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ENRICHED CATEGORIES AND COHOMOLOGY

To Margery, who typed the original preprint in Milan

ROSS STREET

Author Commentary

From the outset, the theories of ordinary categories and of additive categories were de-
veloped in parallel. Indeed additive category theory was dominant in the early days. By
additivity for a category I mean that each set of morphisms between two objects (each
“hom”) is equipped with the structure of abelian group and composition on either side,
with any morphism, distributes over addition: that is to say, the category is enriched in
the monoidal category of abelian groups. “Enrichment” in this context is happening to
the homs of the category. This enrichment in abelian groups is rather atypical since, for a
category with finite products or finite coproducts, it is a property of the category rather
than a structure.

Linton, in [14], began developing the theory of categories enriched in monoidal cate-
gories of sets with structure. Independently of each other, Eilenberg and Kelly recognized
the need for studying categories enriched in the monoidal category of chain complexes of
abelian groups: differential graded categories (or DG-categories). This led to the collab-
oration [6] which began the theory of categories enriched in a general monoidal category,
called the base.

Soon after, in [1], Bénabou defined bicategories and morphisms between them. He
observed that a bicategory with one object is the same as a monoidal category. He noted
that a morphism of bicategories from the category 1 to Cat is what had been called (after
[7]) a category together with a triple thereon; Bénabou called this a monad. For any set
X he defined the term polyad in a bicategory W to mean a morphism from the chaotic
category on X to W . This is important here since such a polyad is precisely a category
A enriched in the bicategory W where the set of objects of A is X.

Categories enriched in V are closely related to categories on which a monoidal category
V acts (lately called “actegories” [15]) and the latter subject was pursued by Bénabou (in
lectures I attended at Tulane University in 1969-70).

Received by the editors 2005-11-16.
Transmitted by G. Max Kelly, R.F.C. Walters and R.J. Wood. Reprint published on 2005-12-31.
2000 Mathematics Subject Classification: 18D20, 18D30.
Originally published as: Enriched categories and cohomology, Quaestiones Mathematicae, 6 (1983),

265-283, used by permission. Paper read at the Symposium on Categorical Algebra and Topology,
University of Cape Town, 29 June – 3 July 1981.

1



2 ROSS STREET

The theory of categories enriched in a complete, cocomplete, symmetric closed monoidal
category was developed over the next decade in the pioneering works: [8], [5], [12], [13],
[2]. In particular, the last two works discussed a concept that goes under various names:
profunctor, bimodule, distributor, or (two-sided) module. In terms of these, Lawvere
defined cauchy completeness of an enriched category generalizing the classical notion for
metric spaces.

Then came a major advance which meant that categories enriched in a bicategory
needed serious consideration. Walters [17] showed that sheaves were such categories. The
bicategories appropriate to capture sheaves on a Grothendieck site had hom-categories
that were ordered sets.

This is the point at which the present paper was written. The intention was to provide
the foundations of the theory of categories enriched in a bicategory whose hom-categories
were complete and cocomplete, and which admitted right liftings and right extensions
(that is, which was “biclosed” in the sense of Lawvere [12]). The new aspects of the
present work included:

• no assumption on symmetry of the base;

• no assumption that the hom-categories of the base bicategory be ordered; and,

• the application to the theory of torsors and cohomology.

There have been many developments of enriched category since the present paper. In
Milan in 1981, I asked when two bicategories can have essentially the same categories
enriched over them: an answer appears in [16]. The third paper [3] from this period
constructs colimits of enriched categories (extending [18]) and proves a precise result
showing that categories fibred over a base are enriched over a bicategory.

Meanwhile, Kelly was developing the theory of categories enriched over a symmetric
monoidal category; for example, the paper [9] extends the theory of locally presentable
categories. Of course, then came Kelly’s book [10] which still remains the primary ref-
erence when the base is a symmetric monoidal category. The book constructs colimit
completions with respect to prescribed weights. Modules only appear implicitly.

A substantial amount of beautiful enriched category theory, with associated applica-
tion, is surely still to be uncovered. Enrichment in bicategories on two sides (see [11])
provides one new direction, allowing the possibility of composition of enrichments. For
applications, a growing source is homotopy theory, where categories enriched in topolog-
ical spaces and in simplicial sets have been studied for decades; for example, see [4] and
the references therein.

