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The 40th anniversary of my doctoral thesis was a theme at the November 2003 Flo-
rence meeting on the “Ramifications of Category Theory”. Earlier in 2003 the editors
of TAC had determined that the thesis and accompanying problem list should be made
available through TAC Reprints. This record delay in the publication of a thesis (and
with it a burden of guilt) is finally coming to an end. The saga began when in January
1960, having made some initial discoveries (based on reading Kelley and Godement) such
as adjoints to inclusions (which I called “inductive improvements”) and fibered categories
(which I called “galactic clusters” in an extension of Kelley’s colorful terminology), I bade
farewell to Professor Truesdell in Bloomington and traveled to New York. My dream, that
direct axiomatization of the category of categories would help in overcoming alleged set-
theoretic difficulties, was naturally met with skepticism by Professor Eilenberg when I
arrived (and also by Professor Mac Lane when he visited Columbia). However, the con-
tinuing patience of those and other professors such as Dold and Mendelsohn, and instruc-
tors such as Bass, Freyd, and Gray allowed me to deepen my knowledge and love for al-
gebra and logic. Professor Eilenberg even agreed to an informal leave which turned out
to mean that I spent more of my graduate student years in Berkeley and Los Angeles
than in New York. My stay in Berkeley tempered the naive presumption that an impor-
tant preparation for work in the foundations of continuum mechanics would be to join
the community whose stated goal was the foundations of mathematics. But apart from a
few inappropriate notational habits, my main acquisition from the Berkeley sojourn was
a more profound acquaintance with the problems and accomplishments of 20th century
logic, thanks again to the remarkable patience and tolerance of professors such as Craig,
Feferman, Scott, Tarski, and Vaught. Patience began to run out when in February 1963,
wanting very much to get out of my Los Angeles job in a Vietnam war “think” tank to
take up a teaching position at Reed College, I asked Professor Eilenberg for a letter of
recommendation. His very brief reply was that the request from Reed would go into his
waste basket unless my series of abstracts be terminated post haste and replaced by an
actual thesis. This tough love had the desired effect within a few weeks, turning the ta-
bles, for it was now he who had the obligation of reading a 120-page paper of baroque
notation and writing style. (Saunders Mac Lane, the outside reader, gave the initial ap-
proval and the defence took place in Hamilton Hall in May 1963.) The hasty prepara-
tion had made adequate proofreading difficult; indeed a couple of lines (dealing with the
relation between expressible and definable constants) were omitted from the circulated
version, causing consternation and disgust among universal algebraists who tried to read
the work. Only in the new millennium did I discover in my mother’s attic the original
handwritten draft, so that now those lines can finally be restored. Hopefully other ob-
scure points will be clarified by this actual publication, for which I express my gratitude
to Mike Barr, Bob Rosebrugh, and all the other editors of TAC, as well as to Springer-
Verlag who kindly consented to the republication of the 1968 article.
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1. Seven ideas introduced in the 1963 thesis

(1) The category of categories is an accurate and useful framework for algebra, geometry,
analysis, and logic, therefore its key features need to be made explicit.

(2) The construction of the category whose objects are maps from a value of one given
functor to a value of another given functor makes possible an elementary treatment of
adjointness free of smallness concerns and also helps to make explicit both the existence
theorem for adjoints and the calculation of the specific class of adjoints known as Kan
extensions.

(3) Algebras (and other structures, models, etc.) are actually functors to a background
category from a category which abstractly concentrates the essence of a certain general
concept of algebra, and indeed homomorphisms are nothing but natural transformations
between such functors. Categories of algebras are very special, and explicit axiomatic
characterizations of them can be found, thus providing a general guide to the special fea-
tures of construction in algebra.

(4) The Kan extensions themselves are the key ingredient in the unification of a large
class of universal constructions in algebra (as in [Chevalley, 1956]).

(5) The dialectical contrast between presentations of abstract concepts and the abstract
concepts themselves, as also the contrast between word problems and groups, polynomial
calculations and rings, etc. can be expressed as an explicit construction of a new adjoint
functor out of any given adjoint functor. Since in practice many abstract concepts (and
algebras) arise by means other than presentations, it is more accurate to apply the term
“theory”, not to the presentations as had become traditional in formalist logic, but rather
to the more invariant abstract concepts themselves which serve a pivotal role, both in
their connection with the syntax of presentations, as well as with the semantics of rep-
resentations.

(6) The leap from particular phenomenon to general concept, as in the leap from coho-
mology functors on spaces to the concept of cohomology operations, can be analyzed as a
procedure meaningful in a great variety of contexts and involving functorality and natu-
rality, a procedure actually determined as the adjoint to semantics and called extraction
of “structure” (in the general rather than the particular sense of the word).

(7) The tools implicit in (1)–(6) constitute a “universal algebra” which should not only
be polished for its own sake but more importantly should be applied both to constructing
more pedagogically effective unifications of ongoing developments of classical algebra, and
to guiding of future mathematical research.

In 1968 the idea summarized in (7) was elaborated in a list of solved and unsolved
problems, which is also being reproduced here.
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2. Delays and Developments

The 1963 acceptance of my Columbia University doctoral dissertation included the con-
dition that it not be published until certain revisions were made. I never learned what
exactly those revisions were supposed to be. Four years later, at the 1967 AMS Summer
meeting in Toronto, Sammy had thoroughly assimilated the concepts and results of Func-
torial Semantics of Algebraic Theories and had carried them much further; one of his four
colloquium lectures at that meeting was devoted to new results in that area found in col-
laboration with [Eilenberg & Wright, 1967]. In that period of intense advance, not only
Eilenberg and Wright, but also [Beck, 1967], [Bénabou, 1968], [Freyd, 1966], [Isbell, 1964],
[Linton, 1965], and others, had made significant contributions. Thus by 1968 it seemed
that any publication (beyond my announcements of results [Lawvere, 1963, 1965]) should
not only correct my complicated proofs, but should also reflect the state of the art, as
well as indicate more systematically the intended applications to classical algebra, alge-
braic topology, and analysis. A book adequate to that description still has not appeared,
but Categories and Functors [Pareigis, 1970] included an elegant first exposition. Ernie
Manes’ book called Algebraic Theories, treats mainly the striking advances initiated by
Jon Beck, concerning the Godement-Huber-Kleisli notion of standard construction (triple
or monad) which at the hands of Beck, [Eilenberg & Moore, 1965], Linton, and Manes
himself, had been shown to be intimately related to algebraic theories, at least when the
background is the category of abstract sets. Manes’ title reflects the belief, which was cur-
rent for a few years, that the two doctrines are essentially identical; however, in the less
abstract background categories of topology and analysis, both monads and algebraic the-
ories have applications which are complementary, but not identical.

Already in spring 1967, at Chicago, I had identified some of the sought-for links be-
tween continuum mechanics and category theory. Developing those would require some
concepts from algebraic theories in particular, but moreover, much work on topos theory
would be needed. These preoccupations in physics and toposes made it clear, however,
that the needed book on algebraic theories would have to be deferred; only a partial sum-
mary was presented as an introduction to the 1968 list of generic problems.

The complicated proofs in my thesis of the lemmas and main theorems have been
much simplified and streamlined over the past forty years in text and reference books,
the most recent [Pedicchio & Rovati, 2004]. This has been possible due to the discov-
ery and employment since 1970 of certain decisive abstract general relations expressed
in notions such as regular category, Barr exactness [Barr, 1971], and factorization sys-
tems based on the “orthogonality” of epis and monos. However, an excessive reliance
on projectives has meant that some general results of this “universal” algebra have re-
mained confined to the abstract-set background where very special features such as the
axiom of choice can even trivialize key concepts that would need to be explicit for the
full understanding of algebra in more cohesive backgrounds.

Specifically, there is the decisive abstract general relation expressed by the commuta-
tivity of reflexive coequalizers and finite products, or in other words, by the fact that the
connected components of the product of finitely many reflexive graphs form the product
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of the corresponding component sets. Only in recent years has it become widely known
that this property is essentially characteristic of universal algebra (distinguishing it from
the more general finite-limit doctrine treated by [Gabriel & Ulmer, 1971] and also pre-
sumably by the legendary lost manuscript of Chevalley). But the relevance of reflexive co-
equalizers was already pointed out in 1968 by [Linton, 1969], exploited in topos theory by
[Johnstone, 1977], attributed a philosophical (i.e. geometrical) role by me [1986], and fi-
nally made part of a characterization theorem by [Lair, 1996]. It is the failure of the prop-
erty for infinite products that complicates the construction of coequalizers in categories of
infinitary algebras (even those where free algebras exist). On the other hand, the property
holds for algebra in a topos, even a topos which has no projectives and is not “coherent”
(finitary). A corollary is that algebraic functors (those induced by morphisms of theories)
not only have left adjoints (as proved in this thesis and improved later), but also them-
selves preserve reflexive coequalizers. The cause for the delay of the general recognition
of such a fundamental relationship was not only the reliance on projectives; also playing
a role was the fact that several of the categories traditionally considered in algebra have
the Mal’cev property (every reflexive subalgebra of a squared algebra is already a congru-
ence relation) and preservation of coequalizers of congruence relations may have seemed
a more natural question.

3. Comments on the chapters of the 1963 Thesis

3.1. Chapter I. There are obvious motivations for making explicit the particular fea-
tures of the category of categories and for considering the result as a guide or framework
for developing mathematics. Apart from the contributions of homological algebra and
sheaf theory to algebraic topology, algebraic geometry, and functional analysis, and even
apart from the obvious remark that category theory is much closer to the common content
of all these, than is, say, the iterated membership conception of the von Neumann hier-
archical representation of Cantor’s theory, there is the following motivation coming from
logical considerations (in the general philosophical sense). Much of mathematics consists
in calculating in various abstract theories, specifically interpreting one abstract theory
into another, interpreting an abstract theory into a background to obtain a concrete cate-
gory of structures, and transforming these structures in and among these categories. Now,
for one thing, the use of the term “category” of structures of a certain kind had already
become obvious in the 1950’s and for another thing the idea of theories themselves as
structures whose mutual interpretations would form a category was also evidently possible
if one cared to carry it out, and indeed Hall, Halmos, Henkin, Tarski, and possibly others
had already made significant moves in that direction. But what of the relation itself be-
tween abstract theory and concrete background? To conceptually relate any two things,
it is necessary that they belong to a common category; that is, speaking more mathemat-
ically, it is first necessary to functorially transport them into a common third category (if
indeed they were initially conceived as belonging to different categories); but then if the
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attempt to relate them is successful, the clearest exposition of the whole matter may in-
volve presenting the two things themselves as citizens of that third category. In the case
of “backgrounds” such as a universe of sets or spaces it was already clear that they form
categories, wherein the basic structure is composition. In the case of logical theories of all
sorts the most basic structure they support is an operation of substitution, which is most
effectively viewed as a form of composition. Thus, if we construe theories as categories,
models are functors! Miraculously, the Eilenberg-Mac Lane notion of natural transforma-
tion between functors specializes exactly to the morphisms of models which had previ-
ously been considered for various doctrines of theories. But only for the simplest theories
are all functors models, because something more than substitution needs to be preserved;
again, miraculously, the additional features of background categories which were often
expressible in terms of composition alone via universal mapping properties, turned out
to have precise analogs: the operations of disjunction, existential quantification, etc. on
a theory are all uniquely determined by the behavior of substitution. Roughly, any col-
lection K of universal properties of the category of sets specifies a doctrine: the theories
in the doctrine are all the categories having the properties K; the mutual interpretations
and models in the doctrine are just all functors preserving the properties K. The simplest
non-trivial doctrine seems to be that of finite categorical products, and the natural set-
ting for the study of it is clear. Thus Chapter I tries to make that setting explicit, with
details being left to a later publication [Lawvere, 1966].

Since (any model of a theory of) the category of categories consists of arrows called
functors, how are we to get inside the individual categories themselves (and indeed how
can we correctly justify calling the arrows functors)? There has been for a long time the
persistent myth that objects in a category are “opaque”, that there are only “indirect”
ways of “getting inside” them, that for example the objects of a category of sets are “sets
without elements”, and so on. The myth seems to be associated with an inherited belief
that the only “direct” way to deal with whole/part relations is to write an unexplained
epsilon or horseshoe symbol between A and B and to say that A is then “inside” B, even
though in any model of such a discourse A and B are distinct elements on an equal foot-
ing. In fact, the theory of categories is the most advanced and refined instrument for get-
ting inside objects, because it does provide explanations (existence of factorizations of in-
clusion maps) and also makes the sort of distinctions that Volterra and others had noted
were necessary for the elements of a space (because the elements are morphisms whose
domains are various figure-types that are also objects of the category). But there is also
a restriction on the wholesale meaningfulness of membership and inclusion, namely that
they are meaningless unless both figures A and B under consideration are morphisms with
the same codomain. It was the lack of such restriction in the Frege conception that forced
Peano to introduce the “singleton” operation and the attendant rigid distinction between
membership and inclusion. (A kind of singleton operation does reappear in category the-
ory, but with quite different conception and properties, namely, as a natural transforma-
tion from an identity functor to a covariant power-set functor).

The construction in Chapter I (and in [Lawvere, 1966]) of a formula with one more
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free variable A from any given formula of the basic theory of categories, was a refutation
of the above myth. Based on nailed-down descriptions of special objects 1, 2, 3 which
serve as domains for the arrows that are the objects, maps, and commutativities in any
codomain, this figure-and-incidence analysis is typical of what is possible for many cat-
egories of interest. But much more is involved. The analysis of objects as structures of
such a kind in a background category of more abstract “underlying” objects is revealed
as a possible construction within a category itself (here the category of categories), which
is thus “autonomous”. The method is to single out certain trivial or “discrete” objects
by the requirement that all figures (whose shape belongs to the designated kind) be con-
stant, and establish an adjunction between the “background” category so defined and the
whole ambiance. The assumed exponentiation operation then allows one to associate an
interpretation of the whole ambient category into finite diagrams in the background cat-
egory, with the arrows in the diagrams being induced by the incidence relations, such as,
for example, the composition by functors between 3 and 2 in the case of the category of
categories.

At any rate, since the whole figure and incidence scheme here is finite (count the
order-preserving maps between the ordinals 1,2,3), the proof-theoretic aspect of the
problem of axiomatizing a category of categories is at all levels equivalent to that of
axiomatizing a category of discrete sets.

The exponentiation operation mentioned above, that is, the ubiquity of functor cate-
gories, characterized by adjointness, was perhaps new in the thesis. Kan had defined ad-
joints and proved their uniqueness, and of course he knew that function spaces, for ex-
ample in simplicial sets, are right adjoint to binary product. But the method here, and
indeed in the whole ensuing categorical logic, is to exploit the uniqueness by using ad-
jointness itself as an axiom [Lawvere, 1969]. The left adjoint characterization (p.19) of
the “natural” numbers is another instance of the same principle (I later learned that it is
more accurate to attribute it to Dedekind rather than to Peano).

The construction denoted by ( , ) was here introduced for the purpose of a founda-
tional clarification, namely to show that the notion of adjointness is of an elementary
character, independent of complications such as the existence, for the codomain categories
of given functors, of an actual category (as opposed to a mere metacategory) of sets into
which both are enriched (as is often needlessly assumed); of course, enrichment is impor-
tant when available, but note that notions like monoidal closed category, into which en-
richments are considered, are themselves to be described in terms of the elementary ad-
jointness.

The general calculus of adjoints and limits could be presented as based on the ( , ) op-
eration. Note that it may also be helpful to people in other fields who sometimes find the
concept of adjointness difficult to swallow. From the simpler idempotent cases of a full re-
flective subcategory and the dual notion of a full coreflective subcategory, the general case
can always be assembled by composing. The third, larger category thus mediating a given
adjointness can be universally chosen to be (two equivalent) ( , ) categories, although in
particular examples another mediating category may exist.
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The ( , ) operation then turned out to be fundamental in computing Kan extensions
(i.e. adjoints of induced functors). Unfortunately, I did not suggest a name for the op-
eration, so due to the need for reading it somehow or other, it rather distressingly came
to be known by the subjective name “comma category”, even when it came to be also de-
noted by a vertical arrow in place of the comma. Originally, it had been common to write
(A,B) for the set of maps in a given category C from an object A to an object B; since
objects are just functors from the category 1 to C, the notation was extended to the case
where A and B are arbitrary functors whose domain categories are not necessarily 1 and
may also be different. Since it is well justified by naturality to name a category for its ob-
jects, the notation Map(A,B) might be appropriate and read “the category of maps from
(a value of) A to (a value of) B”; of course, a morphism between two such maps is a pair
of morphisms, one in the domain of A and one in the domain of B, which satisfy a com-
mutative square in C. The word “map” is actually sometimes used in this more structured
way (i.e. not necessarily just a mere morphism), for example, drawing one-dimensional
pictures on two-dimensional surfaces must take place in a category C where both kinds of
ingredients can be interpreted.

In the Introduction to the thesis I informally remarked that “no theorem is lost” by
replacing the metacategory of all sets by an actual category S of small sets. Of course,
(even if S is not taken as the “smallest” inaccessible) many theorems will be gained; some
of those theorems might be considered as undue restriction on generality. However, we
can always arrange that S not contain any Ulam cardinals (independently of whether such
exist in the meta-universe at large) and that yields many theorems of a definitely positive
character for mathematics. Often those mathematically positive theorems involve “du-
alities” between S-valued algebra and S-valued topology (or bornology). For example,
consider the contravariant adjoint functor C from topological spaces to real algebras; the
“duality” problem is to describe in topologically meaningful ways which spaces are fixed
under the adjunction. That all metric spaces X (or even all discrete spaces) should be so
fixed (in the sense that X → spec(C(X)) is a homeomorphism) is equivalent to the fact
that S contains no Ulam cardinals. The existence of Ulam cardinals is equivalent to the
failure of such duality in the simple case which opposes discrete spaces (i.e. S itself) to
the unary algebraic category of left M -sets where M is the monoid of endomaps of any
fixed countable set [Isbell, 1964].

3.2. Chapter II. There are several possible doctrines of algebraic theories, even within
the very particular conception of “general” algebra that is anchored in the notion of fi-
nite categorical product. The most basic doctrine simply admits that any small category
with products can serve as a theory, for example any chosen such small subcategory of
a given large geometric or algebraic category. This realization required a certain concep-
tual leap, because such theories do not come equipped with a syntactical presentation, al-
though finding and using presentations for them can be a useful auxiliary to the study of
representations (algebras). Here a presentation would involve a directed graph with speci-
fied classes of diagrams and cones destined to become commutative diagrams and product
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cones in the intended interpretations in other theories or interpretations as algebras; this
is an instance of the flexible notion of sketch due to Ehresmann. The algebras according
to this general doctrine have no preferred underlying sets (which does not prevent them
from enjoying nearly all properties and subtleties needed or commonly considered in al-
gebra) and hence no preferred notion of free algebra, although the opposite of the theory
itself provides via Yoneda a small adequate subcategory of regular projectives in the cat-
egory of algebras.

Intermediate between the sketches and the theories themselves is another kind of pre-
sentation (but this one lacks the fully syntactical flavor usually associated with a notion of
presentation): actual small categories equipped with a class of cones destined to become
product cones. This rests on the fact that the free category with finite products generated
by any given small category exists. Due to that remark the inclusion of algebras into pre-
algebras (IV.1.1) is itself an example of an algebraic functor, so that its left adjoint is a
special case of a general result concerning algebraic adjoints.

