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ON THE APPROXIMATE SOLUTION OF SOME
FREDHOLM INTEGRAL EQUATIONS BY NEWTON’S

METHOD

J. M. GUTIÉRREZ, M. A. HERNÁNDEZ AND M. A. SALANOVA

Abstract. The aim of this paper is to apply Newton’s method to
solve a kind of nonlinear integral equations of Fredholm type. The
study follows two directions: firstly we give a theoretical result on
existence and uniqueness of solution. Secondly we illustrate with
an example the technique for constructing the functional sequence
that approaches the solution.
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1. Introduction

In this paper we give an existence and uniqueness of solution result
for a nonlinear integral equation of Fredholm type:

(1) φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t)p dt, x ∈ [a, b], p ≥ 2,

where λ is a real number, the kernel K(x, t) is a continuous function
in [a, b]× [a, b] and f(x) is a given continuous function defined in [a, b].
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There exist various results about Fredholm integral equations of sec-
ond kind

φ(x) = f(x) + λ

∫ b

a

K(x, t, φ(t)) dt, x ∈ [a, b]

when the kernel K(x, t, φ(t)) is linear in φ or it is of Lipschitz type
in the third component. These two points have been considered, for
instance, in [7] or [3] respectively. However the above equation (1) does
not satisfy either of these two conditions.

In [3] we can also find a particular case of (1), for f(x) = 0 and
K(x, t) a degenerate kernel. In this paper we study the general case.
The technique will consist in writing equation (1) in the form:

(2) F (φ) = 0,

where F : Ω ⊆ X → Y is a nonlinear operator defined by

F (φ)(x) = φ(x) − f(x) − λ

∫ b

a

K(x, t)φ(t)p dt, p ≥ 2,

and X = Y = C([a, b]) is the space of continuous functions on the
interval [a, b], equipped with the max-norm

‖φ‖ = max
x∈[0,1]

|φ(x)|, φ ∈ X.

In addition, Ω = X if p ∈ N, p ≥ 2, and when it will be necessary,
Ω = C+([a, b]) = {φ ∈ C([a, b]); φ(t) > 0, t ∈ [a, b]} for p ∈ R, with
p > 2.

The aim of this paper is to apply Newton’s method to equation (2)
in order to obtain a result on the existence and unicity of solution for
such equation. This idea has been considered previously in different
situations [1], [2], [4], [6].

At it is well known, Newton’s iteration is defined by

(3) φn+1 = φn − ΓnF (φn), n ≥ 0,

where Γn is the inverse of the linear operator F ′
φn

. Notice that for each
φ ∈ Ω, the first derivative F ′

φ is a linear operator defined from X to Y
by the following formula:
(4)

F ′
φ[ψ](x) = ψ(x) − λp

∫ b

a

K(x, t)φ(t)p−1ψ(t) dt, x ∈ [a, b], ψ ∈ X.

In the second section we establish two main theorems, one about the
existence of solution for (2) and other about the unicity of solution for
the same equation. In the third section we illustrate these theoretical
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results with an example. For this particular case, we construct some
iterates of Newton’s sequence.

2. The main result

Let us denote N = max
x∈[a,b]

∫ b

a

|K(x, t)| dt. Let φ0 be a function in Ω

such that Γ0 = [F ′
φ0

]−1 exists and ‖Γ0F (φ0)‖ ≤ η. We consider the
following auxiliary scalar function

(5) f(t) = 2(η− t) +M(‖φ0‖+ t)p−2 [(p− 1)ηt− 2(η − t)(‖φ0‖ + t)] ,

where, M = |λ|pN . Let us note that if p ∈ N, with p ≥ 2, f(t) is
a polynomial of degree p − 2. Firstly, we establish the following two
technical lemmas:

Lemma 2.1. Let us assume that the equation f(t) = 0 has at least
a positive real solution and let us denote by R the smaller one. Then
we have the following relations:

i) η < R.
ii) a = M(‖φ0‖ +R)p−1 < 1.

iii) If we denote b =
(p− 1)η

2(‖φ0‖ +R)
and h(t) =

1

1 − t
, then, abh(a) <

1.
iv) R =

η

1 − abh(a)
.

Proof: First, notice that iv) follows from the relation f(R) = 0.
So, as R > 0, we deduce that abh(a) < 1, and iii) holds. Moreover,

1 > 1 − abh(a) > 0, then 1 <
1

1 − abh(a)
, so η < R, and i) also holds.

To prove ii), we consider the relation f(R) = 0 that can be written
in the form:

2(η − R)
[
1 −M(‖φ0‖ +R)p−1

]
= −Mη(p− 1)R(‖φ0‖ +R)p−2 < 0.

As η −R < 0, 1 −M(‖φ0‖ +R)p−1 = 1 − a > 0, and therefore a < 1.

Let us denote B(φ0, R) = {φ ∈ X; ‖φ − φ0‖ < R} and B(φ0, R) =
{φ ∈ X; ‖φ− φ0‖ ≤ R}.
Lemma 2.2. If B(φ0, R) ⊆ Ω, the following conditions hold

i) For all φ ∈ B(φ0, R) there exists [F ′
φ]−1 and ‖[F ′

φ]
−1‖ ≤ h(a).



4 J. M. GUTIÉRREZ, M. A. HERNÁNDEZ AND M. A. SALANOVA

ii) If φn, φn−1 ∈ B(φ0, R), then

‖F (φn)‖ ≤ (p− 1)a

2(‖φ0‖ +R)
‖φn − φn−1‖2.

Proof: To prove i) we apply the Banach lemma on invertible oper-
ators [5]. Taking into account

(I − F ′
φ)ψ(x) = λp

∫ b

a

K(x, t)φ(t)p−1ψ(t) dt,

then

‖I − F ′
φ‖ ≤ |λ|pN‖φ‖p−1 ≤M(‖φ0‖ +R)p−1 = a < 1,

therefore, there exists [F ′
φ]

−1 and ‖[F ′
φ]−1‖ ≤ 1

1 − a
= h(a).

To prove ii), using Taylor’s formula, we have

F (φn)(x) =

∫ 1

0

[F ′
φn−1+s(φn−φn−1)

− F ′
φn−1

](φn − φn−1)(x) ds

= −λp
∫ 1

0

∫ b

a

K(x, t)
[
ρn(s, t)p−1 − φn−1(t)

p−1
]
(φn(t) − φn−1(t)) dt ds,

−λp
∫ 1

0

∫ b

a

K(x, t)

[
p−2∑

j=0

ρn(s, t)p−2−jφn−1(t)
j

]
[φn(t)−φn−1(t)]

2s dt ds,

where ρn(s, t) = φn−1(t) + s(φn − φn−1) and we have considered the
equality

xp−1 − yp−1 =

(
p−2∑

j=0

xp−2−jyj

)
(x− y), x, y ∈ R.

As φn−1, φn ∈ B(φ0, R), for each s ∈ [0, 1], ρn(s, ·) ∈ B(φ0, R), then
‖ρn(s, ·)‖ ≤ ‖φ0‖ +R. Consequently

‖F (φn)‖ ≤ |λ|pN
2

(
p−2∑

j=0

(‖φ0‖ +R))p−2−j‖φn−1‖j

)
‖φn − φn−1‖2

≤ |λ|p(p− 1)N

2
[‖φ0‖+R]p−2‖φn−φn−1‖2 =

(p− 1)a

2(‖φ0‖ +R)
‖φn−φn−1‖2,

and the proof is complete.

Next, we give the following results on existence and uniqueness of
solutions for the equation (2). Besides, we obtain that the sequence
given by Newton’s method has R-order two.
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Theorem 2.3. Let us assume that equation f(t) = 0, with f defined
in (5) has at least a positive solution and let R be the smaller one. If

B(φ0, R) ⊆ Ω, then there exists at least a solution φ∗ of (2) in B(φ0, R).
In addition, the Newton’s sequence (3) converges to φ∗ with at least R-
order two.

Proof: Firstly, as ‖φ1−φ0‖ ≤ η < R, we have φ1 ∈ B(φ0, R). Then,
Γ1 exists and ‖Γ1‖ ≤ h(a). In addition,

‖F (φ1)‖ ≤ (p− 1)a

2(‖φ0‖ +R)
‖φ1 − φ0‖2 = abη

and therefore

‖φ2 − φ1‖ ≤ abh(a)η.

Then, applying iv) from Lemma 2.1,

‖φ2 − φ0‖ ≤ ‖φ2 − φ1‖ + ‖φ1 − φ0‖ ≤ (1 − (abh(a))2)R < R,

and we have that x2 ∈ B(φ0, R). By induction is easy to prove that

(6) ‖φn − φn−1‖ ≤ (abh(a))2n−1−1‖φ1 − φ0‖.
In addition, taking into account Bernoulli’s inequality, we also have:

‖φn − φ0‖ ≤
(

n−1∑

j=0

(abh(a))2j−1

)
‖φ1 − φ0‖ <

(
∞∑

j=0

(abh(a))2j−1

)
η

<

(
∞∑

j=0

(abh(a))j

)
η = R

Consequently, φn ∈ B(φ0, R) for all n ≥ 0.
Next, we prove that {φn} is a Cauchy sequence. From (6), Lemma

2.1 and Bernouilli’s inequality, we deduce

‖φn+m−φn‖ ≤ ‖φn+m−φn+m−1‖+‖φn+m−1−φn+m−2‖+· · ·+‖φn−φn−1‖

≤
[
(abh(a))2n+m−1−1 + (abh(a))2n+m−2−1 + · · ·+ (abh(a))2n−1

]
‖φ1−φ0‖

≤ (abh(a))2n−1
[
(abh(a))2n(2m−1−1) + (abh(a))2n(2m−2−1) + · · ·+ (abh(a))2n

+ 1
]
η

< (abh(a))2n−1
[
(abh(a))2n(m−1) + (abh(a))2n(m−2) + · · ·+ (abh(a))2n

+ 1
]
η

= (abh(a))2n−1 1 − (abh(a))2nm

1 − (abh(a))2n η.
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But this last quantity goes to zero when n → ∞. Let φ∗ = lim
n→∞

φn,

then, by letting m→ ∞, we have

‖φ∗−φn‖ ≤ (abh(a))2n−1 η

1 − (abh(a))2n =
η

(1 − (abh(a))2n)(abh(a))
(abh(a))2n

≤ η

(1 − (abh(a)))(abh(a))
(abh(a))2n

= Cγ2n

with C > 0 and γ = abh(a) < 1. This inequality guarantees that {φn}
has at least R-order of convergence two [8].

Finally, for n = 0, we obtain

‖φ∗ − φ0‖ <
η

1 − abh(a)
= R

then, φ∗ ∈ B(φ0, R). Moreover, as

‖F (φn)‖ ≤ 1

2
M(p− 1)(‖φ0‖ +R)p−2‖φn − φn−1‖2,

when n→ ∞ we obtain F (φ∗) = 0, and φ∗ is a solution of F (x) = 0.

Now we give a uniqueness result:

Theorem 2.4. Let ‖Γ0‖ ≤ β, then the solution of (2) is unique in
B(φ0, R)

⋂
Ω, with R is the bigger positive solution of the equation

(7)
Mβ(p− 1)

2
(2‖φ0‖ +R + x)p−2(R + x) = 1.

Proof: To show the uniqueness, we suppose that γ∗ ∈ B(φ0, R)
⋂

Ω
is another solution of (2). Then

0 = Γ0F (γ∗) − Γ0F (φ∗) =

∫ 1

0

Γ0F
′
φ∗+s(γ∗−φ∗) ds(γ

∗ − φ∗).

We are going to prove that A−1 exists, where A is a linear operator
defined by

A =

∫ 1

0

Γ0F
′
φ∗+s(γ∗−φ∗) ds,

then γ∗ = φ∗. For this, notice that for each ψ ∈ X and x ∈ [a, b], we
have

(A− I)(ψ)(x) =

∫ 1

0

Γ0[F
′
φ∗+s(γ∗−φ∗) − F ′

φ0
]ψ(x) ds,

= −λp
∫ 1

0

Γ0

∫ b

a

K(x, t)
[
ρ∗(s, t)p−1 − φ0(t)

p−1
]
ψ(t) dt ds
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= −λp
∫ 1

0

Γ0

∫ b

a

K(x, t)

[
p−2∑

j=0

ρ∗(s, t)p−2−jφ0(t)
j

]
(ρ∗(s, t)−φ0(t))ψ(t) dt ds,

where ρ∗(s, t) = φ∗(t) + s(γ∗(t) − φ∗(t)).
Taking into account that

|ρ∗(s, t)−φ0(t)| ≤ ‖φ∗−φ0+s(γ
∗−φ∗)‖ ≤ (1−s)‖φ∗−φ0‖+s‖γ∗−φ0‖ < (1−s)R+sR,

we obtain

‖(A−I)ψ‖ ≤ |λ|pN‖Γ0‖
[∫ 1

0

(
p−2∑

j=0

‖ρ∗(s, ·)‖p−2−j‖φ0‖j

)
((1 − s)R + sR) ds

]
‖ψ‖.

Therefore, as

‖ρ∗(s, ·)‖ ≤ (1−s)‖φ∗‖+s‖γ∗‖ ≤ (1−s)(‖φ0‖+R)+s(‖φ0‖+R) ≤ 2‖φ0‖+R+R,

we have, from (7),

‖A−I‖ ≤ ‖Γ0‖M
2

(R+R)

[
p−2∑

j=0

( ‖φ0‖
2‖φ0‖ +R +R

)j
]

(2‖φ0‖+R+R)p−2

<
Mβ

2
(R +R)(p− 1)(2‖φ0‖ +R +R)p−2 = 1.

So, the operator

∫ 1

0

F ′(φ∗ + t(γ∗ − φ∗)) dt has an inverse and conse-

quently, γ∗ = φ∗. Then, the proof is complete.

3. An example

To illustrate the above theoretical results, we consider the following
example

(8) φ(x) = sin(πx) +
1

5

∫ 1

0

cos(πx) sin(πt)φ(t)3 dt, x ∈ [0, 1].

Let X = C[0, 1] be the space of continuous functions defined on the
interval [0, 1], with the max-norm and let F : X → X be the operator
given by
(9)

F (φ)(x) = φ(x) − sin(πx) − 1

5

∫ 1

0

cos(πx) sin(πt)φ((t)3 dt, x ∈ [0, 1].

By differentiating (9) we have:

(10) F ′
φ[u](x) = u(x) − 3

5
cos(πx)

∫ 1

0

sin(πt)φ(t)2u(t) dt.
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With the notation of section 2,

λ =
1

5
, N = max

x∈[0,1]

∫ 1

0

| sin(πt)| dt = 1 and M = |λ|pN =
3

5
.

We take as starting-point φ0(x) = sin(πx), then we obtain from (10)

F ′
φ0

[u](x) = u(x) − 3

5
cos(πx)

∫ 1

0

sin3(πt)u(t) dt

If F ′
φ[u](x) = ω(x), then [F ′

φ]
−1[ω](x) = u(x) and u(x) = ω(x) +

3
5
cos(πx)Ju, where

Ju =

∫ 1

0

sin(πt)φ(t)2u(t) dt.

Therefore the inverse of F ′
φ0

is given by

[F ′
φ0

]−1[ω](x) = ω(x) +
3

5

∫ 1

0
sin3(πt)w(t) dt

1 − 3
5

∫ 1

0
cos(πt) sin3(πt) dt

cos(πx).

Then

‖Γ0‖ ≤ ‖I +
4

5π
cos(πx)‖ ≤ 1.25468 · · · = β,

and ‖F (φ0)‖ ≤ 3
40

= 0.075. Consequently ‖Γ0F (φ0)‖ ≤ 0.094098 · · · =
η.

The equation f(t) = 0, with f given by (5) is now

1.2t3 + 2.4t2 − 0.912918t+ 0.0752789 = 0.

This equation has two positive solutions. The smaller one is R =
0.129115 . . . . Then, by Theorem 2.3, we know there exists a solution
of (8) in B(φ0, R). To obtain the uniqueness domain we consider the
equation (7) whose positive solution is the uniqueness ratio. In this
case, the solution is unique in B(φ0, 0.396793 . . . ).

Finally, we are going to deal with the computational aspects to
solve (8) applying Newton’s method (3). To calculate the iterations
φn+1(x) = φn(x)−[F ′

φn
]−1[F (φn)](x) with the function φ0(x) as starting-

point, we proceed in the following way:

(1) First we compute the integrals

An =

∫ 1

0

sin(πt)φn(t)3 dt; Bn =

∫ 1

0

sin(πt)2φn(t)2 dt;

Cn =

∫ 1

0

cos(πt) sin(πt)φn(t)2 dt.
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(2) Next we define

φn+1(x) = sin(πx) +
1

5

−2An + 3Bn

1 − 3
5
Cn

cos(πx).