However, the subject of this paper may eventually be better understood as occupying
a small yet significant corner of higher-dimensional category theory.

I am indebted to Elango Panchadcharam for taking charge of TeXing this paper and
to Craig Pastro and Steve Lack for contributions to that process.
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1. Introduction

Giraud [Gir] uses the notion of stack (=champ in French) in the construction of non-
abelian cohomology. A stack is a certain kind of fibration over a topos E : a descent
condition is to be satisfied. The viewpoint that a fibration over E is an E -enriched cate-
gory of models in E of some theory has been further developed by Lawvere [Law], Bén-
abou [Bé2]; a slightly different viewpoint is taken by Penon [Pen], Paré-Schumacher [PS];
and a more general setting provided in Street-Walters [SW], Street [St1] (see Street [St2]).
Basically, the category of U -indexed families of models of the theory in E becomes the
fibre of the fibration over the object U of E . This fibre is a category with homs enriched
in the cartesian closed category E /U in the sense of Eilenberg-Kelly [EK]. It is important
to consider the fibration itself and not merely the fibre over the terminal object so that
it appears that the theory of hom-enriched categories is not applicable.

In fact, a variant of the Eilenberg-Kelly theory does apply. It was pointed out by
Bénabou [Bé1] that a monoidal category V is a bicategory with one object and that
it is possible to define categories enriched in a bicategory (he called them “polyads”).
Little work seems to have been done on this concept. Betti [Bt1] discovered examples in
automata theory. Walters [Wal] discovered that sheaves on a site are precisely Cauchy-
complete, symmetric categories enriched in a relations-like bicategory determined by the
site. This has activated work on the subject by Betti [Bt2], Betti-Carboni [BC]; however,
their interest has been predominantly in bicategories whose hom-categories are posets.

To be relevant to cohomology, enriched category theory must be developed over a
base bicategory which does not necessarily have posetal homs. Aspects of this theory are
presented here with an indication of its relevance to cohomology.

2. Categories enriched over a bicategory

Let W denote a bicategory in the sense of Bénabou [Bé1]. Recall that a diagram

U
T

����
��

��
�

R

���
��

��
��

�

V
S

�� W

ε ��

is said to exhibit T as a right lifting of R through S when each 2-cell θ : ST ′ �� R factors
as ε ◦ Sθ̃ for a unique 2-cell θ̃ : T ′ �� T . We write S � R for a particular choice of right
lifting of R through S.

We say T : U �� V is right adjoint to S : V �� T with counit ε : ST �� 1U when
ε̃ : T ∼= S � 1U and ε̃S : TS ∼= S � S. An arrow S in W which has a right adjoint T is
called a map in W . Maps will be denoted by lower case letters such as f : V �� U ; its
right adjoint will be denoted f ∗ : U �� V ; and the counit will be denoted by εf .

A W -category A consists of the following data:

• for each object U of W , a set AU of objects over U ;
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• for objects A,B over U, V , respectively, an arrow A (B,A) : U �� V in W ;

• for objects A,B,C over U, V,W , respectively, 2-cells

U

1U

��

1U

�� Uη
�� and

V
A (C,B)

����������

U

A (B,A)
		��������

A (C,A)
�� W

µ
��

in W ;

satisfying the obvious three axioms of left and right identities and associativity.
If A is an object of A over U it is convenient to write eA = U . In fact, the assignment

A � ��eA extends to a morphism of bicategories (= lax functor) from the chaotic category
on the set of objects of A to W (Bénabou’s polyad).

A W -category A with precisely one object A amounts to a monad in W made up of
the object eA of W and endo-arrow A (A,A) : eA �� eA. (Actually a W -category is
precisely a monad in an appropriate bicategory, but this point of view will not be needed
here.) Each object U of W will be identified with the W -category which amounts to the
identity monad on U .

2.1. Example. Suppose E is a finitely complete category for which each of the comma
categories E /U is cartesian closed (we call such a category internally complete). Let W =
SpnE be the bicategory of spans in E : the objects are those of E , the arrows S : U �� V
are spans from U to V so that W (U, V ) is essentially E /U × V , and composition is given
by pullback. Any two arrows in W with a common target admit a right lifting of one
through the other.

