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ON THE APPROXIMATE SOLUTION OF SOME
FREDHOLM INTEGRAL EQUATIONS BY NEWTON’S
METHOD

J. M. GUTIERREZ, M. A. HERNANDEZ AND M. A. SALANOVA

ABSTRACT. The aim of this paper is to apply Newton’s method to
solve a kind of nonlinear integral equations of Fredholm type. The
study follows two directions: firstly we give a theoretical result on
existence and uniqueness of solution. Secondly we illustrate with
an example the technique for constructing the functional sequence
that approaches the solution.
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65J15
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1. INTRODUCTION

In this paper we give an existence and uniqueness of solution result
for a nonlinear integral equation of Fredholm type:

b
1) é(x) = flz) + A / K )otPdt, zewb), p>2,

where A is a real number, the kernel K(z,t) is a continuous function
in [a,b] X [a,b] and f(z) is a given continuous function defined in [a, b].
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2 J. M. GUTIERREZ, M. A. HERNANDEZ AND M. A. SALANOVA

There exist various results about Fredholm integral equations of sec-
ond kind

o(x) = f(x) + )\/ K(xz,t,¢(t))dt, =z € la,b]

when the kernel K (z,t,¢(t)) is linear in ¢ or it is of Lipschitz type
in the third component. These two points have been considered, for
instance, in [7] or [3] respectively. However the above equation (1) does
not satisfy either of these two conditions.

In [3] we can also find a particular case of (1), for f(z) = 0 and
K(x,t) a degenerate kernel. In this paper we study the general case.
The technique will consist in writing equation (1) in the form:

(2) F(¢) =0,

where F': QQ C X — Y is a nonlinear operator defined by

b
waw=¢@»<ﬂw—A/"K@¢wwmm p>2.

and X =Y = C([a,b]) is the space of continuous functions on the
interval [a, b], equipped with the max-norm

o] = max |p(z)], ¢ € X.

z€[0,1]

In addition, 2 = X if p € N, p > 2, and when it will be necessary,
Q= Ci([a,b]) = {op € C([a,b]); ¢(t) > 0, t € [a,b]} for p € R, with
p > 2.

The aim of this paper is to apply Newton’s method to equation (2)
in order to obtain a result on the existence and unicity of solution for
such equation. This idea has been considered previously in different
situations [1], [2], [4], [6].

At it is well known, Newton’s iteration is defined by

(3> (anrl = (bn - FnF<¢n)7 n > O,

where I',, is the inverse of the linear operator F(;n Notice that for each
¢ € Q, the first derivative F (;’5 is a linear operator defined from X to Y
by the following formula:

(@)
Fylula) = (o) v [ K(n.0o o, velabl e X

In the second section we establish two main theorems, one about the
existence of solution for (2) and other about the unicity of solution for
the same equation. In the third section we illustrate these theoretical
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results with an example. For this particular case, we construct some
iterates of Newton’s sequence.

2. THE MAIN RESULT

b
Let us denote N = max / |K(z,t)| dt. Let ¢o be a function in

z€a,b]
such that 'y = [F, ]! exists and [|[T'oF(¢o)|| < . We consider the
following auxiliary scalar function

(5) f(t) = 2(n—1t)+M(llgoll + )" [(p — nt — 2(n — t)(lléo]l +1)]

where, M = |A[pN. Let us note that if p € N, with p > 2, f(¢) is
a polynomial of degree p — 2. Firstly, we establish the following two
technical lemmas:

Lemma 2.1. Let us assume that the equation f(t) = 0 has at least
a positive real solution and let us denote by R the smaller one. Then
we have the following relations:

i) n <R.

i) a = M([|¢o]l + R)PF < 1.

(p—1)n
I =
iii) 1f we denote b ool + B)

iv) R

1
and h(t) = 13 then, abh(a) <

_
1 —abh(a)

Proof:  First, notice that iv) follows from the relation f(R) = 0.
So, as R > 0, we deduce that abh(a) < 1, and i) holds. Moreover,

1>1—abh(a) > 0, then 1 < , 80 1 < R, and 1) also holds.

1
1 — abh(a)
To prove i), we consider the relation f(R) = 0 that can be written
in the form:

2(n = R) [1 = M(||go|l + R)P'] = =Mn(p — D)R(||do]| + R)"* < 0.
Asn—R<0,1—M(||¢o| + R)P"1 =1—a >0, and therefore a < 1.

Let us denote B(¢g, R) = {¢ € X; ||¢ — ¢ol| < R} and B(¢g, R) =
{¢ € X; || — ¢ol| < R}

Lemma 2.2. If B(¢y, R) C Q, the following conditions hold
i) For all ¢ € B(¢o, R) there exists [Fj]~" and ||[F}]~"|| < h(a).
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i) If ¢n, pn_1 € B(¢o, R), then

(p—1a
| F(on)| < ool + )

Proof:  To prove i) we apply the Banach lemma on invertible oper-
ators [5]. Taking into account

l6n = dn-1ll*.

(I —F) —/\p/K:Et ()P~ 1ap(t) dt,
then
1 = FII < [AlpN Il < M(llgoll + B)" ™ = a < 1,
therefore, there exists [F))] ™ and [|[F}] '] < fla = h(a).

To prove 1), using Taylor’s formula, we have

Fn)() = / F vsionon sy — Fo (6 — bur) () ds

o /0 / K (@) [pa(s,)"" = dur ()] (6a(t) = Gua(t)) dt ds,
v /0 / K. t) [anw,wpwn_luw] (G (t) — G ()]s dt ds,

where p,(s,t) = ¢n_1(t) + (¢ — ¢n_1) and we have considered the
equality

p—2
Pt — Pt = (Z :L’ijy]) (x—vy), z,yeR.
=0

As ¢n_1, 0, € B(gg, R), for each s € [0,1], pn(s,-) € B(¢o, R), then
on(s, )| < ||¢o]| + R. Consequently
p—2

MoN
7)) < 22X (Z 60 + B)P~2 w) 60— Gus
7=0

(p)

2

—1
< NP N 4 Bp2li0, - 2 =

and the proof is complete.

Next, we give the following results on existence and uniqueness of
solutions for the equation (2). Besides, we obtain that the sequence
given by Newton’s method has R-order two.
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Theorem 2.3. Let us assume that equation f(t) = 0, with f defined
in (5) has at least a positive solution and let R be the smaller one. If
B(¢po, R) C ), then there exists at least a solution ¢* of (2) in B(¢g, R).
In addition, the Newton’s sequence (3) converges to ¢* with at least R-
order two.

Proof:  Firstly, as ||[¢1 —¢o|| < n < R, we have ¢ € B(¢o, R). Then,
I’y exists and ||T'1]| < h(a). In addition,

7o) < 5ot

2
)R — ab

and therefore

|62 — ¢1]| < abh(a)n.
Then, applying v) from Lemma 2.1,

62 — ¢oll < llé2 — o1l + llor — ¢oll < (1 — (abh(a))*)R < R,
and we have that x5 € B(¢g, R). By induction is easy to prove that

(6) 6 — Gnr]l < (abh(a))* |1 — @o-

In addition, taking into account Bernoulli’s inequality, we also have:

[$n — ol < (Z (abh(a))*'~ 1) lf1 = ¢oll < (Z(abh(a))2j1> 1

J=0 J=0

< (i(abh( ) ) -

=0
Consequently, ¢,, € B(¢o, R) for all n > 0.

Next, we prove that {¢,} is a Cauchy sequence. From (6), Lemma
2.1 and Bernouilli’s inequality, we deduce

H‘anrm_(an S H(anrm_(anrmfl”+H¢n+mfl_¢n+m72H+' : +H¢n_¢n71”
< [(abh(@)" ™™ (bh(a) " o (bh(a) ] 6ol
< (abh(a))*" " [(abh(a))Qn(QW1 Yt (abh(a))?" " 4 (abh(a)? + 1} n

< (abh(a))*" " [(abh(a))*" ") + (abh(a))*" ™" + .- + (abh(a))*" +1]

on_1 1 — (abh(a))*
= (abh(a))” ~ = — (abh(a))?"
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But this last quantity goes to zero when n — oo. Let ¢* = lim ¢,,
n—oo

then, by letting m — oo, we have

% 2n—1 Ui n on
H‘b _(bn” < (abh(a)) 1 — (abh(a))gn = (1 _ (abh(a))2”)(abh(a)) (abh(CL))

Ui an 2n
< (abh(a))* = Cx
(1 — (abh(a)))(abh(a))
with C' > 0 and v = abh(a) < 1. This inequality guarantees that {¢,}

has at least R-order of convergence two [8].
Finally, for n = 0, we obtain

* n .
| —¢0H<m—3

then, ¢* € B(¢o, R). Moreover, as
1
IE(@n)l < 5M(p = 1)(lIgoll + B llén = dnall,

when n — oo we obtain F'(¢*) = 0, and ¢* is a solution of F'(x) = 0.

Now we give a uniqueness result:

Theorem 2.4. Let ||[Ty|| < 3, then the solution of (2) is unique in
B(po, R) (2, with R is the bigger positive solution of the equation

™) MpB(p—1)

2
Proof:  To show the uniqueness, we suppose that v* € B(¢o, R) (|
is another solution of (2). Then

2llgoll + R+ 2)P*(R+z) = 1.

1
0= ToF () = PoF(@) = [ ToFjeype ey ds0” = &),
0

We are going to prove that A~! exists, where A is a linear operator

defined by

1
A :/ PQF(;)*JFS(W*fd)*) dS,
0

then v* = ¢*. For this, notice that for each v € X and = € [a, b], we
have

M—MW@zLFd&WWM—%W@%,

1 b
— —/\p/o FO/ K(z,t) [p*(s, )P = ¢o(t)P ] ¥(t) dt ds
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= [ 10 [ K [Zp* (5,1 f¢o<>]<p*<s,t>—¢o<t>>w<t>dtds,
where g (s, 1) = 6*(1) + s(r° (1) — (1)

Taking into account that

0" (s, t)=o(t)] < [|¢"—po+s(y"—=¢")I| < (1=5) 6"l +sll7"—oll < (1—s)R+sR,

we obtain

I(A=D)pl[ < [AlpN|Toll [1]-

/ (Z ™ (s, )P ]H%HJ) (1 -s)R+sR)ds

Therefore, as

1" (s, )l < (=s)lle"[[+sllv*[l < (1=s)(l|@oll+R)+s(l|doll+R) < 2[|do]l+R+E,

we have, from (7),

Lol M, — %= / _
a1 < BB ey | X (5=l ) | Clloole ey
=0
< 2R+ Ry - (@0l + R+ B2 =

1
So, the operator / F'(¢* +t(y" — ¢*))dt has an inverse and conse-

0
quently, v* = ¢*. Then, the proof is complete.

3. AN EXAMPLE

To illustrate the above theoretical results, we consider the following
example

1 /1
(8)  ¢(x) =sin(mx) + 5/ cos(mx) sin(wt)p(t)* dt, x € [0,1].
0
Let X = C]0,1] be the space of continuous functions defined on the

interval [0, 1], with the max-norm and let F': X — X be the operator
given by

F(¢)(z) = ¢(z) — sin(mx) — %/0 cos(mx) sin(wt)p((t)*dt, = €]0,1].

By differentiating (9) we have:

(10) Filu](r) = u(z) — gcos(ﬂx)/o sin(7t)p(t)?u(t) dt.
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With the notation of section 2,

1 1 3
A= 5 N:”CI?[%?%]/O |sin(wt)|dt =1 and M = [A\|pN = =

We take as starting-point ¢o(z) = sin(mx), then we obtain from (10)

F lu)(r) = u(r) — gcos(mc)/o sin® (7t)u(t) dt

If Fjlul(z) = w(z), then [Fj]'w](z) = u(z) and u(z) = w(z) +

% cos(mx)J,, where

1
Ju :/ sin(7t)d(t)?u(t) dt.
0
Therefore the inverse of F, is given by

3 [y sin®(wt)w(t) dt

51— %fol cos(mt) sin®(7t) dt

[F5,) Hwl(@) = w(z) + cos(mx).

Then
4
IToll < ||+ 5—cos(7rx)\| < 1.25468--- = f3,
m

and ||F(¢)|| < & = 0.075. Consequently ||[ToF(¢o)|| < 0.094098-- - =

7.
The equation f(t) =0, with f given by (5) is now

1.2t3 + 2.4¢%2 — 0.912918¢ + 0.0752789 = 0.

This equation has two positive solutions. The smaller one is R =
0.129115.... Then, by Theorem 2.3, we know there exists a solution
of (8) in B(¢o, R). To obtain the uniqueness domain we consider the
equation (7) whose positive solution is the uniqueness ratio. In this
case, the solution is unique in B(¢g, 0.396793...).

Finally, we are going to deal with the computational aspects to
solve (8) applying Newton’s method (3). To calculate the iterations
Ons1(x) = on(2)=[F), |71 [F(¢n)](x) with the function ¢o(x) as starting-
point, we proceed in the following way:

(1) First we compute the integrals

1 1
A, = /0 sin(nt)pn ()P dt: By — /0 sin(rrt) 2 (1)2 dt:

Cn:/O cos(t) sin(mt) ¢y, (1) dt.
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(2) Next we define

1—2A, + 3B,
¢n+1(x) = Sin('ﬂ'l‘) + g# COS(WI‘).