So we obtain the following approximations

φ0(x) = sin πx,

φ1(x) = sin πx+ 0.075 cosπx,

φ2(x) = sin πx + 0.07542667509481667 cosπx,

φ3(x) = sin πx+ 0.07542668890493719 cosπx,

φ4(x) = sin πx+ 0.07542668890493714 cosπx,

φ5(x) = sin πx+ 0.07542668890493713 cosπx,

As we can see, in this case Newton’s method converges to the solution

φ∗(x) = sin πx+
20 −

√
391

3
cos πx.
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ORLICZ-SOBOLEV SPACES WITH ZERO BOUNDARY
VALUES ON METRIC SPACES
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Abstract. In this paper we study two approaches for the defi-
nition of the first order Orlicz-Sobolev spaces with zero boundary
values on arbitrary metric spaces. The first generalization, de-
noted by M

1,0
Φ

(E), where E is a subset of the metric space X , is
defined by the mean of the notion of the trace and is a Banach
space when the N-function satisfies the ∆2 condition. We give also
some properties of these spaces. The second, following another def-
inition of Orlicz-Sobolev spaces on metric spaces, leads us to three
definitions that coincide for a large class of metric spaces and N-
functions. These spaces are Banach spaces for any N-function.
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1. Introduction

This paper treats definitions and study of the first order Orlicz-
Sobolev spaces with zero boundary values on metric spaces. Since
we have introduce two definitions of Orlicz-Sobolev spaces on metric
spaces, we are leading to examine two approaches.

The first approach follows the one given in the paper [7] relative to
Sobolev spaces. This generalization, denoted by M 1,0

Φ (E), where E is
a subset of the metric space X, is defined as Orlicz-Sobolev functions
on X, whose trace on X \ E vanishes.
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This is a Banach space when the N-function satisfies the ∆2 con-
dition. For the definition of the trace of Orlicz-Sobolev functions we
need the notion of Φ-capacity on metric spaces developed in [2]. We
show that sets of Φ-capacity zero are removable in the Orlicz-Sobolev
spaces with zero boundary values. We give some results closely re-
lated to questions of approximation of Orlicz-Sobolev functions with
zero boundary values by compactly supported functions. The approx-
imation is not valid on general sets. As in Sobolev case, we study
the approximation on open sets. Hence we give sufficient conditions,
based on Hardy type inequalities, for an Orlicz-Sobolev function to be
approximated by Lipschitz functions vanishing outside an open set.

The second approach follows the one given in the paper [13] relative
to Sobolev spaces; see also [12]. We need the rudiments developed in
[3]. Hence we consider the set of Lipschitz functions on X vanishing
on X \ E, and close that set under an appropriate norm. Another
definition is to consider the space of Orlicz-Sobolev functions on X
vanishing Φ-q.e. in X \ E. A third space is obtained by considering
the closure of the set of compactly supported Lipschitz functions with
support in E. These spaces are Banach for any N-function and are, in
general, different. For a large class of metric spaces and a broad family
of N-functions, we show that these spaces coincide.

2. Preliminaries

An N -function is a continuous convex and even function Φ de-
fined on R, verifying Φ(t) > 0 for t > 0, limt→0 t

−1Φ(t) = 0 and
limt→∞ t−1Φ(t) = +∞.

We have the representation Φ(t) =
|t|∫
0

ϕ(x)dL(x), where ϕ : R+ →
R+ is non-decreasing, right continuous, with ϕ(0) = 0, ϕ(t) > 0 for
t > 0, limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) = +∞. Here L stands for the
Lebesgue measure. We put in the sequel, as usually, dx = dL(x).

The N -function Φ∗ conjugate to Φ is defined by Φ∗(t) =
|t|∫
0

ϕ∗(x)dx,

where ϕ∗ is given by ϕ∗(s) = sup{t : ϕ(t) ≤ s}.
Let (X,Γ, µ) be a measure space and Φ an N -function. The Orlicz

class LΦ,µ(X) is defined by

LΦ,µ(X) =
{
f : X → R measurable :

∫
X

Φ(f(x))dµ(x) <∞
}
.

We define the Orlicz space LΦ,µ(X) by



12 NOUREDDINE AÏSSAOUI

LΦ,µ(X) ={
f : X → R measurable :

∫
X

Φ(αf(x))dµ(x) <∞ for some α > 0
}
.

The Orlicz space LΦ,µ(X) is a Banach space with the following norm,
called the Luxemburg norm,

|||f |||Φ,µ,X = inf
{
r > 0 :

∫
X

Φ
(

f(x)
r

)
dµ(x) ≤ 1

}
.

If there is no confusion, we set |||f |||Φ = |||f |||Φ,µ,X.
The Hölder inequality extends to Orlicz spaces as follows: if f ∈

LΦ,µ(X) and g ∈ LΦ∗,µ(X), then fg ∈ L1 and
∫

X
|fg|dµ ≤ 2|||f |||Φ,µ,X. |||g|||Φ∗,µ,X .

Let Φ be an N -function. We say that Φ verifies the ∆2 condition if
there is a constant C > 0 such that Φ(2t) ≤ CΦ(t) for all t ≥ 0.

The ∆2 condition for Φ can be formulated in the following equivalent
way: for every C > 0 there exists C ′ > 0 such that Φ(Ct) ≤ C ′Φ(t) for
all t ≥ 0.

We have always LΦ,µ(X) ⊂ LΦ,µ(X). The equality LΦ,µ(X) =
LΦ,µ(X) occurs if Φ verifies the ∆2 condition.

We know that LΦ,µ(X) is reflexive if Φ and Φ∗ verify the ∆2 condi-
tion.

Note that if Φ verifies the ∆2 condition, then
∫

Φ(fi(x))dµ → 0 as
i→ ∞ if and only if |||fi|||Φ,µ,X → 0 as i→ ∞.

Recall that an N -function Φ satisfies the ∆′ condition if there is a
positive constant C such that for all x, y ≥ 0, Φ(xy) ≤ CΦ(x)Φ(y).
See [9] and [12]. If an N -function Φ satisfies the ∆′ condition, then it
satisfies also the ∆2 condition.

Let Ω be an open set in RN , C∞(Ω) be the space of functions which,
together with all their partial derivatives of any order, are continuous
on Ω, and C∞

0 (RN) = C∞
0 stands for all functions in C∞(RN) which

have compact support in RN . The space Ck(Ω) stands for the space
of functions having all derivatives of order ≤ k continuous on Ω, and
C(Ω) is the space of continuous functions on Ω.

The (weak) partial derivative of f of order |β| is denoted by

Dβf =
∂|β|

∂xβ1

1 .∂x
β2

2 ...∂x
βN

N

f.

Let Φ be an N -function and m ∈ N. We say that a function f :
RN → R has a distributional (weak partial) derivative of order m,
denoted Dβf , |β| = m, if

∫
fDβθdx = (−1)|β|

∫
(Dβf )θdx, ∀θ ∈ C∞

0 .
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Let Ω be an open set in RN and denote LΦ,L(Ω) by LΦ(Ω). The
Orlicz-Sobolev space WmLΦ(Ω) is the space of real functions f , such
that f and its distributional derivatives up to the orderm, are in LΦ(Ω).

The space WmLΦ(Ω) is a Banach space equipped with the norm

|||f |||m,Φ,Ω =
∑

0≤|β|≤m

|||Dβf |||Φ, f ∈ WmLΦ(Ω),

where |||Dβf |||Φ = |||Dβf |||Φ,L,Ω.
Recall that if Φ verifies the ∆2 condition, then C∞(Ω) ∩WmLΦ(Ω)

is dense in WmLΦ(Ω), and C∞
0 (RN) is dense in WmLΦ(RN).

For more details on the theory of Orlicz spaces, see [1, 8, 9, 10, 11].
In this paper, the letter C will denote various constants which may

differ from one formula to the next one even within a single string of
estimates.

3. Orlicz-Sobolev space with zero boundary values
M1,0

Φ (E)

3.1. The Orlicz-Sobolev space M 1
Φ(X). We begin by recalling the

definition of the space M 1
Φ(X).

Let u : X → [−∞, +∞] be a µ-measurable function defined on X.
We denote by D(u) the set of all µ-measurable functions g : X →
[0, +∞] such that

(3.1) |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))

for every x, y ∈ X \ F , x 6= y, with µ(F ) = 0. The set F is called the
exceptional set for g.

Note that the right hand side of (3.1) is always defined for x 6= y.
For the points x, y ∈ X, x 6= y such that the left hand side of (3.1) is
undefined we may assume that the left hand side is +∞.

Let Φ be an N -function. The Dirichlet-Orlicz space L1
Φ(X) is the

space of all µ-measurable functions u such that D(u) ∩ LΦ(X) 6= ∅.
This space is equipped with the seminorm

(3.2) |||u|||
L1

Φ
(X) = inf {|||g|||Φ : g ∈ D(u) ∩ LΦ(X)} .

The Orlicz-Sobolev space M 1
Φ(X) is defined by M1

Φ(X) = LΦ(X) ∩
L1

Φ(X) equipped with the norm

(3.3) |||u|||M1
Φ
(X) = |||u|||Φ + |||u|||

L
1
Φ

(X) .
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We define a capacity as an increasing positive set function C given
on a σ-additive class of sets Γ, which contains compact sets and such
that C(∅) = 0 and C(

⋃
i≥1

Xi) ≤
∑
i≥1

C(Xi) for Xi ∈ Γ, i = 1, 2, ... .

C is called outer capacity if for every X ∈ Γ,

C(X) = inf {C(O) : O open, X ⊂ O} .
Let C be a capacity. If a statement holds except on a set E where

C(E) = 0, then we say that the statement holds C-quasieverywhere
(abbreviated C-q.e.). A function u : X → [−∞,∞] is C-quasicontinuous
in X if for every ε > 0 there is a set E such that C(E) < ε and the
restriction of u to X \ E is continuous. When C is an outer capacity,
we may assume that E is open.

Recall the following definition in [2]

Definition 1. Let Φ be an N -function. For a set E ⊂ X, define CΦ(E)
by

CΦ(E) = inf{|||u|||M1
Φ
(X) : u ∈ B(E)},

where B(E) = {u ∈M 1
Φ(X) : u ≥ 1 on a neighborhood of E}.

If B(E) = ∅, we set CΦ,µ(E) = ∞.
Functions belonging to B(E) are called admissible functions for E.

In the definition of CΦ(E), we can restrict ourselves to those admis-
sible functions u such that 0 ≤ u ≤ 1. On the other hand, CΦ is an
outer capacity.

Let Φ be an N -function satisfying the ∆2 condition, then by [2 The-
orem 3.10] the set

Lip1
Φ(X) = {u ∈ M1

Φ(X) : u is Lipschitz in X}
is a dense subspace of M 1

Φ(X). Recall the following result in [2, Theo-
rem 4.10]

Theorem 1. Let Φ be an N -function satisfying the ∆2 condition and
u ∈ M1

Φ(X). Then there is a function v ∈ M 1
Φ(X) such that u = v

µ-a.e. and v is CΦ-quasicontinuous in X.
The function v is called a CΦ-quasicontinuous representative of u.

Recall also the following theorem, see [6]

Theorem 2. Let C be an outer capacity on X and µ be a nonnega-
tive, monotone set function on X such that the following compatibility
condition is satisfied: If G is open and µ(E) = 0, then

C(G) = C(G \ E).

Let f and g be C-quasicontinuous on X such that

µ({x : f(x) 6= g(x)}) = 0.
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Then f = g C-quasi everywhere on X.

It is easily verified that the capacity CΦ satisfies the compatibility
condition. Thus from Theorem 2, we get the following corollary.

Corollary 1. Let Φ be an N -function. If u and v are CΦ-quasicontinuous
on an open set O and if u = v µ-a.e. in O, then u = v CΦ-q.e. in O.

Corollary 1 make it possible to define the trace of an Orlicz-Sobolev
function to an arbitrary set.

Definition 2. Let Φ be an N -function, u ∈ M 1
Φ(X) and E be such

that CΦ(E) > 0. The trace of u to E is the restriction to E of any
CΦ-quasicontinuous representative of u.

Remark 1. Let Φ be an N -function. If u and v are CΦ-quasicontinuous
and u ≤ v µ-a.e. in an open set O, then max(u − v, 0) = 0 µ-a.e. in
O and max(u − v, 0) is CΦ-quasicontinuous. Hence by Corollary 1,
max(u− v, 0) = 0 CΦ-q.e. in O, and consequently u ≤ v CΦ-q.e. in O.

Now we give a characterization of the capacity CΦ in terms of qua-
sicontinuous functions. We begin by a definition

Definition 3. Let Φ be an N -function. For a set E ⊂ X, define
DΦ(E) by

DΦ(E) = inf{|||u|||M1
Φ
(X) : u ∈ B(E)},

where

B(E) = {u ∈M1
Φ(X) : u is CΦ-quasicontinuous and u ≥ 1 CΦ-q.e. in E}.

If B(E) = ∅, we set DΦ(E) = ∞.

Theorem 3. Let Φ be an N -function and E a subset in X. Then

CΦ(E) = DΦ(E).

Proof. Let u ∈ M 1
Φ(X) be such that u ≥ 1 on an open neighborhood

O of E. Then, by Remark 1, the CΦ-quasicontinuous representative v
of u satisfies v ≥ 1 CΦ-q.e. on O, and hence v ≥ 1 CΦ-q.e. on E. Thus
DΦ(E) ≤ CΦ(E).

For the reverse inequality, let v ∈ B(E). By truncation we may
assume that 0 ≤ v ≤ 1. Let ε be such that 0 < ε < 1 and choose an
open set V such that CΦ(V ) < ε with v = 1 on E \ V and v

∣∣
X\V is

continuous. We can find, by topology, an open set U ⊂ X such that
{x ∈ X : v(x) > 1 − ε} \ V = U \ V . We have E \ V ⊂ U \ V . We
choose u ∈ B(V ) such that |||u|||M1

Φ
(X) < ε and that 0 ≤ u ≤ 1. We
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define w = v
1−ε

+ u. Then w ≥ 1 µ-a.e. in (U \ V )∪ V = U ∪ V , which
is an open neighbourhood of E. Hence w ∈ B(E). This implies that

CΦ(E) ≤ |||w|||M1
Φ
(X) ≤

1

1 − ε
|||v|||M1

Φ
(X) + |||u|||M1

Φ
(X)

≤ 1

1 − ε
|||v|||M1

Φ
(X) + ε.

We get the desired inequality since ε and v are arbitrary. The proof
is complete.

We give a sharpening of [2, Theorem 4.8].

Theorem 4. Let Φ be an N -function and (ui)i be a sequence of CΦ-
quasicontinuous functions in M 1

Φ(X) such that (ui)i converges in M 1
Φ(X)

to a CΦ-quasicontinuous function u. Then there is a subsequence of
(ui)i which converges to u CΦ-q.e. in X.

Proof. There is a subsequence of (ui)i, which we denote again by (ui)i,
such that

(3.4)

∞∑

i=1

2i |||ui − u|||M1
Φ
(X) <∞.

We set Ei = {x ∈ X : |ui(x) − u(x)| > 2−i} for i = 1, 2, ..., and Fj =
∞⋃
i=j

Ei. Then 2i |ui − u| ∈ B(Ei) and by Theorem 3 we obtain CΦ(Ei) ≤

2i |||ui − u|||M1
Φ
(X). By subadditivity we get

CΦ(Fj) ≤
∞∑

i=j

CΦ(Ei) ≤
∞∑

i=j

2i |||ui − u|||M1
Φ
(X) .

Hence

CΦ(

∞⋂

j=1

Fj) ≤ lim
j→∞

CΦ(Fj) = 0.

Thus ui → u pointwise in X \
∞⋂

j=1

Fj and the proof is complete.

3.2. The Orlicz-Sobolev space with zero boundary values M 1,0
Φ (E).

Definition 4. Let Φ be an N -function and E a subspace of X. We say
that u belongs to the Orlicz-Sobolev space with zero boundary values,
and denote u ∈ M 1,0

Φ (E), if there is a CΦ-quasicontinuous function
ũ ∈M1

Φ(X) such that ũ = u µ-a.e. in E and ũ = 0 CΦ-q.e. in X \ E.
In other words, u belongs to M 1,0

Φ (E) if there is ũ ∈M 1
Φ(X) as above

such that the trace of ũ vanishes CΦ-q.e. in X \ E.
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The space M 1,0
Φ (E) is equipped with the norm

|||u|||M1,0

Φ
(E) = |||ũ|||M1

Φ
(X) .