The general doctrine of products permits a kind of flexibility in exposition whereby
not only can free algebras always be studied in terms of free theories (by adjoining con-
stants as in V.1) and free theories can be reciprocally reduced to the consideration of ini-
tial algebras in suitable categories, but moreover all S-sorted theories (for fixed S) are
themselves algebras for one fixed theory. Apart from such generalities, perhaps the most
useful feature of this doctrine is that it involves the broadest notion of algebraic functor
(since a morphism of theories is any product-preserving functor) and that all these still
have left adjoints (while themselves preserving reflexive coequalizers). Examples of these
are treated in this basically single-sorted thesis as “algebraic functors of higher degree”
(IV.2).

For a doctrine of sorted theories and of algebras with underlying “sets”, one needs
the further structure consisting of a fixed theory S and a given interpretation of S into
the theory being studied; when the theory changes, the change is required to preserve
these given interpretations. Then any algebraic category according to this doctrine will
be equipped automatically with an underlying (i.e. evaluation) functor to the category
of S-algebras. The left adjoint to this underlying functor provides the notion of free al-
gebras. Also the whole semantical process has an adjoint which to almost any functor
from almost any category X to the category of S-algebras assigns its unique “structure”,
the best approximation to X in the abstract world of S-sorted theories; the adjunction
X → sem(strX ) is a sort of closure: “the particular included in the induced concrete
general”.

Note that there is a slip in Proposition II.1.1 because the underlying functor from S-
sorted theories to theories does not preserve coproducts; of course it does permit their
construction in terms of pushouts (“comeets”) so that all intended applications are correct
(compare V.1).

With the general notion of S-sorted theory discussed above, the free algebras will not
be adequate nor will the underlying functor be faithful without some normalization, usu-
ally taken to be that the functor A from S to the theory be bijective on objects.
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In fact, the theory “is” the functor A and not merely its codomain category. This re-
mains true even in the single-sorted case, on which I chose to concentrate in an attempt
to make contact with the work of the universal algebra community. Here S is taken as
the opposite of the category of finite sets, and A(n) is the n-fold product of A(1), with
the maps πi = A(i) for 1 → n as projections, often abbreviated to A(n) = An. The fur-
ther “abuse of notation” (II.1.Def) which omits the functor A entirely has been followed
in most subsequent expositions even though it can lead to confusion when (as in a famous
example studied by Jonsson, Tarski and Freyd) the specific theory involves operations
which make A(2) isomorphic to A(1). Actually, it seems appropriate in the sorted doc-
trine (as opposed to the unsorted one) to have a uniform source not only for the meaning
of A(i), but also of A(s) where s is the involution of a 2-element set.

The discussion of presentations of theories with fixed sorting is entirely parallel to that
for presentations of algebras for a fixed theory, because both are special cases of a general
construction that applies to any given adjoint pair of functors. In the present case the un-
derlying functor from single-sorted theories to sequences of sets, called “signatures”, has a
left adjoint yielding the free theory generated by any given signature (of course the under-
lying “signature” of that resulting theory is much larger than the given signature). Given
such an adjoint pair, the associated category of presentations has as objects quadruples
G, E , l, r in the lower category (codomain of the right adjoint) where l and r are mor-
phisms from E to T (G), where T is the monad resulting from composing the adjoints.
Note that in the case at hand, E is also a signature, whose elements serve as names for
laws rather than for basic operations as in G. Each such (name for a) basic equation has
a left hand side and a right hand side, specified by l and r. The act of presentation itself
is a functor (when the upper category has coequalizers) from the category of presenta-
tions: it consists of first applying the given adjointness to transform the pair l, r into a
coequalizer datum in the upper category, and then forming that coequalizer. If the given
adjoint pair is monadic, every object will have presentations, for example the “standard”
one obtained by iterating the comonad. The full standard presentation is usually consid-
ered too unwieldy for practical (as opposed to theoretical) calculation, but it does have
one feature sometimes used in smaller presentations: every equation name e is mapped
by l to a generating symbol in G (only a small part of T (G)) and the equation merely
defines that symbol as some polynomial r(e) in the generating symbols; in other words,
all information resides in the fact that those special generators may have more than one
definition. That asymmetry contrasts with the traditional presentations [Duskin, 1969] in
the spirit that Hilbert associated with syzygies; there one might as well assume that E is
equipped with an involution interchanging l and r, because E typically arises as the ker-
nel pair of a free covering by G of some algebra; the resolution can always be continued,
further analyzing the presentation, by choosing a free covering (perhaps minimal) of the
free algebra on E itself, then taking the kernel pair of the composites, etc. But another
mild additional structure which could be assumed for presentations (and resolutions) is
reflexivity, in the sense that there is a given map G → E which followed by l, r assures
that there be for each generating symbol an explicit proof that it is equal to itself. That
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seeming banality may be important in view of the now-understood role of reflexivity, not
only in combinatorial topology [Lawvere, 1986], but especially in key distinguishing prop-
erties of universal algebra itself [Lair, 1996, Pedicchio & Rovati, 2004].

3.3. Chapter III. As remarked already, the main “mathematical” theorem charac-
terizing algebraic categories now has much more streamlined proofs [Pedicchio & Rovati,
2004], embedding it in a system of decisive concepts. It is to be hoped that future ex-
positions will not only make more explicit the key role of reflexive coequalizers, but also
relativize or eliminate the dominating role of projectives in order to fully address as “al-
gebraic” the algebraic structures in sheaf toposes, as [Grothendieck, 1957] already did 45
years ago for the linear case.

But the other main result, that semantics has an adjoint called “structure” with a very
general domain, appears as a kind of philosophical theorem in a soft mathematical guise.
Indeed, that is one aspect, but note that the motivating example was cohomology oper-
ations, and that highly non-tautological examples continue to be discovered. Of course
if a functor is representable, Yoneda’s lemma reduces the calculation of its structure to
an internal calculation. In general the calculation of the structure of a non-representable
functor seems to be hopelessly difficult, however the brilliant construction by Eilenberg
and Mac Lane of representing spaces for cohomology in the Hurewicz homotopy category
(it is not representable, of course, in the original continuous category) not only paved the
way for calculating cohomology operations but illustrated the importance of changing cat-
egories. Another more recent discovery by [Schanuel, 1982] provides an astonishing ex-
ample of the concreteness of the algebraic structure of a non-representable functor, which
however has not yet been exploited sufficiently in analysis and “noncommutative geome-
try”. Namely the underlying-bornological-set functor on the category of finite dimensional
noncommutative complex algebras has as its unary structure precisely the monoid of en-
tire holomorphic functions. The higher part of the structure is a natural notion of ana-
lytic function of several noncommuting variables, and holomorphy on a given domain is
also an example of this natural structure. Moreover, a parallel example involving special
finite-dimensional noncommutative real algebras leads in the same way to C∞ functions.

3.4. Chapter IV. The calculus of algebraic functors and their adjoints is at least as
important in practice as the algebraic categories themselves. Thus it is unfortunate that
there was no indication of the fundamental fact that these functors preserve reflexive co-
equalizers (of course their preservation of filtered colimits has always been implicit). As
remarked above, “the algebra engendered by a prealgebra” is a special case of an adjoint
to a (generalized) algebraic functor. However, contrary to what might be suggested by
the treatment in this chapter, the use of that reflection is not a necessary supplement to
the use of Kan extensions in proving the general existence of algebraic adjoints: as re-
marked only later by Michel André, Jean Bénabou, Hugo Volger, and others, the special
exactness properties of the background category of sets imply that the left Kan exten-
sion, along any morphism of algebraic theories, of any algebra in sets, is already itself
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again product-preserving. Clearly, the same sort of thing holds, for example, with any
topos as background. On the other hand, this chapter could be viewed as an outline of
a proof that such adjoints to induced functors should at least exist even for algebras in
backgrounds which are complete but poor in exactness properties,

4. Some developments related to the problem list
in the 1968 Article

4.1. 1968 Section 4.

Problem 2. [Wraith, 1970] made considerable progress on the understanding of which al-
gebraic functors have right adjoints by pointing out that they all involve extensions by
new unary operators only. He also gave a general framework for understanding which
kinds of identities could be imposed on such unary operations, while ensuring the exis-
tence of the right adjoint. These identities can be of a more general kind than the re-
quirement that the new operators act by endomorphisms of the old ones (as treated in
Chapter V of the thesis); an important example of such an identity is the Leibniz prod-
uct rule, the right adjoint functor from commutative algebras to differential algebras be-
ing the formation of formal power series in one variable. Such twisted actions in the sense
of Wraith are related to what I have called “Galilean monoids” as exemplified by second-
order differential equations [http://www.buffalo.edu/~wlawvere]. Because they always
preserve reflexive coequalizers, algebraic functors in our narrow sense will have right ad-
joints if only they preserve finite coproducts.

Problem 3. There are certainly non-linear examples of Frobenius extensions of theories;
for example with the theory of a single idempotent, the act of splitting the idempotent
serves as both left and right adjoint to the obvious interpretation into the initial theory.
See [Kock, 2004] for some interesting applications of Frobenius extensions, which can be
viewed dually as spaces carrying a distribution of global support.

Problem 4. There has been striking progress by [Zelmanov, 1997] on the restricted Burn-
side problem. He proved what had been conjectured for over 50 years, in effect that for
the theory B(n) of groups of exponent n, the underlying set functor from finite B(n) al-
gebras has a left adjoint, giving rise to a quotient theory R(n) which is usually different
from B(n). This raises the question of presenting R(n), i.e. what are the additional iden-
tities? As pointed out in the next problem, the structure of finite algebras is typically
profinite if the (hom sets of) the theory are not already finite, so this Burnside-Zelmanov
phenomenon seems exceptional; but a hope that unary tameness implies tameness for all
arities m is realizable in some other contexts, such as modern extensions of real algebraic
geometry [Van den Dries, 1998].

Problem 5. Embedding theorems of the type sought here have a long history in algebra
and elsewhere. In earlier work it was not always distinguished that there are two separate
issues, the existence of the relevant adjoint and the injectivity of the adjunction map to
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it. Here in this narrowly algebraic context, the answer to the first question is always af-
firmative, but the second question remains very much dependent on the particular case.
It is remarkable that a kind of general solution has been found by [MacDonald & Sobral,
2004]. Naturally, considerable insight is required in order to apply their criterion, thus
I still do not know the answer to the Wronskian question posed at the end of Section 2.
Geometrically, that question is: given a Lie algebra L, whether a sufficiently complicated
vector field on a sufficiently high-dimensional variety can be found so that L can be faith-
fully represented by commutators of those very special vector fields which are in the mod-
ule (over the ring of functions) generated by that particular one. Schanuel has pointed
out that the question depends on the ground field, because with complex scalars the ro-
tation group in three dimensions can indeed be so represented.

Problem 6. Although the use of the bar notation suggests averaging, naturality of it was
omitted from mention here. If naturality were included, possibly a suitable Maschke-like
class of examples of this analog of Artinian semi-simplicity could be characterized in
terms of a central idempotent operation.

4.2. 1968 Section 5. While problems involving the combination of the structure-
semantics adjoint pair with the restriction to the finite may indeed be of interest in
connection with the general problems of the Burnside-Kurosh type, few works in that
sense have appeared, although for example the fact that one thus encounters theories
enriched in the category of compact spaces has been remarked. But quite striking, as
remarked before, is Schanuel’s result that by combining the finite dimensionality with
non-commutativity and bornology, the naturality construction, which here achieved
merely the formal Taylor fields, captures in its amended form precisely the hoped-for
ring of entire functions.

5. Concerning Notation and Terminology

In order to ease the burden of those 21st century readers who may try to read these doc-
uments in detail, let me point out some of the more frequent terminological and nota-
tional anachronisms. The order of writing compositions, which we learned from the stal-
wart Birkhoff-Mac Lane text, was seriously championed for most of the 1960’s by Freyd,
Beck and me (at least) because of the belief that it was more harmonious with the read-
ing of diagrams. More recently it has also been urged by some computer scientists. How-
ever, the experience of teaching large numbers of students, most of whose courses are with
mathematical scientists following the opposite convention, gradually persuaded us that
there are other points within the great weight of mathematical tradition where reforms
might be more efficiently advocated. (I personally take great comfort in Steve Schanuel’s
remark that there is a rational way to read the formulas that is compatible with the dia-
grams: gf is read “g following f”.)
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Some anachronisms are due to the fact the thesis was written before the partial stan-
dardization of the “co-” terminology at the 1965 La Jolla meeting: because we could not
agree there on whether it is adjoints or co-adjoints that are the left adjoints, the “co-”
prefix largely disappeared (from the word adjoint) and Kan’s original left vs. right has
been retained in that particular context.

Not exactly anachronistic, but not yet standard either, is my use of the term “con-
gruence relation” for a graph which is the kernel pair of at least one map, in other words,
for an “effective equivalence relation”; this definition raises the question of characterizing
congruence relations in other terms, that is, in terms of maps in, rather than maps out,
and of course the expected four clauses MRST suffice in the simple abstract backgrounds
considered here, as well as in others; these are some of the relationships made partially
explicit by Barr exactness.

The musical notation “flat” for the algebraic functor induced by a given morphism of
theories occurs in print, as far as I know, only in the 1968 paper reprinted here. It was
taken from Eilenberg’s 1967 AMS Colloquium Lectures.

There was a traditional fuzziness in logic between presentations of theories and the
sort of structures that I call theories. Unfortunately, in my attempt to sharpen that dis-
tinction in order to clarify the mutual transformation and rules of its aspects, I fell no-
tationally afoul of one of the relics of the fuzziness. That is, while affirming that arities
are sets, not ordinal numbers, and in particular, that the role of the “variables” in those
sets is to parameterize projection maps, I inconsistently followed the logicians’ tradition
of writing such parameterizations as though the domains were ordinals. Such orderings
are often indispensable in working with presentations of theories (or of algebras, for ex-
ample using Gröbner bases) but they are spurious structure relative to the algebras or
theories themselves. (Not only arities, but sets of operation symbols occurring in a pre-
sentation, have no intrinsic ordering: for example, the notion of a homomorphism between
two rings is well defined because the same symbols, for plus and for times, are interpreted
in both domain and codomain; this has nothing to do with any idea that plus or times
comes “first”.)

Finally, there was the choice, which I now view as anachronistic, of considering that
an algebraic theory is a category with coproducts rather than with products. The “co-
product” convention, which involves defining algebras themselves as contravariant func-
tors from the theory into the background, indeed did permit viewing the theory itself as
a subcategory of the category of models. However, for logics more general than the equa-
tional one considered here, such a direct inclusion of a theory into its category of models
cannot be expected. The “product” convention permits the concrete definition of models
as covariant functors from the theory; thus the theory appears itself as a generic model.
Moreover, the “product” convention seems to be more compatible with the way in which
algebra of quantities and geometry of figures are opposed. In algebraic geometry, C∞ ge-
ometry, group invariance geometry, etc. it became clear that there were many potential
applications of universal algebra in contexts that do not fit the view that signatures are
more basic than clones (i.e. that no examples of algebra exist beyond those whose alge-
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braic theories are given by presentations). In these geometric (equally concrete) examples,
the algebraic theories typically arise with products, not coproducts. For example, [see also
IV. 1 Example 5] the algebraic theory whose operations are just all smooth maps between
Euclidean spaces is not likely to ever find a useful presentation by signatures, yet its cat-
egory of algebras contains many examples (the function algebras of arbitrary manifolds,
formal power series, infinitesimals) that need to be related to each other by the appropri-
ate homomorphisms.

6. Outlook

Let me close these remarks by expressing the wish that the results of universal algebra
be more widely and effectively used by algebraists in such fields as operator theory and
algebraic geometry (and vice-versa). For example, the Birkhoff theorem on subdirectly
irreducible algebras is very helpful in understanding various Nullstellensätze in algebraic
geometry (and vice-versa), and this relationship could be made more explicit in the study
of Gorenstein algebras or Frobenius algebras. That theorem would also seem to be of use
in connection with Lie algebra. Another striking example is the so-called “commutator”
theory developed in recent decades, which would seem to have applications in specific cat-
egories of mathematical interest such as that of commutative algebra, where a direct ge-
ometrical description of the basic operation of forming the product of ideals, without in-
voking the auxiliary categories of modules, has proven to be elusive.

August 30, 2004
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119–221.

J. Isbell (1964), Subobjects, adequacy, completeness and categories of algebras, Rozprawy
Mat. Soc., 36, 1–32.

P.T. Johnstone (1977), Topos Theory, Academic Press, NY.

J. Kock (2004), Frobenius Algebras and 2D Topological Quantum Field Theories, London
Mathematical Society, Student Texts 59.

C. Lair (1996), Sur le genre d’esquissibilité des catégories modelables (accessibles)
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Introduction

In this paper we attempt to achieve a further unification of general algebra by replacing
‘equationally definable classes of algebras’ with ‘algebraic categories’. This explicit con-
sideration of the categorical structure has several advantages. For example, from the cate-
gory (or more precisely from an underlying-set functor) we can recover, not only the iden-
tities which hold between given operations in a class of algebras, but also the operations
themselves (Theorem III.1.1).

We also give attention to certain functors between algebraic categories, called ‘alge-
braic functors’, which are induced by maps between algebraic theories, and show that all
such functors have adjoints (Theorem IV.2.1). Thus free algebras, tensor algebras, monoid
algebras, enveloping algebras, the extension of a distributive lattice to a Boolean ring, co-
variant extension of rings for modules, and many other algebraic constructions are viewed
in a unified way as functors adjoint to algebraic functors.

There is a certain analogy with sheaf theory here. Namely, our ‘prealgebras’ of a given
type form a category of unrestricted functors, whereas ‘algebras’ are prealgebras which
commute with a specified class of inverse limits. The analogy with sheaf theory is further
seen in the theorem of IV.1.1 which results.

Algebraic functors and algebraic categories are actually themselves values of a certain
functor S which we call semantics. Semantics itself has an adjoint Ŝ which we call al-
gebraic structure. In addition to suggesting a possible principle of philosophy (namely
a generalization of our Theorem III.1.2), these functors serve as a tool which enables us
to give a characterization of algebraic categories (Theorem III.2.1). As a consequence we
deduce that if X is an algebraic category and C a small category, then the category X C

of functors C � X and natural transformations is also algebraic if |C| (the set of ob-
jects in C) is finite (Theorem III.2.2—the last condition is also in a sense necessary) if C
is strongly connected or the theory of X has constants.

Basic to these results is Theorem I.2.5 and its corollaries, which give explicit formulas
for the adjoint of an induced functor between functor categories in terms of a direct limit
over a small category defined with the aid of an operation ( , ) which we also find useful
in other contexts (this operation is defined in I.1).

Chapters II and V cannot be said to contain profound results. However, an acquain-
tance with Chapter II is necessary for the reading of III and IV, as part of our basic lan-
guage, that of ‘algebraic theories’, is developed there. Essentially, algebraic theories are
an invariant notion of which the usual formalism with operations and equations may be
regarded as a ‘presentation’ (II.2.) Chapter V serves mainly to clarify the rest of the pa-

24



6 Introduction 25

per by showing how the usual concepts of polynomial algebra, monoid of operators, and
module may be studied using the tools of II, III, IV.

Now a word on foundations. In I.1 we have outlined, as a vehicle for the introduction
of notation, a proposed first-order theory of the category of categories, intended to serve
as a non-membership-theoretic foundation for mathematics. However, since this work is
still incomplete, we have not insisted on a formal exposition. One so inclined could of
course view all mathematical assertions of Chapter I as axioms. The significance of ‘small’
and ‘large’, however, needs to be explained; in particular, why do we regard the category
of all small algebras of a given type as an adequate version of the category of ‘all’ algebras
of that type? In ordinary Zermelo-Fraenkel-Skolem set theory ZF1, where the existence
of one inaccessible ordinal θ0 = ω is assumed, it is known that the existence of a second
inaccessible θ1 is an independent assumption, and also that if this assumption is made
(obtaining ZF2), the set R(θ1) of all sets of rank less then θ1 is a model for ZF1. Thus
no theorem of ZF1 about the category of ‘all’ algebras of a given type is lost by consid-
ering the category of small (rank less then θ1) algebras of that type in ZF2; but the lat-
ter has the advantage of being a legitimate object (as well as a notion, or meta-object),
amenable to the usual operations of product, exponentiation, etc. Our introduction of C1

is just the membership-free categorical analogue to the assumption of θ1. In order to have
a reasonable codomain for our semantics functor S, we find it convenient to go one step
further and introduce a category C2 of ‘large’ categories. However, if one wished to deal
with only finitely many algebraic categories and functors at a time, C2 could be dispensed
with.