So we obtain the following approximations

¢o(z) = sinme,
¢1(x) = sinmx + 0.075 cos e,
¢o(x) = sinmx 4+ 0.07542667509481667 cos T,
¢3(x) = sinmx 4+ 0.07542668890493719 cos 7,
¢4(x) = sinmx 4+ 0.07542668890493714 cos 7z,
¢5(x) = sinmx 4+ 0.07542668890493713 cos 7z,
As we can see, in this case Newton’s method converges to the solution

20 — /391
¢*(x) =sinmx + 20— v991 COS T

3
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ORLICZ-SOBOLEV SPACES WITH ZERO BOUNDARY
VALUES ON METRIC SPACES

NOUREDDINE AISSAOQUI

ABSTRACT. In this paper we study two approaches for the defi-
nition of the first order Orlicz-Sobolev spaces with zero boundary
values on arbitrary metric spaces. The first generalization, de-
noted by Mql;o(E), where E is a subset of the metric space X, is
defined by the mean of the notion of the trace and is a Banach
space when the N-function satisfies the Ay condition. We give also
some properties of these spaces. The second, following another def-
inition of Orlicz-Sobolev spaces on metric spaces, leads us to three
definitions that coincide for a large class of metric spaces and N-
functions. These spaces are Banach spaces for any N-function.

A.M.S. (MOS) Subject Classification Codes.46E35, 31B15,
28A80.

Key Words and Phrases. Orlicz spaces, Orlicz-Sobolev spaces,
modulus of a family of paths, capacities.

1. INTRODUCTION

This paper treats definitions and study of the first order Orlicz-
Sobolev spaces with zero boundary values on metric spaces. Since
we have introduce two definitions of Orlicz-Sobolev spaces on metric
spaces, we are leading to examine two approaches.

The first approach follows the one given in the paper [7] relative to
Sobolev spaces. This generalization, denoted by Mé’O(E), where E is
a subset of the metric space X, is defined as Orlicz-Sobolev functions
on X, whose trace on X \ E vanishes.

Ecole Normale Supérieure, B.P 5206 Ben Souda, Fes, Maroc
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This is a Banach space when the N-function satisfies the Ay con-
dition. For the definition of the trace of Orlicz-Sobolev functions we
need the notion of ®-capacity on metric spaces developed in [2]. We
show that sets of ®-capacity zero are removable in the Orlicz-Sobolev
spaces with zero boundary values. We give some results closely re-
lated to questions of approximation of Orlicz-Sobolev functions with
zero boundary values by compactly supported functions. The approx-
imation is not valid on general sets. As in Sobolev case, we study
the approximation on open sets. Hence we give sufficient conditions,
based on Hardy type inequalities, for an Orlicz-Sobolev function to be
approximated by Lipschitz functions vanishing outside an open set.

The second approach follows the one given in the paper [13] relative
to Sobolev spaces; see also [12]. We need the rudiments developed in
[3]. Hence we consider the set of Lipschitz functions on X vanishing
on X \ F, and close that set under an appropriate norm. Another
definition is to consider the space of Orlicz-Sobolev functions on X
vanishing ®-q.e. in X \ E. A third space is obtained by considering
the closure of the set of compactly supported Lipschitz functions with
support in E. These spaces are Banach for any N-function and are, in
general, different. For a large class of metric spaces and a broad family
of N-functions, we show that these spaces coincide.

2. PRELIMINARIES

An N -function is a continuous convex and even function ® de-
fined on R, verifying ®(t) > 0 for ¢ > 0, limy_o¢'®(t) = 0 and
lim; o t71®(t) = +o00.

1t
We have the representation ®(t) = [ ¢(x)dL(x), where ¢ : RT —
0

R* is non-decreasing, right continuous, with ¢(0) = 0, ¢(t) > 0 for
t >0, lim; o+ p(t) = 0 and lim;_,, p(t) = +00. Here £ stands for the
Lebesgue measure. We put in the sequel, as usually, dz = d£(z).

It
The N-function ®* conjugate to @ is defined by ®*(t) = [ ¢*(z)dx,
0
where ¢* is given by ¢*(s) = sup{t : p(t) < s}.
Let (X,T, 1) be a measure space and ® an N-function. The Orlicz
class Lg,,(X) is defined by
Lo, (X)={f:X — R measurable : [, ®(f(z))du(z) < oo} .

We define the Orlicz space Lg ,(X) by
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Lo, (X) =
{f: X — R measurable : [, ®(af(z))du(z) < oo for some a > 0} .

The Orlicz space Lg ,(X) is a Banach space with the following norm,
called the Luxemburg norm,

A llogx = inf {r >0+ fic @ (£2) d(@) <1}

If there is no confusion, we set ||| f|||e = ||| f]|]®ux-
The Holder inequality extends to Orlicz spaces as follows: if f €
Ls ,(X) and g € Le« ,(X), then fg € L' and

Jx [faldp < 2/l flllex- lllgll

Let ® be an N-function. We say that ® verifies the Ay condition if
there is a constant C' > 0 such that ®(2t) < C®(¢t) for all ¢ > 0.

The A, condition for ® can be formulated in the following equivalent
way: for every C' > 0 there exists C' > 0 such that ®(Ct) < C'®(t) for
all t > 0.

We have always Lq,(X) C Lg,(X). The equality Lo,(X) =
Ls ,(X) occurs if ® verifies the A, condition.

We know that Lg ,(X) is reflexive if & and ®* verify the A, condi-
tion.

Note that if @ verifies the A, condition, then [ ®(fi(x))du — 0 as
i — oo if and only if ||| fi|||e,.x — 0 as i — oo.

Recall that an A-function ® satisfies the A’ condition if there is a
positive constant C' such that for all z,y > 0, ®(zy) < CP(x)P(y).
See [9] and [12]. If an N-function ® satisfies the A’ condition, then it
satisfies also the As condition.

Let Q be an open set in RY, C*(2) be the space of functions which,
together with all their partial derivatives of any order, are continuous
on Q, and CF(RY) = Cg° stands for all functions in C*(R”Y) which
have compact support in RY. The space C*(2) stands for the space
of functions having all derivatives of order < k continuous on €2, and
C(9) is the space of continuous functions on €.

The (weak) partial derivative of f of order || is denoted by

B
Dff = ik
Oxt.0x5”...0x

Let ® be an N-function and m € N. We say that a function f :
RY — R has a distributional (weak partial) derivative of order m,

denoted DPf, |B| = m, if
[ fDPodx = (=1)P! [(DPf)0dz, V0 € CF.

D, X -
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Let Q be an open set in RY and denote Lg ¢(2) by Lg($2). The
Orlicz-Sobolev space W™Lg(2) is the space of real functions f, such
that f and its distributional derivatives up to the order m, are in Lg(€2).

The space W™Lg(€2) is a Banach space equipped with the norm

flllmeo =3 [IDfllle, f € WmLa(),
0<|B|<m
where [[[D7flla = 11D 1|0,

Recall that if ® verifies the Ay condition, then C*(2) N W™ Lg(2)
is dense in W™Lg(Q2), and C3°(RY) is dense in W™Lg(RY).

For more details on the theory of Orlicz spaces, see [1, 8, 9, 10, 11].

In this paper, the letter C' will denote various constants which may
differ from one formula to the next one even within a single string of
estimates.

3. ORLICZ-SOBOLEV SPACE WITH ZERO BOUNDARY VALUES
ME(B)
3.1. The Orlicz-Sobolev space M{(X). We begin by recalling the
definition of the space Mg (X).
Let u : X — [—00, +00] be a p-measurable function defined on X.

We denote by D(u) the set of all u-measurable functions g : X —
[0, +00] such that

(3.1) u(z) — uy)| < d(z, y)(g(x) + 9(y))

for every x,y € X \ F, x # y, with u(F) = 0. The set F is called the
exceptional set for g.

Note that the right hand side of (3.1) is always defined for = # .
For the points =,y € X, x # y such that the left hand side of (3.1) is
undefined we may assume that the left hand side is +ooc.

Let ® be an N-function. The Dirichlet-Orlicz space L} (X) is the
space of all u-measurable functions u such that D(u) N Le(X) # 0.
This space is equipped with the seminorm

(3.2) [lullley x) = inf {Illglllg = 9 € D(u) N La(X)} .

The Orlicz-Sobolev space ML(X) is defined by Mi(X) = Lg(X) N
L} (X) equipped with the norm

(3.3) elllag x) = Nl + [HelllLy o) -
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We define a capacity as an increasing positive set function C given
on a c-additive class of sets I', which contains compact sets and such
that C(0) =0 and C(U X;) < > C(X;) for X; € T,i=1,2,....

i>1 i>1

C is called outer capacity if for every X € I,
C(X)=inf {C(O0) : O open, X C O}.

Let C be a capacity. If a statement holds except on a set E where
C(E) = 0, then we say that the statement holds C-quasieverywhere
(abbreviated C-q.e.). A function u : X — [—00, 00] is C-quasicontinuous
in X if for every € > 0 there is a set £ such that C'(F) < ¢ and the
restriction of u to X \ E is continuous. When C' is an outer capacity,
we may assume that E is open.

Recall the following definition in [2]

Definition 1. Let ® be an N -function. For a set E C X, define Co(E)
by
Co(E) = mnf{|[[ull[ 3 x) - v € BE)},
where B(E) = {u € M}(X) :u > 1 on a neighborhood of E}.
If B(E) =0, we set Cp ,(E) = c0.
Functions belonging to B(E) are called admissible functions for E.

In the definition of Cs(F), we can restrict ourselves to those admis-
sible functions u such that 0 < w < 1. On the other hand, Cs is an
outer capacity.

Let ® be an N -function satisfying the Ay condition, then by [2 The-
orem 3.10] the set

Liph(X) = {u € M}(X) : u is Lipschitz in X}
is a dense subspace of M} (X). Recall the following result in [2, Theo-
rem 4.10]

Theorem 1. Let ® be an N -function satisfying the Ay condition and
u € M}(X). Then there is a function v € Mg(X) such that u = v
p-a.e. and v is Cy-quasicontinuous in X.

The function v is called a Cg-quasicontinuous representative of u.

Recall also the following theorem, see [6]

Theorem 2. Let C' be an outer capacity on X and p be a nonnega-
tive, monotone set function on X such that the following compatibility
condition is satisfied: If G is open and pu(E) =0, then

C(G)=C(G\ E).
Let f and g be C-quasicontinuous on X such that

p({e - f(x) # g(x)}) = 0.



SOUTHWEST JOURNAL OF PURE AND APPLIED MATHETICS 15

Then f = g C-quasi everywhere on X.

It is easily verified that the capacity Cg satisfies the compatibility
condition. Thus from Theorem 2, we get the following corollary.

Corollary 1. Let ® be an N -function. Ifu and v are Cg-quasicontinuous
on an open set O and if u =v p-a.e. in O, then u =v Cg-q.e. in O.

Corollary 1 make it possible to define the trace of an Orlicz-Sobolev
function to an arbitrary set.

Definition 2. Let ® be an N -function, v € M} (X) and E be such
that Co(E) > 0. The trace of u to E is the restriction to E of any
Cg-quasicontinuous representative of u.

Remark 1. Let ® be an N -function. Ifu andv are Cg-quasicontinuous
and u < v p-a.e. in an open set O, then max(u — v,0) = 0 p-a.e. in
O and max(u — v,0) is Cg-quasicontinuous. Hence by Corollary 1,
max(u —v,0) =0 Ce-g.e. in O, and consequently u < v Cg-qg.e. in O.

Now we give a characterization of the capacity C's in terms of qua-
sicontinuous functions. We begin by a definition

Definition 3. Let ® be an N -function. For a set E C X, define
Do (E) by

Do (E) = inf{{[|ullly (x) - v € B(E)},
where
B(E) = {u € My(X) : u is Cy-quasicontinuous and u > 1 Cg-g.e. in E}.
If B(E) =0, we set Dg(FE) = oc.
Theorem 3. Let ® be an N -function and E a subset in X. Then
Co(E) = Do(E).

Proof. Let u € M}(X) be such that u > 1 on an open neighborhood
O of E. Then, by Remark 1, the C3-quasicontinuous representative v
of u satisfies v > 1 Cp-q.e. on O, and hence v > 1 Cs-q.e. on E. Thus
Dy (E) < Cs(E).

For the reverse inequality, let v € B(F). By truncation we may
assume that 0 < v < 1. Let € be such that 0 < € < 1 and choose an
open set V such that Cp(V) < € with v =1 on E\ V and v|x\y is
continuous. We can find, by topology, an open set U C X such that
{reX v(x)>1—e}\V =U\V. Wehave E\V Cc U\ V. We
choose u € B(V') such that |||u|||M$(X) < ¢ and that 0 < u < 1. We
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define w = = +u. Then w > 1 pra.e. in (U\V)UV =U UV, which
is an open neighbourhood of E. Hence w € B(E). This implies that

Co(E) < wlllpx) <

1
S 1¢ ol x) + -
We get the desired inequality since € and v are arbitrary. The proof
is complete. 1

T2 ol oo + Mulllag )

We give a sharpening of [2, Theorem 4.8].

Theorem 4. Let ® be an N-function and (u;); be a sequence of Cg-
quasicontinuous functions in Mg(X) such that (u;); converges in Mg(X)
to a Cg-quasicontinuous function w. Then there is a subsequence of
(u;); which converges to u Cy-g.e. in X.