Recall that CΦ(E) = 0 implies that µ(E) = 0 for every E ⊂ X;
see [2]. It follows that the norm does not depend on the choice of the
quasicontinuous representative.

Theorem 5. Let Φ be an N -function satisfying the ∆2 condition and
E a subspace of X. Then M 1,0

Φ (E) is a Banach space.

Proof. Let (ui)i be a Cauchy sequence in M 1,0
Φ (E). Then for every ui,

there is a CΦ-quasicontinuous function ũi ∈ M1
Φ(X) such that ũi = ui

µ-a.e. in E and ũi = 0 CΦ-q.e. in X \ E. By [2, Theorem 3.6] M 1
Φ(X)

is complete. Hence there is u ∈ M 1
Φ(X) such that ũi → u in M1

Φ(X)
as i → ∞. Let ũ be a CΦ-quasicontinuous representative of u given
by Theorem 1. By Theorem 4 there is a subsequence (ũi)i such that
ũi → ũ CΦ-q.e. in X as i → ∞. This implies that ũ = 0 CΦ-q.e. in
X \E and hence u ∈M 1,0

Φ (E). The proof is complete.

Moreover the space M 1,0
Φ (E) has the following lattice properties. The

proof is easily verified.

Lemma 1. Let Φ be an N -function and let E be a subset in X. If
u, v ∈M1,0

Φ (E), then the following claims are true.

1) If α ≥ 0, then min(u, α) ∈ M 1,0
Φ (E) and |||min(u, α)|||M1,0

Φ
(E) ≤

|||u|||M1,0

Φ
(E).

2) If α ≤ 0, then max(u, α) ∈M 1,0
Φ (E) and |||max(u, α)|||M1,0

Φ
(E) ≤

|||u|||M1,0
Φ

(E).

3) |u| ∈M1,0
Φ (E) and ||||u||||M1,0

Φ
(E) ≤ |||u|||M1,0

Φ
(E).

4) min(u, v) ∈M1,0
Φ (E) and max(u, v) ∈M 1,0

Φ (E).

Theorem 6. Let Φ be an N -function satisfying the ∆2 condition and
E a µ-measurable subset in X. If u ∈ M 1,0

Φ (E) and v ∈ M 1
Φ(X) are

such that |v| ≤ u µ-a.e. in E, then v ∈M 1,0
Φ (E).

Proof. Let w be the zero extension of v to X \ E and let ũ ∈ M 1
Φ(X)

be a CΦ-quasicontinuous function such that ũ = u µ-a.e. in E and that
ũ = 0 CΦ-q.e. in X \E. Let g1 ∈ D(ũ)∩LΦ(X) and g2 ∈ D(v)∩LΦ(X).
Define the function g3 by

g3(x) =

{
max(g1(x), g2(x)),
g1(x),

x ∈ E
x ∈ X \ E.
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Then it is easy to verify that g3 ∈ D(w)∩LΦ(X). Hence w ∈M 1
Φ(X).

Let w̃ ∈M1
Φ(X) be a CΦ-quasicontinuous function such that w̃ = w µ-

a.e. in X given by Theorem 1. Then |w̃| ≤ ũ µ-a.e. in X. By Remark
1 we get |w̃| ≤ ũ CΦ-q.e. in X and consequently w̃ = 0 CΦ-q.e. in
X \E. This shows that v ∈M 1,0

Φ (E). The proof is complete.

The following lemma is easy to verify.

Lemma 2. Let Φ be an N -function and let E be a subset in X. If u ∈
M1,0

Φ (E) and v ∈M 1
Φ(X) are bounded functions, then uv ∈M 1,0

Φ (E).

We show in the next theorem that the sets of capacity zero are re-
movable in the Orlicz-Sobolev spaces with zero boundary values.

Theorem 7. Let Φ be an N -function and let E be a subset in X. Let
F ⊂ E be such that CΦ(F ) = 0. Then M 1,0

Φ (E) = M1,0
Φ (E \ F ).

Proof. It is evident that M 1,0
Φ (E \ F ) ⊂ M1,0

Φ (E). For the reverse

inclusion, let u ∈M1,0
Φ (E), then there is a CΦ-quasicontinuous function

ũ ∈ M1
Φ(X) such that ũ = u µ-a.e. in E and that ũ = 0 CΦ-q.e.

in X \ E. Since CΦ(F ) = 0, we get that ũ = 0 CΦ-q.e. in X \
(E \ F ). This implies that u|E\F ∈ M1,0

Φ (E \ F ). Moreover we have∣∣∣∣∣∣u|E\F

∣∣∣∣∣∣
M1,0

Φ
(E\F )

= |||u|||M1,0

Φ
(E). The proof is complete.

As in the Sobolev case, we have the following remark.

Remark 2. 1) If CΦ(∂F ) = 0, then M 1,0
Φ (int E) = M1,0

Φ (E).

2) We have the equivalence: M 1,0
Φ (X \ F ) = M1,0

Φ (X) = M1
Φ(X) if

and only if CΦ(F ) = 0.

The converse of Theorem 7 is not true in general. In fact it suffices
to take Φ(t) = 1

p
tp (p > 1) and consider the example in [7].

Nevertheless the converse of Theorem 7 holds for open sets.

Theorem 8. Let Φ be an N -function and suppose that µ is finite in
bounded sets and that O is an open set. Then M 1,0

Φ (O) = M1,0
Φ (O \ F )

if and only if CΦ(F ∩O) = 0.

Proof. We must show only the necessity. We can assume that F ⊂ O.
Let x0 ∈ O and for i ∈ N∗, poseOi = B(x0, i)∩{x ∈ O : dist(x,X \O) > 1/i}.
We define for i ∈ N∗, ui : X → R by ui(x) = max(0, 1−dist(x, F ∩Oi)).
Then ui ∈ M1

Φ(X), ui is continuous, ui = 1 in F ∩ Oi and 0 ≤ ui ≤ 1.
For i ∈ N∗, define vi : Oi → R by vi(x) = dist(x,X \ Oi). Then
vi ∈ M1,0

Φ (Oi) ⊂ M1,0
Φ (O). By Lemma 2 we have, for every i ∈ N∗,

uivi ∈ M1,0
Φ (O) = M1,0

Φ (O \ F ). If w is a CΦ-quasicontinuous function
such that w = uivi µ-a.e. in O \ F , then w = uivi µ-a.e. in O since
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µ(F ) = 0. By Corollary 1 we get w = uivi CΦ-q.e. in O. In partic-
ular w = uivi > 0 CΦ-q.e. in F ∩ Oi. Since uivi ∈ M1,0

Φ (O \ F ) we
may define w = 0 CΦ-q.e. in X \ (O \ F ). Hence w = 0 CΦ-q.e. in
F ∩Oi. This is possible only if CΦ(F ∩Oi) = 0 for every i ∈ N∗. Hence

CΦ(F ) ≤
∞∑
i=1

CΦ(F ∩ Oi) = 0. The proof is complete.

3.3. Some relations between H1,0
Φ (E) and M1,0

Φ (E). We would de-
scribe the Orlicz-Sobolev space with zero boundary values on E ⊂ X
as the completion of the set Lip1,0

Φ (E) defined by

Lip1,0
Φ (E) = {u ∈M1

Φ(X) : u is Lipschitz in X and u = 0 in X \ E}
in the norm defined by (3.3). Since M 1

Φ(X) is complete, this completion
is the closure of Lip1,0

Φ (E) in M1
Φ(X). We denote this completion by

H1,0
Φ (E).
Let Φ be an N -function satisfying the ∆2 condition and E a sub-

space of X. By [2, Theorem 3.10] we have H1,0
Φ (X) = M1,0

Φ (X).

Since Lip1,0
Φ (E) ⊂ M1,0

Φ (E) and M1,0
Φ (E) is complete, then H1,0

Φ (E) ⊂
M1,0

Φ (E). When Φ(t) = 1
p
tp (p > 1), simple examples show that the

equality is not true in general; see [7]. Hence for the study of the equal-
ity, we restrict ourselves to open sets as in the Sobolev case. We begin
by a sufficient condition.

Theorem 9. Let Φ be an N -function satisfying the ∆2 condition, O
an open subspace of X and suppose that u ∈ M 1

Φ(O). Let v be the

function defined on O by v(x) =
u(x)

dist(x,X \O)
. If v ∈ LΦ(O), then

u ∈ H1,0
Φ (O).

Proof. Let g ∈ D(u) ∩ LΦ(O) and define the function g by

g(x) = max(g(x), v(x)) if x ∈ O

g(x) = 0 if x ∈ X \O.

Then g ∈ LΦ(X). Define the function u as the zero extension of u
to X \O. For µ-a.e. x, y ∈ O or x, y ∈ X \O, we have

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)).

For µ-a.e. x ∈ O and y ∈ X \O, we get

|u(x) − u(y)| = |u(x)| ≤ d(x, y)
|u(x)|

dist(x,X \O)
≤ d(x, y)(g(x) + g(y)).

Thus g ∈ D(u) ∩ LΦ(X) which implies that u ∈M 1
Φ(O). Hence

(3.5) |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))
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for every x, y ∈ X \ F with µ(F ) = 0.
For i ∈ N∗, set

(3.6) Fi = {x ∈ O \ F : |u(x)| ≤ i, g(x) ≤ i} ∪X \O.

From (3.5) we see that u|Fi
is 2i-Lipschitz and by the McShane ex-

tension
ui(x) = inf {u(y) + 2id(x, y) : y ∈ Fi}

we extend it to a 2i-Lipschitz function on X. We truncate ui at the
level i and set ui(x) = min(max(ui(x),−i), i). Then ui is such that ui

is 2i-Lipschitz function in X, |ui| ≤ i in X and ui = u in Fi and, in
particular, ui = 0 in X \ O. We show that ui ∈ M1

Φ(X). Define the
function gi by

gi(x) = g(x), if x ∈ Fi,

gi(x) = 2i, if x ∈ X \ Fi.

We begin by showing that

(3.7) |ui(x) − ui(y)| ≤ d(x, y)(gi(x) + gi(y)),

for x, y ∈ X \ F . If x, y ∈ Fi, then (3.7) is evident. For y ∈ X \ Fi, we
have

|ui(x) − ui(y)| ≤ 2id(x, y) ≤ d(x, y)(gi(x) + gi(y)), if x ∈ X \ Fi,

|ui(x) − ui(y)| ≤ 2id(x, y) ≤ d(x, y)(g(x) + 2i), if x ∈ X \ Fi.

This implies that (3.7) is true and thus gi ∈ D(ui). Now we have

|||gi|||Φ ≤ |||gi|||Φ,Fi
+ 2i|||1|||Φ,X\Fi

≤ |||g|||Φ,Fi
+

2i

Φ−1( 1
µ(X\Fi)

)
<∞,

and

|||ui|||Φ ≤ |||u|||Φ,Fi
+ 2i|||1|||Φ,X\Fi

≤ |||u|||Φ,Fi
+

2i

Φ−1( 1
µ(X\Fi)

)
<∞.

Hence ui ∈M1
Φ(X). It follows that ui ∈ Lip1,0

Φ (O).
It remains to prove that ui → u in M1

Φ(X). By (3.6) we have

µ(X \ Fi) ≤ µ({x ∈ X : |u(x)| > i}) + µ({x ∈ X : g(x) > i}).
Since u ∈ LΦ(X) and Φ satisfies the ∆2 condition, we get

∫

{x∈X:|u(x)|>i}

Φ(u(x))dµ(x) ≥ Φ(i)µ {x ∈ X : |u(x)| > i} ,

which implies that Φ(i)µ {x ∈ X : |u(x)| > i} → 0 as i→ ∞.
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By the same argument we deduce that Φ(i)µ {x ∈ X : g(x) > i} → 0
as i→ ∞.

Thus

(3.8) Φ(i)µ(X \ Fi) → 0 as i→ ∞.

Using the convexity of Φ and the fact that Φ satisfies the ∆2 condi-
tion, we get∫

X

Φ(u− ui)dµ ≤
∫

X\Fi

Φ(|u| + |ui|)dµ

≤ C
2
[

∫

X\Fi

Φ ◦ |u| dµ+ Φ(i)µ(X \ Fi)] → 0 as i→ ∞.

On the other hand, for each i ∈ N∗ we define the function hi by

hi(x) = g(x) + 3i, if x ∈ X \ Fi,

hi(x) = 0, if x ∈ Fi.

We claim that hi ∈ D(u− ui) ∩ LΦ(X). In fact, the only nontrivial
case is x ∈ Fi and y ∈ X \ Fi; but then

|(u− ui)(x) − (u− ui)(y)| ≤ d(x, y)(g(x) + g(y) + 2i)

≤ d(x, y)(g(y) + 3i).

By the convexity of Φ and by the ∆2 condition we have∫

X

Φ ◦ hidµ ≤
∫

X\Fi

Φ ◦ (g + 3i)dµ

≤ C[

∫

X\Fi

Φ ◦ gdµ+ Φ(i)µ(X \ Fi)] → 0 as i→ ∞.

This implies that |||hi|||Φ → 0 as i → ∞ since Φ verifies the ∆2

condition.
Now

|||u− ui|||L1
Φ
(X) ≤ |||hi|||Φ → 0 as i→ ∞.

Thus u ∈ H1,0
Φ (O). The proof is complete.

Definition 5. A locally finite Borel measure µ is doubling if there is a
positive constant C such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Definition 6. A nonempty set E ⊂ X is uniformly µ-thick if there are
constants C > 0 and 0 < r0 ≤ 1 such that

µ(B(x, r) ∩ E) ≥ Cµ(B(x, r)),

for every x ∈ E, and 0 < r < r0.
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Now we give a Hardy type inequality in the context of Orlicz-Sobolev
spaces.

Theorem 10. Let Φ be an N -function such that Φ∗ satisfies the ∆2

condition and suppose that µ is doubling. Let O ⊂ X be an open set
such that X \ O is uniformly µ-thick. Then there is a constant C > 0
such that for every u ∈M 1,0

Φ (O),

|||v|||Φ,O ≤ C|||u|||M1,0

Φ
(O),

where v is the function defined on O by v(x) =
u(x)

dist(x,X \O)
. The

constant C is independent of u.

Proof. Let u ∈ M 1,0
Φ (O) and ũ ∈ M1

Φ(O) be Φ-quasicontinuous such
that u = ũ µ-a.e. in O and ũ = 0 Φ-q.e. inX\O. Let g ∈ D(ũ)∩LΦ(X)
and set O′ = {x ∈ O : dist(x,X \O) < r0}. For x ∈ O′, we choose
x0 ∈ X \ O such that rx =dist(x,X \ O) = d(x, x0). Recall that the
Hardy-Littlewood maximal function of a locally µ-integrable function
f is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

f(y)dµ(y).

Using the uniform µ-thickness and the doubling condition, we get

1

µ(B(x0, rx) \O)

∫

B(x0,rx)\O

g(y)dµ(y) ≤ C

µ(B(x0, rx))

∫

B(x0,rx)

g(y)dµ(y)

≤ C

µ(B(x, 2rx))

∫

B(x,2rx)

g(y)dµ(y)

≤ CMg(x).

On the other hand, for µ-a.e. x ∈ O′ there is y ∈ B(x0, rx) \O such
that

|u(x)| ≤ d(x, y)(g(x) +
1

µ(B(x0, rx) \O)

∫

B(x0,rx)\O

g(y)dµ(y))

≤ Crx(g(x) + Mg(x))

≤ Cdist(x,X \O)Mg(x).

By [5], M is a bounded operator from LΦ(X) to itself since Φ∗

satisfies the ∆2 condition. Hence

|||v|||Φ,O′ ≤ C|||Mg|||Φ ≤ C|||g|||Φ.

On O \O′ we have

|||v|||Φ,O\O′ ≤ r−1
0 |||u|||Φ,O.
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Thus

|||v|||Φ,O ≤ C(|||ũ|||Φ + |||g|||Φ).

By taking the infimum over all g ∈ D(ũ)∩LΦ(X), we get the desired
result.

By Theorem 9 and Theorem 10 we obtain the following corollaries

Corollary 2. Let Φ be an N -function such that Φ and Φ∗ satisfy the
∆2 condition and suppose that µ is doubling. Let O ⊂ X be an open
set such that X \O is uniformly µ-thick. Then M 1,0

Φ (O) = H1,0
Φ (O).

Corollary 3. Let Φ be an N -function such that Φ and Φ∗ satisfy the
∆2 condition and suppose that µ is doubling. Let O ⊂ X be an open
set such that X \ O is uniformly µ-thick and let (ui)i ⊂ M1,0

Φ (O) be a

bounded sequence in M 1,0
Φ (O). If ui → u µ-a.e., then u ∈M 1,0

Φ (O).