Let F be a fibration over E localement petite in the sense of Bénabou [Bé2]. We can
define a W -category X as follows. The objects of X over U are objects of the fibre of
F over U . If X,Y are objects over U, V then X (Y,X) : U �� V is the (unique up to
isomorphism) span with the property that arrows of spans

S
v



���������
u

�����������

��
V U

X (Y,X)

�������
��							

are in natural bijection with arrows uX �� vY in the fibre of F over S.

A W -functor F : A �� C consists of the following data:

• a function which assigns to each object A of A over U , an object FA of C over U ;

• for objects A,B of A over U, V , a 2-cell

FAB : A (B,A) �� C (FB,FA)

in W ;
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satisfying the obvious conditions on preservation of η, µ.
For any object U of W , a W -functor U �� X precisely amounts to an object of X

over U , and we freely use this identification.
Notice that, for each object U of W , composition in W determines a tensor product

on W (U,U) yielding a monoidal category. If A is a W -category, the objects of A over
U determine a W (U,U)-category AU . There is an underlying category for AU : an arrow
f : A �� B in AU is a 2-cell 1U

�� A (A,B) in W . For any object C of A , we can
define 2-cells:

• A (C, f) : A (C,A) �� A (C,B)

• A (f, C) : A (B,C) �� A (A,C)

to be the composites:

• A (C,A)
A (C,A)f �� A (C,A)A (A,B)

µ �� A (C,B)

• A (B,C)
fA (B,C) �� A (A,B)A (B,C)

µ �� A (A,C) .

Suppose F,G : A �� C are W -functors. A W -natural transformation θ : F ��G
assigns to each object A of A over U , an arrow θA : FA �� GA in the underlying
category of AU , such that the following diagram commutes.

A (B,A) F ��

G
��

C (FB,FA)

C (FB,θA)

��
C (GB,GA)

C (θB ,GA)
�� C (FB,GA)

There is a 2-category W -Cat of W -categories, W -functors, and W -natural trans-
formations. Compositions are defined precisely as for the case where W is a monoidal
category.

3. Modules

Henceforth assume that W and W op both admit all right liftings. Then composition in
W preserves all colimits which exist in the hom-categories.

Suppose A ,C are W -categories. A W -module Φ : A �� C assigns:

• to each pair A,C of objects of A ,C over U, V , respectively, an arrow Φ(C,A) :
U �� V in W ;

• to objects A,A′ of A and C of C , a 2-cell ρ : Φ(C,A′)A (A′, A) �� Φ(C,A);

• to objects A of A and C,C ′ of C , a 2-cell λ : C (C ′, C)Φ(C,A) �� Φ(C ′, A);
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satisfying the five axioms expressing compatibility of ρ with η, µ in A , of λ with η, µ in
C , and of ρ, λ with each other.

Each pair of W -functors J : A �� X , K : C �� X determine a W -module from
A to C , which we denote by X (K, J), as follows:

• X (K, J)(C,A) = X (KC, JA);

• ρ : X (KC, JA′)A (A′, A) X (KC, JA′)X (JA′, JA)
X (KC,JA′)JAA′�� X (KC, JA)

µ �� ;

• λ : C (C ′, C)X (KC, JA) X (KC,KC)X (KC, JA)
KCC′X (KC,JA)�� X (KC ′, JA)

µ �� ;

In particular, a W -functor F : A �� C determines W -modules F∗ = C (1C , F ) : A ��C
and F ∗ = C (F, 1C ) : C �� A .

For W -modules Φ, Ψ : A �� C , a 2-cell θ : Φ �� Ψ is a family of 2-cells θAC :
Φ(C,A) �� Ψ(C,A) in W compatible with the left and right actions λ, ρ.

For W -functors F,G : A �� C , there are natural bijections between 2-cells F∗ ��G∗ ,
2-cells G∗ �� F ∗, and W -natural transformations F �� G.

Define the composite ΨΦ : A �� X of W -modules Φ : A �� C , Ψ : C �� X as
follows:

(ΨΦ)(X,A) is the colimit in W (eA, eX) of the diagram

Ψ(X,C)Φ(C,A) Ψ(X,C ′)C (C ′, C)Φ(C,A)
ρΦ(C,A)�� Ψ(X,C′)λ �� Ψ(X,C ′)Φ(C ′, A)

in which C,C ′ vary over all the objects of C ;

• the ρ for ΨΦ is induced by the ρ for Φ;

• the λ for ΨΦ is induced by the λ for Ψ.