Proof. There is a subsequence of (u;);, which we denote again by (u;),,
such that

(3.4) ZT |wi — UH‘M;)(X) < 00.
i=1

We set E; = {z € X : |u;(x) —u(z)] > 27"} fori =1,2,..., and Fj =
U E;. Then 2' |u; — u| € B(E;) and by Theorem 3 we obtain Cg(F;)

=
2| Ju; — ulllasx)- By subadditivity we get

A

Co(F)) < ZCcD(Ei) < ZQi i = ulll g ) -
i=j i=j
Hence

J—o0

Co([ ) Fy) < lim Co(F}) = 0.
j=1

Thus u; — u pointwise in X \ [ Fj and the proof is complete. &
j=1

3.2. The Orlicz-Sobolev space with zero boundary values M, °(E).

Definition 4. Let ® be an N -function and E a subspace of X. We say
that u belongs to the Orlicz-Sobolev space with zero boundary values,
and denote u € My (E), if there is a Cy-quasicontinuous function
u € ML(X) such that @ = u p-a.e. in E and =0 Cy-q.e. in X\ E.

In other words, u belongs to My°(E) if there is 1 € M (X) as above
such that the trace of w vanishes Cp-q.e. in X \ E.
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The space M;;O(E) is equipped with the norm

[ulllazo iy = el agg x) -

Recall that Cep(E) = 0 implies that u(E) = 0 for every £ C X
see [2]. Tt follows that the norm does not depend on the choice of the
quasicontinuous representative.

Theorem 5. Let ® be an N -function satisfying the Ay condition and
E a subspace of X. Then Mql;O(E) is a Banach space.

Proof. Let (u;), be a Cauchy sequence in My"(FE). Then for every u;,
there is a Cp-quasicontinuous function @; € M(X) such that a; = u;
p-a.e. in E and u; = 0 Cp-q.e. in X \ E. By [2, Theorem 3.6] M (X)
is complete. Hence there is u € M} (X) such that u; — u in M} (X)
as i — oo. Let u be a Cg-quasicontinuous representative of u given
by Theorem 1. By Theorem 4 there is a subsequence (u;); such that
u; — u Ce-q.e. in X as ¢ — oo. This implies that ©w = 0 Cg-q.e. in
X \ E and hence u € My°(E). The proof is complete. &

Moreover the space M, <%;O(E ) has the following lattice properties. The
proof is easily verified.

Lemma 1. Let ® be an N -function and let E be a subset in X. If
u,v € My"(E), then the following claims are true.

1) If a >0, then min(u, o) € My"(E) and |||min(u,oz)|||M$,o(E) <
lall 200
2) Ifa < 0, then max(u, o) € My°(E) and |||max(u,oz)|||M$,o(E) <
lall 2000
1,0
3) [ul € My (E) and [[||ul[llyzom) < elllazo -
4) min(u,v) € My*(E) and max(u,v) € My°(E).
Theorem 6. Let @ be an N -function satisfying the Ay condition and

E a p-measurable subset in X. Ifu € My°(E) and v € M}(X) are
such that |v| < u p-a.e. in E, then v € My°(E).

Proof. Let w be the zero extension of v to X \ E and let u € M (X)
be a Cg-quasicontinuous function such that u = u p-a.e. in £ and that
u=0Cgp-q.e. in X\ E. Let gy € D(u)NLg(X) and g2 € D(v)NLe(X).
Define the function g3 by

max(gi(z), g2()), re kR
ola) = { o), seB



18 NOUREDDINE AISSAOUI

Then it is easy to verify that g3 € D(w)NLg(X). Hence w € ML(X).
Let w € M} (X) be a Cp-quasicontinuous function such that w = w p-
a.e. in X given by Theorem 1. Then |w| < u p-a.e. in X. By Remark
1 we get |w| < u Cgp-q.e. in X and consequently w = 0 Cp-q.e. in
X \ E. This shows that v € My"(E). The proof is complete. &

The following lemma is easy to verify.

Lemma 2. Let ® be an N -function and let E be a subset in X. If u €
My (E) and v € ML(X) are bounded functions, then uv € My (E).

We show in the next theorem that the sets of capacity zero are re-
movable in the Orlicz-Sobolev spaces with zero boundary values.

Theorem 7. Let ® be an N -function and let E be a subset in X. Let
F C E be such that Cy(F) = 0. Then My°(E) = My°(E \ F).

Proof. 1t is evident that M °(E \ F) ¢ My°(E). For the reverse
inclusion, let u € M;,’O(E), then there is a Cp-quasicontinuous function
u € ML(X) such that & = u p-a.e. in F and that & = 0 Cg-q.e.
in X \ E. Since Cy(F) = 0, we get that u = 0 Cgp-q.e. in X \
(E\ F). This implies that ujpr € Mg°(E\ F). Moreover we have
}HU‘E\F}HM(;O(E\F) = |||u|||M$,o(E). The proof is complete. 1

As in the Sobolev case, we have the following remark.

Remark 2. 1) If C4(0F) = 0, then My (int E) = My (E).
2) We have the equivalence: My° (X \ F) = My°(X) = M (X) if
and only if Ce(F) = 0.

The converse of Theorem 7 is not true in general. In fact it suffices
to take ®(t) = %t” (p > 1) and consider the example in [7].

Nevertheless the converse of Theorem 7 holds for open sets.
Theorem 8. Let ® be an N -function and suppose that u is finite in
bounded sets and that O is an open set. Then My°(0) = My°(O\ F)
if and only if Co(FNO)=0.

Proof. We must show only the necessity. We can assume that F' C O.
Let 2y € O and for i € N* pose O; = B(xg, i) {z € O : dist(z, X \ O) > 1/i}.
We define for i € N*, u; : X — R by u;(x) = max(0, 1—dist(z, FNO;)).
Then u; € ML(X), u; is continuous, u; = 1 in FNO; and 0 < u; < 1.
For ¢ € N*, define v; : O; — R by v;(z) = dist(z, X \ O;). Then
v; € Mp°(0;) € My°(0). By Lemma 2 we have, for every i € N*,
wv; € My°(0) = M°(O\ F). If w is a Cy-quasicontinuous function
such that w = w;v; p-a.e. in O\ F, then w = wv; p-a.e. in O since
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w(F) = 0. By Corollary 1 we get w = u;v; Cop-q.e. in O. In partic-
ular w = w;v; > 0 Cep-q.e. in F N O;. Since u;v; € M;;O(O \ F) we
may define w = 0 Cp-q.e. in X \ (O \ F). Hence w = 0 Cp-q.e. in
FNO;. This is possible only if Cs(FNO;) = 0 for every i € N*. Hence

Cs(F) <> Cs(FNO;)=0. The proof is complete. &
i=1

3.3. Some relations between H ’(E) and My"(F). We would de-
scribe the Orlicz-Sobolev space with zero boundary values on £ C X
as the completion of the set Lipy’(E) defined by

Lipg’(E) = {u € MA(X) : u is Lipschitz in X and u = 0in X \ E}
in the norm defined by (3.3). Since M} (X) is complete, this completion
is the closure of Lipg’(F) in ML(X). We denote this completion by
Hy'(E).

Let ® be an N-function satisfying the A, condition and E a sub-
space of X. By [2, Theorem 3.10] we have Hp°(X) = My°(X).
Since Lipg (E) € My°(E) and My"(E) is complete, then Hy(E) C
My°(E). When ®(t) = %tp (p > 1), simple examples show that the
equality is not true in general; see [7]. Hence for the study of the equal-
ity, we restrict ourselves to open sets as in the Sobolev case. We begin
by a sufficient condition.

Theorem 9. Let ® be an N -function satisfying the Ay condition, O
an open subspace of X and suppose that w € ML(O). Let v be the

. __ ulx)
function defined on O by v(z) = dist(z. X\ 0) If v € Lg(O), then
uwe Hy'(0).

Proof. Let g € D(u) N Lg(O) and define the function g by
g(z) = max(g(x),v(x))if z € O
glx) = 0ifze X\O.

Then g € Lg(X). Define the function @ as the zero extension of u
to X'\ O. For pra.e. z,y € O or x,y € X \ O, we have

[u(z) —uly)| < d(z, y)(9(x) +7(y)).
For p-a.e. x € O and y € X \ O, we get

i) — 1(0)] = lu(o)| < dle ) g gy < ) ala) + 700
Thus § € D(u) N Lg(X) which implies that u € M (0O). Hence

(3.5) () —u(y)| < d(z,y)(g(x) +9(y))
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for every x,y € X \ F with u(F') = 0.
For 1 € N*, set
(3.6) Fo={z €O\ F:|ux) <ig(r) <ifuX\O.

From (3.5) we see that %p, is 2i-Lipschitz and by the McShane ex-
tension

ui(x) = inf {u(y) + 2id(z,y) - y € Fi}

we extend it to a 2¢-Lipschitz function on X. We truncate u; at the
level i and set u;(x) = min(max(w;(z), —i),7). Then w; is such that wu;
is 2i-Lipschitz function in X, |u;| < iin X and w; = @ in F; and, in
particular, u; = 0 in X \ O. We show that u; € Mj(X). Define the
function g; by

gi(x) = g(z),if x € F,

gi(z) = 2i,if v € X\ F.

We begin by showing that

(3.7) |ui(z) — wi(y)| < d(z,y)(g:(x) + 9:()),
forx,y € X \ F. If x,y € F}, then (3.7) is evident. For y € X \ F}, we
have
jui(z) —wi(y)] < 2id(z,y) < d(z,y)(g:(z) + 6:(y)), if 2 € X\ F,
ui(2) — wily)| < 2id(z,y) < d(z, 5)(G(x) +20), if € X\ F
This implies that (3.7) is true and thus g; € D(u;). Now we have
lgillle < lgillle,r: + 22l[[1]l]e x\r
21

< |llgllle,r, + ————
7 )

< 00,

and
Huillle < l[allle.r + 2ill[1]|le.x\p
21
2~ (i)
Hence u; € ML(X). It follows that u; € Lipg’(O).
It remains to prove that u; — u in M (X). By (3.6) we have
X\ F) < p(fz € X fu(@)| > i}) + p({z € X2 glz) > d}).
Since w € Lg(X) and ® satisfies the Ay condition, we get

/ C ®(a())dp(r) > (i) fr € X : [u(x)] > i},
{zeX:[u(x)|>i}

which implies that ®(i)u{z € X : |u(x)| > i} — 0 as i — oc.

< |l[@llle.r + < 00,




SOUTHWEST JOURNAL OF PURE AND APPLIED MATHETICS 21

By the same argument we deduce that ®(i)u{zr € X : g(z) > i} — 0
as 1 — o0.
Thus

(3.8) O()u(X \ F;) — 0 as i — oo.
Using the convexity of ® and the fact that ® satisfies the Ay condi-
tion, we get

[o@—win < [ @@+ lupan
X X\F;

< SUf ol UK\ R 0 as i oo
X\F;

On the other hand, for each i € N* we define the function h; by
hi(x) = 0,ifx € F,.

We claim that h; € D(u — u;) N Le(X). In fact, the only nontrivial
case is x € F; and y € X \ Fj; but then

(@ —wi)(2) = (@ —wu)(y)| < dz,y)(g(x) +79(y) + 2i)
< d(x,y)(g(y) + 31).
By the convexity of ® and by the A, condition we have

/ dohdp < / ® o (g + 3i)dp
X X\F;
< C[/ D ogdu+ P>i)u(X \ F;)] — 0 as i — oo.
X\F,
This implies that |||h|

condition.
Now

» — 0 as i — oo since ® verifies the A,

7 = willlpy x) < [lRillle — 0 as i — oo.
Thus @ € Hy°(0). The proof is complete. &

Definition 5. A locally finite Borel measure u is doubling if there is a
positive constant C' such that for every x € X and r > 0,

u(B(x,2r)) < Cu(B(z,r)).

Definition 6. A nonempty set E C X s uniformly p-thick if there are
constants C >0 and 0 < ro <1 such that

w(B(z,r)NE) = Cu(B(z,r)),
for everyx € E, and 0 <1 <.



22 NOUREDDINE AISSAOUI

Now we give a Hardy type inequality in the context of Orlicz-Sobolev
spaces.

Theorem 10. Let ® be an N -function such that ®* satisfies the A,
condition and suppose that p is doubling. Let O C X be an open set
such that X \ O is uniformly p-thick. Then there is a constant C > 0
such that for every u € My"(0),

1ollle,0 < Clllulll 2000

where v is the function defined on O by v(x) = % The

constant C' is independent of u.

Proof. Let u € My°(0) and & € MA(O) be d-quasicontinuous such
that u = u p-a.e. in O and uw = 0 -q.e. in X\O. Let g € D(u)NLg(X)
and set O' = {z € O :dist(z, X \ O) <ro}. For x € O, we choose
xo € X \ O such that r, =dist(z, X \ O) = d(z,x¢). Recall that the
Hardy-Littlewood maximal function of a locally p-integrable function

f is defined by
M) =sup—is [ fl)duty)
N T>IO)M(B(:C7T)) B(z,r) PRI

Using the uniform p-thickness and the doubling condition, we get

1 C
TG0 o0 = 7y, PO
C
e, o)
< CMy(z).

On the other hand, for p-a.e. x € O there is y € B(xg,7;) \ O such
that

ju() !