In the hypotheses of Corollary 3 we get M 1,0
Φ (O) = H1,0

Φ (O). Hence
the following property (P) is satisfied for sets E whose complement is
µ-thick:
(P) Let (ui)i be a bounded sequence in H1,0

Φ (E). If ui → u µ-a.e., then

u ∈ H1,0
Φ (E).

Remark 3. If M1
Φ(X) is reflexive, then by Mazur’s lemma closed con-

vex sets are weakly closed. Hence every open subset O of X satisfies
property (P). But in general we do not know whether the space M 1

Φ(X)
is reflexive or not.

Recall that a space X is proper if bounded closed sets in X are
compact.

Theorem 11. Let Φ be an N -function satisfying the ∆2 condition and
suppose that X is proper. Let O be an open set in X satisfying property
(P). Then M1,0

Φ (O) = H1,0
Φ (O).

Proof. It suffices to prove that M 1,0
Φ (O) ⊂ H1,0

Φ (O). Let u ∈ M1,0
Φ (O)

be a Φ-quasicontinuous function from M 1
Φ(X) such that u = 0 Φ-q.e.

on X \ O. By using the property (P), we deduce, by truncating and
considering the positive and the negative parts separately, that we can
assume that u is bounded and non-negative. If x0 ∈ O is a fixed point,
define the sequence (ηi)i by

ηi(x) =





1 if d(x0, x) ≤ i− 1,
i− d(x0, x) if i− 1 < d(x0, x) < i

0 if d(x0, x) ≥ i.
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If we define the sequence (vi)i by vi = uηi, then since vi → u µ-a.e.
in X and |||vi|||M1

Φ
(X) ≤ 2|||u|||M1

Φ
(X), by the property (P) it clearly

suffices to show that vi ∈ H1,0
Φ (O). Remark that

|vi(x) − vi(y)| ≤ |u(x) − u(y)| + |ηi(x) − ηi(y)|
≤ d(x, y)(g(x) + g(y) + u(x).

Hence vi ∈M1
Φ(X).

Now fix i and set v = vi. Since v vanishes outside a bounded set, we
can find a bounded open subset U ⊂ O such that v = 0 Φ-q.e. in X \U .
We choose a sequence (wj) ⊂M1

Φ(X) of quasicontinuous functions such
that 0 ≤ wj ≤ 1, wj = 1 on an open set Oj, with |||wj|||M1

Φ
(X) → 0, and

so that the restrictions v|X\Oj
are continuous and v = 0 in X \(U ∪Oj).

The sequence (sj)j, defined by sj = (1−wj) max(v− 1
j
, 0), is bounded

in M1
Φ(X), and passing if necessary to a subsequence, sj → v µ-a.e.

Since v|X\Oj
is continuous, we get

{x ∈ X : sj(x) 6= 0} ⊂
{
x ∈ X : v(x) ≥ 1

j

}
\Oj ⊂ U .

This means that {x ∈ X : sj(x) 6= 0} is a compact subset ofO, whence

by Theorem 9, sj ∈ H1,0
Φ (O). The property (P) implies v ∈ H1,0

Φ (O)
and the proof is complete.

Corollary 4. Let Φ be an N -function satisfying the ∆2 condition and
suppose that X is proper. Let O be an open set in X and suppose that
M1

Φ(X) is reflexive. Then M 1,0
Φ (O) = H1,0

Φ (O).

Proof. By Remark 3, O satisfies property (P), and Theorem 11 gives
the result.

4. Orlicz-Sobolev space with zero boundary values N 1,0
Φ (E)

4.1. The Orlicz-Sobolev space N 1
Φ(X). We recall the definition of

the space N1
Φ(X).

Let (X, d, µ) be a metric, Borel measure space, such that µ is positive
and finite on balls in X.

If I is an interval in R, a path in X is a continuous map γ : I → X.
By abuse of language, the image γ(I) =: |γ| is also called a path. If
I = [a, b] is a closed interval, then the length of a path γ : I → X is

l(γ) =length(γ) = sup
n∑

i=1

|γ(ti+1) − γ(ti)|,
where the supremum is taken over all finite sequences a = t1 ≤ t2 ≤
... ≤ tn ≤ tn+1 = b. If I is not closed, we set l(γ) = sup l(γ |J ), where
the supremum is taken over all closed sub-intervals J of I. A path is
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said to be rectifiable if its length is a finite number. A path γ : I → X
is locally rectifiable if its restriction to each closed sub-interval of I is
rectifiable.

For any rectifiable path γ, there are its associated length function sγ :
I → [0, l(γ)] and a unique 1-Lipschitz continuous map γs : [0, l(γ)] → X
such that γ = γs ◦ sγ. The path γs is the arc length parametrization of
γ.

Let γ be a rectifiable path in X. The line integral over γ of each

non-negative Borel function ρ : X → [0,∞] is
∫

γ
ρds =

∫ l(γ)

0
ρ ◦ γs(t)dt.

If the path γ is only locally rectifiable, we set
∫

γ
ρds = sup

∫
γ′
ρds,

where the supremum is taken over all rectifiable sub-paths γ ′ of γ. See
[5] for more details.

Denote by Γrect the collection of all non-constant compact (that is,
I is compact) rectifiable paths in X.

Definition 7. Let Φ be an N -function and Γ be a collection of paths
in X. The Φ-modulus of the family Γ, denoted ModΦ(Γ), is defined as

inf
ρ∈F(Γ)

|||ρ|||Φ,

where F(Γ) is the set of all non-negative Borel functions ρ such that∫
γ
ρds ≥ 1 for all rectifiable paths γ in Γ. Such functions ρ used to

define the Φ-modulus of Γ are said to be admissible for the family Γ.

From the above definition the Φ-modulus of the family of all non-
rectifiable paths is 0.

A property relevant to paths in X is said to hold for Φ-almost all
paths if the family of rectifiable compact paths on which that property
does not hold has Φ-modulus zero.

Definition 8. Let u be a real-valued function on a metric space X. A
non-negative Borel-measurable function ρ is said to be an upper gra-
dient of u if for all compact rectifiable paths γ the following inequality
holds

(4.1) |u(x) − u(y)| ≤
∫

γ

ρds,

where x and y are the end points of the path.

Definition 9. Let Φ be an N -function and let u be an arbitrary real-
valued function on X. Let ρ be a non-negative Borel function on X.
If there exists a family Γ ⊂ Γrect such that ModΦ(Γ) = 0 and the
inequality (4.1) is true for all paths γ in Γrect \ Γ, then ρ is said to
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be a Φ-weak upper gradient of u. If inequality (4.1) holds true for Φ-
modulus almost all paths in a set B ⊂ X, then ρ is said to be a Φ-weak
upper gradient of u on B.

Definition 10. Let Φ be an N -function and let the set Ñ1
Φ(X, d, µ) be

the collection of all real-valued function u on X such that u ∈ LΦ and

u have a Φ-weak upper gradient in LΦ. If u ∈ Ñ1
Φ, we set

(4.2) |||u|||gN1
Φ

= |||u|||Φ + inf
ρ

|||ρ|||Φ,

where the infimum is taken over all Φ-weak upper gradient, ρ, of u such
that ρ ∈ LΦ.

Definition 11. Let Φ be an N -function. The Orlicz-Sobolev space cor-

responding to Φ, denoted N 1
Φ(X), is defined to be the space Ñ1

Φ(X, d, µ)� v,
with norm |||u|||N1

Φ
:= |||u|||gN1

Φ

.

For more details and developments, see [3].

4.2. The Orlicz-Sobolev space with zero boundary values N 1,0
Φ (E).

Definition 12. Let Φ be an N -function. For a set E ⊂ X define
CapΦ(E) by

CapΦ(E) = inf
{
|||u|||N1

Φ
: u ∈ D(E)

}
,

where D(E) = {u ∈ N 1
Φ : u |E ≥ 1}.

If D(E) = ∅, we set CapΦ(E) = ∞. Functions belonging to D(E)
are called admissible functions for E.

Definition 13. Let Φ be an N -function and E a subset of X. We

define Ñ1,0
Φ (E) as the set of all functions u : E → [−∞,∞] for which

there exists a function ũ ∈ Ñ1
Φ(E) such that ũ = u µ-a.e. in E and ũ =

0 CapΦ-q.e. in X \ E; which means CapΦ ({x ∈ X \ E : ũ(x) 6= 0}) =
0.

Let u, v ∈ Ñ1,0
Φ (E). We say that u ∼ v if u = v µ-a.e. in E. The

relation ∼ is an equivalence relation and we setN 1,0
Φ (E) = Ñ1,0

Φ (E)� v.
We equip this space with the norm |||u|||N1,0

Φ
(E) := |||u|||N1

Φ
(X).

It is easy to see that for every set A ⊂ X, µ(A) ≤ CapΦ(A). On the
other hand, by [3, Corollary 2] if ũ and ũ′ both correspond to u in the
above definition, then |||ũ− ũ′|||N1

Φ
(X) = 0. This means that the norm

on N1,0
Φ (E) is well defined.
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Definition 14. Let Φ be an N -function and E a subset of X. We set

Lip1,0
Φ,N (E) =

{
u ∈ N1

Φ(X) : u is Lipschitz in X and u = 0 in X \ E
}
,

and

Lip1,0
Φ,C(E) =

{
u ∈ Lip1,0

Φ,N(E) : u has compact support
}
.

We let H1,0
Φ,N(E) be the closure of Lip1,0

Φ,N (E) in the norm of N 1
Φ(X),

and H1,0
Φ,C(E) be the closure of Lip1,0

Φ,C(E) in the norm of N 1
Φ(X).

By definition H1,0
Φ,N(E) and H1,0

Φ,C(E) are Banach spaces. We prove

that N1,0
Φ (E) is also a Banach space.

Theorem 12. Let Φ be an N -function and E a subset of X. Then
N1,0

Φ (E) is a Banach space.

Proof. Let (ui)i be a Cauchy sequence in N 1,0
Φ (E). Then there is a cor-

responding Cauchy sequence (ũi)i in N1
Φ(X), where ũi is the function

corresponding to ui as in the definition of N 1,0
Φ (E). Since N1

Φ(X) is a
Banach space, see [3, Theorem 1], there is a function ũ ∈ N 1

Φ(X),
and a subsequence, also denoted (ũi)i for simplicity, so that as in
the proof of [3, Theorem 1], ũi → ũ pointwise outside a set T with
CapΦ(T ) = 0, and also in the norm of N 1

Φ(X). For every i, set
Ai = {x ∈ X \ E : ũi(x) 6= 0}. Then CapΦ(∪iAi) = 0. Moreover, on
(X \ E) \ (∪iAi ∪ T ), we have ũ(x) = lim

i→∞
ũi(x) = 0.

Since CapΦ(∪iAi ∪ T ) = 0, the function u = ũ|E is in N1,0
Φ (E). On

the other hand we have

|||u− ui|||N1,0

Φ
(E) = |||ũ− ũi|||N1

Φ
(X) → 0 as i→ ∞.

Thus N1,0
Φ (E) is a Banach space and the proof is complete.

Proposition 1. Let Φ be an N -function and E a subset of X. Then
the space H1,0

Φ,N(E) embeds isometrically into N 1,0
Φ (E), and the space

H1,0
Φ,C(E) embeds isometrically into H1,0

Φ,N(E).

Proof. Let u ∈ H1,0
Φ,N(E). Then there is a sequence (ui)i ⊂ N1

Φ(X) of

Lipschitz functions such that ui → u in N1
Φ(X) and for each integer i,

ui|X\E = 0. Considering if necessary a subsequence of (ui)i, we proceed
as in the proof of [3, Theorem 1], we can consider the function ũ defined
outside a set S with CapΦ(S) = 0, by ũ = 1

2
(lim sup

i
ui + lim inf

i
ui).

Then ũ ∈ N1
Φ(X) and u|E = ũ|E µ-a.e and ũ|(X\E)\S = 0. Hence

u|E ∈ N1,0
Φ (E), with the two norms equal. Since H1,0

Φ,C(E) ⊂ Lip1,0
Φ,N(E),

it is easy to see that H1,0
Φ,C(E) embeds isometrically into H1,0

Φ,N(E). The
proof is complete.
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When Φ(t) = 1
p
tp, there are examples of spaces X and E ⊂ X for

which N1,0
Φ (E), H1,0

Φ,N(E) and H1,0
Φ,C(E) are different. See [13]. We give,

in the sequel, sufficient conditions under which these three spaces agree.
We begin by a definition and some lemmas.

Definition 15. Let Φ be an N -function. The spaceX is said to support
a (1,Φ)-Poincaré inequality if there is a constant C > 0 such that for
all balls B ⊂ X, and all pairs of functions u and ρ, whenever ρ is
an upper gradient of u on B and u is integrable on B, the following
inequality holds

1

µ(B)

∫

B

|u− uE| ≤ Cdiam(B) |||g|||
LΦ(B) Φ−1(

1

µ(B)
).

Lemma 3. Let Φ be an N -function and Y a metric measure space
with a Borel measure µ that is finite on bounded sets. Let u ∈ N 1

Φ(Y )
be non-negative and define the sequence (ui)i by ui = min(u, i), i ∈ N.
Then (ui)i converges to u in the norm of N 1

Φ(Y ).

Proof. Set Ei = {x ∈ Y : u(x) > i}. If µ(Ei) = 0, then ui = u µ-a.e.
and since ui ∈ N1

Φ(Y ), by [3, Corollary 2] the N 1
Φ(Y ) norm of u− ui is

zero for sufficiently large i. Now, suppose that µ(Ei) > 0. Since µ is
finite on bounded sets, it is an outer measure. Hence there is an open
set Oi such that Ei ⊂ Oi and µ(Oi) ≤ µ(Ei) + 2−i.

We have
1

i
|||u|||

LΦ(Ei)
≥ |||1|||

LΦ(Ei)
=

1

Φ−1( 1
µ(Ei)

)
.

Since Φ−1 is continuous, increasing and verifies Φ(x) → ∞ as x→ ∞,
we get

1

Φ−1( 1
µ(Oi)−2−i )

≤ 1

i
|||u|||

LΦ
→ 0 as i→ ∞,

and
µ(Oi) → 0 as i→ ∞.

Note that u = ui on Y \Oi. Thus u− ui has 2gχOi
as a weak upper

gradient whenever g is an upper gradient of u and hence of ui as well;
see [3, Lemma 9]. Thus ui → u in N1

Φ(Y ). The proof is complete.

Remark 4. By [3, Corollary 7], and in conditions of this corollary, if
u ∈ N1

Φ(X), then for each positive integer i, there is a wi ∈ N1
Φ(X)

such that 0 ≤ wi ≤ 1, |||wi|||N1
Φ
(X) ≤ 2−i, and wi|Fi

= 1, with Fi an

open subset of X such that u is continuous on X \ Fi.

We define, as in the proof of Theorem 11, for i ∈ N∗, the function ti
by
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ti = (1 − wi) max(u− 1
i
, 0).

Lemma 4. Let Φ be an N -function satisfying the ∆′ condition. Let
X be a proper doubling space supporting a (1,Φ)-Poincaré inequality,
and let u ∈ N 1

Φ(X) be such that 0 ≤ u ≤ M , where M is a constant.
Suppose that the set A = {x ∈ X : u(x) 6= 0} is a bounded subset of X.
Then ti → u in N1

Φ(X).

Proof. Set Ei =
{
x ∈ X : u(x) < 1

i

}
. By [3, Corollary 7] and by the

choice of Fi, there is an open set Ui such that Ei \ Fi = Ui \ Fi.
Pose Vi = Ui ∪ Fi and remark that wi|Fi

= 1 and u|Ei
< 1

i
. Then

{x ∈ X : ti(x) 6= 0} ⊂ A\Vi ⊂ A. If we set vi = u−ti, then 0 ≤ vi ≤ M
since 0 ≤ ti ≤ u. We can easily verify that ti = (1 − wi)(u − 1/i) on
A \ Vi, and ti = 0 on Vi. Therefore

(4.3) vi = wiu+ (1 − wi)�i on A \ Vi,

and

(4.4) vi = u on Vi.

Let x, y ∈ X. Then

|wi(x)u(x) − wi(y)u(y)| ≤ |wi(x)u(x) − wi(x)u(y)| + |wi(x)u(y) − wi(y)u(y)|
≤ wi(x) |u(x) − u(y)|+M |wi(x) − wi(y)| .

Let ρi be an upper gradient of wi such that |||ρi|||LΦ
≤ 2−i+1 and let

ρ be an upper gradient of u belonging to LΦ. If γ is a path connecting
two points x, y ∈ X, then

|wi(x)u(x) − wi(y)u(y)| ≤ wi(x)

∫

γ

ρds+M

∫

γ

ρids.

