+}(z)} + O(e^{-(q+\varepsilon)(b+x)}). \quad (6)$$

При выводе этих оценок использовалось свойство

$$H_1(z,x) = O(e^{-(q+\varepsilon)x})$$

при $x\to\infty$, которое вытекает из аналитичности функций $v_z(\lambda)$ и $R_+(z,\lambda)$ в полуплоскости $\mathrm{Re}\,\lambda\le q+\varepsilon.$

Далее,

$$\mathbf{E}(z^N; S_N \le -a - x) = H_2(z, x) e^{\lambda_-(z)a} \frac{1 - v_z(\lambda_-(z))\mu^b(z)}{1 - H(z)\mu^{a+b}(z)} + O(e^{-\varepsilon(a+x)}).$$
 (7)

При $\mu_1 < 0$ функции $\lambda_{\pm}(z)$, $H_1(z,x)$, $H_2(z,x)$, H(z) аналитичны в точке z=1. Подставляя z=1 в (4) и (5), находим

$$H_1(1,x) = rac{\mathbf{E}(e^{q(\chi_+ - x)} - 1; \chi_+ \geq x; \eta_+ < \infty)}{q\mathbf{E}(\chi_+ e^{q\chi_+}; \eta_+ < \infty)}, \quad H_2(1,x) = rac{\mathbf{E}(\chi_- + x; \chi_- < -x)}{\mathbf{E}\chi_-}.$$

Положим

$$q_1 := u_1(\lambda_+(1)) = rac{\mathbf{E} e^{q\chi_-} - 1}{q\mathbf{E}\chi_-}, \quad q_2 := v_1(\lambda_-(1)) = rac{1 - \mathbf{P}(\eta_+ < \infty)}{q\mathbf{E}(\chi_+ e^{q\chi_+}; \eta_+ < \infty)}.$$

Подставляя z = 1 в (6) и (7), получаем

Следствие 2. Пусть **E** $X_1 < 0$. Тогда в условиях теоремы 1

$$\mathbf{P}(S_N \ge b + x) = H_1(1, x)e^{-qb} + O(e^{-(q+\varepsilon)(b+x)}),$$

$$\mathbf{P}(S_N \le -a - x) = H_2(1, x) \frac{1 - q_2 e^{-qb}}{1 - q_1 q_2 e^{-q(a+b)}} + O(e^{-(q+\varepsilon)(a+x)}).$$

Обозначим

$$K_i = \int\limits_{0}^{\infty} H_i(1,x)\,dx, \quad i=1,2,$$

и заметим, что $H_2(1,0)=1$. Кроме того, обнаруживаем, что $H_1(1,0)=q_2$. Действительно,

$$H_1(1,0) = \frac{\mathbf{E}(e^{q\chi_+} - 1; \eta_+ < \infty)}{q\mathbf{E}(\chi_+ e^{q\chi_+}; \eta_+ < \infty)} = \frac{1 - R_+(1, \lambda_+(1)) - \mathbf{P}(\eta_+ < \infty)}{q\mathbf{E}(\chi_+ e^{q\chi_+}; \eta_+ < \infty)},$$

и, как уже отмечалось, $R_{+}(1, \lambda_{+}(1)) = 0$.

В итоге приходим к следующему утверждению.

Теорема 3. Пусть выполнены условия (C_1) , (C_2) и $\mu_1 = \mathbf{E} X_1 < 0$. Тогда

$$\mu_1 \mathbf{E} N = -a - K_2 + ((a+b+K_2)q_2 + K_1)e^{-qb} + O(e^{-(q+\varepsilon)b} + e^{-(q+\varepsilon)a})$$

при некотором $\varepsilon > 0$ и $a \to \infty$, $b \to \infty$.

Этот факт вытекает из следующей цепочки формул:

$$\begin{aligned} \mathbf{E} \, S_N &= \mu_1 \, \mathbf{E} \, N = \mathbf{E} (-a + \tau; S_N \le -a) + \mathbf{E} (b + \tau; S_N \ge b) \\ &= -a \mathbf{P} (S_N \le -a) + b \mathbf{P} (S_N \ge b) + \mathbf{E} (\tau; S_N \le -a) + \mathbf{E} (\tau; S_N \ge b) \\ &= (-a - K_2) \left[\frac{1 - q_2 e^{-qb}}{1 - q_1 q_2 e^{-q(a+b)}} + O(e^{-(q+\varepsilon)a}) \right] \\ &+ b [H_1(1, 0) e^{-qb} + O(e^{-(q+\varepsilon)b})] + K_1 [e^{-qb} + O(e^{-(q+\varepsilon)b})]. \end{aligned}$$

Соответствующее утверждение для случая ${\bf E}\,X_1>0$ получается симметричными рассуждениями.

ЗАМЕЧАНИЕ. По-видимому, можно также получить аппроксимацию для моментов любого порядка случайной величины N при $\mathbf{E} X_1 < 0$, дифференцируя главные члены асимптотических представлений (2) и (3) с последующей подстановкой значения z=1. При этом дифференцирование по z остаточных членов в представлениях (2) и (3) также приведет к остаточным членам в формулах для $\mathbf{E} N^k$, отличающимся от главных членов экспоненциально малым множителем. Возможность дифференцирования не вызывает сомнений. Действительно, $\mathbf{E} z^N$ существует в круге $|z| < 1 + \delta$ при некотором $\delta > 0$ и, следовательно, является аналитической функцией в окрестности единицы [7, гл. 18]. То же самое верно и для левых частей в (2) и (3). Главные части представлений (2) и (3), находящиеся в правых частях этих формул, явным образом выражены через факторизационные компоненты и нули функции $R(z,\lambda)$ и, как нетрудно видеть, тоже аналитичны в окрестности точки z=1. Следовательно, остаточные члены в (2) и (3) также аналитичны по z в окрестности единицы. Однако строгое обоснование экспоненциальной малости производных остаточных членов, как, впрочем, и взятие производных главных членов, является весьма громоздкой процедурой, и мы не будем этого делать в рамках данной работы.

В заключение заметим, что результаты данной работы без каких-либо осложнений переносятся на решетчатые случайные блуждания, подчиняющиеся условию Крамера. Изменения в доказательствах сведутся к замене интегралов соответствующими суммами. Необходимые для этого случая асимптотические представления распределения величины перескока через границу полосы содержатся в [8].

ЛИТЕРАТУРА

- 1. Вальд А. Последовательный анализ. М.: Физматгиз, 1960.
- 2. Siegmund D. Sequential analysis. New York: Springer-Verl., 1985.
- Лотов В. И. Асимптотические разложения в последовательном критерии отношения правдоподобия // Теория вероятностей и ее применения. 1987. Т. 32, № 1. С. 62–72.
- 4. Боровков А. А. Теория вероятностей. М.: Либроком, 2009.
- Боровков А. А. Новые предельные теоремы в граничных задачах для сумм независимых слагаемых // Сиб. мат. журн. 1962. Т. 3, № 5. С. 645–694.
- Лотов В. И. Предельные теоремы в одной граничной задаче для случайных блужданий // Сиб. мат. журн. 1999. Т. 40, № 5. С. 1095–1108.

- 7. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, 1984. Т. 2.
- 8. Лотов В. И. Асимптотический анализ распределений в двуграничных задачах. І // Теория вероятностей и ее применения. 1979. Т. 24, N2 3. С. 475–485.

Cтатья поступила 29 апреля 2015 г.

Лотов Владимир Иванович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 lotov@math.nsc.ru