)o@+ gy [ o)
< Cra(g(e) + Mg(z))
< Cdist(z, X \ O)Mg(x).

By [5], M is a bounded operator from Lg(X) to itself since ®*
satisfies the A, condition. Hence

Hvllle.0r < CllIMgllle < Clllg]lle-
On O\ O" we have

I1vllle.0v0r < 76 [llull]a.0-

IN
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Thus
vlle.o < C([|ullle + [lg]]]e)-

By taking the infimum over all g € D(u) NLg(X), we get the desired
result.

By Theorem 9 and Theorem 10 we obtain the following corollaries

Corollary 2. Let ® be an N -function such that ® and ®* satisfy the
Ay condition and suppose that p is doubling. Let O C X be an open
set such that X \ O is uniformly p-thick. Then My"(0) = HZ"(O).

Corollary 3. Let ® be an N -function such that ® and ®* satisfy the
Ay condition and suppose that p is doubling. Let O C X be an open
set such that X \ O is uniformly p-thick and let (u;); € Mg°(O) be a
bounded sequence in My°(O). If u; — u p-a.e., then u € My°(O).

In the hypotheses of Corollary 3 we get My°(0) = Hy°(0). Hence
the following property (P) is satisfied for sets £ whose complement is
p-thick:

(P) Let (u;); be a bounded sequence in Hy’(E). If u; — u p-a.e., then
ue Hy'(E).

Remark 3. If ML(X) is reflexive, then by Mazur’s lemma closed con-
ver sets are weakly closed. Hence every open subset O of X satisfies
property (P). But in general we do not know whether the space My (X)
is reflexive or not.

Recall that a space X is proper if bounded closed sets in X are
compact.

Theorem 11. Let ® be an N -function satisfying the Ay condition and
suppose that X is proper. Let O be an open set in X satisfying property
(P). Then My°(0) = Hy°(0).

Proof. Tt suffices to prove that My°(0) ¢ Hy’(0). Let u € My°(0)
be a ®-quasicontinuous function from M} (X) such that u = 0 ®-q.e.
on X \ O. By using the property (P), we deduce, by truncating and
considering the positive and the negative parts separately, that we can
assume that u is bounded and non-negative. If xy € O is a fixed point,
define the sequence (7;); by

1 if d(zo,z) <i—1,
ni(z) =< i—d(zg,x) ifi—1<d(zxg,z)<i
0 if d(xo,z) > 1.
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If we define the sequence (v;); by v; = un;, then since v; — u p-a.e.
in X and |[|vill[a0) < 2l[|ulllagx), by the property (P) it clearly
suffices to show that v; € Hy"(O). Remark that

oi(z) —vi(y)] < u(z) = ul@)] + |ni(z) = ni(y)]
< d(z,y)(9(z) + 9(y) + u().

Hence v; € Mg(X).

Now fix 7 and set v = v;. Since v vanishes outside a bounded set, we
can find a bounded open subset U C O such that v = 0 ®-q.e. in X \U.
We choose a sequence (w;) C Mg (X) of quasicontinuous functions such
that 0 < w; <1, w; = 1 on an open set O;, with |||w;]|[p1x) — 0, and
so that the restrictions vjx\o, are continuous and v = 0 in X \ (UUO;).
The sequence (s,);, defined by s; = (1 — w;) max(v — %, 0), is bounded
in M3(X), and passing if necessary to a subsequence, s; — v p-a.e.
Since v x\o; is continuous, we get

{:CGX:SJ(;U)%O}C{xeX:v(x)Z%}\OjCU.

This means that {x € X : s;(z) # 0} is a compact subset of O, whence
by Theorem 9, s; € Hy’(0). The property (P) implies v € Hy°(0)
and the proof is complete. 1

Corollary 4. Let ® be an N -function satisfying the Ay condition and
suppose that X is proper. Let O be an open set in X and suppose that
ML(X) is reflexive. Then My°(O) = Hy°(O).

Proof. By Remark 3, O satisfies property (P), and Theorem 11 gives
the result. &

4. ORLICZ-SOBOLEV SPACE WITH ZERO BOUNDARY VALUES N;;O(E)

4.1. The Orlicz-Sobolev space N} (X). We recall the definition of
the space NL(X).

Let (X, d, 1) be a metric, Borel measure space, such that p is positive
and finite on balls in X.

If I is an interval in R, a path in X is a continuous map v : I — X.
By abuse of language, the image v(I) =: || is also called a path. If
I = [a,b] is a closed interval, then the length of a path v: I — X is

I(+) =length(y) = sup z Y (tin) = 7)),

where the supremum is taken over all finite sequences a = t; < ty <
wo <ty <tpep =0b. If Iis not closed, we set [(y) = supl(v|s), where
the supremum is taken over all closed sub-intervals J of I. A path is
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said to be rectifiable if its length is a finite number. A path v: 1 — X
is locally rectifiable if its restriction to each closed sub-interval of I is
rectifiable.

For any rectifiable path ~, there are its associated length function s :
I — ]0,1(v)] and a unique 1-Lipschitz continuous map s : [0,1(7)] — X
such that v = 5 0s,. The path 7, is the arc length parametrization of
7.
Let v be a rectifiable path in X. The line integral over v of each
non-negative Borel function p : X — [0, 00] is f7 pds = folm pos(t)dt.

If the path ~ is only locally rectifiable, we set fy pds = sup fy, pds,
where the supremum is taken over all rectifiable sub-paths + of . See
[5] for more details.

Denote by I'y..; the collection of all non-constant compact (that is,
I is compact) rectifiable paths in X.

Definition 7. Let ® be an N -function and I be a collection of paths
in X. The ®-modulus of the family T', denoted Modg(T'), is defined as

inf
ot lllellle,
where F(I') is the set of all non-negative Borel functions p such that
f7 pds > 1 for all rectifiable paths v in I'. Such functions p used to
define the ®-modulus of I' are said to be admissible for the family I

From the above definition the ®-modulus of the family of all non-
rectifiable paths is 0.

A property relevant to paths in X is said to hold for ®-almost all
paths if the family of rectifiable compact paths on which that property
does not hold has ®-modulus zero.

Definition 8. Let u be a real-valued function on a metric space X. A
non-negative Borel-measurable function p is said to be an upper gra-
dient of u if for all compact rectifiable paths v the following inequality
holds

(4.1) u(z) — u(y)] < / pds,

o

where x and y are the end points of the path.

Definition 9. Let @ be an N -function and let u be an arbitrary real-
valued function on X. Let p be a non-negative Borel function on X.
If there exists a family I' C Tyeer such that Mode(I') = 0 and the
inequality (4.1) is true for all paths v in Uyeee \ I, then p is said to



26 NOUREDDINE AISSAOUI

be a ®-weak upper gradient of w. If inequality (4.1) holds true for ®-
modulus almost all paths in a set B C X, then p is said to be a P-weak
upper gradient of u on B.

Definition 10. Let ® be an N -function and let the set @(X, d, ) be
the collection of all real-valued function w on X such that u € Le and

u have a ®-weak upper gradient in Le. If u € N}, we set
(4.2) Ifulllz = lllullle + nflllol]l,

where the infimum is taken over all ®-weak upper gradient, p, of u such
that p € Lg.
Definition 11. Let ® be an N -function. The Orlicz-Sobolev space cor-

responding to ®, denoted N§(X), is defined to be the space Ny (X, d, i)/,
with norm |[[ulll vy = [[lulll 57

For more details and developments, see [3].

4.2. The Orlicz-Sobolev space with zero boundary values N°(E).

Definition 12. Let ® be an N -function. For a set E C X define
Cape(FE) by

Capo(E) = inf { [Jullly : u € D(E) },
where D(E) = {u € N} :u|g > 1}.

If D(E) = 0, we set Capg(FE) = oo. Functions belonging to D(F)
are called admissible functions for £.

Definition 13. Let ® be an N -function and E a subset of X. We
define Ng°(E) as the set of all functions u : E — [—0c0, 00| for which
there exists a function w € N (F) such thatu = u p-a.e. in E and u =

0 Capg-q.e. in X \ E; which means Cape ({x € X \ E : u(z) #0}) =
0.

Let u,v € Ny°(E). We say that u ~ v if u = v p-a.e. in E. The
relation ~ is an equivalence relation and we set Ng°(E) = Ng°(E),/ .
We equip this space with the norm |||u|||N$,o(E) = |[|ull| Ny (x)-

It is easy to see that for every set A C X, u(A) < Capg(A). On the
other hand, by [3, Corollary 2] if & and @’ both correspond to u in the
above definition, then |||z — @'|[|y3(x) = 0. This means that the norm

on Ng"(E) is well defined.
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Definition 14. Let ® be an N -function and E a subset of X. We set
Lip}b’gv(E) = {u € Ng(X) : u is Lipschitz in X andu =0 in X\ E},
and
1,0 . 1,0
Lipg o(E) = {ue Lipg x(E) : u has compact support} .

We let Hé,’gv(E) be the closure of Lz’pclp’?N(E) in the norm of N}(X),
and Hé:oc(E) be the closure of Lipclb’?c(E) in the norm of NA(X).

By definition Hé’s\,(E) and Hé”OC(E) are Banach spaces. We prove
that Ng°(E) is also a Banach space.

Theorem 12. Let ® be an N -function and E a subset of X. Then
N°(E) is a Banach space.

Proof. Let (u;); be a Cauchy sequence in Ng°(FE). Then there is a cor-
responding Cauchy sequence (u;); in Ng(X), where @; is the function
corresponding to u; as in the definition of Ny°(E). Since NL(X) is a
Banach space, see [3, Theorem 1], there is a function u € Ng(X),
and a subsequence, also denoted (u;); for simplicity, so that as in
the proof of [3, Theorem 1], u; — u pointwise outside a set T with
Caps(T) = 0, and also in the norm of NL(X). For every i, set
Ay = {x € X\ E:ux)#0}. Then Cape(U;A;) = 0. Moreover, on
(X\ E)\ (UA; UT), we have u(z) = limu,;(xz) = 0.

Since Caps(U;A; UT) = 0, the function u = g is in Ng°(E). On
the other hand we have

|||U—Uz‘|||N;;°(E) = |||77—?7z'|||N;,(X) — 0 asi— oo.

Thus N;;O(E) is a Banach space and the proof is complete. 1
Proposition 1. Let ® be an N -function and E a subset of X. Then
the space Hé,’gv(E) embeds isometrically into Ng°(E), and the space
HéOC(E) embeds isometrically into Hé’sv(E).

Proof. Let u € Hé’sv(E). Then there is a sequence (u;); C N3 (X) of
Lipschitz functions such that u; — u in N3(X) and for each integer 4,
uix\r = 0. Considering if necessary a subsequence of (u;);, we proceed
as in the proof of [3, Theorem 1], we can consider the function @ defined
outside a set S with Cape(S) = 0, by u = %(lim'supui + limiinful-).
Then @ € Ng(X) and up = Up p-a.e and ﬂ‘(X\ZE)\S = 0. Hence
up € Ny°(EF), with the two norms equal. Since Hé’f]c(E) C LipCII;?N(E),

it is easy to see that H éOC(E) embeds isometrically into H é(j)v(E) The
proof is complete. 1
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When ®(t) = %t”, there are examples of spaces X and £ C X for
which Ng°(E), Hg'%(E) and Hg'(.(E) are different. See [13]. We give,
in the sequel, sufficient conditions under which these three spaces agree.
We begin by a definition and some lemmas.

Definition 15. Let ® be an N -function. The space X is said to support
a (1, ®)-Poincaré inequality if there is a constant C' > 0 such that for
all balls B C X, and all pairs of functions u and p, whenever p is
an upper gradient of u on B and u is integrable on B, the following
inequality holds

1 . —11
5 | = sl < Caiam(5) gl 15,9 ()

Lemma 3. Let ® be an N -function and Y a metric measure space
with a Borel measure p that is finite on bounded sets. Let u € NL(Y)
be non-negative and define the sequence (u;); by u; = min(u, 1), ¢ € N.
Then (u;); converges to u in the norm of NL(Y).

Proof. Set E; = {x € Y :u(x) > i}. If u(E;) = 0, then u; = u p-a.e.
and since u; € N3(Y'), by [3, Corollary 2] the N.(Y) norm of u — u; is
zero for sufficiently large i. Now, suppose that p(F;) > 0. Since p is
finite on bounded sets, it is an outer measure. Hence there is an open
set O; such that E; C O; and u(0;) < p(E;) + 27
We have
=l e 2 1 1
- Lo(E;) = Lo(Ei) — §-1(_L V"
i »(Ei) *(Ei) ¢ 1(@)
Since @~ is continuous, increasing and verifies ®(z) — oo as z — 00,
we get

1 1
< = ljulllg, — 0 as i — oo,
1

and
w(0;) — 0 as i — oo.
Note that u = u; on Y\ O;. Thus u — u; has 2gxo, as a weak upper
gradient whenever ¢ is an upper gradient of u and hence of u; as well;
see [3, Lemma 9]. Thus u; — u in N§(Y'). The proof is complete. B

Remark 4. By [3, Corollary 7], and in conditions of this corollary, if
u € Ng(X), then for each positive integer i, there is a w; € NL(X)
such that 0 < w; < 1, [[Jwi[|[n1x) < 27", and wyp, = 1, with F; an
open subset of X such that u is continuous on X \ F;.