Hence, if z ∈ |γ|, then

|wi(x)u(x) − wi(y)u(y)| ≤ |wi(x)u(x) − wi(z)u(z)| + |wi(z)u(z) − wi(y)u(y)|

≤ wi(z)

∫

γxz

ρds+M

∫

γxz

ρids+ wi(z)

∫

γzy

ρds+M

∫

γzy

ρids

≤ wi(z)

∫

γ

ρds+M

∫

γ

ρids,

where γxz and γzy are such that the concatenation of these two segments
gives the original path γ back again. Therefore

|wi(x)u(x) − wi(y)u(y)| ≤
∫

γ

(
inf
z∈|γ|

wi(z)ρ +Mρi

)
ds.
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Thus

|wi(x)u(x) − wi(y)u(y)| ≤
∫

γ

(wi(z)ρ +Mρi)ds.

This means that wiρ + Mρi is an upper gradient of wiu. Since
|||wi|||LΦ

≤ 2−i, we get that wi → 0 µ-a.e. On the other hand wiρ ≤ ρ

on X implies that wiρ ∈ LΦ and hence Φ ◦ (wiρ) ∈ L1 because Φ veri-
fies the ∆2 condition. Since Φ is continuous, Φ ◦ (wiρ) → 0 µ-a.e. The
Lebesgue dominated convergence theorem gives

∫
X

Φ ◦ (wiρ)dx → 0
as i → ∞. Thus |||wiρ|||LΦ

→ 0 as i → ∞ since Φ verifies the ∆2

condition.
Let B be a bounded open set such that A ⊂ BT. Then Oi = (A ∪

Fi) ∩ B is a bounded open subset of A and Oi ⊂ A. Therefore since
Oi ∩ Vi ⊂ (Ei ∩ A) ∪ Fi, we get

µ(Oi ∩ Vi) ≤ µ(Ei ∩ A) + µ(Fi)

≤ µ

({
x ∈ X : 0 < u(x) <

1

i

})
+ CapΦ(Fi).

Hence µ(Oi ∩ Vi) → 0 as i → ∞, since bounded sets have finite
measure and therefore µ

({
x ∈ X : 0 < u(x) < 1

i

})
→ µ(∅) = 0 as i→

∞. Thus |||ρ|||
LΦ(Oi∩Vi)

→ 0 as i→ ∞.

By [3, Lemma 8] and equations (4.3) and (4.4), we get

gi :=

(
wiρ +Mρi +

1

i
ρi

)
χOi

+ ρχOi∩Vi

is a weak upper gradient of vi and since

|||gi|||LΦ
≤ |||wiρ|||LΦ

+ (M + 1
i
) |||ρi|||LΦ

+ |||ρ|||
LΦ(Oi∩Vi)

,

we infer that |||gi|||LΦ
→ 0 as i→ ∞.

On the other hand, we have

|||vi|||LΦ
= |||u− ti|||LΦ

≤ |||wiu|||LΦ(A\Vi)
+

1

i
|||1 − wi|||LΦ(A\Vi)

+ |||u|||
LΦ(Oi∩Vi)

≤ M |||wi|||N1
Φ
(X) +

1

i

1

Φ−1( 1
µ(A)

)
+ |||u|||

LΦ(Oi∩Vi)
.

Since |||wi|||N1
Φ
(X) → 0 and |||u|||

LΦ(Oi∩Vi)
→ 0 as i→ ∞, we conclude

that |||vi|||LΦ
→ 0 as i → ∞, and hence ti → u in N1

Φ(X). The proof
is complete.

Theorem 13. Let Φ be an N -function satisfying the ∆′ condition. Let
X be a proper doubling space supporting a (1,Φ)-Poincaré inequality
and E an open subset of X. Then N 1,0

Φ (E) = H1,0
Φ,N(E) = H1,0

Φ,C(E).
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Proof. By Proposition 1 we know that H1,0
Φ,C(E) ⊂ H1,0

Φ,N(E) ⊂ N1,0
Φ (E).

It suffices to prove that N 1,0
Φ (E) ⊂ H1,0

Φ,C(E). Let u ∈ N1,0
Φ (E), and

identify u with its extension ũ. By the lattice properties of N 1
Φ(X) it is

easy to see that u+ and u− are both in N1,0
Φ (E) and hence it suffices to

show that u+ and u− are in H1,0
Φ,C(E). Thus we can assume that u ≥ 0.

On the other hand, since N 1,0
Φ (E) is a Banach space that is isometrically

embedded in N1
Φ(X), if (un)n is a sequence in N 1,0

Φ (E) that is Cauchy

in N1
Φ(X), then its limit, u, lies in N 1,0

Φ (E). Hence by Lemma 3, it also
suffices to consider u such that 0 ≤ u ≤M , for some constantM . By [3,
Lemma 17], it suffices to consider u such that A = {x ∈ X : u(x) 6= 0}
is a bounded set. By Lemma 4, it suffices to show that for each positive
integer i, the function ϕi = (1 − wi) max(u− 1

i
, 0) is in H1,0

Φ,C(E).
On the other hand, ifOi and Fi are open subsets ofX and CapΦ(Fi) ≤

2−i, as in the proof of Lemma 4, we have A∪Fi = Oi∪Fi. Since u has
bounded support, we can choose Oi as bounded sets contained in E.
We have wi |Fi

= 1 and hence ϕi |Fi
= 0. Set Ei =

{
x ∈ X : u(x) < 1

i

}
.

Then, as in the proof of Lemma 4, there is an open set Ui ⊂ E such
that Ei \ Fi = Ui \ Fi and ϕi |Fi∪Ui

= 0. Thus

{x : ϕi(x) 6= 0} ⊂ {x ∈ E : u(x) ≥ 1/i} \ Fi = Oi \ (Ei ∪ Fi) ⊂ Oi ⊂
E.

The support of ϕi is compact becauseX is proper, and hence δ =dist(supp
ϕi, X \ E) > 0. By [3, Theorem 5], ϕi is approximated by Lipschitz
functions in N1

Φ(X). Let gi be an upper gradient of ϕi. By [3, Lemma
9] we can assume that gi

∣∣
X\Oi

= 0. As in [3], define the operator M′

by M′(f)(x) = sup
B

1

µ(B)
Φ(|||f |||

LΦ(B)), where the supremum is taken

over all balls B ⊂ X such that x ∈ B. Then if x ∈ X \ E, we get

M′(gi)(x) = sup
x∈B, radB>δ/2

1

µ(B)
Φ(|||gi|||LΦ(B)) ≤

C ′

(δ/2)s
Φ(|||gi|||LΦ

) <∞,

where s = LogC
Log2

, C being the doubling constant, and C ′ is a constant

depending only on C and A. We know from [3, Proposition 4] that
if f ∈ LΦ, then lim

λ→∞
λµ {x ∈ X : M′(f)(x) > λ} = 0. Hence in the

proof of [3, Theorem 5], choosing λ > C′

(δ/2)s Φ(|||gi|||LΦ
) ensures that

the corresponding Lipschitz approximations agree with the functions
ϕi on X \E. Thus these Lipschitz approximations are in H1,0

Φ,N(E), and
therefore so is ϕi. Moreover, these Lipschitz approximations have com-
pact support in E, and hence ϕi ∈ H1,0

Φ,C(E). The proof is complete.
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AN INTERACTING PARTICLES PROCESS
FOR BURGERS EQUATION ON THE CIRCLE

ANTHONY GAMST

ABSTRACT. We adapt the results of Oelschläger (1985) to prove a weak
law of large numbers for an interacting particles process which, in the
limit, produces a solution to Burgers equation with periodic boundary
conditions. We anticipate results of this nature to be useful in the devel-
opment of Monte Carlo schemes for nonlinear partial differential equa-
tions.
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1. INTRODUCTION

Several propagation of chaos results have been proved for the Burgers
equation (Calderoni and Pulvirenti 1983, Osada and Kotani 1985, Oelschläg-
er 1985, Gutkin and Kac 1986, and Sznitman 1986) all using slightly differ-
ent methods. Perhaps the best result for the Cauchy free-boundary problem
is Sznitman’s (1986) result which describes the particle interaction in terms
of the average ‘co-occupation time’ of the randomly diffusing particles. For
various reasons, we follow Oelschläger and prove a Law of Large Numbers
type result for the measure valued process (MVP) where the interaction is
given in terms of a kernel density estimate with bandwidth a function of the
number N of interacting diffusions.
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The heuristics are as follows: The (nonlinear) partial differential equation

ut =
uxx

2
−
(
u(x, t)

∫
b(x− y)u(y, t) dy

)

x
(1)

is the Kolmogorov forward equation for the diffusion X = (Xt) which is
the solution to the stochastic differential equation

dXt = dWt +
{∫

b(Xt − y)u(y, t) dy
}
dt (2)

= dWt + E(b(Xt − X̄t))dt (3)

where u(x, t) dx is the density of Xt, Wt is standard Brownian motion (a
Wiener process), X̄ is an independent copy of X , and E is the expecta-
tion operator. Note the change in notation: for a stochastic process X , Xt

denotes its location at time t not a (partial) derivative with respect to t.
The law of large numbers suggests that

E(b(Xt − X̄t)) = lim
N→∞

1

N

N∑

j=1

b(Xt −Xj
t )

where theXj are independent copies ofX and this empirical approximation
suggests looking at the system of N stochastic differential equations given
by

dX i,N
t = dW i,N

t +
1

N

N∑

j=1

b(X i,N
t −Xj,N

t )dt, i = 1, . . . , N

where the W i,N are independent Brownian motions. Now if b is bounded
and Lipschitz and theN particles are started independently with distribution
µ0, then the system ofN stochastic differential equations will have a unique
solution (Karatzas and Shreve 1991) and the measure valued process

µN
t =

1

N

N∑

j=1

δXj,N
t

where δx is the point-mass at x will converge to a solution µ of (1) in the
sense that for every bounded continuous function f on the real-line and
every t > 0,

∫
f(x)µN

t (dx) =
1

N

N∑

j=1

f(Xj,N
t ) →

∫
f(x)µt(dx),

where µt has a density u so µt(dx) = u(x, t)dx and u solves (1).
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By formal analogy, if we take 2b(x − y) = δ0(x − y), where δ0 is the
point-mass at zero, then

ut =
uxx

2
−
(
u(x, t)

∫
δ0(x− y)

2
u(y, t) dy

)

x

(4)

=
uxx

2
−
(
u2

2

)

x

(5)

=
uxx

2
− uux (6)

which is the Burgers equation with viscosity parameter ε = 1/2. Unfor-
tunately, δ0 is neither bounded nor Lipschitz and a lot of work goes into
dealing with this problem. This is covered in greater detail later in the pa-
per.

Our interest in these models lies partially in their potential use as numer-
ical methods for nonlinear partial differential equations. This idea has been
the subject of a good deal of recent research, see Talay and Tubaro (1996).
As noted there, and elsewhere, the Burgers equation is an excellent test for
new numerical methods precisely because it does have an exact solution. In
the next two sections, we prove the underlying Law of Large Numbers for
the Burgers equation with periodic boundary conditions. Such boundary
conditions seem natural for numerical work.

2. THE SETUP AND GOAL.

We are interested in looking at the dynamics of the measure valued pro-
cess

µN
t =

N∑

j=1

δY j,N
t

(7)

with δx the point-mass at x,

Y j,N
t = ϕ(Xj,N

t ) (8)

where ϕ(x) = x − [x] and [x] is the largest integer less than or equal to
x, with the Xj,N

t satisfying the following system of stochastic differential
equations

dXj,N
t = dW j,N

t + F

(
1

N

N∑

l=1

bN (Xj,N
t −X l,N

t )

)
dt (9)

where the W j,N
t are independent standard Brownian motion processes,

F (x) =
x ∧ ‖u0‖

2
,
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u0 is a bounded measurable density function on S = [0, 1), ‖ · ‖ is the
supremum norm, ‖f‖ = supS |f(x)|, and bN (x) > 0 is an infinitely-
differentiable one-periodic function on the real line IR such that

∫ 1

0
bN (x) dx = 1 (10)

for allN = 1, 2, . . . , and for any continuous bounded one-periodic function
f

∫ 1/2

−1/2
f(x)bN (x) dx→ f(0) (11)

as N → ∞. We call a function f on IR one-periodic if f(x) = f(x+1) for
every x ∈ IR.

For any x and y in S, let

ρ(x, y) = |x− y − 1| ∧ |x− y| ∧ |x− y + 1| (12)

and note that (S, ρ) is a complete, separable, and compact metric space. Let
Cb(S) denote the space of all continuous bounded functions on (S, ρ). Note
that if f is a continuous one-periodic function on IR and g is the restriction
of f to S, then g ∈ Cb(S). Additionally, for any one-periodic function f on
IR we have f(Y j,N

t ) = f(Xj,N
t ) and therefore

〈µN
t , f〉 =

∫

S
f(x)µN

t (dx)

=
1

N

N∑

j=1

f(Y j,N
t )

=
1

N

N∑

j=1

f(Xj,N
t )

for any one-periodic function f on IR.
To study the dynamics of the process µN

t as N → ∞ we will need to
study, for any f which is both one-periodic and twice-differentiable with
bounded first and second derivatives, the dynamics of the processes 〈µN

t , f〉.
These dynamics are obtained from (7), (9), and Itô’s formula (see Karatzas
and Shreve 1991, p.153)

〈µN
t , f〉 = 〈µN

0 , f〉 +
∫ t

0
〈µN

s , F (gN
s (·))f ′

+
1

2
f

′′〉 ds

+
1

N

N∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s (13)

where the use the notation

〈µ, f〉 =
∫

S
f(x)µ(dx)
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with µ a measure on S,

gN
t (x) =

1

N

N∑

l=1

bN (x−X l,N
t ) (14)

and the fact that because bN is one-periodic, bN (Y j,N
t −Y l,N

t ) = bN (Xj,N
t −

X l,N
t ).
Given any metric space (M,m), let M1(M) be the space of probability

measures on M equipped with the usual weak topology:

lim
k→∞

µk = µ

if and only if

lim
k→∞

∫

M
f(x)µk(dx) =

∫

M
f(x)µ(dx)

for every f in Cb(M), where Cb(M) is the space of all continuous bounded
and real-valued functions f onM under the supremum norm ‖f‖ = supM |f(x)|.

On the space (S, ρ) the weak topology is generated by the bounded Lip-
schitz metric

‖µ1 − µ2‖H = sup
f∈H

|〈µ1, f〉 − 〈µ2, f〉|

where

H = {f ∈ Cb(S) : ‖f‖ ≤ 1, |f(x) − f(y)| < ρ(x, y) for all x, y ∈ S}

(Pollard 1984, or Dudley 1966).
Fix a positive T < ∞ and take C([0, T ],M1(S)) to be the space of all

continuous functions µ = (µt) from [0, T ] to M1(S) with the metric

m(µ1, µ2) = sup
0≤t≤T

‖µ1
t − µ2

t‖H ,

then the empirical processes µN
t with 0 ≤ t ≤ T are random elements of

the space C([0, T ],M1(S)). Indeed, take any sequence (tk) ⊂ [0, T ] with
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tk → t, then for any f in H we have

|〈µN
t , f〉 − 〈µN

tk
, f〉| =

∣∣∣∣∣∣
1

N

N∑

j=1

f(Y j,N
t ) − f(Y j,N

tk )

∣∣∣∣∣∣

≤ 1

N

N∑

j=1

|f(Y j,N
t ) − f(Y j,N

tk )|

≤ 1

N

N∑

j=1

ρ(Y j,N
t , Y j,N

tk )

≤ 1

N

N∑

j=1

|Xj,N
t −Xj,N

tk |

=
1

N

N∑

j=1

∣∣∣∣[W
j,N
t −W j,N

tk ] +
∫ t

tk

F (gN
s (Xj,N

s )) ds
∣∣∣∣→ 0

because the W j,N
t are continuous in t and ‖F‖ < ∞. This means that the

distributions L(µN) of the processes µN = (µN
t ) can be considered random

elements of the space M1(C([0, T ],M1(S))).

Our goal is to prove the following Law of Large Numbers type result.