Chapter I

Thecategoryof categories
andadjoint functors

1. The category of categories

Our notion of category is that of [Eilenberg & Mac Lane, 1945]. We identify objects with
their identity maps and we regard a diagram

A
f� B

as a formula which asserts that A is the (identity map of the) domain of f and that B is
the (identity map of the) codomain of f . Thus, for example, the following is a universally
valid formula

A
f� B ⇒ A

A� A ∧ A f� B ∧B B� B ∧ Af = f = fB.

Similarly, an isomorphism is defined as a map f for which there exist A, B, g such that

A
f� B ∧B g� A ∧ fg = A ∧ gf = B.

Note that we choose to write the order of compositions in the fashion consistent with left
to right following of diagrams.

By the category of categories we understand the category whose maps are ‘all’ pos-
sible functors, and whose objects are ‘all’ possible (identity functors of) categories. Of
course such universality needs to be tempered somewhat, and this can be done as fol-
lows. We specify a finite number of finitary operations which we always want to be able
to perform on categories and functors. We also specify a finite number of special cate-
gories and functors which we want to include as objects and maps in the category of cat-
egories. Since all these notions turn out to have first-order characterizations (i.e. char-
acterizations solely in terms of the domain, codomain, and composition predicates and
the logical constants =,∀,∃,⇒,∧,∨,¬ ), it becomes possible to adjoin these characteri-
zations as new axioms together with certain other axioms, such as the axiom of choice, to
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the usual first-order theory of categories (i.e. the one whose only axioms are associativ-
ity, etc.) to obtain the first-order theory of the category of categories. Apparently
a great deal of mathematics (for example this paper) can be derived within the latter the-
ory. We content ourselves here with an intuitively adequate description of the basic op-
erations and special objects in the category of categories, leaving the full formal axioms
to a later paper. We assert that all that we do can be interpreted in the theory ZF3, and
hence is consistent if ZF3 is consistent. By ZF3 we mean the theory obtained by adjoin-
ing to ordinary Zermelo-Fraenkel set theory (see e.g. [Suppes, 1960]) axioms which insure
the existence of two inaccessible ordinals θ1, θ2 beyond the usual θ0 = ω.

The first three special objects which we discuss are the categories 0, 1, 2. The empty
category 0 is determined up to unique isomorphism by the property that for every cate-
gory A, there is a unique functor 0 � A. The singleton category 1 is defined dually;
the objects in any category A are in one-to-one correspondence with functors 1 � A.
A constant functor is any which factors through 1. The arrow category 2 is, intuitively,
the category

• � •
0 1

with three maps, two of which are objects, denoted by 0,1 (not to be confused with cat-
egories 0, 1), the third map having 0 as domain and 1 as codomain. The category 2 is a
generator for the category of categories, i.e.

∀A,∀B,∀f,∀g, [A f� B ∧ A
g� B ∧ ∀u[2 u� A ⇒ uf = ug] ⇒ f = g].

Furthermore 2 is a retract of every generator; i.e.

∀G[G is a generator ⇒ ∃f,∃g[2 f� G ∧ G
g� 2 ∧ fg = 2]].

These two properties, together with the obvious fact that 2 has precisely three endofunc-
tors, two of which are constant, characterize 2 up to unique isomorphism. There are ex-
actly two functors 1 � 2, which we denote by 0, 1. For any category A, we define u ∈ A

to mean 2
u� A, and if the latter is true we say u is a member of A or a map in A. Al-

though this ‘membership’ has almost no formal properties in common with that of set
theory, the intuitive meaning seems close enough to justify the notation.

We do have the following proposition for every functor A
f� B:

∀x[x ∈ A ⇒ ∃!y[y ∈ B ∧ y = xf ]].

Thus ‘evaluation’ is a special case of composition.
The first five operations on categories and functors which we mention are product,

sum, equalizer, coequalizer and exponentiation. For any two categories A, B there is a

category A×B, called their product, together with functors A×B
p� A, A×B

q� B,
called projections, such that

∀C,∀f,∀g C
f� A ∧ C

g� B ⇒ ∃!h[hp = f ∧ hq = g].
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C

��
�
�
�
�

f
�
�
�
�
�

g

�

A �
p

A × B

h

�

q
� B

Taking C = 2, it is clear that the maps in A × B are in one-to-one correspondence
with ordered pairs 〈x, y〉 where x ∈ A and y ∈ B. (A similar statement holds for ob-
jects, as is seen by taking C = 1.) In fact, for any C, f, g, h, as in the diagram, we write
h = 〈f, g〉. The sum A + B and the associated injections are described by the dual (co-

product) diagram. Every member 2
u� A + B factors through exactly one of the injec-

tions A � A+B, B � A+B; however, this does not follow from the definition above.
Both products and sums are unique up to unique isomorphisms which commute with the
‘structural maps’ (projections and injections, respectively). A similar statement holds for
equalizers, coequalizers, and functor categories, which we now define.

Given any categories A, B and any functors f , g such that A
f�
g
� B (i.e. A

f� B∧

A
g� B), there is a category K and a functor K

k� A such that

kf = kg ∧ ∀C ∀h [C
h� A ∧ hf = hg ⇒ ∃!j [C

j� K ∧ h = jk]].

C

�..
..
..
..
..
..
..

j
�
�
�
�
�

h

�

K
k

� A

f �

g
� B

K is called the equalizer of f , g, but since this is really an abuse of language, we usu-
ally write k = fEg. Taking C = 2, it is clear that the members of K are in one-to-one
correspondence with those members of A at which f , g are equal.

Coequalizers are defined dually, and we write k∗ = fE∗g, where B
k∗� K

∗ is the
structural map of the coequalizer K

∗ of f , g. The objects in K
∗ are equivalence classes of

objects of B, B being equivalent to B′ if there exists a ∈ A such that af = B ∧ ag = B′.
The maps in K

∗ are equivalence classes of admissible finite nonempty strings of maps in
B; here a string 〈u0, . . . , un−1〉 is admissible iff for every i < n − 1, the codomain of ui
is equivalent to the domain of ui+1, in the above sense; two strings are equivalent if their
being so follows by composition (i.e. concatenation), reflexivity, symmetry, and transi-
tivity from the following two types of relations: two strings 〈u0〉 and 〈u′0〉 of length one
are equivalent if ∃x ∈ A [xf = u0 ∧ xg = u′0]; a string 〈u0, u1〉 of length two is equiva-
lent to a string 〈v〉 of length one if u0u1 = v in B. Thus, for example, the coequalizer of

1
0�
1
� 2 is the additive monoid N of non-negative integers. (A monoid is a category A
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such that ∃! 1 � A.) This example shows that, in contrast to the situation for alge-
braic categories (see Chapter III), coequalizers in the category of categories need not be
onto, although they are of course ‘epimorphisms’, i.e. maps which satisfy the left cancel-
lation law.

Before defining exponential (functor) categories, we point out that the operation of

forming the product is functorial. That is, given any functors A
f� A

′, B
g� B

′, there
is a unique functor A×B � A

′×B
′ which commutes with the projections; we denote it

by f ×g. If A
′ f1� A

′′, B
′ g1� B

′′ are further functors, then (f ×g)(f1×g1) = ff1×gg1

by uniqueness. Analogous propositions hold for sums.
Now given any two categories A, B, there exists a category B

A called the exponential

or functor category of A, B, together with a functor A×B
A

e� B called the evaluation
functor, such that

∀C ∀f [A × C
f� B ⇒ ∃!g [C

g� B
A ∧ f = (A × g)e]].

We sometimes write g = {f}.

A × C

�
�
�
�
�
�
�
�
�
�
�
�

f

	
A × B

A

A

�

g

�

e
� B

Taking C = 1, and noting that A×1 ∼= A (isomorphic) for all A, it follows that the objects
in the functor category B

A are in one-to-one correspondence with the functors A � B.
Since A×2 ∼= 2×A, it follows also that the maps in B

A are in one-to-one correspondence
with the functors A � B

2 with domain A and codomain B
2. The latter is not to be

confused with B×B, which is isomorphic to B
|2| (defined below). In fact the members of

B
2 are in one-to-one correspondence with functors 2 × 2 � B, which in turn can be

identified with commutative squares in B, for 2 × 2 is a single commutative square

00 • � • 01

10 •
�

� •
�

11

as can be proved using methods described below. The maps in a functor category are
usually called natural transformations. Exponentiation is functorial in the sense that
given

A
′ f� A , B

g� B
′,
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there is a unique functor B
A

gf
� B

′A′
such that the diagram

A
′ × B

A
f × B

A

� A × B
A

B

e

�

A
′ × B

′A′

A
′

�

gf

�

e′
� B

′

g

�

is commutative. If A
′′ f1� A

′, B
′ g1� B

′′ are further functors, then by uniqueness

(gg1)
ff1 = gfgf11 .

Godement’s ‘cinq règles de calcul functoriel’ [Godement, 1958] now follow immediately.
Products are associative; in particular for any three categories A, B, C, there is a unique
isomorphism

A × (BA × C
B)

α� (A × B
A) × C

B

which commutes with the projections. Using this we can construct a unique ‘composition’
functor γ such that

A × (BA × C
B)

α � (A × B
A) × C

B

B × C
B

e

�

C
B

�

A × C
A

A

�

γ

�

e
� C

e

�

One has isomorphisms
B

(A+A′) ∼= B
A × B

A′

(B × B
′)A ∼= B

A × B
′A

B
A×A′ ∼= (BA)A′

B
1 ∼= B

B
0 ∼= 1.
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Furthermore, the existence of exponentiation implies that

A × (B + C) ∼= A × C + A × C,

this being a special case of a general theorem concerning adjoint functors Theorem

2.3. The two maps 1
0�
1
� 2 induce the domain and codomain functors B

2 D0� B and

B
2 D1� B for each category B.

We now define a set to be any category A such that the unique map 2 � 1 induces
an isomorphism

A ∼= A
1 ∼= A

2.

That is, a set is a category in which every map is an object (identity). Note that the word
‘set’ here carries no ‘size’ connotation; we could equally well use the word ‘class’. Two
further operations on categories can now be defined. For any category A, there exists a

set |A|0 and a functor |A|0
i� A, such that

∀S ∀f [S ∼= S
2 ∧ S

f� A ⇒ ∃!h [hi = f ]].

S

�
�
�
�
�

f

�

|A|0

h

�

i
� A

We call |A|0 the set of objects of A. Every functor A
f� A

′ induces a unique functor

|A|0
|f |0� |A|0 commuting with i, i′, and A

′ f1� A
′′ implies |ff1|0 = |f |0|f1|0.

The members of |A|0 (i.e functors 2 � |A|0) are in one-to-one correspondence with
functors 1 � A, and we sometimes, by abuse of notation, use A ∈ |A|0 to mean that

1
A� A. Note that |A2|0 is the set of maps of A.
Dually, we define |A|1, the set of components of A to be a set which has a map

A � |A|1 universal with respect to functors from A to sets. The members of |A|1 may
be regarded as equivalence classes of objects of A, two objects A, A′ being equivalent if
there exists a finite sequence of objects and maps

A � A1
� A2

� A3
� . . . � A′

in A. Clearly this operation is also functorial. The composite map

|A|0 � A � |A|1

is always onto. It is an isomorphism iff A is a sum (possibly infinite) of monoids. A is
connected if |A|1 ∼= 1.
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The existence of the two operations | |0 and | |1 implies that products, sums, equaliz-
ers, and coequalizers of sets are again sets (again appealing to Theorem 2.3).

We often abbreviate | |0 to | | and denote by |A| the set of objects of A.

Given two functors A
f� B, A

′ f ′� B with common codomain, we define their meet
M to be the equalizer of the pair A×A

′ �� B consisting of pf and p′f ′ (p, p′ being the
projections from the product). The meet satisfies the following:

g′f ′ = gf ∧ ∀C ∀h ∀h′ [C h� A ∧ C
h′� A

′ ∧ h′f ′ = hf ⇒
∃!k[kg = h ∧ kg′ = h′]].

C

..............

k

�




























h

�

������������

h′


M

g′ � A
′

A

g

�

f
� B

f ′

�

For example, if f ′ is a monomorphism (i.e. cancellable on the right) then so is M
g� A,

which may be called the inverse image of f ′ under f . If f is also a monomorphism then
so is M � B, which may be called the intersection of f , f ′.

Comeets are defined dually. For example, the category 3 may be defined as a comeet
as follows:

1
0 � 2

2

1

�

01
� 3

12

�

Although it does not follow from this definition above, it is a fact about the category of
categories that there is exactly one non-constant map 2 � 3 in addition to the two dis-
played above; we denote this third map by 02. Intuitively the category 3 may be pictured
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thus:

1•

�
�
�
�
�

01
� �

�
�
�
�

12

�

0 •
02

� • 2

Like 2, 3 is an ordinal; in particular it is a preorder, i.e. a category A such that any pair

of maps 1
A�
B
� A has at most one extension to a map u such that

2
u� A ∧ A = 0u ∧B = 1u.

1
0 � 2 1

1 � 2

�
�
�
�
�

A
�

�
�
�
�
�

B
�

A

u

�
A

u

�

We have already pointed out that members of any category A ‘are’ simply functors
2 � A. Among such members, we now show how to define the basic predicates do-
main, codomain, and composition entirely in terms of functors in the category of cate-
gories. Suppose x, y, u, a, b are all functors 2 � A. Then

a is the A-domain of x iff

2
a � A

1
�

0
� 2

x

�

is commutative.

b is the A-codomain of x iff
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2
b � A

1
�

1
� 2

x

�

is commutative.

and u is a A-composition of 〈x, y〉 iff

2 2

�
�
�
�
�

0
� �

�
�
�
�

12
�

�������������������

y

�

������������

u


1 3

02

�
� A

�
�
�
�
�

1
� �

�
�
�
�

01
�

��
��

��
��

��
��

��
��

��
�

x

�

2

is commutative.

By relativising quantifiers to functors 2 � A, one extends the above scheme so that
to every formula ϕ of the usual first-order theory of categories, there is another formula
ϕA with one more free variable A, which states in the language of the category of cate-

gories that ϕ holds in A. In particular, one can discuss a
x� b, commutative triangles

and squares, etc. in A. We have the obvious

Metatheorem. If ϕ is a sentence provable in the usual first-order theory of categories,
then the sentence ∀A[ϕA] is provable in the first-order theory of the category of categories.

By use of the technique just outlined one can, e.g., deduce the precise nature of do-
main, codomain, and composition in a functor category or product category.

We say that two functors A
f�
g
� B are equivalent iff the two objects

1
{f}� B

A, 1
{g}� B

A, which correspond to them in the functor category are isomorphic

in B
A. Categories A, B are equivalent if there exist functors A

f��
g

B such that {fg}
is isomorphic in the category A

A to the object {A} and {gf} is isomorphic in B
B to the
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object {B} ({A} and {B} being the objects in the functor categories corresponding to the
respective identity functors). In the latter case, f and g are called equivalences.

There are still some special objects in the category of categories which we will need
to describe. Chief among these are C1, the category of small categories and C2, the
category of large categories. In terms of the set theory ZF3, a model for Ci may be
obtained by considering the category of all categories and functors which are of rank less
than θi, the i-th inaccessible ordinal (i < 3).

In terms of the theory of the category of categories, C1 may be described as an object
such that:
(1) C1 has all properties we have thus far attributed to the category of categories. (Here

we use the ϕA technique.) This includes the existence of 0, 1, 2, E, E∗, | |0, | |1, and
exponentiation.

(2) C1 is closed under products and sums over all index sets S which are equal in size
to some object in C1. (The precise meaning of infinite products and sums will be
explained in Section 2.) A way of expressing the equipotency condition will be ex-
plained below.

(3) For any category C having the properties (1) and (2), there is a functor C1
� C

which preserves 0, 1, 2, E, E∗, Π, Σ, | |0, | |1, and exponentiation, and which is
unique up to equivalence.

One can then describe C2 by the same three properties, except that (1) now includes
the existence of an object in C2 having all the properties in C2 which C1 has in the master
category (i.e. in the theory of the category of categories).

Proposition. C1 and C2 are unique up to equivalence and there is a canonical C1
� C2.

The category C0 of finite categories is somewhat more difficult to describe in the first-
order theory of the category of categories, because, as already pointed out, it is not closed
under E∗.

The existence of the category S0 of finite sets, the category S1 of small sets, and the
category S2 of large sets now follows, as does the existence of categories M0, M1, M2

of monoids. Note that these are all objects in our master category. There are also ob-

jects 1
{S1}� C2, 1

{M1}� C2 in C2 which correspond to S1, M1. Of course there are many
categories which appear as objects in our master category but which are larger than any
object in our category of ‘large’ categories C2, for example C2 itself, the Boolean algebra
2|C2|, etc. Whenever we refer to ‘the’ category of sets, monoids, etc., we ordinarily mean
S1,M1, in general the full category of small objects of the stated sort, choosing any (not
larger than) large version.

There is also a category ω which is an ordinal number and which is such that |ω| =
|N2|. Of course ω, N, S0 are all quite different as categories, but we can choose a version
of S0 such that

|S0| = |ω| = |N2| = N.
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(Note that | | is not preserved under equivalence.) The common(set) value N has the

property that there exists an object 1
0� N and a functor N

s� N such that for

every category C, for every object 1
C� C, and every functor C

t� C there exists a

unique functor N
f� C such that

1
0 � N

s � N

1

∼=

�

C
� C

f

�

t
� C

f

�

is commutative. This ‘Peano postulate’ characterizes the triple 〈N, 0, s〉 up to a unique
isomorphism which preserves 0, s. The elementary properties of recursion follow easily.

Finally we mention two very important operations in the category of categories whose
existence can be derived from what we have said. One is dualization, which assigns to
each category A the category A

∗ obtained by interchanging domains and codomains and

reversing the order of composition. Each functor A
f� B induces A

∗ f∗� B
∗, and

(fg)∗ = f ∗g∗ for B
g� C. Also A∗∗ ∼= A. This shows that we must take the two maps

1
0�
1
� 2 as primitives in formalizing the first-order theory of the category of categories,

because dualization is an automorphism which preserves the categorical structure but in-
terchanges 0 and 1, whereas we need to distinguish between these in a canonical fashion
in order to define ϕA, C1, etc.