Of course, the colimit involved in this definition may not exist. There are special circum-
stances where it does without any cocompleteness assumptions on the hom-categories of
W : for example, we always have ΦG∗ and H∗Ψ for W -functors G,H. By restricting to
small enough W -categories, we obtain a bicategory W -Mod of W -categories, W -modules,
and 2-cells between them.

It is thus possible to speak of adjoint W -modules. In fact, even without the existence
of the colimits needed for composition, it is possible to give meaning to Φ � Ψ but this
leads us into the world of the “pro-bicategories” of Day [Day] and this is too far afield. It
is worth remarking however that, for each W -functor F : A �� C , we do have F∗ � F ∗

where the unit consists of the family of 2-cells FAB.
For a W -category A , we shall describe a W -category PA which classifies W -modules

in the following sense:

W -Cat(C ,PA ) ∼= W -Mod(C ,A ).
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Taking C to be an object U of W , we see that the objects of PA over U must be W -
modules from U to A . The data for such a W -module Φ can be expressed in a diagram:

U
ΦA

��











 ΦA′

���
��

��
��

�

eA
A (A′,A)

�� eA′
λ ��

If Φ, Ψ are objects of PA over U, V , respectively, then (PA )(Ψ, Φ) is defined to be the
limit in W (U, V ) of the following diagram as A,A′ run over all objects of A .

ΨA � ΦA

1�λ̃
��

ΨA′ � ΦA′ ˜̃µ �� (A (A′, A) � ΨA′) � (A (A′, A) � ΦA′) λ̃�1 �� ΨA � (A (A′, A) � ΦA′)

Again it may happen that this limit does not exist. Sometimes it does exist free of charge:
for example,

(PA )(A∗, Φ) ∼= ΦA,

by which we mean that the right-hand side admits a limiting cone for the defining diagram
of the left-hand side.

Suppose A is a W -category with one object A, so that we have a monad M = A (A,A)
on W = eA in W . Then (PA )U is precisely the W (U,U)-category of M -algebras:

U
T ��

T ���
��

��
��

� W

M
��

W

τ
�� 







for the monad W (U,M) on the W (U,U)-category W (U,W ). In this case the limit required
in W (U,U) is a mere equalizer.

The identity W -module of A corresponds to the Yoneda embedding YA : A ��PA
given by:

YA A = A∗′ YA AA′ : A (A′, A) ∼= (PA )(A′
∗, A∗).

There is also a W -category P†A which classifies W -modules in the following sense:

W -Cat(C ,P†A ) � W -Mod(A ,C )op,

provided that the necessary limits exist in the hom-categories of W ; the construction is
similar to that of PA . Notice:

W -Catcoop(P†A ,C ) � W -Cat(A ,PC ).



10 ROSS STREET

4. Cocompleteness

Henceforth the terms functor, module, natural transformation, will be used in place of
the terms with the prefix “W -” when they apply to W -categories.

A module Φ : A �� C is said to converge to a functor F : A �� C when Φ ∼= F∗.
Since the homomorphism W -Cat �� W -Mod which takes F to F∗ is fully faithful on
hom-categories, such an F is unique up to isomorphism if it exists. A module Φ is called
cauchy when it has a right adjoint module Φ∗. Convergent modules are cauchy. Call C
cauchy complete when each cauchy module into C is convergent.

The cauchy completion QC of a W -category C is described as follows. The objects
over U are cauchy modules Φ : U �� C . The homs are given by:

QC (Ψ, Φ) = Ψ∗Φ.

The Yoneda embedding YC : C ��PC factors as the composite of two fully faithful
functors:

C ��QC , C �→ C∗ ; QC ��PC , Φ �→ Φ.

A module Φ : K �� C is cauchy if and only if the corresponding functor K ��PC
factors through QC ��PC . Furthermore, QC is cauchy complete with the property
that composition with C ��QC determines an equivalence of categories:

W -Cat(QC ,X ) � W -Cat(C ,X )

for all cauchy complete categories X . It follows that the inclusion QC ��QQC is an
equivalence.

If U, V are objects of W , a module from V to U precisely amounts to an arrow
S : V �� U in W ; the module is cauchy if and only if the arrow is a map.