Theorem 1. Under the conditions that

(i): bN is one-periodic, positive and infinitely-differentiable with
∫ 1

0
bN (x) dx = 1, (15)

and
∫ 1/2

−1/2
f(x)bN (x) dx→ f(0) (16)

for every continuous, bounded, and one-periodic function f on IR,
(ii): ‖bN‖ ≤ ANα for some 0 < α < 1/2 and some constant A <∞,
(iii): there is a β with 0 < β < (1 − 2α) such that

∑

λ

|b̃N(λ)|2(1 + |λ|β) <∞ (17)

where λ = 2kπ, with k ∈ Z, and b̃N(λ) =
∫ 1
0 e

iλxbN (x) dx is the
Fourier transform of bN ,

(iv): u0 is a density function on [0, 1) with ‖u0‖ <∞, and
(v): 〈µN

0 , f〉 = 1
N

∑N
j=1 f(Y j,N

0 ) = 1
N

∑N
j=1 f(Xj,N

0 ) → ∫ 1
0 f(x)u0(x) dx

for every f ∈ Cb(S).
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then there is a deterministic family of measures µ = (µt) on [0, 1) such that

µN → µ (18)

in probability as N → ∞, for every t in [0, T ], with µN = (µN
t ), µt is

absolutely continuous with respect to Lebesgue measure on S with density
function gt(x) = u(x, t) satisfying the Burgers equation

ut + uux =
1

2
uxx (19)

with periodic boundary conditions.

The proof has three parts. First, we establish the fact that the sequence
of probability laws L(µN) is relatively compact in M1(C([0, T ],M1(S)))
and therefore every subsequence of (µNk) of (µN) has a further subsequence
that converges in law to some µ inC([0, T ],M1(S)). Second, we prove that
any such limit process µ must satisfy a certain integral equation, and finally,
that this integral equation has a unique solution. We follow rather closely
the arguments of Oelschläger (1985) and apply his result (Theorem 5.1,
p.31) in the final step of the argument.

3. THE LAW OF LARGE NUMBERS.

Relative Compactness. The first step in the proof of Theorem 1 is to show
that the sequence of probability laws L(µN), N = 1, 2, . . . , is relatively
compact in M = M1(C([0, T ],M1(S))). Since S is a compact metric
space M1(S) is as well (Stroock 1983, p.122) and therefore for any ε > 0
there is a compact set Kε ⊂ M1(S) such that

inf
N
P
(
µN

t ∈ Kε, ∀t ∈ [0, T ]
)
≥ 1 − ε; (20)
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in particular, we may take Kε = M1(S) regardless of ε ≥ 0. Furthermore,
for 0 ≤ s ≤ t ≤ T and some constant C > 0 we have

‖µN
t − µN

s ‖4
H = sup

f∈H
(〈µN

t , f〉 − 〈µN
s , f〉)4

= sup
f∈H


 1

N

N∑

j=1

f(Y j,N
t ) − f(Y j,N

s )




4

≤

 1

N

N∑

j=1

ρ(Y j,N
t , Y j,N

s )




4

≤

 1

N

N∑

j=1

|Xj,N
t −Xj,N

s |



4

≤ 1

N

N∑

j=1

|Xj,N
t −Xj,N

s |4

=
1

N

N∑

j=1

∣∣∣∣ (W
j,N
t −W j,N

s ) +
∫ t

s
F
(
gN

u (Xj,N
u )

)
du

∣∣∣∣
4

≤ C


 1

N

N∑

j=1

∣∣∣W j,N
t −W j,N

s

∣∣∣
4
+

1

N

N∑

j=1

∣∣∣∣
∫ t

s
F
(
gN

u (Xj,N
u )

)
du

∣∣∣∣
4



and therefore

E‖µN
t − µN

s ‖4
H ≤ C(3(t− s)2 + ‖u0‖4(t− s)4) < 3C‖u0‖4(t− s)2

(21)

for t − s small. Together equations (20) and (21) imply that the sequence
of probability laws L(µN) is relatively compact (Gikhman and Skorokhod
1974, VI, 4) as desired.

Almost Sure Convergence. Now the relative compactness of the sequence
of laws L(µN) in M implies that there is an increasing subsequence (Nk) ⊂
(N) such that L(µNk) converges in M to some limit L(µ) which is the
distribution of some measure valued process µ = (µt). For ease of notation,
we assume at this point that (Nk) = (N). The Skorokhod representation
theorem implies now that after choosing the proper probability space, we
may define µN and µ so that

lim
N→∞

sup
t≤T

‖µN
t − µt‖H = 0 (22)

P -almost surely. This leaves us with the task of describing the possible
limit processes, µ.
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An Integral Equation. We know from Ito’s formula that for any f ∈
C2

b (S), µN satisfies

〈µN
t , f〉 − 〈µN

0 , f〉 −
∫ t

0
〈µN

s , F (gN
s (·))f ′

+
1

2
f

′′〉 ds

=
1

N

N∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s (23)

where the right hand side is a martingale. Because f ∈ C2
b (S), the weak

convergence of µN to µ gives us that

〈µN
t , f〉 → 〈µt, f〉 (24)

as N → ∞ for all 0 ≤ t ≤ T and we have

〈µN
0 , f〉 → 〈µ0, f〉 (25)

as N → ∞ by assumption. Furthermore, Doob’s inequality (Stroock 1983,
p.355) implies

E


sup

t≤T


 1

N

N∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s




2

 ≤ 4E





 1

N

N∑

j=1

∫ T

0
f

′

(Xj,N
s ) dW j,N

s




2



≤ 4

N
T‖f ′‖2

and therefore the right hand side of (23) vanishes as N → ∞. Clearly now,
the integral term third in equation (23) must converge as well and the goal
at present is to find out to what.

First, because f ∈ C2
b (S), the weak convergence of µN to µ gives us that

1

2

∫ t

0
〈µN

s , f
′′〉 ds→ 1

2

∫ t

0
〈µs, f

′′〉 ds (26)

as N → ∞. Now only the
∫ t
0〈µN

s , F (gN
s (·))f ′〉 ds-term remains and this

is indeed the most troublesome because of the interaction between the µN
s

and gN
s terms. To study this term we will need to work out the convergence

properties of the ‘density’ gN
s . We start by working on some L2 bounds.

The Convergence of the Density gN
s . Note that

〈gN
s (·), eiλ·〉 = 〈µN

s , e
iλ·〉 b̃N(λ),

where b̃N is the Fourier transform of the interaction kernel bN .
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Ito’s formula implies that for any λ ∈ (2kπ) with k ∈ Z

|〈µN
t , e

iλ·〉|2eλ2(t−τ) −
∫ t

0
((〈µN

s , e
−iλ·〉〈µN

s , F (gN
s (·))(iλ)eiλ· − λ2

2
eiλ·〉

+〈µN
s , e

iλ·〉〈µN
s , F (gN

s (·))(−iλ)e−iλ· − λ2

2
e−iλ·〉)eλ2(s−τ)

+|〈µN
s , e

iλ·〉|2λ2eλ2(s−τ) +
1

N
λ2eλ2(s−τ)) ds

= |〈µN
t , e

iλ·〉|2eλ2(t−τ) −
∫ t

0
((〈µN

s , e
−iλ·〉〈µN

s , F (gN
s (·))(iλ)eiλ·〉

+〈µN
s , e

iλ·〉〈µN
s , F (gN

s (·))(−iλ)e−iλ·〉)eλ2(s−τ)

+
λ2

N
eλ2(s−τ)) ds (27)

is a martingale.
Now take τ = t+ h and

kN
h (λ, t) = |〈µN

t , e
iλ·〉|2|b̃N(λ)|2e−λ2h

then the martingale property above gives

E[kN
h (λ, t)] = E[kN

t+h(λ, 0)] +
∫ t

0
E[〈µN

s , e
−iλ·〉〈µN

s , F (gN
s (·))(iλ)eiλ·〉

+〈µN
s , e

iλ·〉〈µN
s , F (gN

s (·))(−iλ)e−iλ·〉

+
λ2

N
]e−λ2(t+h−s)|b̃N (λ)|2 ds

≤ E[kN
t+h(λ, 0)]

+
∫ t

0
(E[2|〈µN

s , e
iλ·〉||〈µN

s , F (gN
s (·))eiλ·〉

·|λ| e−λ2(t+h−s)|b̃N (λ)|2]

+
λ2

N
e−λ2(t+h−s)|b̃N(λ)|2) ds

≤ E[kN
t+h(λ, 0)]

+
∫ t

0
(2‖u0‖E[|〈µN

s , e
iλ·〉|2|λ|e−λ2(t+h−s)|b̃N(λ)|2]

+
λ2

N
e−λ2(t+h−s)|b̃N(λ)|2) ds. (28)



SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS 43

Summing over λ ∈ (λk) gives
∑

λ

E[kN
h (λ, t)] ≤

∑

λ

E[kN
t+h(λ, 0)]

+2‖u0‖
∑

λ

∫ t

0
E
[
|〈µN

s , e
iλ·〉|2|λ|e−λ2(t+h−s)|b̃N(λ)|2

]
ds

+
∑

λ

∫ t

0

(
λ2

N
e−λ2(t+h−s)|b̃N (λ)|2

)
ds

= A
I
+ A

II
+ A

III
.

Now, of course,
∑

λ

kN
t+h(λ, 0) ≤

∑

λ

e−λ2(t+h) ≤ (t+ h)−1/2

and therefore
A

I
=
∑

λ

E[kN
t+h(λ, 0)] ≤ (t+ h)−1/2.

For A
III

, using hypothesis (ii) from Theorem 1, we have

A
III

=
1

N

∑

λ

|b̃N(λ)|2
∫ t

0
λ2e−λ2(t+h−s) ds =

1

N

∑

λ

|b̃N (λ)|2e−λ2h

≤ 1

N

∑

λ

|b̃N(λ)|2 =
1

N

∫ 1

0
(bN(x))2 dx

≤ 2N2α

N
C ≤ 2C

for some constant C > 0. Now

2‖u0‖
∫ t

0
E[|〈µN

s , e
iλ·〉|2|b̃N(λ)|2|λ|e−λ2(t+h−s)] ds

= 2‖u0‖
∫ t

0
E[|〈µN

s , e
iλ·〉|2|b̃N(λ)|2e−λ2(t+h−s)/2|λ|e−λ2(t+h−s)/2] ds

≤ 2‖u0‖C
∫ t

0
E[|〈µN

s , e
iλ·〉|2|b̃N (λ)|2e−λ2(t+h−s)/2] ds

= 2‖u0‖C
∫ t

0
E[kN

(t+h−s)/2(λ, s)] ds

≤ 2‖u0‖C
∫ t

0
e−λ2(t+h−s)/2 ds

≤ 4‖u0‖C
λ2

for some other constant C > 0 and therefore

A
II
≤ 4‖u0‖C

∑

λ6=0

λ−2 ≤ 4‖u0‖D



44 ANTHONY GAMST

for some constant D <∞. Hence
∑

λ

E[kN
h (λ, t)] =

∑

λ

E[|〈µN
t , e

iλ·〉|2|b̃N(λ)|2]e−λ2h

= A
I
+ A

II
+ A

III

≤ (t+ h)−1/2 + C(‖u0‖ + 1)

uniformly in h > 0 for some constant C <∞. Letting h go to zero gives
∑

λ

E|g̃N
t (λ)|2 =

∑

λ

E[kN
0 (λ, t)]

= lim
h→0

∑

λ

E[kN
h (λ, t)] ≤ t−1/2 + C(‖u0‖ + 1).

From the martingale property (27) we have

E[kN
0 (λ, t)] ≤ E[kN

t/2(λ, t/2)] + 2‖u0‖
∫ t

t/2
E[|〈µN

s , e
iλ·〉|2|b̃N (λ)|2]|λ|e−λ2(t−s) ds

+
λ2

N

∫ t

t/2
e−λ2(t−s)|b̃N(λ)|2 ds

and for β ∈ (0, 1 − 2α) we have

(1 + |λ|β)E[kN
0 (λ, t)] ≤ (1 + |λ|β)E[kN

t/2(λ, t/2)]

+2‖u0‖
∫ t

t/2
E[|〈µN

s , e
iλ·〉|2|b̃N(λ)|2]

· |λ|(1 + |λ|β)e−λ2(t−s) ds

+(1 + |λ|β)
λ2

N

∫ t

t/2
e−λ2(t−s)|b̃N (λ)|2 ds

≤ (1 + |λ|β)e−λ2t/2

+2‖u0‖C
∫ t

t/2
E[|〈µN

s , e
iλ·〉|2|b̃N(λ)|2]e−λ2(t−s)/2 ds

+(1 + |λ|β)λ
2

N

∫ t

t/2
e−λ2(t−s)|b̃N (λ)|2 ds

for some constant C <∞ and we know that
∑

λ

(1 + |λ|β)e−λ2t/2 <∞,

2‖u0‖C
∫ t

t/2

∑

λ

E[kN
(t−s)/2(λ, s)] ds ≤ 2‖u0‖C

∫ t

t/2

∑

λ

e−λ2(t−s)/2 ds <∞,

and, from hypothesis (iii) of Theorem 1,

1

N

∑

λ

(1 + |λ|β)|b̃N(λ)|2 <∞
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and therefore
∑

λ

(1 + |λ|β)E|g̃N
t (λ)|2 =

∑

λ

(1 + |λ|β)E[kN
0 (λ, t)] <∞.

(29)

Finally, from (29) it is easy to work out the convergence properties of gN .
Indeed,

lim
N,M→∞

E

[∫ T

0

∫ 1

0
|gN

t (x) − gN
t (x)|2 dx dt

]

= lim
N,M→∞

E

[∫ T

0

∑

λ

|g̃N
t (λ) − g̃M

t (λ)|2 dt
]

≤ lim
N,M→∞

E



∫ T

0

∑

|λ|≤K

|g̃N
t (λ) − g̃M

t (λ)|2 dt



+ lim
N,M→∞

2E



∫ T

0

∑

|λ|>K

(|g̃N
t (λ)|2 + |g̃M

t (λ)|2) dt



≤ lim
N,M→∞

4E



∫ T

0

∑

|λ|≤K

|〈µN
t − µM

t , e
iλ·〉|2 dt




+4(1 +Kβ)−1 sup
N
E

[∫ T

0

∑

λ

|g̃N
t (λ)|2(1 + |λ|β) dt

]

≤ C(1 +Kβ)−1T

for some constant C < ∞ and the right hand side of this last inequality
can be made smaller than any given ε > 0 by the choice of K. So, by
the completeness of L2, we have proved the existence of a positive random
function gt(x) such that

lim
N→∞

E

[∫ T

0

∫ 1

0
|gN

t (x) − gt(x)|2 dx dt
]

= 0. (30)

Of course, this means that for any f ∈ Cb(S) we have

∫ 1

0
f(x)gt(x) dx = lim

N→∞

∫ 1

0
f(x)gN

t (x) dx = lim
N→∞

〈µN
t ∗ bN , f〉

= lim
N→∞

〈µN
t , f ∗ bN〉 = 〈µt, f〉 =

∫ 1

0
f(x)µt(dx)

and therefore µt is absolutely continuous with respect to Lebesgue measure
on S with derivative gt.
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Conclusion. Finally, combining (23-26), and (30), implies

〈µt, f〉 − 〈µ0, f〉 =
∫ t

0
〈µs, F (gs(·))f

′

+
1

2
f

′′〉 ds (31)

and from Proposition 3.5 of Oelschläger (1985) we know that the integral
equation (31) has a unique solution µt absolutely continuous with respect
to Lebesgue measure on S with density gt. We note also that the solution
gt(x) = u(x, t) of the Burgers equation

ut + uux =
1

2
uxx

with periodic boundary conditions

u(x, t) = u(x+ 1, t),

for all real x, and all t > 0, and initial condition u0, satisfies the integral
equation

〈gt(·), f〉 − 〈u0(·), f〉 =
∫ t

0
〈gs(·),

1

2
gs(·)f

′

+
1

2
f

′′〉 ds
and from the Hopf-Cole solution (II.67) we see that

‖gt‖ ≤ ‖u0‖
and therefore gt(x) satisfies (31) as well. The uniqueness result for solutions
to the periodic boundary problem for the Burgers equation then completes
the proof of Theorem 1.
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OF OPERATORS SATISFYING AUTONOMOUS

DIFFERENTIAL EQUATIONS
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Abstract. We use an iteration method to approximate zeros of
operators satisfying autonomous differential equations. This it-
eration process has the advantages of the quadratic convergence
of Newton’s method and the simplicity of the modified Newton’s
method, as the inverse of the operator involved is calculated once
and for all. Our local and semilocal convergence results compare
favorably with earlier ones under the same computational cost.
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1. Introduction

In this study we are concerned with the problem of approximating a
locally unique solution x∗ of equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on an open convex
subset D of a Banach space X with values in a Banach space Y .

We use the Newton-like method:

(2) xn+1 = xn − F ′ (yn)
−1 F (xn) (n ≥ 0)

to generate a sequence approximating x∗.
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Here F ′ (x) ∈ L (X, Y ) denotes the Fréchet-derivative. We are inter-
ested in the case when:

(3) yn = λnxn + (1 − λn) zn (n ≥ 0)

where,

λn ∈ [0, 1] , (n ≥ 0)(4)

zn = x∗(5)

or

(6) zn = xn (n ≥ 0) ,

or other suitable choice [1]-[4].
We provide a local and a semilocal convergence analysis for method

(2) which compare favorably with earlier results [4], and under the
same computational cost.