The other operation is one which we denote by ( , ). It is defined for any pair of func-

tors A
f� B, A

′ f ′� B with a common codomain, and is determined up to unique
isomorphism by the requirement that all three squares below be meet diagrams:

(f, f ′)

��
�
�
�
� �

�
�
�
��

(f,B) (B, f ′)

��
�
�
�
� �

�
�
�
�� ��

�
�
�
� �

�
�
�
��

A B
2

A
′

�
�
�
�
�

f
� ��

�
�
�
�

D0

�
�
�
�
�

D1
� ��

�
�
�
�

f ′

B B
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It follows that the maps in the category (f, f ′) are in one-to-one correspondence with
quadruples 〈u0, x, x

′, u1〉 where u0 ∈ B, u1 ∈ B, x ∈ A, x′ ∈ A
′ and such that

• xf � •

•

u0

�

x′f ′
� •

u1

�

is a commutative square in B. The domain of the above map is 〈u0, xD0, x
′D0, u0〉 and

the codomain is 〈u1, xD1, x
′D1, u1〉, and the composition of 〈u0, x, x

′, u1〉, 〈u1, y, y
′, u2〉 is

〈u0, xy, x
′y′, u2〉. In particular, the objects of (f, f ′) are in one-to-one correspondence with

triples 〈a, u, a′〉 where a ∈ |A|, a′ ∈ |A′|, u ∈ B, and uD0 = af , uD1 = a′f ′.
For example, if A = 1, then f is an object in B, say f = B, the objects of (B, f ′)

are in one-to-one correspondence with pairs 〈u,A′〉 where B
u� A′f ′, and the maps in

(B, f ′) are commutative triangles in B of the form:

A′0f
′

�
�
�
�
�
�
�
�
�

u0

�

B x′ ∈ A
′

�
�
�
�
�
�
�
�
�

u1

�
A′1f

′

x′f ′

�

In particular, A
′ can be a subcategory of B.

A case of the ( , ) construction which will play an important role in Chapter III is

(C2, {S1}). The objects of this category are functors X U� S1 whose codomain is the
category of small sets and functions and whose domain is arbitrary large (smaller than
θ2) category X . Maps in (C2, {S1}) are commutative triangles

X T � X ′

�
�
�
�
�

U
� ��

�
�
�
�

U ′

S1
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If A = A
′ = 1, then f , f ′ are both objects in B, and (f, f ′) always reduces to a set,

the set of maps in B with domain f and codomain f ′. The condition referred to earlier in
the discussion of Ci can now be formalized. According to condition (1) in the description
of Ci, there is an object 1i : 1 � Ci having the properties in Ci that 1 has in the master
category.

Definition. A set S is equipollent with a set of Ci iff there is an object 1
S� Ci in

Ci such that (1i, S) ∼= S.

As the final topic of this section, we discuss full, faithful, and dense functors. Let

A
f� B be a functor. Note that for every pair of objects 1

a�
a′
� A in A, there is an

induced map
(a, a′) � (af, a′f ′).

Definition. f is full iff the above induced map is an epimorphism of sets for every pair
〈a, a′〉 of objects. f is faithful iff the induced map is a monomorphism of sets for every
pair of objects. f is dense iff for every object b ∈ |B| there is an object a ∈ |A| such that
af ∼= b in B. For example, the inclusions C1

� C2, Mi
� Ci, and Si � Ci are full

and faithful, but not dense.

A proof of the following proposition will be found, for example, in Freyd’s dissertation
[Freyd, 1960].

Proposition. A functor A
f� B is an equivalence iff it is full, faithful, and dense.

2. Adjoint functors

As pointed out in Section 1, for any two objects 1
A�
A′
� A in a category A, the category

(A,A′) is a set; however it need not be a small set (or even a ‘large’ set in our sense) so
that in general ( , ) does not define a functor A

∗ × A � S1 (although the latter is of
course true for many categories of interest). This fact prevents us from giving the defini-
tion of adjointness in a functor category SB∗×A

1 as done by [Kan, 1958]. However we are
able to give a definition free of this difficulty by making use of the broader domain of our
( , ) operation.

Note that if A
f� B, B

g� A are any functors, then there is a functor

(B, f)
f� B × A



2 Adjoint functors 39

defined by the outer functors (B, f) � B
2 D0� B and (B, f) � A in the diagram

(B, f)

��
�
�
�
� �

�
�
�
��

B
2

A

��
�
�
�
�

D0

�
�
�
�
�

D1
� ��

�
�
�
�

f

B B

Similarly, there is a functor (g,A)
g� B×A induced by the outer functors (g,A) � B

and (g,A) � A
2 D1� A in the diagram

(g,A)

��
�
�
�
� �

�
�
�
��

B A
2

�
�
�
�
�

g
� ��

�
�
�
�

D0

�
�
�
�
�

D1
�

A A

Note that if 〈x, b, a, x′〉 is a typical map in (B, f) (i.e. bx′ = x(af)) then 〈x, b, a, x′〉f =
〈b, a〉, and analogously for g.

Definition. If A
f� B and B

g� A, then we say g is adjoint to f (and f is co-
adjoint to g) iff there exists an isomorphism h rendering the triangle of functors

(B, f)
h � (g,A)

�
�
�
�
�

f
� ��

�
�
�
�

g

B × A

commutative, where f , g are the functors defined above.
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Theorem 1. For each functor A
f� B, there exists a functor B

g� A such that g is ad-

joint to f iff for every object B ∈ |B| there exists an object A ∈ |A| and a map B
ϕ� Af

in B such that for every object A′ ∈ |A| and every map B
x� A′f in B, there exists a

unique map A
y� A′ in A such that x = ϕ(yf) in B:

B
ϕ � Af

�������������

x



B

A′f

yf

�

Proof. If g is adjoint to f , let B be an object in B. Regarding the identity map
(B)g � Bg as an object in (g,A) and applying the functor h−1 we obtain an object

B
ϕ� Bgf in (B, f) such that (ϕ)h = Bg, since f = hg. If B

x� A′f is any ob-
ject in (B, f) of the displayed form, then (x)h is an object Bg � A. We wish to show
that A = Bg, ϕ satisfy the condition in the statement of the theorem. For this we show
that y = (x)h satisfies the above commutative triangle and is uniquely determined by
that condition. Consider the objects ϕ, x ∈ |(B, f)| and Bg, y ∈ |(g,A)| in the diagrams
below. We have

(ϕ)h = Bg

(x)h = y

B
u � B Bg

Bg � Bg

B
h� A

Bgf

ϕ

�

v
� A′f

x

�
Bg

Bg

�

y
� A′

y

�

Obviously 〈Bg, y〉 defines a map Bg � y in (g,A), i.e. the right hand square above
is commutative. Let 〈u, v〉 be h−1 of 〈Bg, y〉. Then the left hand square is commutative
(i.e. defines a map ϕ � x in (B, f)) and, again because of the assumed commutativity
property of h, we have u = B (identity map) and v = yf . Hence ϕ(yf) = x in B. To

show uniqueness, suppose Bg
y′� A′ is such that ϕ(y′f) = x. Then taking u = B,

v = y′f , one gets a map ϕ � x in (B, f) and applying h to it one gets (Bg)y = (Bg)y′,
where as before y = (x)h (again using the fact that h commutes with the two functors f ,
g to B × A); but Bg is an identity map, hence y = y′.

Conversely, if the condition of the theorem holds, then we choose for each B ∈ |B|
a pair 〈A,ϕ〉 satisfying the condition. Then setting Bg = A, a functor |B| � |A|
is defined for objects, which by the condition has a well-defined extension to a functor
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B
g� A defined for all maps in B. We then define a functor (B, f)

h� (g,A) as fol-
lows. Given any map x � x′ in (B, f) defined, say, by 〈b, a〉 as below,

B
b � B′

�
�
�
�
�

ϕ

� ��
�
�
�
�

ϕ′

Bgf
bgf� B′gf

�..
..
..
..
..
..
..

yf

..............
y′f

�

Af

x

�

af
� A′f

x′

�

the resulting square

Bg
bg � B′g

A

y

�

a
� A′

y

�

′

is a map in (g,A), by uniqueness. Define 〈x, b, a, x′〉h = 〈y, b, a, y′〉. Then h is clearly a

functor (B, f)
h� (g,A) such that f = hg. It is also clear that h is one-to-one and onto,

hence an isomorphism.

The above theorem shows that our notion of adjointness coincides with that of [Kan,
1958].

Corollary. For any functor f , there is up to equivalence at most one g such that g is ad-
joint to f . If g is adjoint to f and g′ is adjoint to f ′ where

A
f� B

f ′� C

then g′g is adjoint to ff ′. Further if g is adjoint to f and t is co-adjoint to g, then t is
equivalent to f .

The above theorem and corollary have obvious dualizations for co-adjoints.
For any categories A, D the unique functor D � 1 induces a functor A � A

D.
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Definition. A is said to have inverse limits over D if the functor
A � A

D has a co-adjoint. Dually A has direct limits over D if A � A
D has an

adjoint. We denote these functors co-adjoint and adjoint to A � A
D by lim

←D

and lim
→D

,

respectively, when they exist, or by lim A

←D

, limA

→D

if there is any danger of confusion. (We

will violate our customary convention for the order of composition when evaluating limit
functors.)

If D
f� A, then we also sometimes write

←
f = limA

←D

({f})

→
f = limA

→D

({f})

if these exist, where {f} is the object in A
D corresponding to f . Note that the latter no-

tation is unambiguous since f determines its domain D and codomain A. (It is ‘ambigu-
ous’ in the sense that the limit functors are defined only up to a unique equivalence of

functors.)
←
f and

→
f are objects in A if they exist.

In particular, if D is a set we write

Π
D

= lim
←D

�
D

= lim
→D

in any A for which the latter exist, and we call these operations product and coproduct,
respectively. In the categories Si, Ci, or in Ai (the categories of finite, small, and large
abelian groups), where the practice is customary, we replace � by

∑
, and in the category

Rc of (small) commutative rings with unit, we replace � by ⊗. In particular if D = |2|
and D

A� A, we write
A0 × A1 = lim

←D

(A)

A0 � A1 = lim
→D

(A)

when these exist.
Also, when D is a set, say S = |D| ∼= D, and whenever 1

A� A, we write

AS = lim
←D

(AA
D→1)

S · A = lim
→D

(AA
D→1)

for the ‘S-fold product and S-fold coproduct of A with itself’, respectively, when these
exist. That is, AS is the composite

1
A� A � A

D

Π
D� A
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and S · A is the composite

1
A� A � A

D

�
D� A

where S = |D| ∼= D. Note that in the categories Ci (and Si) the notation AS agrees essen-
tially with the exponential notation already adopted, and that similarly S · A = S ′ × A
in Ci, where S ′ in an object in Ci, which is a ‘set’ in Ci, such that (1i, S

′) ∼= S ∼= D, when
such exist (i.e. when S is equipollent to a set of Ci.)

The category E is defined by the requirement that

|2| i � 2

2

i

�
� E

�

be a comeet diagram. E may be pictured thus:

0• �� •1

The functors E
a� A are in one-to-one correspondence with pairs 〈a′, a′′〉 of maps in A

such that a′D0 = a′′D0 ∧ a′D1 = a′′D1 in A. If limA

←E

and limA

→E

exist, then we denote by

lim
←E

(a)
a′Ea′′� A

and
A′

a′E∗a′′

lim
→E

� (a)

the canonical maps associated with these limits (analogous to ϕ in Theorem 2.1), where
A = a′D0 = a′′D0 and A′′ = a′D1 = a′′D1 in A. We call these limits the equalizer and
coequalizer, respectively, of a in A. Note that (by Theorem 2.1), we have

(a′Ea′′)a′ = (a′Ea′′)a′′

a′(a′E∗a′′) = a′′(a′E∗a′′)

in A.
If limA

←0
and limA

→0
exist, then, since A

0 ∼= 1, these functors may be regarded as objects

in A, which we denote by 1A and 0A, respectively; these are unique up to unique isomor-
phism in A. By Theorem 2.1, 1A is characterized by the property that for every A ∈ |A|
there is a unique A � 1A in A; dually for 0A.
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Definition. A is said to have finite limits iff limA

←D

and limA

→D

exist for every finite cate-

gory D (i.e. for every D such that |D2| is equipollent to a set of C0 (or S0)). A is said to be
left complete iff limA

←D

exists for every small category D (i.e. for every D such that |D2|
is equipollent to a set of C1 (or S1)). Dually, A is right complete if it has small direct
limits. A is complete iff it is left complete and right complete.

The following fact was pointed out to the author by Peter Freyd.

Theorem 2. A category A is left complete iff A has equalizers and arbitrary small prod-
ucts.

Proof. Let D be any small category and D
f� A any functor. We construct

←
f as

follows. Let |D| f� A be the functor determined by the diagram

|D| � D..................................

f


|A|

|f |

�
� A

f

�

and consider also the functor |D2| |D1|� |D| where D1 is the codomain functor of D. Then,
since |D|, |D2| are both small sets, the existence of the two objects in the diagram below
is assured.

Π
|D|
f

a′ �

a′′
� Π
|D2 |

|D1|f

We must now define the maps a′, a′′ in A. For each D ∈ |D|, let Π
|D|
f̄

p
D� Df denote

the canonical projection. (The family of pD’s determines the map of Theorem 2.1 in this
case.) For each x ∈ |D2| consider

Π
|D|
f̄

p(xD1)� (xD1)f.

This family of maps determines a unique map Π
|D|
f̄

a′′� Π
|D2 |

|D1|f̄ such that for every x ∈

|D2|, a′′qx = p(xD1) where Π
|D2 |

|D1|f
qx� (xD1)f is the canonical projection of the second

product. Now consider also, for x ∈ |D2|, the composite map

Π
|D|
f

p(xD0)� (xD0)f
xf� (xD1)f.
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This family determines a unique Π
|D|
f

a′� Π
|D2 |

|D1|f such that a′qx = p(xD0)(xf) for every

x ∈ |D2|. We now let A denote the equalizer of the functor E
a� A determined by

〈a′, a′′〉:

A
a′Ea′′ � Π

|D|
f

a′ �

a′′
� Π
|D2 |

|D1|f

We wish to show A ∼=
←
f . For each D ∈ |D|, let A

ϕD� Df be the composite ϕD =

(a′Ea′′)pD. We need to show that the family ϕD for D ∈ |D| defines a map (A)A(D→1) ϕ� {f}
in A

D, and that 〈A,ϕ〉 is universal with respect to that property. Because the maps in

A
D are natural transformations, the first is true since for every D

x� D′ in D, we have

ϕ
D

(xf) = (a′Ea′′)p
D
xf = (a′Ea′′)a′qx

= (a′Ea′′)a′′qx = (a′Ea′′)pD′

= ϕD′ .

To show the universality we consider any other family ψD, D ∈ |D| such that for every

D
x� D′ in D, ψD(xf) = ψD′ :

Df

�
�
�
�
�

ψD
�

X

�
�
�
�
�

ψD′
�

D′f

xf

�

By the universal property of products (i.e. by Theorem 2.1 applied to Π
|D|

) the family ψ

determines a unique map X
b� Π

|D|
f such that bpD = ψD for all D ∈ |D|. Then for every

x ∈ D, we have (in A)

ba′′qx = bp(xD1) = ψ(xD1) = ψ(xD0)(xf)

= bp(xD0)(xf) = ba′qx.

By uniqueness, ba′′ = ba′; i.e. b ‘equalizes’ 〈a′, a′′〉. Therefore ∃!X
y� A such that

y(a′Ea′′) = b. But by construction y is also the unique map satisfying ψD = yϕD for all

D ∈ |D|. This proves that A ∼=
←
f .
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Because Theorem 2.2 obviously has a dual, we have the

Corollary. A category A is complete iff A has equalizers, coequalizers, small products, and
small coproducts.

Also we can establish a second

Corollary. A category has finite limits iff A has inverse and direct limits over the three
categories 0, |2|, E.

Proof. By the proof of Theorem 2.2, we need only show that A has products and
coproducts over finite sets. We have assumed that limA

←0
and limA

→0
exist, and for any A

we have that
limA

→1

∼= limA

←1

∼= {A} in A
A1

.

We have also assumed that limits exist over |2| ∼= 1 + 1. Then if n is any finite set

for which we know Π
n

exists, and if n + 1
A� A is any functor, consider the injections

n
j� n + 1, 1

(n)� n + 1 and the binary product (Π
n
jA) × An. Defining projections

p0, . . . , pn−1, pn by the compositions

(Π
n
jA) × An

��
�
�
�
�

q
�
�
�
�
�
�
�
�
�
�
�
�
�

q′ = pn

�

Π
n
jA

��
�
�
�
�
�
�
�
�

p0

��
�
�
�
� �

�
�
�
�

pn−1

�

A0 A1 · · · An−1 An

it is clear that the correct universal mapping property holds, so that
(Π
n
jA) × An ∼= Π

n+1
A, completing the proof by induction.

In particular, one can define meets and comeets in A, for any category A satisfying
the condition of the corollary, as inverse and direct limits over the categories defined re-
spectively by the comeet diagrams



2 Adjoint functors 47

1 2

2

•
0

•
1

0′•

� �

�

�

1

01

� �

1 0′1

1 2

2

•
1

0• 1′•�

�

�

�

0

01

� �

0
01′

Note that limA

←2

∼= D0 and limA

→2

∼= D1 exist for any category.

Definition. A functor A
f� B is said to commute with inverse limits over D iff

limA

←D

and limB

←D

exist and the diagram

A
D

fD

� B
D

A

limA

←D

�

f
� B

limB

←D

�

is commutative up to an equivalence in B
(AD). Similarly for direct limits. f is said to be

left exact iff f commutes with inverse limits over every finite D, and f is left continu-
ous iff it commutes with inverse limits over every small D. Similarly, right exact, right
continuous, exact, continuous are defined.
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Remark. For additive functors between abelian categories, our notions of exactness are
equivalent to the customary ones, as was shown by [Freyd, 1960].

Definition. A functor C
u� D will be called left pacing iff C is small and for every

D
t� A with A left complete,

limA

←C

(ut) ∼= limA

←D

(t) in A

(and in particular, the latter exists).

The following two theorems are also due in essence to [Freyd, 1960].

Theorem 3. Let A
f� B be a functor with A, B left complete. Then there exists g ad-

joint to f iff f is left continuous and for every B ∈ |B|, there exists a small category CB

and a left pacing functor CB
u� (B, f).

Proof. Suppose f has an adjoint g, and suppose D is any small category and D
t� A

is any functor. Let L = limA

←D

(t) and let λD, for D ∈ |D|, denote the associated canonical

maps, i.e. for every D
x� D′ in D, λD(xt) = λD′ , where L

λD� Dt. We wish to show
that Lf , together with λDf for D ∈ |D|, satisfies the universal property (Theorem 2.1)

which characterizes limB

←D

(tf). Since (λDf)(xtf) = λD′f for every D
x� D′ in D, we

need only show that for any family ψD, having the property that ψD(xtf) = ψD′ , for all

D
x� D′ in D, there is a unique map X

y� Lf such that for all D ∈ |D|, ψD = y(λDf),
where X is the common domain of the ψD:

Dtf

��
��

��
��

��
��

ψD

�

�
�
�
�
�

λDf

�

X
y � Lf in B.

������������

ψD′



�
�
�
�
�

λD′f

�

D′tf

xtf

�



2 Adjoint functors 49

To establish this, note that by the definition of adjointness there is an isomorphism

(B, f)
h� (g,A) such that hg = f . In particular, we have

Dt

�
�
�
�
�
�
�
�
�

(ψD)h

�

Xg in A.
�
�
�
�
�
�
�
�
�

(ψD′)h
�
D′t

xt

�

Thus there is a unique map Xg
y� L in A such that (ψD)h = yλD for all D ∈ |D|.