Suppose Φ : K �� A is a module. A Φ-indexed colimit for a functor F : A �� X
is a functor, denoted by colim(Φ, F ) : K �� X , together with a 2-cell

λ : Φ �� X (F, colim(Φ, F ))

which induces an isomorphism

X (colim(Φ, F ), X) ∼= (PA )(Φ,X (F,X))

of modules from eX to K for all objects X of X . If the module F∗Φ converges then it
converges to colim(Φ, F ) and the colimit is called absolute. If Φ is cauchy then colim(Φ, F )
is absolute whenever it exists (since under those circumstances colim(Φ, F )∗ ∼= F∗Φ is
equivalent to colim(Φ, F )∗ ∼= Φ∗F ∗ which is the defining property of colim(Φ, F )).

It follows that there is an isomorphism:

colim(1A , F ) ∼= F

for all functors F : A �� X , where 1A denotes the identity module of A .
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The colimits indexed by modules Ψ : U �� A with domain in W are of special
importance. Such modules are objects of PA ; and colim(Ψ, F ) is an object of X over
U . The reason for this importance is that, provided X admits sufficient colimits of this
special kind, one can construct the more general ones using the formula:

colim(Φ, F )K ∼= colim(ΦK∗, F ),

where Φ : K �� A is a module, F : A �� X is a functor and K is an object of K .
A left (Kan) extension K : B �� X of a functor F : A ��X along a functor

J : A �� B can be calculated via the formula:

K ∼= colim(B(J, 1A ), F ),

when this colimit exists. It is possible for K to exist and for the colimit not to exist;
however, such extensions seem to be of little importance. A left extension of F along J
is called pointwise when the B(J, 1A )-indexed colimit of F exists.

Colimits in PC and P†C are obtained as follows.
Suppose Φ : K �� A is a module. The Φ-indexed colimit of F : A ��PC is

the functor colim(Φ, F ) : K ��PC corresponding to module ΨΦ : K �� C where
Ψ : A �� C is the module corresponding to F . The Φ-indexed colimit of G : A ��P†C
is the functor colim(Φ, G) : K ��P†C corresponding to the module (PA )(Φ, Γ) :
C �� K where Γ : C �� A is the module corresponding to G.

A functor F : X �� Y is called cocontinuous when it preserves all indexed colimits
which exist in X . Each functor with a right adjoint is cocontinuous. Write Cocts(X ,Y )
for the full subcategory of W -Cat(X ,Y ) consisting of the cocontinuous functors.

Suppose X admits all colimits indexed by objects of PA . Then each cocontinuous
functor PA �� X has a right adjoint and restriction along the Yoneda embedding
provides an equivalence of categories:

Cocts(PA ,X ) � W -Cat(A ,X );

the inverse equivalence takes F to colim(−, F ).
If X is cauchy complete, and Φ is cauchy, then colim(Φ, F ) exists.
A W -category X is cauchy complete if and only if it admits all colimits indexed by

cauchy modules. Thus, if W has suitably complete and cocomplete hom-categories, both
PA and P†A are cauchy complete. We can use this to prove that C ��QC induces
an equivalence:

PQC � PC ,

as the following equivalences show:

W -Cat(A ,PC ) � W -Cat(C ,P†A )op

� W -Cat(QC ,P†A )op

� W -Cat(A ,PQC ).
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It can also be seen directly that C ��QC induces an equivalence:

W -Mod(A ,QC ) � W -Mod(A ,C )

provided the composites A �� C ��QC exist.

5. Torsors and Stacks

Henceforth suppose that a universe of small sets is given and suppose that the hom-
categories W (U, V ) have all small limits and small colimits.

A W -category A will be called small when there exists a small set of objects of A
such that the full sub-W -category K of A determined by these objects has the property
that the inclusion K �� A induces an equivalence on cauchy completions.

Using the results of the last two sections we see that, for all small A , both PA and
P†A exist, and modules C �� A , A �� X can be composed.

Each functor F : A �� X determines a W -category X [F ] whose objects are those
of A and whose homs are given by:

X [F ](A′, A) = X (FA′, FA).

Then F factors as the composite of a functor NF : A �� X [F ] bijective on objects, and
a fully faithful functor JF : X [F ] �� X . If F is fully faithful then NF is an equivalence;
and, in this case, QF : QA ��QX is also fully faithful. If A is small then X [F ] is
small.