2. Convergence for method (2) for zn given by (5) and
λn = 0 (n ≥ 0)

We can show the following local result:

Theorem 1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Assume:
there exists a solution x∗ of equation

F (x) = 0 such that F ′ (x∗)−1 ∈ L (Y,X)

and
∥∥F ′ (x∗)−1

∥∥ ≤ b;(7)

‖F ′ (x) − F ′ (x∗)‖ ≤ L0 ‖x− x∗‖ for all x ∈ D,(8)

and

(9) U (x∗, r0) =
{
x ∈ X

∣∣∣‖x− x∗‖ ≤ r0 = 2
bL0

}
⊆ D.

Then sequence {xn} (n ≥ 0) generated by Newton-like method (2) is
well defined remains in U (x∗, r0) for all n ≥ 0, and converges to x∗

provided that x0 ∈ U (x∗, r0).
Moreover the following error bounds hold for all n ≥ 0 :

(10) ‖xn − x∗‖ ≤ θ2n−1
0 ‖x0 − x∗‖ (n ≥ 1) ,

where

(11) θ0 = 1
2
bL0 ‖x0 − x∗‖ .
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Proof. By (2) and F (x∗) = 0 we get for all n ≥ 0 :
(12)

xn+1−x∗ = −F ′ (x∗)−1




1∫

0

(F ′ (x∗ + t (xn − x∗)) − F ′ (x∗)) (xn − x∗)


 dt

from which it follows

(13) ‖xn+1 − x∗‖ ≤ 1
2
bL0 ‖xn − x∗‖2

from which (10) follows.
By (9) and (11) θ0 ∈ [0, 1). hence it follows from (10) that xn ∈

U (x∗, r0) (n ≥ 0) and lim
n→∞

xn = x∗ (by using induction on the integer

n ≥ 0). �

Remark 1. Method (2) has the advantages of the quadratic conver-
gence of Newton’s method and the simplicity of the modified Newton’s
method, since the operator F ′ (x∗)−1 is computed only once. It turns
out that method (2) can be used for operators F which satisfy an au-
tonomous differential equation

(14) F ′ (x) = G (F (x)) ,

where G is a known continuous operator on Y . As F ′ (x∗) = G (0) can
be evaluated without knowing the value of x∗.

Moreover in order for us to compare Theorem 1 with earlier results,
consider the condition

(15) ‖F ′ (x) − F ′ (y)‖ ≤ L ‖x− y‖ for all x ∈ D

used in [4] instead of (8). The corresponding radius of convergence is
given by

(16) rR =
2

bL
.

since

(17) L0 ≤ L

holds in general we obtain

(18) rR ≤ r0.

Furthermore in case strict inequality holds in (17), so does in (18).
We showed in [1] that the ration L

L0
can be arbitrarily large. Hence we

managed to enlarge the radius of convergence for method (2) under the
same computational cost as in Theorem 1 in [4, p.113].

This observation is very important in computational mathematics
since a under choice of initial guesses x0 can be obtained.
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Below we give an example of a case where strict inequality holds in
(17) and (18).

Example 1. Let X = Y = R, D = U (0, 1) and define F on D by

(19) F (x) = ex − 1.

Note that (19) satisfies (14) for T (x) = x + 1. Using (7), (8), (9),
(15) and (16) we obtain

(20) b = 1, L0 = e− 1, L = e,

(21) r0 = 1.163953414

and

(22) rR = .735758882.

In order to keep the iterates inside D we can restrict r0 and choose

(23) r0 = 1.

In any case (17) and (18) holds as a strict inequalities.

We can show the following global result:

Theorem 2. Let F : X → Y be Fréchet-differentiable operator, and G
a continuous operator from Y into Y . Assume:

condition (14) holds;

G (0)−1 ∈ L (Y,X) so that (7) holds;

F (x) ≤ c for all x ∈ X;(24)

(25) ‖G (0) −G (z)‖ ≤ a0 ‖z‖ for all z ∈ Y

and

(26) h0 = α0bc < 1.

Then, sequence {xn} (n ≥ 0) generated by method (2) is well defined
and converges to a unique solution x∗ of equation F (x) = 0.

Moreover the following error bounds hold for all n ≥ 0 :

(27) ‖xn − x∗‖ ≤ hn
0

1 − h0

‖x1 − x0‖ (n ≥ 0) .

Proof. It follows from the contraction mapping principle [2] by using
(25), (26) instead of

(28) ‖G (v) −G (z)‖ ≤ a ‖v − z‖ for all v, z ∈ Y

and

(29) h = abc < 1
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respectively in the proof of Theorem 2 in [4, p.113]. �

Remark 2. If F ′ is L0 Lipschitz continuous in a ball centered at x∗,
then the convergence of method (2) will be quadratic as soon as

(30) bL0 ‖x0 − x∗‖ < 2

holds with x0 replaced by an iterate xn sufficiently close to x∗.

Remark 3. If (25) is replaced by the stronger (28), Theorem 2 reduces
to Theorem 2 in [4]. Otherwise our Theorem is weaker than Theorem
2 in [4] since

(31) a0 < a

holds in general.

We note that if (25) holds and

(32) ‖F (x) − F (x0)‖ ≤ γ0 ‖x− x0‖
then

(33) ‖F (x)‖ ≤ ‖F (x) − F (x0)‖+‖F (x0)‖ ≤ γ0 ‖x− x0‖+‖F (x0)‖ .
Let r = ‖x− x0‖, and define

(34) P (r) = a0b (‖F (x0)‖ + γ0r) .

If P (0) = a0b ‖F (x0)‖ < 1, then as in Theorem 3 in [4, p.114]
inequality (26) and the contraction mapping principle we obtain the
following semilocal result:

Theorem 3. If

(35) q = (1 − a0b ‖F (x0)‖)2 − 4ba0γ0

∥∥G (0)−1 F (x0)
∥∥ ≥ 0,

then a solution x∗ of equation

F (x) exists in U (x0, r1) ,

and is unique in U (x0, r2), where

(36) r1 =
1 − a0b ‖F (x0)‖ − √

q

2ba0γ0

and

(37) r2 =
1 − a0b ‖F (x0)‖

ba0γ0
.

Remark 4. Theorem 3 reduces to Theorem 3 in [4, p.114] if (25) and
(32) are replaced by the stronger (28) and

(38) ‖F (x) − F (y)‖ ≤ γ ‖x− y‖
respectively. Otherwise our Theorem is weaker than Theorem 3 in [4].
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matrices.
The purpose of the note is to present a general method for de-

termining the truth of symbolic matrix equations where 0 or more
such equations are given as true. The idea behind the method is to
write the equation to be proved in terms of independent variables
only, removing all the dependent variables, effectively reducing the
problem to the case of 0 equations given as true. It should then
be a simple matter to determine the truth of the equation to be
proved, as it must be true for all values of any variable in the
equation.
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• Rewrite the given equations, if necessary, to express dependent
variables in terms of only independent variables, for any de-
pendent variables which appear in the equation to prove. In
the example the dependent variables Aλ and Aµ are already ex-
pressed in terms of the independent variables λ, µ, and A. So
the given equations need not be rewritten.

• Substitute independent variables for dependent variables in the
equation to prove. Then we will have an equation that is totally
expressed in independent variables, i.e. we have transformed
the problem to the case of 0 equations given. In the example
equation (1) is now
(λ− µ)(λ− A)−1(µ− A)−1 = (µ− A)−1 − (λ− A)−1

It must prove true for any λ, µ, and A.
• Multiply and distribute as necessary to express the equation

to prove in normal form (i.e. no parentheses) as follows: if an
outer term has an exponent > 0 then multiply and distribute
the primitives. If the exponent is < 0 then multiply the equa-
tion by the positive exponent of the same term to remove the
negative exponent. For example A(B + C)2(A − C)−2 in an
equation would be reduced to normal form by first distributing
the (B + C)2 to (B2 + BC + CB + C2)(A− C)−2. Then mul-
tiply the equation from the right by (A − C)2 to remove the
negative exponent. Continue to multiply and distribute terms
as necessary to reduce the level (i.e. number of parentheses) of
the equation until the equation is in normal form.

• Cancel terms until the resulting equation is 0 = 0. If the re-
sulting equation differs from 0 = 0 then the equation to prove
is not true.

The Example. Equation (1) in the example problem would be reduced
as follows:

• (λ− µ)(λ− A)−1(µ− A)−1 = (µ− A)−1 − (λ− A)−1

• Multiply from right by (µ− A)(λ− A) to achieve
(λ− µ) = ((µ− A)−1 − (λ− A)−1)(µ− A)(λ− A)

• Distribute from right to achieve
(λ− µ) = (λ− A) − (λ− A)−1(µ− A)(λ− A)

• Multiply from left by (λ− A) to achieve
(λ− A)(λ− µ) = (λ− A)(λ− A) − (µ− A)(λ− A)
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• At this point the nested inverses have been removed and the
terms can simply be distributed to achieve
λ2−λµ−Aλ+Aµ = λ2−λA−Aλ+A2 − (µλ−µA−Aλ+A2)

• which reduces to normal form:
λ2 −λµ−Aλ+Aµ = λ2 − λA−Aλ+A2 − µλ+µA+Aλ−A2

• Finally cancel terms until the equation reduces to 0 = 0.

It seems curious that textbooks for the introductory course in linear
algebra do not include this simple but handy method.

References. 1. Michael O’Nan, Linear Algebra Volume 2A (1971),
Problem no. 39, page 57.
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Abstract. The analytic self map of the unit disk D, ϕ is said
to induce a composition operator Cϕ from the Banach space X to
the Banach Space Y if Cϕ(f) = f ◦ ϕ ∈ Y for all f ∈ X . For
z ∈ D and α > 0 the families of weighted Cauchy transforms Fα

are defined by f(z) =
∫
T

Kα
x (z)dµ(x) where µ(x) is complex Borel

measures, x belongs to the unit circle T and the kernel Kx(z) =

(1 − xz)
−1

. In this paper we will explore the relationship between
the compactness of the composition operator Cϕ acting on Fα and
the complex Borel measures µ(x).
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1. Background

Let T be the unit circle and M be the set of all complex–valued Borel
measures on T. For α > 0 and z ∈ D, we define the space of weighted
Cauchy transforms Fα to be the family of all functions f(z) such that

(1) f(z) =

∫

T

Kα
x (z)dµ(x)
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where the Cauchy kernel Kx(z) is given by

Kx(z) =
1

1 − xz

and where µ in (1) varies over all measures in M. The class Fα is a
Banach space with respect to the norm

(2) ‖f‖Fα
= inf ‖µ‖M

where the infimum is taken over all Borel measures µ satisfying (1). ‖µ‖
denotes the total variation norm of µ. The family F1 has been studied
extensively in the soviet literature. The generalizations for α > 0, were
defined by T. H. MacGregor [8]. The Banach spaces Fα have been well
studied in [5, 8, 3, 4]. Among the properties of Fα we list the following:

• Fα ⊂ Fβ whenever 0 < α < β.
• Fα is Möbius invariant.
• f ∈ Fα if and only if f ′ ∈ F1+α and ‖f ′‖F1+α

≤ α‖f‖Fα
.

• If g ∈ Fα+1 then f(z) =
∫ z

0
g(w)dw ∈ Fα and ‖f‖Fα

≤ 2
α
‖g‖F1+α

.

The space Fα may be identified with M/H1
0 the quotient of the Banach

space M of Borel measures by H1
0 the subspace of L1 consisting of

functions with mean value zero whose conjugate belongs the Hardy

space H1. Hence Fα is isometrically isomorphic to M/H1
0 . Furthermore,

M admits a decomposition M = L1 ⊕ Ms, where Ms is the space of
Borel measures which are singular with respect to Lebesgue measure,

and H1
0 ⊂ L1. According to the Lebesgue decomposition theorem any

µ ∈ M can be written as µ = µa+µs, where µa is absolutely continuous
with respect to the Lebesgue measure and µs is singular with respect to
the Lebesgue measure (µa ⊥ µs) . Furthermore the supports S(µa) and
S(µs) are disjoint. Since |x| = 1 in (1) , if we let x = eit then dµ(eit) =

gx(e
it)dt+ dµs(e

it) where gx(e
it) ∈ H1

0 . Consequently Fα is isomorphic

to L1/H1
0 ⊕ Ms. Hence, Fα can be written as Fα = Fαa ⊕ Fαs, where

Fαa is isomorphic to L1/H1
0 the closed subspace of M of absolutely

continuous measures, and Fαs is isomorphic to Ms the subspace of M
of singular measures. If f ∈ Fαa, then the singular part is nul and the
measure µ for which (1) holds is such that dµ(x) = dµ(eit) = gx(e

it)dt
where gx(e

it) ∈ L1 and dt is the Lebesgue measure on T , see [1]. Hence
the functions in Fαa may be written as,

f(z) =

∫ π

−π

Kα
x (z)gx(e

it)dt

Furthermore if gx(e
it) is nonnegative then

‖f‖Fα
= inf

M
‖µ‖ =

∥∥gx(e
it)
∥∥

L1



SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS 59

Remark: For simplicity, we will adopt the following notation through-
out the article. We will reserve µ for the Borel measures of M, and
since in (1) |x| = 1, we can write x = eit where t ∈ [−π, π). We
will reserve dt for the normalized Lebesgue of the unit circle T, and
dσ for the singular part of dµ. Hence instead of writing dµ(x) =
dµ(eit) = dµa(e

it) + dµs(e
it) = gx(e

it)dt+ dµs(e
it) we may simply write

dµ(x) = gxdt+ dσ(t).

2. Introduction

If X and Y are Banach spaces, and L is a linear operator from X
to Y, we say that L is bounded if there exists a positive constant A
such that ‖L(f)‖Y ≤ A ‖f‖X for all f in X. We denote by C(X, Y )
the set of all bounded linear operators from X to Y. If L ∈ C(X, Y ),
we say that L is a compact operator from X to Y if the image of every
bounded set of X is relatively compact (i.e. has compact closure) in
Y . Equivalently a linear operator L is a compact operator from X to
Y if and only if for every bounded sequence {fn} of X, {L(fn)} has a
convergent subsequence in Y . We will denote by K(X, Y ) the subset
of C(X, Y ) of compact linear operators from X into Y .
Let H(D) denote the set of all analytic functions on the unit disk D
and map D into D. If X and Y are Banach spaces of functions on the
unit disk D, we say that ϕ ∈ H(D) induces a bounded composition
operator Cϕ(f) = f(ϕ) from X to Y, if Cϕ ∈ C(X, Y ) or equivalently
Cϕ(X) ⊆ Y and there exists a positive constant A such that for all
f ∈ X and ‖Cϕ(f)‖Y ≤ A ‖f‖X . In case X = Y then we say ϕ induces
a composition operator Cϕ on X. If f ∈ X, then Cϕ(f) = f(ϕ) ∈
X. Similarly, we say that ϕ ∈ H(D) induces a compact composition
operator if Cϕ ∈ K(X, Y ).
A fundamental problem that has been studied concerning composition
operators is to relate function theoretic properties of ϕ to operator
theoretic properties of the restriction of Cϕ to various Banach spaces
of analytic functions. However since the spaces of Cauchy transforms
are defined in terms of Borel measures, it seems natural to investigate
the relation between the behavior of the composition operator and the
measure. The work in this article was motivated by the work of J.
Cima and A. Matheson in [1], who showed that Cϕ is compact on F1

if and only if Cϕ(F1) ⊂ F1a. In our work we will generalize this result
for α > 1.
Now if Cϕ ∈ C(Fα, Fα) then Cϕ(f) = (f ◦ ϕ) = f(ϕ) ∈ Fα for all
f ∈ Fα and there exists a positive constant A such that

‖Cϕ(f)‖Fα
= ‖f(ϕ)‖Fα

= ‖[µ]‖ ≤ A ‖f‖Fα
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Since Fα can be identified with the quotient space M/H1
0 we can view

Cϕ as a map:

Cϕ : M/H1
0 → M/H1

0

f 7→ f(ϕ)

The equivalence class of a complex measure µ will be written as:

[µ] = µ+H1
0 = {µ+ h : h ∈ H1

0}
and

‖[µ]‖ = inf
h

∥∥µ+ h
∥∥

The space C(Fα, Fα) has been studied by [6] where the author showed
that:

(1) If α ≥ 1, then Cϕ ∈ C(Fα, Fα) for any analytic self map ϕ of
the unit disc.