Then applying h−1 we get a unique y ∈ B such that ψD = y(λDf) for all D ∈ |D|, as

required. Also, if f has an adjoint g, the object B
ϕ� Bgf is isomorphic to 1(B,f), hence

the functor 1 � (B, f) determined by the object ϕ is left pacing.
Conversely, suppose that conditions of the theorem are satisfied. The canonical

(B, f)
t� A has an inverse limit A in A, which we will show satisfies the condition of

Theorem 2.1. First we must define a map B
ϕ� Af . For this, let λx denote the canon-

ical map A � xt, for each object B
x� (xt)f in (B, f). For every map x

a� x′ in
(B, f)

B

��
�
�
�
�

x
�
�
�
�
�

x′

�

(xt)f
af

� (x′t)f

we have λxa = λx′ . Now since A is also an inverse limit over the small category CB and
since f is left continuous, Af is the inverse limit of the functor tf , with associated maps

Af
λxf� xtf . Since for every map x

a� x′ in (B, f), x(af) = x′ and a = 〈x, a, x′〉t, there

is a unique map B
ϕ� Af such that ϕ(λxf) = x in B for every x ∈ |(B, f)|. This defines

ϕ and also shows, for each x, the existence of y satisfying the condition of Theorem 2.1;
we need now only show uniqueness, i.e. if ϕ(yf) = x, then y = λx. For this consider the
equalizer K of the functor E � A defined by 〈y, λx〉:

K
yEλx � A

y �

λx
� xt.
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Because f is left continuous, Kf is also the equalizer of 〈yf, λxf〉, and since ϕ ‘equalizes’
the latter, there is a unique z such that the left hand triangle below is commutative in B:

B

�......
......

......
......

......
......

......
......

...

z
�
�
�
�
�

x

�

Kf
(yEλx)f = (yf)E(λxf)

� Af

ϕ

� y �

λx
� xtf

As B
z� Kf is an object in (B, f), there is a map A

λz� K = zt. For any x′ ∈ |(B, f)|
we have:

Kf

��
��

��
��

��
��

��
��

��
�

z

�

B
ϕ � Af

(yEλx)f

�

�������������������

x′

�
x′tf

λx′f

�

i.e. 〈z, (yEλx)λx′ , x′〉 is a map in (B, f) at which t takes the value (yEλx)λx′ . Hence

K = zt

�
�
�
�
�

λz
�

A

�
�
�
�
�

λx′
�

x′t

(yEλx)λx′

�

i.e. (λz(yEλx))λx′ = (A)λx′ for all x′ ∈ |(B, f)|, (A being an identity map). Hence, by the
uniqueness stipulation of Theorem 2.1 applied to the case of lim

←
(t) we have λz(yEλx) =

A. Then we have immediately y = Ay = λz(yEλx)y = λz(yEλx)λx = Aλx = λx, proving
that y = λx is the unique A � xt such that ϕ(yf) = x in B. Since this is true for all

B
x� xt in B, the condition of Theorem 2.1 is true, so that there exists g adjoint to f .
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The dual of Theorem 2.3 implies in particular that a functor which has a co-adjoint
must be right continuous (if its domain and codomain categories are complete).

Theorem 4. A functor A
f� B, with A, B left complete has an adjoint if and only if

f commutes with equalizers and all small products and for every B ∈ |B|, there exists a

small set SB of objects in A and maps B
vA� Af , A ∈ SB, such that for every A′ ∈ |A|

and for every B
x� A′f in B there is some A ∈ SB and a map A

y� A′ in A such that
x = vA(yf).

Proof. The necessity of conditions is clear by Theorem 2.3. The first condition is
clearly equivalent to left continuity, by Theorem 2.2. Thus by Theorem 2.3 we need only

construct a small left pacing CB
v� (B, f) to complete the proof of Theorem 2.4. Now

the second condition of the theorem may be phrased thus: there is a small set SB and a

functor SB
v� (B, f) such that the property (P) holds for u = v (by taking x = A,

y = yf).

(P) For every object x in the codomain of u, there is an object x in the domain of u and

a map xu
y� x in the codomain of u.

Since it is clear that property (P) also holds for u in the diagram below, where CB is
the full subcategory of (B, f) determined by the image of v,

SB
v � (B, f)

..............� �
�
�
�
�

u

�

CB

the following lemma proves Theorem 2.4; it is also clear that since A is complete, D =

(B, f) has pseudomeets in the sense that for every pair of maps D′
d′� D, D′′

d′′� D
in D with common codomain, there exists a commutative diagram:

D � D′′

D′
�

d′
� D

d′′

�

Lemma. Let C
u� D be a full functor with property (P) where C is small and D has

pseudomeets. Then u is left pacing.
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Proof of Lemma. Consider D
t� A, A left complete; we must show

←
ut ∼=

←
t (so that

in particular
←
t exists). By (P) we can, for each D ∈ |D|, choose a definite CDu

yD� D
(CD ∈ |C|) and then define λD to be the composition

←
ut

λCD� CDut
yDt� Dt

where λC are the canonical maps associated with
←
ut. We wish to show that for every

D
d� D′ in D, λD(dt) = λD′ . Since D has pseudomeets we can find D and maps such

that

CDu
yD � D

�
�
�
�
��

CDu
yD � D

�
�
�
�
��

CD′u
yD′

� D′

d

�

is commutative. Since u is full, the composite maps Cu � CDu and
Cu � CD′u ‘come from’ C. Thus on applying t we find that the parts, and hence the
whole of the diagram below are commutative:

CDut
yDt � Dt

��
��

��
��

��
��

��
��

��
�

λCD

�

�
�
�
�
��

←
ut

λCD � CDut�������������������

λCD′

�

�
�
�
�
��

CD′ut
yD′t

� D′t

dt

�

Thus λD(dt) = λD′ . We now show the universality of λ. Suppose that for each D ∈ |D|,
X

ψD� Dt, and for every D
d� D′, ψD(dt) = ψD′ in A. Then in particular

ψCu(ct) = ψC′u for every C
c � C ′ in C. Therefore there is a unique z such that
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X
z�

←
ut and for all C ∈ |C|, ψCu = zλC in A. But then we have (in A)

zλD = zλCD
(ydt) = ψCDu(yDt) = ψD.

Since z is also the unique map such that the latter relation holds, the proof of the lemma,
and hence of Theorem 2.4, is complete.

Remark. In view of the above two theorems, it is a reasonable conjecture that any given
left continuous functor has an adjoint. However, as shown by [Gaifman, 1961], the inclu-
sion of complete small Boolean algebras into all small Boolean algebras does not have an
adjoint; hence this family of conjectures cannot be made into a general theorem which
omits ‘smallness’ hypotheses like those of Theorems 2.3 and 2.4. The above theorems also
suggest that inverse limits are in a sense the ‘canonical’ means for constructing adjoints,
whereas the usual constructions of particular adjoint in algebra often look like direct lim-
its (e.g. the tensor product is a quotient of a sum). Some light is shed on this ‘mystery’
by Theorem 2.5 below, together with the observation (substantiated by Chapters III and
IV of this paper) that the common functors in algebra are usually closely associated with
induced functors between functor categories.

We mention some propositions concerning adjoints of such functors before stating and
proving our theorem.

Proposition 1. Let A be any small category, X T� Y any functor with an adjoint T̂ .
Then the induced functor

X A TA

� YA

has the adjoint T̂A.

Proposition 2. If X is left complete and A small, then X A is left complete. If 1
A� A

is any object in A, then the ‘evaluation’ functor

X A XA
� X

is left continuous (i.e limits in X A are computed ‘pointwise’).

Proposition 3. If X is left complete and C, D are any small categories, then

limX
D

←C

limX
←D

∼= limX
C

←D

limX
←C

is a natural equivalence of functors X C×D � X .

The above propositions have obvious dualizations. Proofs will be found, e.g. in [Gray,
1962]
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Theorem 5. Let X be complete, A, B small, and let B
f� A be any functor. Then the

induced functor

X A X f
� X B

has an adjoint. More explicitly, if B
U� X is any functor, then the value U of the adjoint

at U is given by the formula
AU = limX

→(f,A)
(dA0 U)

where 1
A� A is any object in A and where dA0 is the canonical functor in the meet dia-

gram:

(f,A) � A
2

B

dA0

�

f
� A

D0

�

Proof. We use again the characterization of Theorem 2.1. Let U be defined by the
above formula. Since UX f = fU , our first task is to construct a map

U
ϕ� fU

in X B. Since for 1
B� B,

BfU = lim
→

[(f,Bf)
d0� B

U� X ],

we have for each map

B′f
bf � B′′f

�
�
�
�
�

x′
�

A

��
�
�
�
�

x′′

Bf
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in (f,Bf), maps λBfx′ , λBfx′′ in X such that:

B′U
������������

λBfx′


(Bf)U

��
��

��
��

��
�

λBfx′′

�

B′′U

bU

�

satisfying the universal properties of direct limits. In particular, taking B = B′ and x′ =
Bf = B′f = x′′, we get a map

BU
ϕB� BfU

by defining ϕB = λBfBf .

We need to show that whenever B
b� B′ in B,

BU
ϕB � BfU

X

B′U

bU

�

ϕB′
� B′fU

(bf)U

�

Now U is defined for maps A
a� A′ in A as follows. Since there is an induced func-

tor (f,A) � (f,A′), there is a map linking the direct limits over these two categories,
defined uniquely by the universal property of λA in the following typical diagram

BU = xd0U

�
�
�
�
�

λAx

�

������������������

λA
′

xa

�
AU

aU � A′U

�
�
�
�
�

λAx′

�

��
��

��
��

��
��

��
��

��

λA
′

x′a

�

B′U = x′d0U

bU

�
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where

Bf
bf � B′f Bf

bf � B′f

�
�
�
�
�

x
�

A

��
�
�
�
�

x′
(f, a) �

�
�
�
�
�

xa
�

A

��
�
�
�
�

x′a

A A′

for a typical map in (f,A).
In particular, for A = Bf , a = bf , we have λBfx (bf) = λBfx(bf). Taking x = bf , this gives

λBfBf (bf)U = λB
′f

bf .

On the other hand, since

Bf
bf � B′f

�
�
�
�
�

bf
� ��

�
�
�
�

B′f

B′f

is a map in (f,B′f), we have

(bU)λB
′f

B′f = λB
′f

bf .

Recalling the definition of ϕ, this shows

ϕB(bfU) = (bU)ϕB′

for every B
b� B′ in B. Hence ϕ is natural, i.e. U

ϕ� fU is a map in X B.
Now suppose T is any object in X A and

U
ξ� fT

any map in X B. We wish to show that there is a unique U
η� T in X A that ϕ(ηX f) =

ξ. Now by assumption

Bf
bf � B′f

�
�
�
�
�

x
� ��

�
�
�
�

x′

A
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implies

BU
ξB � BfT

�
�
�
�
�

xT

�

AT

�
�
�
�
�

x′T

�

B′U

bu

�

ξB′
� B′fT

bfT

�

i.e. for every x ∈ |(f,A)| we have a map xd0U = BU
ξ
B

(xT )� AT which commutes with

every x
b� x′. Since AU = lim

→
dA0 U , we have a unique AU

η
A� AT such that λAx ηA =

ξB(xT ) for all objects Bf
x� A in (f,A). For every A

a� A′ in A, λAx ηA(aT ) =

ξB(xT )(aT ) = ξB(xa)T = λA
′

xaηA′ = λAx (aU)ηA′ . That is ηA(aT ) = (aU)ηA′ at each λAx ,
hence by uniqueness η is natural, i.e. a map

U
η� T

in X A. A particular case of the foregoing calculation is that associated with the object

Bf
Bf� Bf in (f,Bf). We have

ξB = ξB(Bf)T = λBfBfηBf = ϕBηBf = ϕB(ηX f )B

for every B ∈ |B|, i.e. ϕ(ηX f) = ξ as required. However, since the latter is only a special
case of the condition which originally defined η, its uniqueness may be in doubt; but this
follows from ϕ(ηX f ) = ξ, together with the required fact that η is natural. That is, from

ξB = λBfBfηBf

ηA(aT ) = (aU)ηA′ , for all A
a� A′

it follows that

ξB(xT ) = λBfBfηBfxT = λBfBf (xUηA) = λA(Bf)xηA = λAx ηA

for any Bf
x� A, and the latter condition does determine η.



3 Regular epimorphisms and monomorphisms 58

In particular, if B = 1, 1
f=A0� A, then (f,A) = (A0, A) is a set, d0U is constant, so

lim
→

is the (A0, A)-fold coproduct. Thus we have the

Corollary. If X is complete, A small, A0 ∈ |A|, then the evaluation at A0

X A � X
has an adjoint. For each X ∈ X , the value of the adjoint at X is the functor whose value
at A ∈ |A| is (A0, A) ·X.

Thus for every A
T� X we have

(HA0 ·X,T ) ∼= (X,A0T )

where A
HA0� S1 is the functor whose value at A is (A0, A) and where HA0 ·X is the functor

A � X , its value at A is the (A,A0)-fold coproduct of X with itself.

In particular, taking X = S1, X = 1S1 , we have another

Corollary. For every functor A
T� S1 where A is small, and for every A0 ∈ |A|,
(HA0 , T ) = A0T.

Corollary. For any small A, the functor

A
∗ � SA

1

which takes A0 to HA0 is full.

3. Regular epimorphisms and monomorphisms

In this section we work in an arbitrary but fixed category, which we will presently require
to have finite limits.

Definition. A map K
k� A is said to be a regular monomap iff there exist A

f�
g
� B

such that k = fEg. Dually, a regular epimap is any map having the properties of a co-
equalizer.

Remark. The notions of regular monomaps and epimaps seem better suited (say in the
category of topological spaces) for discussing subobjects and quotient objects than do the
more inclusive notions of monomorphisms and epimorphisms. Clearly in any category ev-
ery retract is a regular monomap and every regular monomap is a monomorphism, (and
dually); all these notions, however, can be different. We require in this paper only two or
three propositions from the theory of regular epimaps and monomaps.

Proposition 1. If k is an epimorphism and also a regular monomap, then k is an iso-
morphism.

Proof. If k = fEg, then since k is an epimorphism f = g. Hence K ∼=
k
A.
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For the next two propositions assume that our category has finite limits.

Proposition 2. A map k is a regular monomap iff k = (j1q)E(j2q) where q = (kj1)E
∗(kj2).

K
k� A

j1�
j2
� A � A

q� Q

Proof. Suppose k = fEg. Define t by

A
j1 � A � A � j2

A

�
�
�
�
�

f
� ��

�
�
�
�

g

B

t

�

and let h = (j1q)E(j2q). Then obviously k ≤ h. To show h ≤ k, note that kj1t = kj2t

since k = (j1t)E(j2t). That is, t ‘coequalizes’ kj1, kj2. Hence ∃!Q
u� B such that

t = qu. Then
hf = hj1t = hj1qu = hj2qu = hj2t = hg

where the third equation follows from hj1q = hj2q. Therefore ∃!M
z� K such that

zk = h, i.e h ≤ k.

K
k � A

j1 �

j2
� A � A

q � Q

�
�
�
�
�

h

�

��
�
�
�
�

t

�....
....

....
....

....
....

....
....

..

u

H
�

z

�

B

f

�

g

�

Dually an epimap is regular iff it is the coequalizer of the relation it induces on its
domain.

Proposition 3. If k1 is a monomorphism and k2k1 is a regular monomap, then k2 is a
regular monomap, and dually.
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Proof. Consider
q3 = (k2k1j1)E

∗(k2k1j2)
k2k1 = (j1q3)E(j2q3)
q2 = (k2i1)E

∗(k2i2)

K2

..
..
..
..
..
..
..

z
�

X

�
�
�
�
�

x

�

K1

k2

� k1 � A

K1 � K1

i1

�

i2

� k1 � k1 � A � A

j1

�

j2

�

Q2

q2

�

v
� Q3

q3

�

We must show k2 = (i1q2)E(i2q2). Now k2 ‘equalizes’ i1q2, i2q2 by definition of q2. We get
v since (k1 � k1)q3 coequalizes k2i1, k2i2, i.e. is a ‘candidate’ for q2. Thus if xi1q2 = xi2q2,
it follows that xk1 equalizes j1q3, j2q3, i.e. is a candidate for k2k1. Therefore ∃!z[xk1 =
zk2k1]. But k1 is a monomorphism, so x = zk2. Finally, z satisfying the last equation is
unique, since k2 is a monomorphism.



Chapter II

Algebraic theories

1. The category of algebraic theories

Before discussing the category of algebraic theories, we briefly consider the category
({S0}, C1), of which the category of algebraic theories will be a subcategory. Recall that
the maps in the category ({S0}, C1) may be identified as commutative triangles

S0

��
�
�
�
�

A
�
�
�
�
�

B

�

A
f

� B

of functors where S0 is (any fixed small version of) the category of finite sets and A, B

are any small categories. For definiteness suppose |S0| ∼= N .

Definition. Let S0
A� A be an object in ({S0}, C1). If n is any object in S0, we will

denote by nA the value at n of A; thus nA is an object in A. If σ is any map in S0, we
will sometimes simply write σ for the value of σ at A. However, in the special case of maps

1
i� n in S0, we will usually write πni for the value at i of A. For any objects n is S0, an

n-ary operation of A means any map 1A
θ�

nA in A. (Note that the notion of n-ary
operation really depends on A, not just on A; however, in what follows we will be justified
in the abuse of notation which confuses A with A.) In particular, each πni , where i ∈ n in
S0, is an n-ary operation of every A.

Proposition 1. The category ({S0}, C1) has products and coproducts. In fact, the codomain
functor ({S0}, C1) → C1 is left continuous and (binary) coproducts in ({S0}, C1) are defined

61
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by comeet diagrams of the form

S0

B � B

C1

A

A

�
� A �

S0
B

�

Proof. These assertions in fact remain valid if C1 is replaced by any complete category
and {S0} by any object in it. The left continuity statement is obvious. We explicitly ver-

ify the ‘coproduct = comeet in C1’ assertion. Let A
f� C, B

g� C be any maps in
({S0}, C1). Since this implies that Af = C = Bg in C1, and since A �

S0
B is a comeet in C1,

there exists a unique h in C1 such that

S0

B � B
������������

A �
S0
B






























g

�

A

A

� j � A �
S0

B

k

�

�������������������

f

�

..............

h

�

C

is commutative in C1. But then h defines the unique map A �
S0

B
h� C in ({S0}, C1) such

that f = jh and g = kh, i.e. S0

A �
S0
B

� A �
S0

B is the coproduct in ({S0}, C1) of A, B. (The

same proof clearly works for infinite coproducts.) In view of the nature of comeets in C1,

this means that in the ({S0}, C1)-coproduct any map n
x� m is represented by a string

n
x0� n0

x1� n1 → · · · → n	−2
x�−1� m

where each xi is a map ni−1 → ni in either A or B (n−1 being n and n	−1 being m); the
only relations imposed on strings are that 〈σA〉 = 〈σB〉 for all σ ∈ S0 and that 〈x0x1〉 =
〈y0〉 if x0x1 = y0 in A or in B (and consequences of these relations).

Definition. The category T of algebraic theories is the full subcategory of ({S0}, C1)

determined by those objects S0
A� A such that A commutes with finite coproducts and

such that |A| is an isomorphism.
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Thus for an algebraic theory S0
A� A we have in essence that every object in A is

of the form nA and that furthermore (n+m)A = nA � mA in A for all n,m ∈ |S0|. In view
of the structure of S0, the latter condition is equivalent to

nA = n · 1A

for every n ∈ |S0|, where the right-hand side is the n-fold coproduct of 1A with itself
in A. It follows immediately that 1A is a generator for A, and that 0A = limA

→0
(i.e.

∀n ∃! [0A �
nA]). The equation nA = n · 1A implies that the maps n � m in A are

in one-to-one correspondence with n-tuples of m-ary operations of A.

Proposition 2. Let S0
A� A be an algebraic theory and consider the map 0A �

1A

in A. This map is always a monomorphism, and if there exists x such that 1A
x�

0A in
A then 0A �

1A is a retract.

Proof. If there is no such x, then there is no map from any nA to 0A and so 0A �
1A

is vacuously a monomorphism. If there is such an x, then 0A �
1A

x�
0A must be

the identity since 0A = limA

→0
.