We define, as in the proof of Theorem 11, for ¢ € N*, the function t;
by
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1
ti = (1 —w;) max(u — 7,0).

Lemma 4. Let ® be an N -function satisfying the A’ condition. Let
X be a proper doubling space supporting a (1, ®)-Poincaré inequality,
and let u € NL(X) be such that 0 < u < M, where M is a constant.
Suppose that the set A = {x € X : u(z) # 0} is a bounded subset of X .
Then t; — u in N (X).

Proof. Set E; = {z € X :u(z) < 1}. By [3, Corollary 7] and by the
choice of Fj, there is an open set U; such that E; \ F; = U; \ F;.
Pose V; = U; U F; and remark that w;r, = 1 and up, < % Then
{r e X :tj(x) #0} C A\V; C A. If weset v; = u—t;,then 0 <wv; < M
since 0 < t; < u. We can easily verify that t; = (1 — w;)(u — 1/i) on
A\ V;, and t; = 0 on V;. Therefore

(4.3) v; = wiu+ (1 —w;),/ion A\ 'V,
and
(4.4) v; =u on Vj.

Let x,y € X. Then
wi(z)u(z) —wiy)u(y)] < |wilz)ulz) —wi(z)uy)] + lwi(z)uly) — wi(y)u(y)|
< wi() Ju(z) —u(y)] + M |wi(x) —wi(y)].

Let p; be an upper gradient of w; such that |[|p;]||,, < 27" and let
p be an upper gradient of u belonging to Lg. If v is a path connecting
two points x,y € X, then

lw; (x)u(x) — w;(y)u(y)| < w;(zx) /pds + M/pids.

Y

Hence, if z € |y|, then

wi(x)u(zr) —wiy)u(y)] < |wi(z)u(z) —wil2)u(z)] + [wi(z)u(z) — wi(y)u(y)]

wl-(z)/ pds+M/ pl-ds—irwi(z)/ pds—l—]\/[/ pids
Yxz Yz z Yz Yzy
wiz) [ pds 0 [ ps,

gl v

where v, and ., are such that the concatenation of these two segments
gives the original path v back again. Therefore

jwi(z)u(z) — wiy)uly)| < /

v

IA

Yy

IA

(inf w;(2)p + Mpi) ds.

z€ly|
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Thus

i ()u(e) — wi(y)uly)| < / (wi(=)p + Mp,)ds.

.

This means that w;p + Mp; is an upper gradient of w;u. Since
[willl, <27, we get that w; — 0 p-a.e. On the other hand w;p < p
on X implies that w;p € Lg and hence ® o (w;p) € L' because ® veri-
fies the Ay condition. Since @ is continuous, ® o (w;p) — 0 p-a.e. The
Lebesgue dominated convergence theorem gives [ < @ o (wip)dr — 0
as i — oo. Thus |[lwipl||,, — 0 as i — oo since ® verifies the A,
condition.

Let B be a bounded open set such that A C BT. Then O; = (AU
F;) N B is a bounded open subset of A and O; C A. Therefore since
O;NV, C(E;NA)UF;, we get

w(O:NV;) < p(E;NA)+ p(F)
< u ({x €eX:0<u(x)< %}) + Caps (F;).

Hence u(O; N'V;) — 0 as i — oo, since bounded sets have finite
measure and therefore p ({z € X : 0 <wu(z) < 1}) — p(@) =0asi—
oo. Thus |[|pl[[r,, 0,1,y — 0 as i — oo,

By [3, Lemma 8] and equations (4.3) and (4.4), we get

1
9i = (wz‘l) + Mp; + ;/h) Xo; T PXoinv;
is a weak upper gradient of v; and since

lgilllL, < lwipllly, + 4+ D lloilll, + Melllw, o,qv;) -

we infer that [||g[||,, — 0 as i — ooc.
On the other hand, we have

1
lloillle, = Ml =tillle, < [llwiulllegawy + 7 11 = willlg aw + ulllego0,nv)
1 1
< M]||lw S .

Since |[|w;l||n1x) — 0and |[|ullly,o0,nv;) — 0asi — oo, we conclude
that [||vl|,, — 0 as i — oo, and hence t; — u in Ng(X). The proof
is complete. §

Theorem 13. Let ® be an N -function satisfying the A’ condition. Let
X be a proper doubling space supporting a (1, ®)-Poincaré inequality
and E an open subset of X. Then Ng°(F) = H;;SV(E) = H(;OC(E).
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Proof. By Proposition 1 we know that Hé”OC(E) C H;)’SV(E) c NJ°(E).
It suffices to prove that Ng°(E) C H;)’,OC(E). Let u € Ny°(E), and
identify u with its extension u. By the lattice properties of N} (X) it is
easy to see that ut and u~ are both in Ni’O(E) and hence it suffices to
show that ut and v~ are in H;)’,OC(E). Thus we can assume that v > 0.

On the other hand, since N;;O(E ) is a Banach space that is isometrically
embedded in N (X)), if (u,), is a sequence in Ng°(E) that is Cauchy
in N3 (X), then its limit, u, lies in Ny°(F). Hence by Lemma 3, it also
suffices to consider u such that 0 < u < M, for some constant M. By [3,
Lemma 17], it suffices to consider u such that A = {zx € X : u(z) # 0}
is a bounded set. By Lemma 4, it suffices to show that for each positive
integer 7, the function ¢; = (1 — w;) max(u — +,0) is in HC};’OC(E).

On the other hand, if O; and F; are open subsets of X and Cape(F;) <
277 as in the proof of Lemma 4, we have AU F; = O; UF}. Since u has
bounded support, we can choose O; as bounded sets contained in F.
We have w; |, = 1 and hence ¢; |, = 0. Set E; = {z € X : u(z) < 1}.
Then, as in the proof of Lemma 4, there is an open set U; C F such
that E; \ F; = U; \ F; and ¢; |puy, = 0. Thus

{z:pi(x) #0}C{z e E:ulx) >1/i}\ F,=0;\(E;UF;,) CO; C
E.

The support of p; is compact because X is proper, and hence § =dist(supp
i, X \ E) > 0. By [3, Theorem 5|, ¢; is approximated by Lipschitz
functions in N§(X). Let g; be an upper gradient of ¢;. By [3, Lemma
9] we can assume that g; |x\0, = 0. As in [3], define the operator M’

by M'(f)(z) = sup
B |(B)
over all balls B C X such that x € B. Then if z € X \ E, we get

(|[|f[|l5()), Where the supremum is taken

1 c’
M'(g;)(x) = sup  ——P(|[]g: < (1|9 < 00,
(9:)(x) v 0 (D) (MgilllLys)) 0/2) (MgilllL, )
where s = LL‘Z)ggg, C' being the doubling constant, and C’ is a constant

depending only on C' and A. We know from [3, Proposition 4] that
if f € Lg, then )\lirgo)\,u {r e X : M'(f)(x) >} = 0. Hence in the
proof of [3, Theorem 5|, choosing A > #Cb(mgim]@) ensures that
the corresponding Lipschitz approximations agree with the functions
¢; on X \ E. Thus these Lipschitz approximations are in Hy'%(E), and
therefore so is ;. Moreover, these Lipschitz approximationsyhave com-
pact support in F, and hence ¢; € H;,:OC(E). The proof is complete. B
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ABSTRACT. We adapt the results of Oelschlédger (1985) to prove a weak
law of large numbers for an interacting particles process which, in the
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1. INTRODUCTION

Several propagation of chaos results have been proved for the Burgers
equation (Calderoni and Pulvirenti 1983, Osada and Kotani 1985, Oelschlag-
er 1985, Gutkin and Kac 1986, and Sznitman 1986) all using slightly differ-
ent methods. Perhaps the best result for the Cauchy free-boundary problem
is Sznitman’s (1986) result which describes the particle interaction in terms
of the average ‘co-occupation time’ of the randomly diffusing particles. For
various reasons, we follow Oelschléger and prove a Law of Large Numbers
type result for the measure valued process (MVP) where the interaction is
given in terms of a kernel density estimate with bandwidth a function of the
number N of interacting diffusions.

E-mail: acgamstmath.ucsd.edu

Copyright (©2004 by Cameron University
33



34 ANTHONY GAMST

The heuristics are as follows: The (nonlinear) partial differential equation

u$$

u =2 (utet) [ola—yputy.)dy) @

is the Kolmogorov forward equation for the diffusion X = (X;) which is
the solution to the stochastic differential equation

dX, = dw,+ { / b(X, — y)uly, t) dy} dt @)
— AW, + E(b(X, — X,))dt @3)

where u(z,t) dx is the density of X,, W, is standard Brownian motion (a
Wiener process), X is an independent copy of X, and E is the expecta-
tion operator. Note the change in notation: for a stochastic process X, X;
denotes its location at time ¢ not a (partial) derivative with respect to ¢.

The law of large numbers suggests that

where the X7 are independent copies of X and this empirical approximation
suggests looking at the system of V stochastic differential equations given

by

_ A 1 N _ ,

X" = dWN 4 = 3G = XPNdt, =1, N
j=1

where the W are independent Brownian motions. Now if b is bounded

and Lipschitz and the N particles are started independently with distribution

Lo, then the system of IV stochastic differential equations will have a unique

solution (Karatzas and Shreve 1991) and the measure valued process

N 1 N
Wy = — E 0y iN
t Nj:l X

where ¢, is the point-mass at = will converge to a solution p of (1) in the
sense that for every bounded continuous function f on the real-line and
every ¢t > 0,

[ ) = 5 22 500 = | S

where 1, has a density u so p,(dz) = u(z, t)dz and u solves (1).
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By formal analogy, if we take 2b(x — y) = do(x — y), where & is the
point-mass at zero, then

- (u<x,t> JEE = dy>m @
- % — uu, 6)

which is the Burgers equation with viscosity parameter ¢ = 1/2. Unfor-
tunately, &, is neither bounded nor Lipschitz and a lot of work goes into
dealing with this problem. This is covered in greater detail later in the pa-
per.

Our interest in these models lies partially in their potential use as numer-
ical methods for nonlinear partial differential equations. This idea has been
the subject of a good deal of recent research, see Talay and Tubaro (1996).
As noted there, and elsewhere, the Burgers equation is an excellent test for
new numerical methods precisely because it does have an exact solution. In
the next two sections, we prove the underlying Law of Large Numbers for
the Burgers equation with periodic boundary conditions. Such boundary
conditions seem natural for numerical work.

2. THE SETUP AND GOAL.

We are interested in looking at the dynamics of the measure valued pro-
cess

N
Miv = Z 5ytJ?N (7)
j=1
with 6, the point-mass at z,
Y = o(X)) (8)

where p(z) = = — [z] and [z] is the largest integer less than or equal to
z, with the X7 satisfying the following system of stochastic differential
equations

. . 1 XN .

XN = awiN 4+ F <N SN (xPN — X,f’N)> dt (9)
=1

where the 177" are independent standard Brownian motion processes,

A [[uo

Fla) = 22,
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ug IS a bounded measurable density function on S = [0,1), || - || is the
supremum norm, ||f|| = supg |f(z)|, and bV (z) > 0 is an infinitely-
differentiable one-periodic function on the real line IR such that
1
/ b (z) do = 1 (10)
0
forall N = 1,2, ..., and for any continuous bounded one-periodic function
S
1/2 N
[, @ @) de = 50 CED

as N — oo. We call a function f on IR one-periodic if f(x) = f(z+1) for
every x € IR.
Forany z and y in S, let
ple,y) = |z —y = 1Alx —y[ Az —y+1] (12)

and note that (.S, p) is a complete, separable, and compact metric space. Let
Cy(.S) denote the space of all continuous bounded functions on (.S, p). Note
that if f is a continuous one-periodic function on IR and g is the restriction
of fto S, then g € C,(S). Additionally, for any one-periodic function f on
IR we have f(Y7") = f(X7™) and therefore

<mj>=/f@mww
— nyJN

J=1

S XY

Jj=1

= |

ZIH

for any one-periodic function f on IR.

To study the dynamics of the process ¥ as N — oo we will need to
study, for any f which is both one-periodic and twice-differentiable with
bounded first and second derivatives, the dynamics of the processes (12, f).
These dynamics are obtained from (7), (9), and Itd’s formula (see Karatzas
and Shreve 1991, p.153)

Wl £y = f) + /QMS, oY ()f + 5 f') ds
Z [ reEany - as)

where the use the notation

(. f) = [ F@n(da
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with ;2 a measure on S,
1 N lN
= _N E (x — Xy (14)

and the fact that because b" is one-periodic, b (Y7 —Y;}"™) = oV (X7 —
X,

Given any metric space (M, m), let M(M) be the space of probability
measures on M equipped with the usual weak topology:

lim p* = p

k—o00

if and only if

Jim [ f@utd) = [ f@p(de

for every f in C,(M), where C, (M) is the space of all continuous bounded

and real-valued functions f on M under the supremum norm || f|| = sup,, | f(z)|.
On the space (.5, p) the weak topology is generated by the bounded Lip-

schitz metric

It = 12| g = sup [, f) = (12, )]
feH
where

H=A{feCS) : IfI <1, |f(z) = f(y)] < pla,y) for all z,y € S}

(Pollard 1984, or Dudley 1966).
Fix a positive T < oo and take C'([0, 7], M(.S)) to be the space of all
continuous functions p = () from [0, 7] to M (.S) with the metric

m(u', p?) = sup. ey — 1|,

then the empirical processes ui\’ with 0 < ¢ < T are random elements of
the space C([0,T], M1(S)). Indeed, take any sequence (t;) C [0, 7] with
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tr — t, then for any f in H we have

1 N A A
(e, f) = )] = | = S PN = fye™)
N
j=1
1 J N N
< Nzl|f(yt ) — (Y )]
]:
1 & N N
]:
1 &N i
< NXE‘X — X7
J:

I
=] =
M= I

t .
Wi — i +/ F(gN (XN ds| — 0
g

<.
Il
—

because the W/ are continuous in ¢ and || F|| < co. This means that the
distributions £(1") of the processes u = (1) can be considered random
elements of the space M, (C([0,T], My(S))).