Suppose now that we are given certain arrows in W called covers satisfying the fol-
lowing conditions:

C1. each cover is a map and identities cover;

C2. for each cover r : V �� U , the diagram

rr∗rr∗
rr∗ε ��

εrr∗
�� rr∗

ε �� 1U

is a coequalizer in W (U,U);

C3. if r : V �� U is a cover and f : W �� U is a map, then there exist a cover
r′ : V ′ �� W and a map f ′ : V ′ �� V such that rf ′ ∼= fr′;

C4. if sr ∼= t for maps r, s, t with r a cover then s is a cover precisely when t is.

It follows from C2. that, for all covers r : V �� U and all W -categories X , the
functor

W -Mod(r,X ) : W -Mod(U,X ) �� W -Mod(V,X )
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reflects isomorphisms.
Suppose F : A �� X is a functor. An object X of X over U is said to be locally

isomorphic to a value of F when there exist a cover r : V �� U and an object A of A
over V such that FA ∼= colim(r,X).

V U
r ��

X

X∗
��

A

A∗
��

F∗
��

∼=

Write LocX (F ) for the full sub-W -category of X consisting of those objects which are
locally isomorphic to a value of F . We say that F is a local equivalence when it is fully
faithful and LocX (F ) = X . Notice that

LocX (F ) = LocX (JF )

so, if LocX (F ) = X then JF is a local equivalence.
For a small W -category A , we define an A -torsor to be an object of PA which is

locally isomorphic to a value of the Yoneda embedding YA : A ��PA . In other words,
a module Φ : U �� A is a torsor when it is locally convergent.

V

A

A∗

���
��

��
��

U

r

��





Φ
��

∼=

Put Tor A = LocPA (YA ).

5.1. Proposition. Each torsor is a cauchy module. So Tor A ⊂ QA .

Proof. For each W -category X , consider the triangle:

W -Mod(A ,X ) W -Mod(U,X )
W -Mod(Φ,X ) ��

W -Mod(V,X )

W -Mod(r, X )
��������������

W -Mod(A∗, X )
��������������

∼=

The downward arrows have left adjoints and the counit of the one on the right-hand
side is a regular epimorphism. Since W -Mod(A ,X ) has coequalizers; it follows that
W -Mod(Φ,X ) has a left adjoint. Hence Φ is cauchy.

A W -category X is called a stack when it admits all colimits indexed by torsors.
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5.2. Proposition.

(a) If X is locally isomorphic to a value of a fully faithful functor F : A �� X then
X (F,X) is an A -torsor.

(b) If Φ is an A -torsor and F : A �� X is any functor into a stack X then
colim(Φ, F ) is locally isomorphic to a value of F .

(c) If X is a stack then restriction along any local equivalence G : A �� C yields an
equivalence:

W -Cat(C ,X ) � W -Cat(A ,X ).

Proof.

(a) If FA ∼= colim(r,X) then:

X (F,X)r ∼= X (F, 1)X∗r ∼= X (F, 1)(FA)∗ ∼= X (F, F )A∗ ∼= A∗

since F is fully faithful.

(b) If Φr ∼= A∗ then;

colim(r, colim(Φ, F ))∗ ∼= colim(Φ, F )∗r ∼= F∗Φr ∼= F∗A∗ ∼= (FA)∗.

(c) For each F : A �� X , the pointwise left extension K of F along G is given by
K ∼= colim(C (G, 1), F ); it exists by (a) since every object of C is locally isomorphic
to a value of G. Since G is fully faithful, F ∼= KG. Thus F �→ K gives the inverse
equivalence.

5.3. Theorem. [Classification property of torsors] If F : A �� X is a W -functor with
A small and X a stack then the W -functor X ��PX [F ] corresponding to JF induces
an equivalence:

LocX (F ) � Tor X [F ].