A particular example of an algebraic theory is the identity functor S0, which we will

sometimes call ‘the theory of equality’. It is clear that S0
∼= limT

→0
. Any theory S0

A� A

such that A is equivalent to either 2 or 1 will be called inconsistent.

Proposition 3. Let S0
A� A be an algebraic theory. If there are m

σ�
τ
� n′ in S0, σ �= τ ,

such that σA = τA, then the theory is inconsistent.

Proof. For any n ≥ 2, there is n′
τ ′� n such that στ ′ �= ττ ′ and 1

j� m such that

i0 = jστ ′ �= jττ ′ = i′0, but πni0 = πni′0
. There are also n

σ� n− 1 and n− 1
τ� n such

that i0σ = i′0σ and τ̄ σ̄ = n− 1. Then for all 1
i� n, πniσ̄τ̄ = πni . Since n−1A and nA are

coproducts, there are unique nA
f�

n−1A and n−1A
g�

nA such that

πn−1
iσ = πni f for all i ∈ n
πnjτ = πn−1

j g for all j ∈ n− 1.

Now we have gf = n−1A in any case, and due to our hypotheses we have πni fg = πn−1
iσ =

πniστ = πni for all 1
i� n and thus

n−1A ∼= nA for all n ≥ 2.

It follows that

nA ∼= 1A for all n ≥ 1,



1 The category of algebraic theories 64

where the isomorphisms are all induced by maps coming from S0. From this it follows

that π2
0 = π2

1, since we always have π2
0σ = 1A = π2

0σ for 2
σ� 1, and in our case σA has

an inverse. From this it is immediate that

(nA,mA) = 1

for any n and for m �= 0. But this implies that A is equivalent to either 1 or 2.

Now, since the compositions 0 � 1 �� 2 are equal in S0, for any algebraic theory
A we have equal compositions

0A �
1A

�� 2A

in A and hence equal compositions of maps between sets

(1A, 0A) � (1A, 1A) �� (1A, 2A).

However, (1A, 0A) need not to be the equalizer of the other two maps. If we denote
this equalizer by K, then members of K are called definable constants of the theory.
Clearly every expressible constant determines a definable one via 0 � 1. Explicitly, a
definable constant is a unary operation θ such that θπ2

0 = θπ2
1; an expressible constant is

any zero-ary operation.

Proposition 4. If θ is a definable constant of an algebraic theory A and if ϕ is any unary
operation, then ϕθ is a definable constant and θϕ = θ.

Proof. The first assertion is obvious and the second follows from the diagram

1A
ϕ �

1A

�
�
�
�
�

θ
� �

�
�
�
�

1A

�

1A 2A

π2
0

�
�

2A

π2
0

�
�

1A

�
�
�
�
�

θ
� �

�
�
�
�

1A

�

1A

π2
1

�

1A
�

1A

π2
1

�
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Proposition 5. For any algebraic theory S0
A� A, either every definable constant is

expressible or none are. That is, either (1A, 0A) ∼= K or (1A, 0A) = 0.

Proof. Suppose there exists 1A
x�

0A and let θ be any definable constant. Then by
the second assertion of Proposition 1.4, the composite

1A
θ�

1A
x�

0A �
1A

equals θ, i.e. θx expresses θ.

Note that the ‘expression’ is faithful by Proposition 1.2.

Remark. Evidently one could ‘complete’ (or deplete) algebraic theories with regard to
expressibility of constants; however, there seems to be no need to do so. As an example,
the algebraic theory of groups can be ‘presented’ (see Section 2) in two ways, one involv-
ing a single binary operation x, y � x · y−1 as generator, and the second involving a
0-ary generator e, a unary generator x � x−1, and a binary generator x, y � x · y.
This actually gives two theories, for in the first case no constant is expressible and in the
second case the (only) constant e is expressible. These two theories also give rise to dif-
ferent algebraic categories (see Chapter III), for according to the first theory the empty
set is a group, whereas to the second it is not.

Theorem 1. The category T of algebraic theories is complete. Neither the first functor
nor the composite in the diagram below

T � ({S0}, C1) � C1

is left continuous; coproducts and coequalizers are as described in Lemma 1.1 and Lemma
1.2 below.

Proof. The completeness of the middle category follows from two facts
(1) coproducts are computed coordinate-wise in a product of categories

(2) if k = fEg in C1

S0

�..
..
..
..
..
..
..

K
�
�
�
�
�

B

�

K
k

� A

A

� f �

g
� B
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where A and B are algebraic theories, then K commutes with finite coproducts. To

see this consider 1K
θi�

mK, θi ∈ K, i ∈ n. There is a unique y ∈ A such that

1Kk

�
�
�
�
�

θik

�

nKk

πni

�

y
�

mKk

We need only show ∃x ∈ K [y = xk], which will follow from the fact that yf = yg. But
this follows at once from the fact that θikf = θikg, i ∈ n, and A, B, f , g commute with
finite coproducts.

Direct limits in T are described by the following lemmas.

Lemma 1. Let Λ be any small set and Λ
A� T any functor. Then the coproduct A =

�
λ∈Λ

Aλ in T may be constructed as follows.

0. If 1
θ� n is a map in some Aλ, then 1

θ� n is a map in A.

1. If 1
φi� m, i ∈ n are any maps in A, then {φ0 . . . φn−1} is a map n � m in A.

2. If n
φ� n′

ψ� n′′ are any maps in A, then n
φψ� n′′ is a map in A.

3. All maps in A are represented by expressions obtained by some finite number of appli-
cations of 0,1,2. However, the following relations are imposed on these expressions, as
are all relations that follow by reflexivity, symmetry, or transitivity from (a) through (i):

(a) If φ ≡ φ′ and ψ ≡ ψ′ then φψ ≡ φ′ψ′,

(b) In some Aλ,

1 1

�
�
�
�
�
�
�
�
�

θi

 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ψi

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ϕj

	

n′

πn
′

j

�

�
�
�
�
�

θ
�

��������������������

ϕ

�
n

πni

�

ψ
� n′′
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πni θ = θi , i ∈ n
πn

′
j ϕ = ϕj , j ∈ n′

πni ψ = ψi , i ∈ n
θϕ = ψ

the θi being n′-ary operations, the ϕj being n′′-ary operations and the ψi also being
n′′-ary operations, all of Aλ, then

{θ0 . . . θn−1}{ϕ0 . . . ϕn′−1} ≡ {ψ0 . . . ψn−1}.

(c) For any σ ∈ S0 and any λ, λ′ ∈ Λ, σAλ ≡ σAλ′ .

(d) πni {φ0 . . . φn−1} ≡ φi, i ∈ n, where 1
φi� m for all i ∈ n.

(e) If θi ≡ θ′i, i ∈ n, where θi, θ
′
i are m-ary, then

{θ0 . . . θn−1} ≡ {θ′0 . . . θ′n−1}.

(f) For any n
φ� m, φ = {πn0φ . . . πnn−1φ}.

(g) {θ0 . . . θn−1}{πmo . . . πmm−1} ≡ {θ0 . . . θn−1}
{πm0 . . . πmm−1}{φ0 . . . φm−1} ≡ {φ0 . . . φm−1}
where the θi are all m-ary and φj are all k-ary operations of A.

(h) θ(φψ) ≡ (θφ)ψ.

(i) For each n, {πn0 . . . πnn−1} ≡ n.

4. Domain and codomain in A were specified in the construction, and composition in A is
by concatenation of representative expressions. Inclusion functors Aλ

� A are defined

in the obvious fashion, and, in view of 3.(c), there is a unique S0
A� A which, for every

λ, is equal to Aλ composed with the λ-th inclusion.

Proof. A is clearly a small category and the inclusions Aλ
� A are clearly functors,

as is A. We first show that A is a theory, i.e. that A commutes with finite coproducts. It
suffices to show

nA ∼= n · 1A

the right-hand side being an n-fold coproduct in A. So let φi

1A
������������

φi


nA

πni

�

φ
�

mA
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be any maps in A and define φ = {φ0 . . . φn−1}. By 3.(d), πni φ = φi. If πni φ
′ = φi, then

φ′ = {πnoφ′ . . . πnn−1φ
′} = {φ0 . . . φn−1} = φ. Thus maps n

φ� m in A correspond exactly
to n-tuples of m-ary operations of A, i.e. A commutes with finite coproducts.

We must also show that A = �
λ∈Λ

Aλ in T . So let S0
C� C be any object in ({S0}, C1)

such that |C| is an isomorphism and C commutes with finite coproducts, and let

S0

�
�
�
�
�
�
�
�
�
�
�
�

C

�

λ ∈ Λ

Aλ

Aλ

�

fλ
� C

be commutative diagrams. Define A
f� C as follows:

0. If 1
θ� n in Aλ, (θ)f = (θ)fλ.

1. If n
φ� n′

ψ� n′′ then (φψ)f = (φ)f(ψ)f .

2. If 1
φi� m, i ∈ n, then {φ0 . . . φn−1}f = y where y is the unique map n

y� m in
C such that πni y = (φi)f .

This defines f on the expressions, and by 3.(a) and 3.(e), f remains well defined on A.
By definition f is a functor, and λ-th inclusion composed with f is fλ. If f ′ has the lat-
ter two properties, then f ′ satisfies the conditions 0. and 1. in the definition of f . Since
A and C commute with coproducts, so must f ′, i.e. f ′ satisfies the condition 2. in the
definition of f . Thus f ′ = f , so that f is unique.

In an arbitrary algebraic theory we will sometimes use the notation introduced in
Lemma 1.1, namely if 〈θ0 . . . θn−1〉 is an n-tuple of m-ary operations, then {θ0 . . . θn−1} is
the unique n � m such that

πni {θ0 . . . θn−1} = θi for i ∈ n.

Definition. By a congruence relation R in an algebraic theory B is meant the follow-
ing.

(0) For each n, m ∈ |S0|, Rn,m ⊆ (nB,mB) × (nB,mB).

(1) If n
θ�
θ′
� n′

ϕ�
ϕ′
� n′′ in B with 〈θ, θ′〉 ∈ Rn,n′ and 〈ϕ, ϕ′〉 ∈ Rn′,n′′, then

〈θϕ, θ′ϕ′〉 ∈ Rn,n′′.
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(2) 1
θi�
θ′i
� m in B and 〈θi, θ′i〉 ∈ R1,m for i ∈ n implies

〈{θ0 . . . θn−1}, {θ′0 . . . θ′n−1}〉 ∈ Rn,m.

(3) Each Rn,m is reflexive, symmetric, and transitive.

It is clear that for any algebraic theory B and any congruence relation R in B, we have

B
η� B/R in T such that 〈θ, θ′〉 ∈ Rn,m ⇒ θη = θ′η and such that given any B

f� C

in T with the same property, there is a unique completion of the commutative triangle

B

��
�
�
�
�

η
�
�
�
�
�

f

�

B/R � C

and that, furthermore, η is full (as a map of categories).

Lemma 2. Let A
f�
g
� B in T . Define Rn,m to be the set of all pairs n

θ�
θ′
� m in B such

that ϕf = θ and ϕg = θ′ for some ϕ in A, together with all pairs obtained from these by
repeated applications of reflexivity, symmetry, transitivity, composition, and { }. Then R

is a congruence relation in B and the natural B
η� B/R is the coequalizer of f , g; i.e.

η = fE∗g. Furthermore, Rn,m is also the set of all 〈θ, θ′〉 such that θη = θ′η

Proof. It is obvious from the definition that R is the smallest congruence relation
containing the set of pairs 〈θ, θ′〉 for which ϕf = θ and ϕg = θ′ for some ϕ ∈ A, and the
other assertions follow readily from this fact.

2. Presentations of algebraic theories

We define a functor
T T� SN1

as follows. For each algebraic theory A ∈ |T |, AT is the sequence of sets whose n-
th term is the set (1A, nA). That is, (AT )n is the set of n-ary operations of A. For

each A
f� B in T , fT is the sequence of maps in S1 such that (fT )n = (1A, fn) :

(1A, nA) � (1B, nB). Clearly T is a functor.

Theorem 1. There is a free algebraic theory over each sequence of small sets, i.e. T has
an adjoint F . Further, given any algebraic theory A, there exists a free algebraic theory F

and regular epimap F � A in T .
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Proof. We first consider a sequence of special cases. Let n ∈ N = |S0|. Define In

to be the algebraic theory constructed as follows: adjoin a single n-ary operation to S0,
consider all expressions formed from S0 and this n-ary operation by means of composition
and { }, and impose on these expressions relations analogous to those under 3 in Lemma
1.1. Then for any algebraic theory A,

(In,A) ∼= (1A, nA) ∼= (δn,AT )

where δn is the sequence of sets whose k-th entry is 1 if k = n, otherwise 0. Hence In is
the free algebraic theory over δn.

Now for any sequence N
S� S1 of small sets

S =
∑
n∈N

Sn · δn.

Hence, since adjoint functors are right continuous,

SF = �
n∈N

Sn · In

is the free algebraic theory over S.

The second assertion of Theorem 2.1 follows from the more refined statements of Lem-
mas 2.1 and 2.2.

Lemma 1. For each algebraic theory A, any n ∈ N , and any In
� A in T , there exists

a lifting

In

�..
..
..
..
..
..
..

ATF � A

�

Proof. Since In = δnF , the proof is immediate from the characterization of coadjoints
(i.e. the dual of Theorem I.2.1)

Lemma 2. If A
f � B in T , then f is a regular epimap iff for every n ∈ N , every

In
� B admits a lifting

In

�..
..
..
..
..
..
..

A
f

� B

�
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Proof. The lifting condition is equivalent to f being onto, and it is clear from our
discussion of direct limits in T that a map of theories is onto iff it is the coequalizer of the
congruence it induces, which by Proposition I.3.2 is equivalent to being a regular epimap.

Definition. By a presentation of an algebraic theory is meant a triple 〈S,E, f〉 where
S,E ∈ |SN1 | and where f : E � SFT × SFT in SN1 . The theory presented by
〈S,E, f〉 is the coequalizer in T of the maps

EF �� SF

corresponding to fp, fp′ under the natural isomorphism (EF, SF ) ∼= (E, SFT ). Members
of Sn are called basic polynomials in n variables of the presentation (or, by abuse of
language, of the theory presented) and members of En are called basic identities (or ax-
ioms) in n variables of the presentation. Members of (SFT )n are called polynomials
in n variables of the presentation, and members of EFT are called identities or the-
orems of the presentation. Clearly every axiom determines a theorem by means of the
canonical E � EFT. The particular polynomial πni in n variables will be called the i-
th n-ary variable. Note that we avoid the usual practice of lumping together the n-ary
variables for various n. The n-ary variables and the m-ary variables are related only by
specified ‘substitutions’ σ.

For any polynomial θ in n variables, we have that

θ ≡ θ{πn0 . . . πnn−1}

is a theorem. More generally if ϕi is a polynomial in m variables for each i ∈ n, then the
polynomial

θ{ϕ0 . . . ϕn−1}
in m variables is called the result of substituting ϕi for the i-th variable in θ. (This
order of writing for polynomial composition is the one consistent with writing xf for the
value at x of a homomorphism f (see Chapter V).) Note that for a given presentations
〈S,E, f〉, the polynomials in n variables of the presentation are mapped canonically
onto the set of n-ary operations of the presented algebraic theory A by (ηT )n where

EF �� SF
η� A is the coequalizer diagram defining A.

Example. The theory of associative rings with unity is presented as follows (writing +
and · between the arguments, as usual, rather than writing the operation symbol in front
or back).
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n S E

0 �, 1 empty

1 – π1
0 + (−π1

0) ≡ (�)(0 � 1)

(�)(0 � 1) + π1
0 ≡ π1

0, π
1
0 + (�)(0 � 1) ≡ π1

0

π1
0 · (1)(0 � 1) ≡ π1

0, (1)(0 � 1) · π1
0 ≡ π1

0

2 +, · empty

3 empty π3
0 · (π3

1 · π3
2) ≡ (π3

0 · π3
1) · π3

2

4 empty (π4
0 + π4

1) + (π4
2 + π4

3) ≡ (π4
0 + π4

2) + (π4
1 + π4

3)

(π4
0 + π4

1) · (π4
2 + π4

3) ≡ ((π4
0 · π4

2) + (π4
1 · π4

2)) + ((π4
0 · π4

3) + (π4
1 · π4

3))

Sn = En = 0 for n ≥ 5.

Proposition. Let 〈S,E, f〉, 〈S ′, E ′, f ′〉 be presentations of algebraic theories. Let S
h� S ′FT

be a map in SN1 (i.e a sequence of functions) such that there exists a map E
g� E ′FT

for which

E
g � E ′FT � E ′

���
��

��
��

��
��

�

f ′

(SF × SF )T

f

�

(h× h)T
� (S ′F × S ′F )T

�

where h corresponds to h via (S, S ′FT ) = (SF, S ′F ); then there is a unique map h of the
theory A presented by 〈S,E, f〉 into the theory A

′ presented by 〈S ′, E ′, f ′〉 for which

SF
h � S ′F

A

�

h

� A
′
�
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Proof. From the assumption one gets in T by adjointness:

EF
g � E ′F

SF
�� h � S ′F

��

A

�

h

� A
′
�

Because of the existence of g, SF � S ′F � A
′ coequalizes EF �� SF. Hence the

unique h as required exists.

In the terminology we have introduced, the proposition states that a theory map
A � A

′ may be defined by assigning, for each n, a polynomial in n variables of
〈S ′, E ′, f ′〉 to every basic polynomial in n variables of 〈S,E, f〉, in such a way that axioms
of 〈S,E, f〉 are mapped into theorems of 〈S ′, E ′, f ′〉.

Example. Let A
′ be the theory of associative rings with unity and let A be the theory

of Lie rings. ‘The’ presentation of the latter differs from that of A
′ in that there is no 1 ∈

S0, in that [, ] replaces · in S2, and in that antisymmetry replaces identity in E1, while the
Jacobi identity replaces associativity in E3. Then there is a unique map A � A

′ of the
theory of Lie rings into the theory of associative rings with unity defined by interpreting
0, −, + as themselves and by interpreting

[π2
0, π

2
1] � (π2

0 · π2
1) + (−(π2

1 · π2
0)).

That the Jacobi identity (and also antisymmetry) are mapped into theorems is shown by
the usual calculations.



Chapter III

Algebraic categories

1. Semantics as a coadjoint functor

Definition. Let A be an algebraic theory. We say that X is a pre-algebra of type A

iff X is a functor A
∗ � S1, A

∗ being the dual of the small category A. X is called an
algebra of type A iff X is a pre-algebra of type A and X commutes with finite products.
Denote by S(A∗)

1 the full subcategory of SA∗
1 determined by the objects which are algebras.

Say that X is an algebraic category iff for some algebraic theory A, X is equivalent to
S(A∗)

1 .

Thus a pre-algebra X of type A is a sequence of sets together with, for every nA
θ�

mA

in A, a map Xm
θX� Xn in S1, such that (θϕ)X = ϕXθX . X is an algebra iff Xn

∼= Xn
1

for all finite sets n. Thus in an algebra X of type A, every n-ary operation θ of A deter-

mines a map Xn
1

θX� X1 in S1.
The maps in the category of pre-algebras are natural transformations of functors; if f

is such a map, then in particular πni f1 = fnπ
n
i for i ∈ n. In an algebra the n-ary variables

πni are mapped into projections, so that fn = fn1 . Therefore if X, Y are algebras of type

A, then every map X
f� Y in S(A∗)

1 is determined by a single map X1
f1� Y1 in S1

such that for every n and every n-ary operation θ of A, the diagram

Xn
1

fn1 � Y n
1

X1

θX

�

f1

� Y1

θY

�

is commutative in S1. Thus it is clear that if we are given a presentation of an algebraic
theory A, then S(A∗)

1 is precisely the usual category of all algebras of the type associated
with the presentation (‘type’ here being used to include specification of identities as well
as operations).