Our goal is to prove the following Law of Large Numbers type result.

Theorem 1. Under the conditions that
(i): bV isone-periodic, positive and infi nitely-differentiable with

/01 WY (z)dr = 1, (15)

and
[ £ @) dz — f(0) (19)

for every continuous, bounded, and one-periodic function f on IR,
(ii): [|oN]] < AN® for some( < « < 1/2 and some constant A < oo,
(iii): thereisa with0 < § < (1 — 2«) such that

ZWV 2(1+ [Nf) < o0 (17)

where A = 2kr, withk € Z, and b¥ (\) = [i e?bN () dx is the
Fourier transform of b,

(iv): g isadensity function on [0, 1) with |luel| < oo, and

W): (1, f) = 5 S5 FOTY) = 5 S5 F(X8Y) = fo f@)uo(w) da
forevery f € Cy(95).
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then thereis a deterministic family of measures ;. = (1,) on [0, 1) such that
= p (18)

in probability as N — oo, for every t in [0, T], with p¥ = (i), u; is
absolutely continuous with respect to L ebesgue measure on S with density
function g;(x) = u(x, t) satisfying the Burgers equation

Up + Uy = ~Ugy (19)

with periodic boundary conditions.

The proof has three parts. First, we establish the fact that the sequence
of probability laws £(uY) is relatively compact in M, (C([0,T], M1(S)))
and therefore every subsequence of (1+) of (1) has a further subsequence
that converges in law to some . in C'([0, T, M(S)). Second, we prove that
any such limit process ;. must satisfy a certain integral equation, and finally,
that this integral equation has a unique solution. We follow rather closely
the arguments of Oelschlager (1985) and apply his result (Theorem 5.1,
p.31) in the final step of the argument.

3. THE LAW OF LARGE NUMBERS.

Relative Compactness. The first step in the proof of Theorem 1 is to show
that the sequence of probability laws £(p™Y), N = 1,2,..., is relatively
compact in M = M, (C([0,T], M;(S))). Since S is a compact metric
space M, (S) is as well (Stroock 1983, p.122) and therefore for any ¢ > 0
there is a compact set K. C M () such that

inf P (M{Y e K. Vte [O,T]) >1—¢; (20)



40 ANTHONY GAMST

in particular, we may take K. = M, (.S) regardless of £ > 0. Furthermore,
for 0 < s <t¢ < T and some constant C' > 0 we have

Il — N = sup((uy, £) — (ud, )
fed

= s
fed j=1
1 Y !
< _Zp(}/zt]Nal/;jN)
Nj:1
1 X !
< [=Y XN - XN
J_
1 3N N |4
< —Z|Xt’ — X7
N =
j
1 5N i\N 't N/ v i,N !
= =S PN —wiNy + [ F (g (X3N)) du
Nj:1 s
1 N N 1 N ot )
< ol -w e Y / F (g (X3Y)) du
j=1 =178

and therefore

Bl =l < CB(t =) + [luoll*(t — 5)*) < 3Cuol*(t — 8)(221)

for t — s small. Together equations (20) and (21) imply that the sequence
of probability laws £ () is relatively compact (Gikhman and Skorokhod
1974, VI, 4) as desired.

Almost Sure Convergence. Now the relative compactness of the sequence
of laws £ (1Y) in M implies that there is an increasing subsequence (Ny) C
(N) such that £(u™*) converges in M to some limit £(x) which is the
distribution of some measure valued process i = (). For ease of notation,
we assume at this point that (N;) = (N). The Skorokhod representation
theorem implies now that after choosing the proper probability space, we
may define ¥ and y so that

dimsup [|" — el i = 0 (22)
—00 tST

P-almost surely. This leaves us with the task of describing the possible
limit processes, .

)
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An Integral Equation. We know from Ito’s formula that for any f €
CE(S), u? satisfies

W', )= 1)~ /VMS, F(g; <»f—+1f6

Z/f )W 23)

where the right hand side is a martingale. Because f € CZ(S), the weak
convergence of 1V to i gives us that

(' ) = (s f) (24)
as N — oo forall 0 <t < T and we have
(1o’ > ) = (o, [) (25)

as N — oo by assumption. Furthermore, Doob’s inequality (Stroock 1983,

p.355) implies
P (R o)

o (35 o W)] <

4 ,
< —T|f?
N £l

and therefore the right hand side of (23) vanishes as N — oo. Clearly now,
the integral term third in equation (23) must converge as well and the goal
at present is to find out to what.

First, because f € C?(S), the weak convergence of 1™V to . gives us that

5 [ s — 3 [ sy ds (26)

as N — oo. Now only the [{{(uN, F(gN(-))f") ds-term remains and this
is indeed the most troublesome because of the interaction between the p¥
and g2 terms. To study this term we will need to work out the convergence
properties of the ‘density’ ¢”¥. We start by working on some L? bounds.

The Convergence of the Density ¢¥. Note that
(gl (), ™) = (u, ™) DN (N,

where b is the Fourier transform of the interaction kernel b".
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Ito’s formula implies that for any A € (2kw) with k € Z

i 2(t— t —iX . i )\Zi-
e P = [ el P (DN = T
2
Y, Pl () (=N = Se e )
, 2 1 2
H (e PAZA ) 4 N)\ze’\ (=) ds

= [, e PN - /0t<<<u5 LYl F(gN () (iN)e™)

+H(ul, e Yl F(gh () (—id)e ™ ))e =)
)\2
+ Ne)\Q (377)) ds (27)

is a martingale.
Now take 7 = ¢ + h and

B (A t) = (Y, ) 25 () [2e

then the martingale property above gives

EIYON0) = BB, 0000+ [ Bl e ™y, P ()ane™)

(e ) (pl, F(g () (=id)e™™)
A2 ~
_'_N]ef)\Q(tJrhfs) |bN<)\) |2 ds

< BlELO0)]

+ / B2, e[, F (g ()e™)

|)\‘ —A2(t+h— s)|bN< )|2]
A2

+N 7>\2(t+h s |bN< )‘ )ds

< Bk, 0)
+ [ @llual B MM ¥ )
A2

+57¢ eV R 1pN (X)]?) dis. (28)
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Summing over A € ()\;) gives
DBk A0] < 3D EkL(0,0)
A

A2 s
+2||uouz/ [, ™) PN Y ()] ds

_'_Z/ < 7)\2t+h s|bN( )| ) ds
= AI + AII +AIII
Now, of course,
R (0,0) < S e < (¢4 p)2
A

and therefore
A, =Y Bk, A0 < (E+ k)72
A

For A,,,, using hypothesis (ii) from Theorem 1, we have

1 . ¢
A = _Z|bN(/\)|2/ \2p—A2(t+h—s) Z|bN |2 22

N X 0

< SY P+ 1<bN<:c>>2d:c

- N > N Jo
2N2a

< <2

< C <20

for some constant C' > 0. Now
2ol /OtEH(uiV,e“')|2|13N(A)|2|A|6—A2<t+h—s>] ds
= 2{|uo /OtEH(,uiV,e”')|2\5N()\)|2eAQ(tJrhs)/2‘)\|€A2(t+hs)/2] ds
< 2lugllC [ Bl ) PR )R]

= 2ol [ B0y )] ds

< QHUOHC/ 67A2(t+hfs /2 4s
0
_ Aluolic
for some other constant C' > 0 and therefore

A,y < 4lluellC A < 4ljug]| D
A0
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for some constant D < oco. Hence
22
MBI OO) = B )PP
A
= AI + AII + AIII
< (t+h) 7+ Clluoll +1)
uniformly in & > 0 for some constant C' < oo. Letting h go to zero gives

DBl NP = Y Elkg (A1)
A A
= Ji 3B 0) < 7 Ol + 1),
From the martingale property (27) we have
Bk (A 1)] < Bk 1/2)] + 2ol / (2, ) B (P ds

A2

—)\2(t s) bN Qd
AV

and for 3 € (0,1 — 2a) we have
(L+NDERS A1) < (14 [N B[R, t/2)]
+2||uoH/ () e PN ()]
N+ AP ds
M1+ POA [ I s
N Jiy2
(1+ |)\|B)e—)\2t/2
t ) _ .
2l [ Bl )PP e ds

IN

A2t 2 ~
1 /\B_/ —)\(t—s)bN/\ 2d
+(+||)Nt/26 b (M| ds
for some constant C' < oo and we know that

D1+ ) < oo,
A

2||u0||C/ ZE kY (), 8)] ds < 2||u0||C/ e N =912 g5 < o0,
and, from hypothe5|s (iii) of Theorem 1,

1 N 2
N;(lﬂAlﬁ)lb (A" <00
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and therefore

S+ ADEE WP = S0+ AN ERY (A 1)] < oc.
) X (29)

Finally, from (29) it is easy to work out the convergence properties of g*.
Indeed,

. 2
i B[ [ 180 - ) d:cdt]

~ Ll E [/ 150 >|2dt]

< lim F / > g, )‘th]
N,M—oco IN<K
+ lim 2E / > (3P + 1 (A >\2>dt]
’ [A|>K
. M X\ |2
< Jm g [ >l =it e dt]

+4(14+ K" 'sup E l/TE g (VP + A7) dt]
N 0 X
< C(1+K°7'T

for some constant C' < oo and the right hand side of this last inequality
can be made smaller than any given ¢ > 0 by the choice of K. So, by
the completeness of L2, we have proved the existence of a positive random
function g;(z) such that

nmEV / 9V (@) — gi(@ )|2dxdt]:o. (30)

N—oo

Of course, this means that for any f € C,(S) we have
1

[ r@atydr = tm [ e @)de = Jim (0¥, )

N—oo Jo
= £ = d) = [ 7@ petde)

and therefore p, is absolutely continuous with respect to Lebesgue measure
on S with derivative g;.
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Conclusion. Finally, combining (23-26), and (30), implies
¢ P
(s 1) = g0 1) = [ G Pla(O)f + 50 ds @D

and from Proposition 3.5 of Oelschlager (1985) we know that the integral
equation (31) has a unique solution p, absolutely continuous with respect
to Lebesgue measure on S with density ¢g;. We note also that the solution
gi(x) = u(z, t) of the Burgers equation
1
U + Uy = qux
with periodic boundary conditions
u(z,t) =u(z+1,1),
for all real z, and all ¢ > 0, and initial condition wu, satisfies the integral
equation
.t 1 / 1 "
(), £) = (o), ) = [ (00D 50.00f + 5F ") ds
and from the Hopf-Cole solution (11.67) we see that

gell < lluoll

and therefore g, () satisfies (31) as well. The uniqueness result for solutions
to the periodic boundary problem for the Burgers equation then completes
the proof of Theorem 1. ]
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ABSTRACT. We use an iteration method to approximate zeros of
operators satisfying autonomous differential equations. This it-
eration process has the advantages of the quadratic convergence
of Newton’s method and the simplicity of the modified Newton’s
method, as the inverse of the operator involved is calculated once
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a
locally unique solution z* of equation

(1) F(x)=0,

where F' is a Fréchet-differentiable operator defined on an open convex
subset D of a Banach space X with values in a Banach space Y.
We use the Newton-like method:

(2) Tni1 = Tp = F' (yn) ' F (22)  (n20)

to generate a sequence approximating z*.
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Here F' (z) € L(X,Y) denotes the Fréchet-derivative. We are inter-
ested in the case when:

(3) Un=MTn+ (1= N)za  (n>0)
where,

(4) A €10,1], (n>0)

(5) 2z, ="

(6) =12, (n>0),

or other suitable choice [1]-[4].

We provide a local and a semilocal convergence analysis for method
(2) which compare favorably with earlier results [4], and under the
same computational cost.

2. CONVERGENCE FOR METHOD (2) FOR z, GIVEN BY (5) AND
An=0 (n>0)

We can show the following local result:

Theorem 1. Let F': D C X — Y be a Fréchet-differentiable operator.
Assume:
there exists a solution x* of equation

F () =0 such that F' (z*)"" € L(Y, X)

and

(7) [F (@) < b

(8) |F' (z) — F' (z*)|| < Lo ||x — 2*||  for all x€ D,
and

9) U(m*,ro):{xéX‘Hx—x*H§r0:%}§D.

Then sequence {x,} (n > 0) generated by Newton-like method (2) is
well defined remains in U (x*,rg) for all n > 0, and converges to z*
provided that xo € U (2*,19).

Moreover the following error bounds hold for alln > 0 :

(10) oo — " < 02 ag — | (0> 1),
where
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Proof. By (2) and F (2*) = 0 we get for alln > 0:
(12)
1
Tppr—a* = —F' (*)7" /(F’ (x* +t(x, — %)) — F' (2") (v, — %) | dt
0
from which it follows

(13) |41 — || < 3bLo ||z — 27"

from which (10) follows.