(2) Cϕ ∈ C(Fα, Fα) if and only if {Kα
x (ϕ) : |x| = 1} is a norm

bounded subset of Fα.
(3) If Cϕ ∈ C(Fα, Fα) then Cϕ ∈ C(Fβ, Fβ) for 0 < α < β.
(4) If Cϕ ∈ C(Fα, Fα) then the operator ϕ′Cϕ ∈ C(Fα+1, Fα+1).

In this article we will investigate necessary and sufficient conditions for
Cϕ to be compact on Fα for α ≥ 1 if and only if Cϕ(F1) ⊂ F1a. Since
Fα is Mobius invariant, then there is no loss of generality in assuming
that ϕ(0) = 0.

3. Compactness and absolutely continuous measures

In this section we will show that compactness of the composition op-
erator Cϕ on Fα is strongly tied with the absolute continuity of the
measure that supports it. First we state this Lemma due to [7].

Lemma 1. If 0 < α < β then Fα ⊂ Fβa and the inclusion map is a
compact operator of norm one.

Next we use the above result and the known fact that H∞ ⊂ F1a to
show that bounded function of Fα belong to Fαa.

Proposition 1. H∞ ∩ Fα ⊂ Fαa for α ≥ 1.

Proof. Let f ∈ H∞ ∩ Fα, then using the previous lemma we get that
for α ≥ 1 and any z ∈ D, f(z) ∈ H∞ ⊂ H1 ⊂ F1a ⊆ Fαa, then
f(z) ∈ Fαa for all α ≥ 1, which gives us the desired result. �
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Theorem 1. For a holomorphic self-map ϕ of the unit disc D and
α ≥ 1, if Cϕ is compact on Fα then (Cϕ ◦Kα

x )(z) ∈ Fαa and

(3) (Cϕ ◦Kα
x )(z) =

∫ π

−π

gx

(
eit
)
Kα

x (z)dt

where ‖gx‖L1 ≤ a < ∞, gx is nonnegative and L1 continuous function
of x .

Proof. Assume that Cϕ is compact and let {fj}∞j=1 be a sequence of
functions such that

fj(z) = Kα
x (ρjz) =

1

(1 − ρjxz)α

where 0 < ρj < 1 and limj→∞ ρj = 1. Then it is known from [4] that
fj(z) ∈ Fα for every j, and ‖fj(z)‖Fα

= 1. Furthermore there exist
µj ∈ M, such that ‖µj‖ = 1, dµj >> 0 and

fj(z) =
1

(1 − ρjxz)α

=

∫

T

Kα
x (z) dµj(x)

=

∫

T

1

(1 − xz)α
dµj(x).

Since Cϕ is compact on Fα then (Cϕ ◦ fj) ∈ Fα and ‖Cϕ(fj)‖ ≤
‖Cϕ‖ ‖fj‖Fα

= ‖Cϕ‖ for all j. Furthermore Cϕ ◦ fj ∈ H∞, thus us-
ing the previous result, we get that (Cϕ ◦ fj) ∈ H∞ ∩ Fα ⊂ Fαa for
every j. Therefore there exist L1 nonnegative function gj

x such that
dµj(x) = gj

xdt, ‖gj
x‖L1 ≤ ‖Cϕ‖ and

(fj ◦ ϕ)(z) = (Kα
x ◦ ϕ)(ρjz))

=

∫ π

−π

gj
x

(
eit
)
Kα

x (ρjz) dt.

Now because Fαa is closed and Cϕ is compact, the sequence {fj ◦ ϕ}∞j=1

has a convergent subsequence {fjk
◦ ϕ} that converges to (Kα

x ◦ ϕ) (z) ∈
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Fαa. Therefore,

lim
k→∞

(fjk
◦ ϕ) (z) = lim

k→∞
(Kα

x ◦ ϕ) (ρjk
z)

= lim
k→∞

∫ 2π

0

gjk
x

(
eit
)
Kα

x (ρjk
z) dt

=

∫ 2π

0

gx

(
eit
)
Kα

x (z) dt

= (Kα
x ◦ ϕ) (z) =

1

(1 − xϕ(z))α
∈ Fαa

where the function gx is an L1 nonnegative continuous function of x,
and ‖gx‖L1 ≤ ‖Cϕ‖. For the continuity of gx in L1 with respect to
x where ‖x‖ = 1, we take a sequence {xk} , such that ‖xk‖ = 1 and
xk → x. Now since Cϕ is compact then

lim
k→∞

(Kα ◦ ϕ) (xkz) = (Kα ◦ ϕ) (xz)

which concludes the proof. �

Corollary 1. Let gx(e
it) be as in the last theorem then the operator∫

gx (eit)h(x)dx = u(eit) ∈ H1
0 , for h(x) ∈ H1

0 is bounded on H1
0 .

Proof. For the operator to be well defined,
∫ h(x)dx

(1 − xϕ(z))α
= 0 for all

h(x) ∈ H1
0 . Hence,

∫
gx (eit) h(x)dx = u(eit) ∈ H1

0 . �

The following lemmas are needed to prove the converse of Theorem 1.

Lemma 2. Suppose gx (eit) is a nonnegative L1continuous function of
x and let {µn} be a sequence of nonnegative Borel measures that are
weak* convergent to µ. Define wn(t) =

∫
T
gx (eit) dµn (x) and w(t) =∫

T
gx (eit) dµ (x) , then ‖wn − w‖L1 −→ 0.

Proof. Let

gx (z) =

∫
Re

(1 + e−itz)

(1 − e−itz)
gx

(
eit
)
d(t) ,

wn(z) =

∫
gx (z) dµn (x) and

w(z) =

∫
gx (z) dµn (x)
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where|z| < 1. Notice that all functions are positive and harmonic in
D and that the radial limits of wn(z) and w(z) are wn(t) and w(t)
respectively. Then, for |z| ≤ ρ < 1,

|gx (z) − gy (z)| ≤ 1

1 − ρ

∥∥gx

(
eit
)
− gy

(
eit
)∥∥

L1

Then the continuity condition implies that gx (z) is uniformly contin-
uous in x for all |z| ≤ ρ. Hence, weak star convergence, implies that
wn(z) → w(z) uniformly on |z| ≤ ρ and consequently the conver-
gence is locally uniformly on D. In addition, we have ‖wn(ρeit)‖L1 →
‖w(ρeit)‖L1 . Hence we conclude that

∥∥wn(ρe
it) − w(ρeit)

∥∥
L1 −→ 0 as n→ ∞.

Now using Fatou’s Lemma we conclude that

∥∥wn(e
it) − w(eit)

∥∥
L1 −→ 0.

�

Lemma 3. Let gx (eit) be a nonnegative L1 continuous function of x
such that ‖gx‖L1 ≤ a < ∞ and gx(e

it) defines a bounded operator on

H1
0 . If f(z) =

∫
1

(1 − xz)α
dµ(x) , let L be the operator given by

L [f(z)] =

∫∫
gx (eit)

(1 − e−itz)α
dtdµ(x)

then L is compact operator on Fα, α ≥ 1.

Proof. First note that the condition that gx(e
it) defines a bounded op-

erator on H1
0 implies that the L operator is a well defined function on

Fα. Let {fn(z)} be a bounded sequence in Fα and let {µn} be the
corresponding norm bounded sequence of measures in M. Since every
norm bounded sequence of measures in M has a weak star conver-
gent subsequence, let {µn} be such subsequence that is convergent to
µ ∈ M. We want to show that {L(fn)} has a convergent subsequence
in Fα.
First, let us assume that dµn (x) >> 0 for all n, and let wn(t) =∫
gx (eit) dµn (x) and w(t) =

∫
gx (eit) dµ (x) ,then we know from the

previous lemma that wn(t), w(t) ∈ L1 for all n, and wn(t) → w(t) in
L1. Now since gx (eit) is a nonnegative continuous function in x and
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{µn} is weak star convergent to µ, then

L(fn(z)) =

∫∫
gx (eit) d(t)

(1 − e−itz)α
dµn (x) =

∫
wn(t)

(1 − e−itz)α
dt

L(f(z)) =

∫∫
gx (eit) d(t)

(1 − e−itz)α
dµ (x) =

∫
w(t)

(1 − e−itz)α
dt

Furthermore because wn(t) is nonnegative then

‖L(fn)‖Fα
= ‖wn‖L1

‖L(f)‖Fα
= ‖w‖L1

Now since‖wn − w‖L1 → 0 then ‖L(fn) − L(f)‖Fα
→ 0 which shows

that {L(fn)} has convergent subsequence in Fα and thus L is a compact
operator for the case where µ is a positive measure.
In the case where µ is complex measure we write dµn (x) = (dµ1

n (x)−
dµ2

n (x)) + i(dµ3
n (x) − dµ4

n (x)),
where each dµj

n (x) >> 0 and define wj
n(t) =

∫
gx (eit) dµj

n (x) then
wn(t) =

∫
gx (eit) dµn (x) = (w1

n(t) − w2
n(t)) + i (w3

n(t) − w4
n(t)) .

Using an argument similar to the one above we get that wj
n(t), wj(t) ∈

L1, and ‖wj
n − wj‖L1 −→ 0. Consequently, ‖wn − w‖L1 −→ 0, where

w(t) = (w1(t) − w2(t)) + i (w3(t) − w4(t)) =
∫
gx (eit) dµ (x) .

Hence, ‖L(fn) − L(f)‖Fα
≤ ‖wn − w‖L1 −→ 0.

Finally, we conclude that the operator is compact. �

The following is the converse of Theorem 1.

Theorem 2. For a holomorphic self-map ϕ of the unit disc D, if

1

(1 − xϕ(z))α
=

∫
gx (eit)

(1 − e−itz)α
dt

where gx ∈ L1, nonnegative, ‖gx‖L1 ≤ a < ∞ for all x ∈ T and gx

is an L1continuous function of x , then Cϕ is compact on Fα.

Proof. We want to show that Cϕ is compact on Fα. Let f(z) ∈ Fα then
there exists a measure µ in M such that for every z in D

f(z) =

∫
1

(1 − xz)α
dµ(x)

Using the assumption of the theorem we get that

(f ◦ ϕ)(z) =

∫
1

(1 − xϕ(z))α
dµn (x) =

∫∫
gx (eit)

(1 − e−itz)α
dtdµn (x)

which by the previous lemma was shown to be compact on Fα. �

Now we give some examples:
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Corollary 2. Let ϕ ∈ H(D), with ‖ϕ‖∞ < 1. Then Cϕ is compact on
Fα, α ≥ 1.

Proof. (Cϕ ◦Kα
x )(z) =

1

(1 − xϕ(z))α
∈ H∞ ∩ Fα ⊂ Fαa and is subordi-

nate to
1

(1 − z)α
, hence

(Cϕ ◦Kα
x )(z) =

∫
Kα

x (z)gx

(
eit
)
dt

with gx (eit) ≥ 0 and since 1 = (Cϕ ◦Kα
x )(0) =

∫
gx (eit) dt we get that

‖gx (eit)‖1 = 1. �

Remark 1. In fact one can show that Cϕ, as in the above corollary, is
compact from Fα, α ≥ 1 into F1. In other words a contraction.

Corollary 3. If Cϕ is compact on Fα, α ≥ 1 and lim
r→1

∣∣ϕ(reiθ)
∣∣ = 1

then

∣∣∣∣
1

ϕ′(eiθ)

∣∣∣∣ = 0.

Proof. If Cϕ is compact then

(Cϕ ◦Kα
x )(z) =

∫
Kα

x (z)gx

(
eit
)
dt

Hence, if z = eiθ and ϕ(eiθ) = x then

lim
r→1

(eiθ − reiθ)α

(1 − xϕ(reiθ))α
= 0.

�

Corollary 4. If Cϕ ∈ K(Fα, Fα) for α ≥ 1, then Cϕ is contraction.

4. Miscellaneous Results

We first start by giving another characterization of compactness on Fα.

Lemma 4. Let ϕ ∈ C(Fα, Fα), α > 0 then ϕ ∈ K(Fα, Fα) if and only if
for any bounded sequence (fn) in Fα with fn → 0 uniformly on compact
subsets of D as n→ ∞, ‖Cϕ(fn)‖Fα

→ 0 as n→ ∞.

Proof. Suppose Cϕ ∈ K(Fα, Fα) and let (fn) be a bounded sequence
(fn) in Fα with lim

n→∞
fn → 0 uniformly on compact subsets of D. If

the conclusion is false then there exists an ε > 0 and a subsequence
n1 < n2 < n3 < · · · such that∥∥Cϕ(fnj

)
∥∥

Fα
≥ ε, for all j = 1, 2, 3, . . .
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Since (fn) is bounded and Cϕ is compact, one can find a another sub-
sequence nj1 < nj2 < nj3 < · · · and f in Fα such that

lim
k→∞

∥∥∥Cϕ(fnjk
) − f

∥∥∥
Fα

= 0

Since point functional evaluation are continuous in Fα then for any
z ∈ D there exist A > 0 such that

∣∣∣
(
Cϕ(fnjk

) − f
)

(z)
∣∣∣ ≤ A

∥∥∥Cϕ(fnjk
) − f

∥∥∥
Fα

→ 0 as k → ∞

Hence

lim
k→∞

[
Cϕ(fnjk

) − f
]
→ 0

uniformly on compact subsets of D. Moreover since fnjk
→ 0 uniformly

on compact subsets of D, then f = 0 i.e. Cϕ(fnjk
) → 0 on compact

subsets of Fα. Hence

lim
k→∞

∥∥∥Cϕ(fnjk
)
∥∥∥

Fα

= 0

which contradicts our assumption. Thus we must have

lim
n→∞

‖Cϕ(fn)‖Fα
= 0.

Conversely, let (fn) be a bounded sequence in the closed unit ball of
Fα. We want to show that Cϕ(fn) has a norm convergent subsequence.
The closed unit ball of Fα is compact subset of Fα in the topology
of uniform convergence on compact subsets of D. Therefore there is a
subsequence (fnk

) such that

fnk
→ f

uniformly on compact subsets of D. Hence by hypothesis

‖Cϕ(fnk
) − Cϕ(f)‖Fα

→ 0 as k → ∞
which completes the proof. �

Proposition 2. If Cϕ ∈ C(Fα, Fα) then Cϕ ∈ K(Fα, Fβ) for all β >
α > 0.

Proof. Let (fn) be a bounded sequence in the closed unit ball of Fα.
Then (fn◦ϕ) is bounded in Fα and since the inclusion map i : Fα → Fβa

is compact, (fn ◦ ϕ) has a convergent subsequence in Fβ. �

Proposition 3. Cϕ(f) = (f ◦ ϕ) is compact on Fα if and only if the
operator ϕ′Cϕ(g) = ϕ′(g ◦ ϕ) is compact on Fα+1.
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Proof. Suppose that Cϕ(f) = (f ◦ ϕ) is compact on Fα. It is known
from [6] that ϕ′Cϕ(g) = ϕ′(g ◦ ϕ) is bounded on Fα+1. Let (gn) be a
bounded sequence in Fα+1 with gn → 0 uniformly on compact subsets
of D as n → ∞. We want to show that lim

n→∞
‖ϕ′(gn ◦ ϕ)‖Fα+1

= 0 .

Let (fn) be the sequence defined by fn(z) =
∫ z

0
gn(w)dw. Then fn ∈

Fα and ‖fn‖Fα
≤ 2

α
‖gn‖Fα+1

, thus (fn) is a bounded sequence in Fα.
Furthermore, using the Lebesgue dominated convergence theorem we
get that fn → 0 uniformly on compact subsets of D. Thus

‖ϕ′(gn ◦ ϕ)‖Fα+1
= ‖ϕ′(f ′

n ◦ ϕ)‖Fα+1

= ‖(fn ◦ ϕ)′‖Fα+1

≤ α ‖(fn ◦ ϕ)‖Fα
→ 0 as n→ ∞

which shows that ϕ′Cϕ(g) = ϕ′(g ◦ ϕ) is compact on Fα+1.
Conversely, assume that ϕ′Cϕ(g) = ϕ′(g ◦ϕ) is compact on Fα+1. Then
in particular ϕ′Cϕ(f ′) = ϕ′(f ′ ◦ϕ) = (f ◦ϕ)′ is a compact for every f ∈
Fα. Now since ‖(f ◦ ϕ)‖Fα

≤ 2
α
‖(f ◦ ϕ)′‖Fα+1

. Let (fn) be a bounded
sequence in Fα with fn → 0 uniformly on compact subsets of D as n→
∞. We want to show that lim

n→∞
‖(fn ◦ ϕ)‖Fα

= 0. Since any bounded

sequence of Fα is also a bounded sequence of Fα+1, then ‖(fn ◦ ϕ)‖Fα
≤

2
α
‖(fn ◦ ϕ)′‖Fα+1

→ 0 as n→ ∞ and the proof is complete. �
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