74
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We will regard certain facts about algebraic categories as well known, in particular
the elementary properties of limits, free algebras, and congruence relations. These needed
facts, as well as certain additional statements which are obvious, are recorded in the fol-
lowing three propositions.

Proposition 1. If A is any algebraic theory, then the composite functor UA given by

S(A∗)
1

� SA∗
1

� S1

where the second is evaluation at 1, is faithful, and has an adjoint, the value of this adjoint
at a small set S being the free A-algebra over S. In particular, the above composite is left
continuous.

The faithfulness is clear from the preceding remarks. Actually, we have shown in a
corollary to Theorem I.2.5 that the functor SA∗

1
� S1 has an adjoint, and we will show

in Chapter IV that the inclusion S(A∗)
1

� SA∗
1 has an adjoint, from which it will also

follow that S(A∗)
1 is right complete. (It is obvious from the definition and Proposition I.2.3

that S(A∗)
1 is left complete.) Explicitly, the left continuity assertion of Proposition 1.1

means that the underlying set of a product of A-algebras or of an equalizer of A-algebra
maps is the product or equalizer, respectively, of the underlying sets or S1-maps.

Proposition 2. For any algebraic theory A, the functor A � SA∗
1 defined by assigning

to nA the pre-algebra X such that Xk = (kA, nA), has algebras as values, is full and faith-
ful, and commutes with finite coproducts. Identifying the X just defined with nA, we thus
have A ⊂ S(A∗)

1 , a full subcategory. For any A-algebra Y , (1A, Y ) = Y1. It follows that 1A

is a generator for S(A∗)
1 , and that the free algebra over a small set S is the S-fold coproduct

S · 1A. Thus A is precisely the full category of finitely generated free A-algebras.

0A = limS
(A

∗)
1

→0
.

Proposition 3. A map of A-algebras is onto iff it is the coequalizer of the congruence re-

lation which it induces on its domain. In other words, X
f� Y is a regular epimap in

S(A∗)
1 iff for every 1A

y� Y there is 1A
x� X such that xf = y.

Now if A
f� B is a map of algebraic theories, then viewed as a functor A

∗ f∗� B
∗

commutes with finite products. Thus we have a factorization

S(B∗)
1

S(f∗)
1 � S(A∗)

1

SB∗
1

�

Sf∗1

� SA∗
1

�
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That is, Sf∗1 takes algebras into algebras. S(f∗)
1 defined by the above diagram will be

called an algebraic functor (of degree 1; algebraic functors of higher degree are defined
and discussed in Chapter IV).

We now point out two facts about algebraic categories and algebraic functors.

Proposition 4. Every algebraic functor of degree 1 commutes with the underlying set

functors. That is, if A
f� B in T , then

S(B∗)
1

S(f∗)
1 � S(A∗)

1

�
�
�
�
�

UB

� ��
�
�
�
�

UA

S1

is commutative.

Proof. For X ∈ S(B∗)
1 , XS(f∗)

1 UA = fXUA = (fX)1 = X(1)f = X1 = XUB.

In particular, each S(f∗)
1 is faithful and left continuous.

Theorem 1. For any algebraic theory A, the underlying set functor UA has the property

that ({UA}n, {UA}m), the indicated set of natural transformations in SS
(A

∗)
1

1 , is small for
any finite sets n, m. In fact

({UA}n, {UA}m) ∼= (mA, nA)

where mA, nA are viewed as objects in A (or in S(A∗)
1 ).

Proof. The proof of Theorem I.2.5 clearly works equally well if we consider ‘large’
rather then small categories and properties throughout; in particular the category must
have a large coproducts. Thus by a corollary to that theorem we can state the following
(which one could actually prove directly without appeal to limits):

Let B be any large category and let B T� S2 be any functor. If for any B ∈ |B|, HB

denotes the functor B � S2 whose value at X is (B,X) then

(HB, T ) ∼= BT.

We prove Theorem 1.1 by applying this statement with B = SS
(A

∗)
1

1 . Since {UA} = H1A,

(HB)n = Hn·B, and n · 1A = nA, we have for any S(A∗)
1

T� S1 that ({UA}n, T ) ∼=
(HnA, T ) ∼= nAT. In the case T = {UA}m = HmA, we therefore have ({UA}n, {UA}m) ∼=
(mA, nA).
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Definition. Let K be the full subcategory of (C2, {S1}) determined by those objects

X U� S1 for which ({U}n, U) is small for every finite set n. The functor T ∗ S� K
defined by

(A)S = UA

(f)S = S(f∗)
1

will be called (algebraic) semantics. Here, for A
f� B in T , (f)S = S(f∗)

1 is regarded
as a map UB

� UA in K, where of course UB and UA are the underlying set functors,
S(B∗)

1
� S1 and S(A∗)

1
� S1, respectively.

Thus intuitively the semantics functor assigns to each algebraic theory the category of
algebras of which it is a theory. However, we find it necessary to include the underlying
set functor UA as part of the value at A of S, because the left continuity of semantics,
which follows from Theorem 1.2 below, would be destroyed if we defined AS to be S(A∗)

1

in C2 rather than UA in K.
Note that in (C2, {S1}), and hence in K, direct limits agree with those in C2, but bi-

nary products, for example, are defined by meet diagrams of the form

X ×
S1
X � X ′

C2

X
�

U
� S1

U ′

�

Definition. We define a functor K Ŝ� T ∗, as follows. Given an object X U� S1 in K,
we consider the object {U} ∈ |SX1 |. There is a unique functor S∗0 � SX1 which commutes
with finite products and which maps 1 into {U}. Let UŜ be the algebraic theory S0

� A,
where A is the dual of the full image of S∗0 � SX1 . We call UŜ the algebraic structure

of U. If U
T� U ′ in K, then U ′Ŝ

T Ŝ� UŜ in T is defined by dualizing the small triangle
in

S∗0

��
�
�
�
� �

�
�
�
��

A
′∗ (T Ŝ)∗ � A

∗

��
�
�
�
� �

�
�
�
��

SX ′
1 ST1

� SX1
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the big triangle being commutative since T (U
′n) = (TU ′)n = Un for n ∈ S0.

Explicitly, the n-ary operations of the algebraic structure of X U� S1 are in one-to-
one correspondence with the natural transformations {U}n � {U} in SX1 . Theorem 1.1
states that SŜ ∼= {T ∗}, i.e. T ∗ is a retract of K (up to equivalence).

Theorem 2. Algebraic structure is adjoint to (algebraic) semantics.

Proof. We use again Theorem I.2.1, i.e. given X U� S1 in K, we define a ‘universal’
Φ such that

X Φ � S(UŜ∗)
1

�
�
�
�
�

U
� ��

�
�
�
�

UŜS

S1

Since in the construction of A = UŜ, A
∗ is the full image of the functor S∗0 � SX1

defined by taking n-fold products of U with itself for each n ∈ S0, there is a functor

A
∗ � SX1

depending on U such that the corresponding

X � SA∗
1

has algebras as values. Define Φ as the resulting

X Φ� S(A∗)
1

� SA∗
1 .

Thus for each X ∈ |X |, (XΦ)n = (XU)n , and for each natural transformation

{U}n θ� {U}
i.e. for each n-ary operation of A = UŜ, the corresponding (XΦ)n1 � (XΦ)1 is just θX .

Thus each map X
x� X ′ in X determines a map XΦ

xΦ� X ′Φ of the corresponding
UŜ-algebras. By construction Φ(UŜS) = U. We need to show that Φ has the universal
mapping property of Theorem I.2.1.

Consider any algebraic theory A
′ and any functor X T� S(A

′∗)
1 for which TUA′ = U ,

i.e. U
T� A

′S in K. We must show that there is a unique A
′ f� A = UŜ in T such

that ΦS(f∗)
1 = T , i.e. such that Φ(fS′) = T. Now by Theorem 1.1, UŜSŜ

ΦŜ� UŜ is
an isomorphism in T . Thus if T = Φ(fS), then T Ŝ = (Φ(fS))Ŝ = (fSŜ)ΦŜ, so that

fSŜ = (T Ŝ)(ΦŜ)−1.

But by Theorem 1.1, the functor T ∗ SŜ� T ∗ is equivalent to the identity, in particular
full and faithful, so that the equation above, and hence the equation T = Φ(fS), has
exactly one solution f .



1 Semantics as a coadjoint functor 79

According to Theorems 1.1 and 1.2 , given any large category X and any ‘underlying

set’ functor X U� S1 such that (Un, U) is small for all n, there is a well-defined ‘alge-

braic closure’ of 〈X , U〉, i.e. an algebraic category S(UŜ∗)
1 and functor X Φ� S(UŜ∗)

1 ,
preserving underlying sets, which is universal with respect to underlying set-preserving
functors of X into any algebraic category. Further, this universality is accomplished by
algebraic functors in the factorization, and an algebraic category is algebraically closed.

In fact, X is algebraic iff: Φ : X ∼= S(UŜ∗)
1 . We will presently discuss some ways of con-

structing reasonable underlying set functors U given only the category X . Note however
that Theorems 1.1 and 1.2 place no conditions of faithfulness, left continuity, etc. on the
functor U considered; the only condition is that (Un, U) be small.

Example 1. Let X be any large category such that 1
X�
Y
� X ⇒ (X,Y ) small, and such

that X ∗ × X (,)� S1 defines an object in K. Consider the algebraic structure of (, ) and
let X be the resulting algebraic category. There results

X ∗ ×X HomX � X
�
�
�
�
�

(, )
� ��

�
�
�
�

S1

We call HomX the algebraic Hom-functor of the category X . If, e.g., X is the category of
modules over a ring, then X is the category of modules over the center of the ring.

Example 2. Let D be the category of division rings. D is not algebraic (e.g. it does not
have products); however there is an inclusion D � R where R is the category of asso-
ciative rings with unity and an obvious underlying set functor U. We thus have

S(UŜ∗)
1

�
�
�
�
��

D � R
�

�
�
�
�
�

U
�

S1

�
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and a map A � UŜ in T , where R = AS. However, this map is not an isomorphism;
in fact there is an additional unary operation θ in UŜ, which satisfies the identities

π1
0 · θ(π1

0) · π1
0 ≡ π1

0

θ(π2
0 · π2

1) ≡ θ(π2
1) · θ(π2

0)

θ(1) ≡ 1.

The maps in the associated category are ring homomorphisms which commute with θ, and
the category does of course have products.

Example 3. Let G denote the category of groups, R, A as above. Define U ′ as Rc ×
G � R � S1, where the first assigns to 〈R,G〉 the group algebra of G with coeffi-
cients in the commutative ring R. The codomain of A � U ′Ŝ has two additional unary
operations, ϕ, τ , which in this case satisfy the identities:

ϕϕ ≡ π1
0

ϕ(π2
0 + π2

1) ≡ ϕ(π2
0) + ϕ(π2

1)

ϕ(π2
0 · π2

1) ≡ ϕ(π2
1) · ϕ(π2

0)

ϕ(1) ≡ 1

τ(1) ≡ 1

τ(π2
0 + π2

1) ≡ τ(π2
0) + τ(π2

1)

τ(π2
0 · π2

1) ≡ τ(π2
1 · π2

0)

ϕτ ≡ τ

τϕ ≡ τ

ττ ≡ τ

If, in this example, we replace G by the category of group monomorphisms, then evaluation
at the neutral element is also part of the resulting algebraic structure.

Example 4. Let S∗1 be the dual of the category of small sets and define S∗1
P� S1 by

SP = (S, 2) for S ∈ S1 (2 = |2|). Then P Ŝ is the theory of Boolean algebras, for by the
corollary to Theorem I.2.5, we have (P n, P ) = ((H2)n, H2) = (H2n

, H2) = (2n, 2), (note
the two dualizations) and known facts about truth tables complete the proof. The resulting

S∗1 � S(P Ŝ∗)
1 takes each small set into its Boolean algebra of subsets.

Example 5. Let X be the category of compact topological spaces and I the unit interval.

Consider X ∗ (·,I)� S1. There results an embedding of X ∗ in an algebraic category in which

the n-ary operations are arbitrary continuous In
θ� I.
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2. Characterization of algebraic categories

Definition. Let X be any large category having finite limits and let G ∈ |X | be such that
for any small set S, S · G, the S-fold coproduct of G with itself, exists in X . Then G is a
generator for X iff

∀X ∀Y ∀f ∀g [X
f�
g
� Y ⇒ [f = g ⇔ ∀x [G

x� X ⇒ xf = xg]]].

G is projective iff

∀X ∀Y ∀f [X
f� Y ⇒ [∃h ∃g [f = hE∗g]

⇔ ∀y [G
y� Y ⇒ ∃x [G

x� X ∧ xf = y]]]].

G is abstractly finite iff

∀S ∀f [S is small set ∧G f� S ·G⇒ ∃F ∃g ∃h [F is a finite set ∧ F g� S∧

G
f � S ·G

�
�
�
�
�

h
� �

�
�
�
�

g ·G

�

]].

F ·G

The term ‘abstractly finite’ is due to [Freyd, 1960]. Note that our concept of ‘projective’
coincides with the usual one for abelian categories, but differs for some other categories.
The definition of G being projective may be rephrased: ‘For every f , f is ‘onto’ (with
respect to G) iff f is a regular epimap.’ If A is any algebraic theory, then 1A is an ab-

stractly finite projective generator for S(A∗)
1 . The abstract finiteness is due to the nature

of coproducts in an algebraic category: the value at π1
0 of a map 1A � S · 1A is some

n-ary operation θ applied to the various copies of π1
0; but this, and hence the whole image

of the map, involves at most n of the S-copies of 1A.

Definition. Let X be a category and G ∈ |X |. Consider a pair

X
f0�
f1
� Y

of maps in X . We say that 〈f0, f1〉 is RST with respect to G iff the following three con-
ditions hold (in X ):

R: ∀y [G
y� Y ⇒ ∃x [G

x� X ∧ xf0 = y ∧ xf1 = y]]

S: ∀x [G
x� X ⇒ ∃x′ [G x′� X x′f0 = xf1 ∧ x′f1 = xf0]]
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T: ∀u ∀v [G
u� X ∧G v� X ∧uf1 = vf0 ⇒ ∃w [G

w� X ∧wf0 = uf0 ∧wf1 = vf1]].

We say that 〈f0, f1〉 is monomorphic with respect to G iff

∀x ∀x′ [G x� X ∧G x′� X ∧ xf0 = x′f0 ∧ xf1 = x′f1 ⇒ x = x′].

We say that 〈f0, f1〉 is a congruence relation with respect to G iff

∀y ∀y′ [G y� Y ∧G y′� Y ∧ [∀Z∀z[Y z� Z ∧ f0z = f1z ⇒ yz = y′z]]

⇒ ∃!x [G
x� X ∧ xf0 = y ∧ xf1 = y′]].

It is well known that (in our language) if A is an algebraic theory, X = S(A∗)
1 , G = 1A,

then a pair 〈f0, f1〉 in X is a congruence relation with respect to 1A iff it is monomorphic
and RST with respect to 1A. In an algebraic category, a pair 〈f0, f1〉 is a congruence rela-

tion with respect to 1A iff the map X
〈f0,f1〉� Y ×Y is the equalizer of Y ×Y

p1�
p2
� Y

q� Q

where q is the coequalizer of the pair 〈f0, f1〉.

Theorem 1. Let X be any large category with finite limits. Then X is algebraic iff there
exists G ∈ |X | such that

(1) arbitrary small coproducts of G with itself exist in X ;

(2) for every X ∈ |X |, (G,X) is small;

(3) G is an abstractly finite projective generator for X ;

(4) for any small set I and any object X, any pair 〈f0, f1〉 of maps

X
f0�
f1
� I ·G which is monomorphic and RST with respect to G is also a congruence

relation with respect to G.

Proof. Necessity is clear. Suppose there is an object G satisfying the four conditions,

let U = (G, ·) and consider the functor X Φ� S(UŜ∗)
1 . We must show that Φ is full,

dense, and faithful. Since G is a generator, faithfulness is clear.
We now show that Φ is full. Note that for any X ∈ |X |, (G,X) is the underly-

ing set of XΦ, and that a map XΦ � Y Φ in S(UŜ∗)
1 may be identified as a map

(G,X)
f� (G, Y ) in S1 which commutes with every n-ary operation G

θ� n ·G from

X . Suppose given such an f. We need to show that f = (G,ϕ) for some X
ϕ� Y in X .

Now there is in X
R

α�
β
� I ·G p� X

such that p = αE∗β. (For example, we may take I = (G,X) and note that the obvi-
ous p is regular since it is onto with respect to G.) Let, for each i ∈ I, ei denote the i-th

injection G � I ·G. We first define G
ϕi� Y , i ∈ I by

ϕi = (eip)f.
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Now since I ·G is a coproduct, there is a unique I ·G ϕ� Y such that eiϕ = ϕi for i ∈ I.

We need to show that ϕ coequalizes α, β. Consider any G
r� R. Since G is abstractly

finite, there is a finite set n, a map n
k� I, and maps α′, β′ such that rα′(k · G) = rα

and rβ′(k ·G) = rβ.

G
r � R

α′ �

β′
� n ·G k ·G� I ·G p � X

�
�
�
�
�

((k ·G)p)fn
�

Y

ϕ

�

We show that the triangle is commutative. For each G
πn
1� n ·G, i ∈ n, we have

πni (k ·G)ϕ = e(i)kϕ = ϕ(i)k = (e(i)kp)f = (πni (k ·G)p)f = πni ((k ·G)p)fn,

the last since f commutes with the n-ary operation πni . Thus (k · G)ϕ = ((k · G)p)fn.
Then

rαϕ = rα′(k ·G)ϕ = rα′((k ·G)p)fn = (rα′(k ·G)p)f
= (rαp)f = (rβp)f = (rβ′(k ·G)p)f
= rβ′((k ·G)p)fn = rβ′(k ·G)ϕ = rβϕ

since αp = βp and f commutes with the n-ary operations rα′ and rβ′. Since the foregoing

holds for every G
r� R we have that αϕ = βϕ, and hence ∃!X

ϕ� Y such that
pϕ = ϕ. It remains to show that (G,ϕ) = f. But since p is onto with respect to G, for

every G
x� X there is G

x� I ·G such that xp = x.

n ·G � θ
G

�
�
�
�
�

h ·G
� ��

�
�
�
�

x
�
�
�
�
�

x

�

I ·G p � X

���
��

��
��

��
��

ϕ

Y

ϕ

�

By abstract finiteness there is a finite set n, an n-ary operation θ, and n
h� I such that

θ(h ·G) = x. Then xϕ = θ(h ·G)pϕ = θ(h ·G)ϕ. On the other hand (x)f = (θ(h ·G)p)f =
θ((h ·G)p)fn since f commutes with n-ary operation θ. Thus to show xϕ = (x)f reduces
to showing (h · G)pϕ = ((h · G)p)fn. For each i ∈ n, πni (h · G)pϕ = e(i)hϕ = (e(i)hp)f =
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(πni (h · G)p)f = πni ((h · G)p)fn. Hence xϕ = (x)f. But this is true for all G
x� X, i.e.

f = (G,ϕ). Thus Φ is full.
We now must show that Φ is dense. Denoting 1A = (G)Φ, we first show that

(I ·G)Φ ∼= I · 1A

in S(UŜ∗)
1 for any small set I.

Since there is in any case a UŜ-map I · 1A
λ� ( I · G) Φ it suffices to show that λ

is one-to-one and onto by Proposition I.3.2; that is, we show that λ induces

(1A, I · 1A) ∼= (G, I ·G) = (1A, (I ·G)Φ).