By (9) and (11) 6y € [0,1). hence it follows from (10) that z, €
U(xz*,r9) (n>0)and lim z, = z* (by using induction on the integer
n >0). O

Remark 1. Method (2) has the advantages of the quadratic conver-
gence of Newton’s method and the simplicity of the modified Newton’s
method, since the operator F’ (x*)_1 is computed only once. It turns
out that method (2) can be used for operators F which satisfy an au-
tonomous differential equation

(14) F'(z) = G (F(x)),

where G is a known continuous operator on'Y . As F' (x*) = G (0) can
be evaluated without knowing the value of x*.

Moreover in order for us to compare Theorem 1 with earlier results,
consider the condition

(15) 1F"(x) = F' ()l < Lllz =yl foral zeD

used in [4] instead of (8). The corresponding radius of convergence is
gien by

2
16 = —.
(16) L
since
(17) Ly <L
holds in general we obtain
(18) rr <ro.
Furthermore in case strict inequality holds in (17), so does in (18).
We showed in [1] that the ration LLO can be arbitrarily large. Hence we

managed to enlarge the radius of convergence for method (2) under the
same computational cost as in Theorem 1 in [4, p.113].

This observation is very important in computational mathematics
since a under choice of initial guesses xo can be obtained.
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Below we give an example of a case where strict inequality holds in
(17) and (18).
Example 1. Let X =Y =R, D =U (0,1) and define F' on D by
(19) F(z)=¢"—1.

Note that (19) satisfies (14) for T (x) = x + 1. Using (7), (8), (9),
(15) and (16) we obtain

(20) b=1,Ly=e—1,L=ce,
(21) ro = 1.163953414
and
(22) rr = .735758882.
In order to keep the iterates inside D we can restrict ro and choose
(23) ro = 1.

In any case (17) and (18) holds as a strict inequalities.
We can show the following global result:

Theorem 2. Let F': X — Y be Fréchet-differentiable operator, and G
a continuous operator from 'Y into Y. Assume:

condition (14) holds;
G(0)" e L(Y,X) so that (7) holds;

(24) F(z) <c forallzxeX;

(25) 1G(0) =G ) <aollzl]  foral zeY
and

(26) ho = OzobC < 1.

Then, sequence {z,} (n > 0) generated by method (2) is well defined
and converges to a unique solution x* of equation F (x) = 0.
Moreover the following error bounds hold for alln >0 :

hn
(27) 2y — || < —2—|lz1 — x| (n>0).
1 — hg

Proof. Tt follows from the contraction mapping principle [2] by using
(25), (26) instead of

(28) |G (v) — G| <allv—2z|| forall v,z€eY
and

(29) h =abc < 1
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respectively in the proof of Theorem 2 in [4, p.113]. O

Remark 2. If F' is Ly Lipschitz continuous in a ball centered at x*,
then the convergence of method (2) will be quadratic as soon as

holds with xy replaced by an iterate x,, sufficiently close to x*.

Remark 3. If (25) is replaced by the stronger (28), Theorem 2 reduces
to Theorem 2 in [4]. Otherwise our Theorem is weaker than Theorem
2 in [4] since

(31) ag < a

holds in general.
We note that if (25) holds and

(32) 1F () = F (o) || < 70 llz = o]

then

(33) [[F (@)l < [F (x) = F (o) [+ (o)l < 0l = wol[+[|F (zo)]| -
Let r = ||z — x|, and define

(34) P (r) = aob ([|F (zo)| +0r) -

If P(0) = aob||F (x0)|| < 1, then as in Theorem 3 in [4, p.114]
inequality (26) and the contraction mapping principle we obtain the
following semilocal result:

Theorem 3. If
(35) q = (1 —agh||F (x0)]])* — 4bagyo |G O ' F (z0)| = 0,
then a solution x* of equation
F(x) ezists in U (xo,11),
and is unique in U (xq,r2), where

_1—agd||F (wo)]| - va

3
( 6> " Qbao’)/()
and
_ L —agb||F (zo)|l
(37) To = bao% .

Remark 4. Theorem 3 reduces to Theorem 8 in [4, p.114] if (25) and
(32) are replaced by the stronger (28) and

(38) 1 (z) = F )l <vllz =yl

respectively. Otherwise our Theorem is weaker than Theorem 3 in [4].
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PROVING MATRIX EQUATIONS
MICHAEL DEUTCH

ABSTRACT. Students taking an undergraduate Linear Algebra course
may face problems like this one (ref[1]):
Given Ay =\ —A4) ' and A4, = (u— A4)~*

then prove

(1) (/\ — ,LL)AAA# = A# — A,\

where A and p are scalars and Ay, A, and A are invertible n x n
matrices.

The purpose of the note is to present a general method for de-
termining the truth of symbolic matrix equations where 0 or more
such equations are given as true. The idea behind the method is to
write the equation to be proved in terms of independent variables
only, removing all the dependent variables, effectively reducing the
problem to the case of 0 equations given as true. It should then
be a simple matter to determine the truth of the equation to be
proved, as it must be true for all values of any variable in the
equation.

A.M.S. (MOS) Subject Classification Codes. 15A24.
Key Words and Phrases. Symbolic matrix equation,
dependent /independent variable, primitive number, normal form.

The Method.

e Determine dependent and independent variables in the given
equations. In the example Ay and A, are dependent variables
and A, A\, and p are independent.
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e Rewrite the given equations, if necessary, to express dependent
variables in terms of only independent variables, for any de-
pendent variables which appear in the equation to prove. In
the example the dependent variables Ay and A, are already ex-
pressed in terms of the independent variables A\, u, and A. So
the given equations need not be rewritten.

e Substitute independent variables for dependent variables in the
equation to prove. Then we will have an equation that is totally
expressed in independent variables, i.e. we have transformed
the problem to the case of 0 equations given. In the example
equation (1) is now
(A= )(A— A) L — A) = (p— A) T (A — A)!

It must prove true for any A, u, and A.

e Multiply and distribute as necessary to express the equation
to prove in normal form (i.e. no parentheses) as follows: if an
outer term has an exponent > 0 then multiply and distribute
the primitives. If the exponent is < 0 then multiply the equa-
tion by the positive exponent of the same term to remove the
negative exponent. For example A(B + C)*(A — C)~? in an
equation would be reduced to normal form by first distributing
the (B + C)? to (B*+ BC + CB + C?)(A — C)~2. Then mul-
tiply the equation from the right by (A4 — C')? to remove the
negative exponent. Continue to multiply and distribute terms
as necessary to reduce the level (i.e. number of parentheses) of
the equation until the equation is in normal form.

e Cancel terms until the resulting equation is 0 = 0. If the re-
sulting equation differs from 0 = 0 then the equation to prove
is not true.

The Example. Equation (1) in the example problem would be reduced
as follows:

o« =)A= A) = A) = (A= (A - A)!

e Multiply from right by (@ — A)(A — A) to achieve
A=p) === (A=A (- A) - A)

e Distribute from right to achieve
(A=) = (A= A) = (A= A) L — A)(A - A)

e Multiply from left by (A — A) to achieve
(A= A)A— 1) = (A— AYA = 4) — (5 — A\ — A)
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e At this point the nested inverses have been removed and the

terms can simply be distributed to achieve
N App— AN+ Ap = N2 = XNA— AN+ A2 — (u\ — pA— AN+ A?)

e which reduces to normal form:

N =M — AN+ Ap = N2 = MA — AN+ A% — p\ + pA+ A\ — A2

e Finally cancel terms until the equation reduces to 0 = 0.

It seems curious that textbooks for the introductory course in linear
algebra do not include this simple but handy method.

References. 1. Michael O'Nan, Linear Algebra Volume 2A (1971),
Problem no. 39, page 57.
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ABSOLUTELY CONTINUOUS MEASURES AND
COMPACT COMPOSITION OPERATOR ON SPACES
OF CAUCHY TRANSFORMS

Y. ABU MUHANNA AND YUSUF ABU MUHANNA

ABSTRACT. The analytic self map of the unit disk D, ¢ is said
to induce a composition operator Cy, from the Banach space X to
the Banach Space Y if C,(f) = fop € Y for all f € X. For
z € D and o > 0 the families of weighted Cauchy transforms F
are defined by f(z) = [ K2(2)du(x) where p(z) is complex Borel
measures, & belongs to the unit circle T and the kernel K, (z) =

(1- Ez)fl. In this paper we will explore the relationship between
the compactness of the composition operator C, acting on F,, and
the complex Borel measures u(z).

A.M.S. (MOS) Subject Classification Codes. 30E20, 30D99.
Key Words and Phrases. Compact composition operator,
Absolutly continuous measures, Cauchy transforms.

1. BACKGROUND

Let T be the unit circle and M be the set of all complex—valued Borel
measures on T. For a > 0 and z € D, we define the space of weighted
Cauchy transforms F,, to be the family of all functions f(z) such that

1) /() = /T K(2)du(x)
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where the Cauchy kernel K, (z) is given by

1
Ka(2) = 1 -7z

and where g in (1) varies over all measures in M. The class F,, is a
Banach space with respect to the norm

(2) /117 = inf [|e]lna

where the infimum is taken over all Borel measures p satisfying (1). |||
denotes the total variation norm of p. The family F; has been studied
extensively in the soviet literature. The generalizations for a > 0, were
defined by T. H. MacGregor [8]. The Banach spaces F,, have been well
studied in [5, 8, 3, 4]. Among the properties of F,, we list the following:

o [, C Fj3 whenever 0 < o < 3.

e [, is Mobius invariant.

o feF,ifand only if f' € Fiiq and || f'||p,. < | fllF.-

o Ifg € Foyithen f(z) = [F g(w)dw € Fyand || f||r, < 2|9l 5,

The space F,, may be identified with M/H} the quotient of the Banach
space M of Borel measures by H} the subspace of L' consisting of
functions with mean value zero whose conjugate belongs the Hardy
space H'. Hence F, is isometrically isomorphic to M/H}. Furthermore,
M admits a decomposition M = L' @ M,, where M, is the space of
Borel measures which are singular with respect to Lebesgue measure,
and H} C L'. According to the Lebesgue decomposition theorem any
i € M can be written as u = pq+ s, where p, is absolutely continuous
with respect to the Lebesgue measure and pi is singular with respect to
the Lebesgue measure (u, L p5) . Furthermore the supports S(u,) and
S(ps) are disjoint. Since |z| = 11in (1), if we let z = e then du(e) =

9o (€")dt 4 dpis(e™) where g, (") € Hy. Consequently F, is isomorphic
to L'/H} & M. Hence, F, can be written as F,, = F,, & F,,, where

F,, is isomorphic to L'/H} the closed subspace of M of absolutely
continuous measures, and F,, is isomorphic to M, the subspace of M
of singular measures. If f € F,,, then the singular part is nul and the
measure y for which (1) holds is such that du(z) = du(e®) = g,(e®)dt
where g, (e) € L' and dt is the Lebesgue measure on T | see [1]. Hence
the functions in F,, may be written as,

f(z) = / " KO (2)ga (M)t

Furthermore if g, (e") is nonnegative then

£l = inf [l = [[g=(e)]]
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Remark: For simplicity, we will adopt the following notation through-
out the article. We will reserve p for the Borel measures of M, and
since in (1) |z] = 1, we can write + = e where t € [—m, 7). We
will reserve dt for the normalized Lebesgue of the unit circle T, and
do for the singular part of du. Hence instead of writing du(z) =
du(e) = dug(e®) + dus(e®) = g, (e®)dt + dus(e™) we may simply write
du(x) = g.dt + do(t).

2. INTRODUCTION

If X and Y are Banach spaces, and L is a linear operator from X
to Y, we say that L is bounded if there exists a positive constant A
such that ||L(f)|ly < A|lfl|lx for all f in X. We denote by C'(X,Y)
the set of all bounded linear operators from X to Y. If L € C(X,Y),
we say that L is a compact operator from X to Y if the image of every
bounded set of X is relatively compact (i.e. has compact closure) in
Y. Equivalently a linear operator L is a compact operator from X to
Y if and only if for every bounded sequence {f,} of X, {L(f,)} has a
convergent subsequence in Y. We will denote by K(X,Y) the subset
of C(X,Y) of compact linear operators from X into Y.

Let H(D) denote the set of all analytic functions on the unit disk D
and map D into D. If X and Y are Banach spaces of functions on the
unit disk D, we say that ¢ € H(D) induces a bounded composition
operator Cy,(f) = f(p) from X to Y, if C, € C(X,Y) or equivalently
Cy(X) C Y and there exists a positive constant A such that for all
feXand ||Co(f)lly <Al fllx-Incase X =Y then we say ¢ induces
a composition operator Cy, on X. If f € X, then C,(f) = f(¢) €
X. Similarly, we say that ¢ € H(D) induces a compact composition
operator if C, € K(X,Y).

A fundamental problem that has been studied concerning composition
operators is to relate function theoretic properties of ¢ to operator
theoretic properties of the restriction of U, to various Banach spaces
of analytic functions. However since the spaces of Cauchy transforms
are defined in terms of Borel measures, it seems natural to investigate
the relation between the behavior of the composition operator and the
measure. The work in this article was motivated by the work of J.
Cima and A. Matheson in [1], who showed that C,, is compact on Fy
if and only if Cy,(Fy) C Fi,. In our work we will generalize this result
for a > 1.