Proof. A left adjoint to X ��PX [F ] at Φ is a colim(Φ, JF ) which exists when Φ is
a torsor since X is a stack. By Proposition 5.2 this adjunction restricts to an adjunction
between LocX (F ) and Tor X [F ]. Since JF is fully faithful, the unit of this adjunction
is an isomorphism. It remains to show that the counit colim(X (JF , X), JF ) �� X is an
isomorphism when colim(r,X) ∼= FA for some cover r. Since composition on the right
with r reflects isomorphisms, the following calculation completes the proof:

colim(X (JF , X), JF )∗r ∼= JF ∗J∗
F X∗r

∼= JF ∗J∗
F F∗A∗

∼= JF ∗J∗
F JF ∗NF ∗A∗

∼= F∗A∗
∼= X∗r.
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5.4. Theorem. For each small W -category C , the W -category Tor C is the associated
stack. That is, Tor C is a stack and the embedding C �� Tor C induces an equivalence

W -Cat(Tor C ,X ) � W -Cat(C ,X )

for all stacks X .

Proof. Clearly C �� Tor C is a local equivalence so, from Proposition 5.2(c), all that
remains to be shown is that Tor C is a stack. Suppose Φ : U �� C is a torsor with Φr =
A∗, and suppose G : A �� Tor C is a functor. We must show that colim(Φ, G) exists.

Let Γ : A �� C denote the module corresponding to the functor A G �� Tor C ��PC .
The Φ-indexed colimit of the last functor is ΓΦ. We must show that ΓΦ is in fact a C -
torsor. But ΓA∗ is the C -torsor GA. So there is a cover s : W �� V with ΓA∗s ∼= C∗,
and we have (ΓΦ)(rs) ∼= ΓA∗s ∼= C∗. Using C4., we have that ΓΦ is a torsor.

A W -category A is called map-tensored when, for all maps f : V �� U in W and
all objects A of A over U , the module A∗f is convergent; that is, colim(f,A) exists.
Since f has a right adjoint, if A is cauchy complete then A is map-tensored. If A is
map-tensored then so is Tor A (using C3.).

The map-tensor cocompletion MA of A is described as follows. The objects over U
are pairs (a,A) where a : U �� V is a map in W and A is an object of A over V . The
homs are given by:

(MA )((b, B), (a,A)) = b∗A (B,A)a.

There are fully faithful functors:

MA : A ��MA , A �→ (1, A) ; MA ��QA , (a,A) �→ A∗a.

Note that A is map-tensored if and only if MA has a left adjoint; and that MA is
map-tensored. Clearly MA induces an equivalence QA � QMA , so TorMA can be
identified with a full sub-W -category of QA . To be specific, an object Φ : U �� A of
QA is an MA -torsor if and only if there exist a cover r : V �� U , a map a : V �� W ,
and an object A of A over W such that:

V W
a ��

A

A∗
��

U

r

��

Φ
��

∼=

A module Φ : C �� A is called weakly convergent when there exists a local equivalence
G : K ��MC such that ΦM∗

C G∗ : K ��A is convergent. We write Wcgt(C ,A ) for
the full subcategory of W -Mod(C ,A ) consisting of the weakly convergent modules.

If A is map-tensored then every convergent module into A is weakly convergent.
Since MC is fully faithful, one easily sees that, if Φ is weakly convergent, the corre-

sponding functor C ��PA factors through Tor A ��PA . So we always have a fully
faithful functor

Wcgt(C ,A ) �� W -Cat(C , Tor A ).
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5.5. Proposition. [Cocycle property of torsors] If A is map-tensored then the last
functor is an equivalence

Wcgt(C ,A ) � W -Cat(C , Tor A ).

Proof. Given a functor F : C �� Tor A , for each C in C , we have a cover rC :
VC

�� eC and AC in A over VC with (FC)rC
∼= AC∗ . Consider the full sub-W -category

R of MC consisting of the objects (rC , C). The inclusion induces a fully faithful map-
tensor-preserving functor MR ��MC which, using C3., is a local equivalence. The
effect of F on homs gives 2-cells:

C ′∗C∗ �� (FC ′)∗(FC)∗.

Applying r∗C′ on the left and rC on the right, we obtain 2-cells

r∗C′C (C ′, C)rC
�� A (AC′ , AC).

This gives the effect on homs of a functor R �� A taking (rC , C) to AC . Since A
is map-tensored there is a map-tensor-preserving extension MR �� A to which the
composite

MR �� MC
M∗

C �� C
Φ �� A

converges, where Φ is the module corresponding to F .

5.6. Example. Return to Example 2.1 where W = SpnE with E small complete and
small cocomplete. We have extended the theory of torsors and stacks based on E as
appearing in Giraud [Gir], Bunge [Bun], Bourn [Bou], Street [St3].
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