Now if C, € C(F,, Fy) then Co(f) = (f o) = f(p) € F, for all
f € F, and there exists a positive constant A such that

1Co (DI, = 1F g, = Nl < Allfllg,



60 Y. ABU MUHANNA AND YUSUF ABU MUHANNA

Since F,, can be identified with the quotient space M/ F& we can view
C, as a map:

C s MY — M
f= fle)

The equivalence class of a complex measure p will be written as:

(W =p+Hf ={p+h:heH)}
and
I [u]ll = inf {|2 + A]

The space C(F,, F,,) has been studied by [6] where the author showed
that:

(1) If @ > 1, then C, € C(F,, F,) for any analytic self map ¢ of
the unit disc.
(2) C, € C(F,, F,) if and only if {KJ(p) : |z| = 1} is a norm
bounded subset of F,.
(3) If C, € C(F,, F,) then C, € C(Fg, F3) for 0 < o < 5.
(4) If C, € C(F,, F,) then the operator ¢'C, € C(Fyt1, Fot1).
In this article we will investigate necessary and sufficient conditions for
C, to be compact on F, for a > 1 if and only if C,(Fy) C Fy,. Since
F,, is Mobius invariant, then there is no loss of generality in assuming
that ¢(0) = 0.

3. COMPACTNESS AND ABSOLUTELY CONTINUOUS MEASURES

In this section we will show that compactness of the composition op-
erator C, on Fy, is strongly tied with the absolute continuity of the
measure that supports it. First we state this Lemma due to [7].

Lemma 1. If 0 < o < 8 then F, C Fy, and the inclusion map is a
compact operator of norm one.

Next we use the above result and the known fact that H>* C Fj, to
show that bounded function of F,, belong to F,,.

Proposition 1. H* N F, C F,, fora > 1.

Proof. Let f € H*® N F,, then using the previous lemma we get that
for « > 1 and any z € D, f(z) € H® C H' C F, C F,,, then
f(2) € Fy, for all @ > 1, which gives us the desired result. 0J
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Theorem 1. For a holomorphic self-map ¢ of the unit disc D and
a > 1, if C, is compact on F, then (C, o0 K$)(z) € Foq and

™

) (Coo k)@ = [ 0 (") K2 ()t

—T

where ||g|| ;1 < a < 00, g, is nonnegative and L' continuous function

of x .

Proof. Assume that C, is compact and let { fj}]o.il be a sequence of
functions such that

1

fi(z) = K3 (pjz) = 1= pe)e

where 0 < p; < 1 and lim;_,o p; = 1. Then it is known from [4] that
fi(z) € F, for every j, and ||f;(2)||5 = 1. Furthermore there exist
p; € M, such that ||y;|| =1, du; >> 0 and

1

fi(z) = 1= pe)e

Since C, is compact on F, then (Cy,o f;) € F, and [|[Cu(f;)| <
ICM N fillp, = [IC,|l for all j. Furthermore Cy o f; € H>, thus us-
ing the previous result, we get that (C,o f;) € H* N F, C F,, for
every j. Therefore there exist L' nonnegative function g7 such that
dp;j(z) = gidt, [|lgill . < [|Cp|| and

(fi o)) = (K7 0 9)(p;2))

— [ g K2 (py2)a.

Now because F,, is closed and C,, is compact, the sequence { f; o gp};il
has a convergent subsequence { f;, o ¢} that converges to (K& o ¢) (2) €
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F.. Therefore,

lim (£, 0¢) (2) = lim (K3 0 ¢) (p;,2)
2
= lim [ g (") K (pj,2) dt

k—oo
2 )
_ / g () K () dt
0
1
(1—Zp(z))*
where the function g, is an L' nonnegative continuous function of z,
and ||gz|l;1 < ||C,|l. For the continuity of g, in L' with respect to

x where ||z]| = 1, we take a sequence {z}}, such that ||zx| = 1 and
x, — x. Now since C, is compact then

= (K7 op)(2) = € Fuq

Jim (Ko o) (Tr2) = (Ka 0 ¢) (72)

which concludes the proof. O

Corollary 1. Let g,(e%) be as in the last theorem then the operator
[ gx (e") h(z)dx = u(e') € HY, for h(x) € H} is bounded on H.

Proof. For the operator to be well defined, [ M
i | =R
h(xz) € H}. Hence, [ g, (") h(z)dz = u(e™) € H}. O

= ( for all

The following lemmas are needed to prove the converse of Theorem 1.

Lemma 2. Suppose g, (e") is a nonnegative L' continuous function of
x and let {u,} be a sequence of nonnegative Borel measures that are
weak* convergent to p. Define wy(t) = [ g2 (€") dp, (x) and w(t) =
Jr 9a (") dp (), then |lwn — w]ln — 0.

Proof. Let

9z (2) = /Re %gx (e*)d(t)
wa(z) = / 6o (2) dptn (z) and

w(z) = [ 9:(:)dn (@
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where|z| < 1. Notice that all functions are positive and harmonic in
D and that the radial limits of w,(z) and w(z) are w,(t) and w(t)
respectively. Then, for |z| < p <1,

192 (2) — gy (2)] < Hgm “) =gy (¢")]| 1

Then the continuity condition implies that g, (z) is uniformly contin-
uous in z for all |z| < p. Hence, weak star convergence, implies that
wp(z) — w(z) uniformly on |z| < p and consequently the conver-
gence is locally uniformly on D. In addition, we have [[w,(pe)||,. —
|w(pe™)]||,: . Hence we conclude that

| wa(pe™) — w(pe’ HLl — 0 as n — oo.

Now using Fatou’s Lemma we conclude that
[wn(e) = w(e)
O

Lemma 3. Let g, (e®) be a nonnegative L' continuous function of x
such that ||g.||;1 < a < oo and g.(e") defines a bounded operator on

— 1
HL If f(2) = mdu(m) , let L be the operator given by

/ / g”ﬁe ~ye (o)

then L is compact operator on F,,a > 1.

Proof. First note that the condition that g,(e") defines a bounded op-
erator on H{ implies that the L operator is a well defined function on
F,. Let {f.(2)} be a bounded sequence in F, and let {u,} be the
corresponding norm bounded sequence of measures in M. Since every
norm bounded sequence of measures in M has a weak star conver-
gent subsequence, let {u,} be such subsequence that is convergent to
w € M. We want to show that {L(f,)} has a convergent subsequence
in F,.

First, let us assume that dit, (x) >> 0 for all n, and let w,(t) =
[ gz (") dpy () and w(t) = [ g, (e") du (x) ,then we know from the
previous lemma that wn(t) w(t) € L' for all n, and w,(t) — w(t) in
L. Now since g, (e") is a nonnegative continuous function in x and
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{pn} is weak star convergent to p, then

0= [ E e n@“):/ syt
)= [ g = [ g

Furthermore because w,(t) is nonnegatlve then

1Ll g, = llwnll

IL(N g, = llwll
Now sincel|w, — wl|;; — 0 then [[L(f,) — L(f)||;, — 0 which shows
that {L(f,)} has convergent subsequence in F,, and thus L is a compact

operator for the case where p is a positive measure.
In the case where u is complex measure we write du,, () = (dul (z) —

dp? () + i(dp, (x) — dpy, (), , -
where each dpd (z) >> 0 and define wi(t) = [ g, (") dy, (x) then

wn(t) = [ gz (€") dpn () = (wi(t) — wi (1)) + 7 (wy (1) —wa (1)) .
Using an argument similar to the one above we get that w? (t), w’(t) €
LY and ||w) — w?||;, — 0. Consequently, ||w, —wl||;, — 0, where

w(t) = (w'(t) — w?(t) +i (w(t) —w(t)) = [ go (") dps ().
Hence, [|L(fn) = L)l p, < [lwn —wl][px — 0.
Finally, we conclude that the operator is compact. O

The following is the converse of Theorem 1.
Theorem 2. For a holomorphic self-map @ of the unit disc D, if
1 - it
_ / _9:(e)
(1—Zp(z))" (1—ez)e
where g, € L, nonnegative, ||g:|;1 < a < oo forallz € T and g,
is an L'continuous function of x , then C, is compact on F,.

Proof. We want to show that C,, is compact on F,,. Let f(z) € F, then
there exists a measure p in M such that for every z in D

1) = / (%du@:)

1—-72)

Using the assumption of the theorem we get that

o)) = [amagrdm o) = [[ 7 1_@zt 95y (2

which by the previous lemma was shown to be compact on F,. O

Now we give some examples:
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Corollary 2. Let p € H(D), with ||¢| . < 1. Then C, is compact on
F,, a>1.

1
Proof. (Cp,0 K$)(2) = —————— € H*NF, C F,, and is subordi-
’ (1 —Tp(2))

1
nate to ————, hence

1)
(Cpo K2)(2) = / K (=), () di

with g, (") > 0 and since 1 = (C,0 K)(0) = /gw (e™)dt we get that
gz (€™)ll; = 1. 0

Remark 1. In fact one can show that C,, as in the above corollary, is
compact from F,, a > 1 into Fy. In other words a contraction.

Corollary 3. If C, is compact on F,, o > 1 and lini ’gp(rew)’ =1

then

' ()
Proof. 1t C,, is compact then
(Coo K)o = [Kelge (") e

Hence, if z = € and ¢(e?) = x then
i@)a

’ (e —re
im : —
P )

O

Corollary 4. If C, € K(F,, F,) for a > 1, then C,, is contraction.

4. MISCELLANEOUS RESULTS
We first start by giving another characterization of compactness on F,.

Lemma 4. Let ¢ € C(F,, F,),a > 0 then ¢ € K(F,, F,) if and only if
for any bounded sequence (f,) in F, with f, — 0 uniformly on compact
subsets of D asn — 00, [|Cy(fu)llz, — 0 asn — oo.

Proof. Suppose C, € K(F,, F,) and let (f,) be a bounded sequence
(fn) in F, with lim f, — 0 uniformly on compact subsets of D. If

the conclusion is false then there exists an ¢ > 0 and a subsequence
ny < ng <nz <--- such that

HC¢(f"j)HFa >e€, forall j=1,2,3,...
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Since (f,,) is bounded and C, is compact, one can find a another sub-
sequence nj; < njo < njz < --- and f in F, such that

lim ||Co(fu,) = ]

Since point functional evaluation are continuous in F, then for any
z € D there exist A > 0 such that

KC*"(fna'k) - f) (2)} <A ch(fnjk) _

Hence

=0
Fo

—0as k — o0

[e3

Jim [C(f,) = 1] =0
uniformly on compact subsets of D. Moreover since f,,;, — 0 uniformly

on compact subsets of D, then f = 0 i.e. C'@(fnjk) — 0 on compact
subsets of F,,. Hence

lim ch(fnjk) ~0

k—o0

‘Fa

which contradicts our assumption. Thus we must have
lim [Colfu)ll 5, = 0.
n—oo

Conversely, let (f,,) be a bounded sequence in the closed unit ball of
F,,. We want to show that C,(f,) has a norm convergent subsequence.
The closed unit ball of F, is compact subset of F, in the topology
of uniform convergence on compact subsets of D. Therefore there is a
subsequence (f,,) such that

fnk - f
uniformly on compact subsets of D. Hence by hypothesis
1Ce(frr) = Co(Pllp, — 0 as k— o0
which completes the proof. O

Proposition 2. If C, € C(F,, F,) then C, € K(F,, Fg) for all 5 >
a > 0.

Proof. Let (f,) be a bounded sequence in the closed unit ball of F,.
Then (f,o) is bounded in F,, and since the inclusion map i : F,, — Fj,
is compact, (f, o ¢) has a convergent subsequence in Fj. U

Proposition 3. C,(f) = (f o ¢) is compact on F, if and only if the
operator ©'C,(g) = ¢'(g o p) is compact on Foyq.
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Proof. Suppose that C,(f) = (f o ¢) is compact on F,. It is known
from [6] that ¢'Cy,(g) = ¢'(g o ¢) is bounded on Fi,4;. Let (g,) be a
bounded sequence in F,,; with g, — 0 uniformly on compact subsets
of D as n — co. We want to show that lim [|¢'(gnop)|y , = 0.

+1
Let (f,) be the sequence defined by f,(z) = [ gn(w)dw. Then f, €
Fyand || fullp, < 2 192l » thus (fa) is a bounded sequence in Fj,.

Furthermore, using the Lebesgue dominated convergence theorem we
get that f,, — 0 uniformly on compact subsets of D. Thus

¥/ (gn © D)E,,, = 16 (0 O,

= 1(fa 0 @)l
< al[(fuo @, — 0 asn — oo

which shows that ¢'C,(g9) = ¢'(g o ¢) is compact on F,.

Conversely, assume that ¢'Cy,(g) = ¢'(go ) is compact on F,. Then
in particular ¢'C,(f") = ¢'(f' o) = (fop) is a compact for every f €
Fo. Now since |[(f o @)llg, < 2[[(fow)lp,, - Let (fa) be a bounded

sequence in F,, with f,, — 0 uniformly on compact subsets of D as n —
00. We want to show that lim [[(f, o ¢)||, = 0. Since any bounded

sequence of F, is also a bounded sequence of Fi (1, then ||(f, o )| <
2(fno ©)'[lg,,, — 0 as n — oo and the proof is complete. O
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