Now if I = n, a finite set, this relation is true since both sides are just the set of n-ary
operations of the theory UŜ. This fact and abstract finiteness enable us to construct an
inverse µ to (1A, λ). For each finite n and n � I we have

(1A, n · 1A)
λn ��
µn

(G, n ·G)

µn = λ−1
n

(1A, I · 1A)
�

(1A, λ)
� (G, I ·G)

�

Since (G, I · G) = lim
→

(G, n · G), the maps (G, n · G) � (1A, I · 1A) yield a unique µ,

inverse to (1A, λ).
Now assume that Y is an arbitrary UŜ-algebra. Then there is a small set I and a reg-

ular epimap I · 1A
p� Y. The remaining maps in the following diagrams are constructed

as described below.

X : S ·G
a �

b
� I ·G q � Y..................................

r


Kq

α

�

β

�

S(UŜ∗)
1 : S · 1A

r � R
α �

β
� I · 1A

p � Y.

First, 〈α, β〉 is the kernel of p, i.e. α = kp1, β = kp2 where k = (p1p)E(p2p), where

(I · 1A) × (I · 1A)
pj� I · 1A are the two projections. Second, there is a regular epimap

r from some chosen S · 1A to R. Because Φ preserves coproducts of G with itself, and
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because Φ is full, there are a, b in X such that aΦ = rα, bΦ = rβ. Define q = aE∗b in X .
We wish to show that Y Φ ∼= Y where Y is the codomain of q. Let 〈α, β〉 be the kernel

of q. Because 〈a, b〉q1q = 〈a, b〉q2q, where (I · G) × (I · G)
qj� I · G are the projections,

there is a unique S · G r� Kq in X for which r̄ᾱ = a, rβ = b. Since aq = bq in X , we
have rα(qΦ) = (aΦ)(qΦ) = (aq)Φ = (bq)Φ = (bΦ)(qΦ) = rβ(qΦ). Since r is an epimap,

α(qΦ) = β(qΦ), and there is a unique Y
ϕ� Y Φ such that pϕ = qΦ. Because Φ is left

exact, 〈αΦ, βΦ〉 is the kernel of qΦ in S(UŜ∗)
1 . Hence there is a unique R

ψ� KqΦ such
that α = ψ(αΦ) and β = ψ(βΦ). Then, because 〈α, β〉Φ is a monomorphism, rΦ = rψ,
and moreover ψ is a regular monomap since 〈α, β〉 is. Since r is a regular epimap, there

are S ′ · 1A
�� S · 1A with coequalizer r. Let S ·G r� Q be the coequalizer in X of the

corresponding S ′ ·G �� S ·G. The map r also coequalizes the last pair since 〈α, β〉 is a
monomorphism. Thus there is a unique η ∈ X such that

S ·G 〈a, b〉 � (I ·G)2

�
�
�
�
�

r

� �
�
�
�
�

〈α, β〉

�

Q

r

�

η
� Kq

is commutative. Since rΦ coequalizes S ′ · 1A
�� S · 1A, there is a unique ξ ∈ S(UŜ∗)

1

such that rξ = rΦ. Then also ξ(ηΦ) = ψ since r is an epimorphism.

S · 1A
r � R

〈α, β〉 � (I · 1A)2




























rΦ

�

�
�
�
�
�

rΦ

� ��
�
�
�
�

ξ

!"
"
"
"
"
"
"
"
"
"
"
"
"

ψ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

〈α, β〉Φ

�

QΦ

KqΦ

ηΦ

�

Thus ξ is a monomorphism since ψ is. Now rΦ is a regular epimap because r is and be-
cause Φ takes G-onto maps into 1A-onto maps, and by assumption this is equivalent to
taking regular epimaps into regular epimaps. Since r is an epimorphism, ξ is therefore a
regular epimap and hence an isomorphism (by Proposition I.3.3 and I.3.1), and without
loss we may assume QΦ = ξ = R, so that in particular ψ = ηΦ. Because Φ is faithful and
ψ is a monomorphism, it follows that η is a monomorphism in X . Now q is also the co-
equalizer of 〈ηα, ηβ〉. Thus by assumption (4), in order to show that Q ∼= Kq, it will be
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enough to show that 〈ηα, ηβ〉 is RST with respect to G. But this is clear since 〈α, β〉 is
RST with respect to 1A and α = (ηα)Φ, β = (ηβ)Φ, while Φ is full and faithful. There-

fore η : Q
≈� K, so that ψ = ηΦ establishes an isomorphism R

≈� KqΦ in S(UŜ∗)
1 ,

and hence Y = I · 1A/R ∼= I · 1A/KqΦ = Y Φ, the last since qΦ is a regular epimap with
kernel KqΦ. Thus Φ is dense.

Remark. It will be noted that even in the absence of assumption (4), the correspondence
Y � Y constructed in the foregoing proof provides an adjoint to Φ. Assumption (4)
is needed, for the full category X of torsion-free abelian groups is complete and has an
abstractly finite projective generator Z, yet it is not algebraic since the algebraic structure
of (Z, ) is the theory of abelian groups, and hence the functor Φ has the category A1 of
all abelian groups for its codomain. The adjoint in this case consists of dividing by the
torsion part.

Sums (coproducts), as well as products and equalizers, in X coincide with those in A1.
However, the coequalizer of a pair f0, f1 is obtained in X by first taking the coequalizer
in A1 and then dividing by the torsion part:

X
f0�
f1
� Y

q� K∗
ηK∗� K∗/K∗T

q = f0E
∗
A1
f1 , qηK∗ = f0E

∗
Xf1.

This makes it clear that regular epimaps are precisely onto maps, so that Z is projective
in X . An explicit counter-example to assumption (4) is obtained by choosing p > 1 and
considering

Z × Z
f0�
f1
� Z

where 〈x, y〉f0 = x, 〈x, y〉f1 = x+py. Since the A1-coequalizer is the torsion group Zp, the
X -coequalizer is 0, so that the kernel of the coequalizer is not 〈f0, f1〉 even though 〈f0, f1〉
is monomorphic and RST.

Corollary. An abelian algebraic category is equivalent to the category of modules over
some associative ring with unity.

In fact, [Freyd, 1960] has established that any complete abelian category with an ab-
stractly finite projective generator G is equivalent to the category of modules over the
endomorphism ring of G.

Corollary. Suppose 〈S,E, f〉 is a presentation of an algebraic theory A, and suppose X
is a large category with finite limits. Then X is equivalent to the category of all A-algebras
iff there is an object G in X satisfying conditions (1)-(4) of the theorem and a sequence of

maps of sets Sn
qn� (G, n ·G) such that every map n ·G � m ·G in X can be expressed

by composition and { } in terms of S0 and S, and such that maps n·G �� m·G are equal
if and only if their being so follows from E, equations holding in S0, and the fact that n ·G
is an n-fold coproduct,
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Theorem 2. If X is any algebraic category and C is small with |C| <∞, and if either all
(C,B) �= 0 or X has constant operations, X C is also an algebraic category.

Proof. X C is complete, and since limits and monomorphisms are pointwise-characterized
in X C, it follows that every RST monomorphic pair in X C is a congruence relation. (Note
that RST, monomorphism and congruence are actually intrinsic concepts, though we de-
fined them in term of a given projective generator.) Thus we need only show that X C has
an abstractly finite projective generator. We do this in such a way that the underlying set
of a functor A : C � X turns out to be the product Π

C∈|C|
CAU , where U = (G, ) is the

underlying set functor determined by some chosen abstractly finite projective generator
G for X . Consider the composite functor P

X C � X |C| Π� X .

By Theorem I.2.5, the first functor has an adjoint, and of course Π has the adjoint
X � X |C| induced by |C| � 1. Thus P has an adjoint, so that in particular there is
an object G ∈ |X C| such that

(G,A) ∼= (G,AP )

for every object A ∈ |X C|. Since P is clearly faithful, G is a generator.
Since limits are calculated pointwise in X C, a map ϕ ∈ X C is a regular epimap iff

each ϕC , C ∈ |C| is a regular epimap in X . Thus to show that G is a projective we need

to show that ϕ is G-onto iff each ϕC is G-onto. If A
ϕ� B in X C, we have in S1

(G,A)
(G,ϕ) � (G,B)

‖ ‖

(G,AP )
(G,ϕP ) � (G,BP )

‖ ‖

Π
C∈|C|

(G,CA)

Π
C∈|C|

(G,ϕC)
� Π

C∈|C|
(G,CB)

But in S1, Π
C∈|C|

(G,ϕC) is onto iff each (G,ϕC) is onto. Thus the X C-regular epimaps are

precisely the G-onto maps, i.e. G is projective.
We now show that G is abstractly finite if and only if |C| is finite. For this we need

to recall from Theorem I.2.5 the formula for G:

(C)G = limX
→(i,C)

(dC0 , G̃)
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where |C| i� C is the inclusion and where G̃ is the functor |C| � X constantly equal
to G. Since (i, C) in this case is a set (namely the set of all maps in C with codomain C)
and since the functor dC0 G̃ is constant, we have

(C)G = (i, C) ·G

the (i, C)-fold coproduct of G with itself in X . Now consider any small set I and any map

G
f� I ·G in X C. We have

(G, I ·G) ∼= (G, (I ·G)P ) ∼= Π
C∈|C|

(G, (I × (i, C)) ·G).

Now since G is abstractly finite, each of the maps fC : G � (I×(i, C))·G corresponding
to f factors through a sub-coproduct corresponding to a finite IC ⊂ I × (i, C). If G is to
be abstractly finite, then there must be a finite J ⊂ I such that IC ⊂ J × (i, C) for all
C, because the IC can be arbitrary. If |C| is not finite, then the family IC = {〈C,C〉}
of singletons admits no such J , showing the necessity. For the sufficiency, suppose |C| is
finite. Then

J = {j| ∃C ∈ |C| ∃u ∈ (i, C) [〈j, u〉 ∈ IC ]}
is a finite subset of I such that f factors

G
f � I ·G

�
�
�
�
�� �

�
�
�
��

J ·G

Remark. It will be noted that if C is a monoid, i.e. |C| = 1, then the underlying set
functor constructed for X C in the above proof matches that of X , i.e.

X C � X |C| = X
�
�
�
�
�� ��

�
�
�
�

S1

is commutative, so that the connecting functor is algebraic of degree one. In Chapter V,
we study this case in more detail and in particular determine the algebraic structure of

X C
P� X � S1 in terms of C and the algebraic structure of X � S1.
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In case X is the category of modules over a ring R, C arbitrary, I have constructed
elsewhere [Lawvere, 1963] a ring R[C] such that, in case |C| is finite, the algebraic struc-
ture of X C � S1 turns out to be the theory of modules over R[C]. Of course R[C] re-
duces to the usual monoid ring in case |C| = 1.

Remark. The generator G of Theorem 2.1 is not uniquely determined by X , i.e. X may
be represented as S(A∗)

1 for many different non-isomorphic theories A. For example, if C

of Theorem 2.2 is an equivalence relation, i.e. for any two C,C ′ ∈ |C| there is exactly
one C � C ′ in C, then C � 1 is an equivalence, so that

X C � X

is also an equivalence. However if |C| > 1, then the theory constructed for X C is different
from the given one for X . In particular, if X is the category of R-modules and |C| = n,
then R[C] is the ring of n×n matrices over R. Of course, an equivalence which commutes
with underlying set functors does induce an isomorphism of theories.



Chapter IV

Algebraic functors

1. The algebra engendered by a prealgebra

Let A be an algebraic theory. Recall that a prealgebra X of type A is any functor

A
∗ X� S1, and that an algebra of type A is a prealgebra X of type A such that Xn = Xn

1

for every object n in A.

Theorem 1. If A is any algebraic theory, then the inclusion S(A∗)
1

� SA∗
1 of algebras

into prealgebras admits an adjoint.

Proof. Let X be any prealgebra of type A. In the free A-algebra X1F generated by
the set X1, consider the smallest A-congruence XE containing the following relations:

If n ∈ |S0|, if 1A
θ�

nA in A, and if there is y ∈ Xn such that

yθX = x and yπni X = xi for i ∈ n

then
(x0κ, . . . , xn−1κ)θ ≡

XE
xκ

where X1
κ� X1FUA is the canonical inclusion. Define a prealgebra X as follows. For

each n ∈ |S0|,
(Xn) = (X1F/XE)nUA.

For each 1
i� n in S0, X maps i into the i-th projection

(X)n = (X)n1
πn

i� X1.

90
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For any 1A
θ�

nA in A, θX is the induced operation on the quotient:

(X1F )nUA

θX1F � X1FUA

Xn = (X1F/XE)nUA

ηn

�

θX
� (X1F/XE)UA = X1

η

�

where η is the quotient map. It is clear that X is an algebra of type A.

We define a map X
ϕ� X as follows. For each n ∈ |S0| = |A|, ϕn is defined by the

requirement that

Xn

ϕn � Xn = (X1F/XE)nUA

X1

πni X

�

κ
� X1FUA

η
� X1 = (X1F/XE)UA

πni X

�

is commutative for each i ∈ n, since πni X are projections in S1. We prove that ϕ is a nat-

ural transformation, i.e. a map of prealgebras. Consider any 1A
θ�

nA in A, and let
y ∈ Xn. By the definition above we have

yϕnθX = 〈yπn0Xκη, . . . , yπnn−1X
κη〉θX = yθXκη = yθXϕ1.

Thus for every nA ∈ |A| and every 1A
θ�

nA, we have that

Xn

ϕn � Xn

X1

θX

�

ϕ1

� X1

θX

�

is commutative.
It follows that θXϕm = ϕnθX for any mA

θ�
nA in A since Xm is a product. Thus

X
ϕ� X in SA∗

1 .

We now show that ϕ is universal. Suppose X
f� Y in SA∗

1 where Y is an algebra.

Define X
≈
f� Y as follows. By the definition of freedom, there is a unique X1F

∼
f� Y



1 The algebra engendered by a prealgebra 92

such that κ(
∼
fUA) = f1. If y ∈ Xn, then for any 1A

θ�
nA, yfnθY = yθXf1 since f in

natural (i.e. a map in SA∗
1 .) But since Yn = Y n

1 , by uniqueness we have

yfn = 〈yπn0Xf1, . . . , yπ
n
n−1X

f1〉 = 〈yπn0X , . . . , yπnn−1X
〉fn1 .

Thus

(yθXκ)(
∼
fUA) = yθXκ(

∼
fUA) = yθXf1

= yfnθY = 〈yπn0X , . . . , yπnn−1X
〉fn1 θY

= 〈yπn0X , . . . , yπnn−1X
〉(κ(

∼
fUA))nθY

= 〈yπn0X , . . . yπnn−1X
〉κn(

∼
fUA)nθY

= 〈yπn0Xκ, . . . , yπnn−1X
κ〉(
∼
fUA)nθY

= 〈yπn0Xκ, . . . yπnn−1X
κ〉θX1F (

∼
fUA).

That is, the map X1FUA

∼
fUA� Y UA takes the congruence relation XE into equality, so

there is a factorization

X1F

��
�
�
�
�

η
�
�
�
�
�

∼
f

�

X = X1F/XE ≈
f

� Y

By construction
≈
f is the unique map such that ϕ1

≈
f 1 = κη

≈
f1 = κ

∼
f 1 = f1 and hence the

unique map such that

ϕ
≈
f = f.

Therefore X
ϕ� X satisfies the universal mapping property of Theorem I.2.1, so that

the inclusion S(A∗)
1

� SA∗
1 has the adjoint X � X.

Corollary. An algebraic category has arbitrary small coproducts.

Proof. As shown above, the full inclusion S(A∗)
1

� SA∗
1 has an adjoint. The cate-

gory SA∗
1 clearly has coproducts, by Proposition I.2.2 (dualized); namely, the coproduct

of a family of prealgebras is just the prealgebra whose value at n is the sum (in S1) of the

family of values at n. Now consider any small set Λ and any Λ � S(A∗)
1 . Let X be the

direct limit in SA∗
1 of this functor, and let X be the value at X of the adjoint, X

ϕ� X
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the canonical map. Then if Y is any algebra, Xλ
yλ� Y any family of maps, λ ∈ Λ, we

have unique maps

Xλ

eλ � X
ϕ � X�������������������

yλ

�

..............� �..
..
..
..
..
..
..

Y

the first since X = �
λ∈Λ

Xλ in SA∗
1 , the second by adjointness. But this shows that X =

�
λ∈Λ

Xλ in S(A∗)
1 .

Remark. It is clear that the above proof is much more general than the statement of the
corollary. We can actually state the following: If a full subcategory of a right complete
category is such that the inclusion admits an adjoint, then the subcategory itself is right
complete. Of course, the direct limits in the subcategory will not usually agree with those
in the big category, i.e., the inclusion is ordinarily not right continuous, even though it is
as left continuous as is possible.

2. Algebraic functors and their adjoints

Definition. Let A
′, A be algebraic theories, considered as small categories. Let A

′ f� A

be any functor which commutes with finite coproducts. Then there is a unique factorization

S(A∗)
1

T � S(A
′∗)

1

SA∗
1

�

Sf1
� SA

′∗
1

�

Any functor between algebraic categories which is equivalent to some T constructed as
above will be called an algebraic functor.

It is clear that every algebraic functor has a degree, namely the unique k such that

(1)f = k, which is also the unique k such that Uk
A

= TUA′ , where A
′ f� A, T are

as above. The algebraic functors of degree one are precisely those functors equivalent to
some value of the functor

T ∗ S� K � C2.

Theorem 1. Every algebraic functor has an adjoint.
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Proof. Consider the square above. Sf1 has an adjoint by Theorem I.2.5. The inclusion

S(A∗)
1

� SA∗
1 has an adjoint by Theorem 1.1. The composite provides an adjoint for T

since the inclusion S(A′∗)
1

� SA′∗
1 is full.

Example. If A
′ = S0 (the identity functor considered as an object in T ), then the unique

S0
� A induces an algebraic functor T (of degree one)

S(A∗)
1

T � S(S∗0 )
1

∼= S1

SA∗
1

�
� SS

∗
0

1

�

whose adjoint T assigns to each S ∈ |S1| the free A-algebra over S. We have actually
analyzed the construction of the free algebra into two steps, as follows. T is equivalent to
the composite

S(A∗)
1

� SA∗
1

E1 � S1

�
�
�
�
�� �

�
�
�
��

SS
∗
0

1

where the last is evaluation at 1. By a corollary to Theorem I.2.5 we have an explicit for-
mula for the value of the adjoint Ê1 of E1 at S:

(nA)(S)Ê1 = (1A, nA)∗ · S = (nA, 1A) · S
= (1A, 1A)n · S = (1A, 1A)n × S.

Here (1A, 1A)n is the set of all n-tuples of unary operations of A. The value at (S)Ê1 of

the adjoint to the inclusion S(A∗)
1

� SA∗
1 is (S)F where F = T̂ is the free algebra func-

tor, and the natural transformation ϕ constructed in Section 1 gives in particular a se-
quence of maps

(1A, 1A)n × S
ϕn� (SFUA)n

in S1. Here
〈〈θ0, . . . , θn−1〉, s〉ϕn = 〈sκθ0, . . . , sκθn−1〉

where s ∈ S and where 〈θ0, . . . , θn−1〉 is an n-tuple of unary operations of A.
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In particular, if A is the theory of monoids, then it is known that the underlying set
of free monoid is

(S)FUA =
∑
k∈N

Sk

where N is the set of non-negative integers. Also the set of unary operations (1A, 1A) ∼=
N. Taking 1A

θ�
2A as the multiplication operation, we have

N2 × S
ϕ2 � (

∞∑
k=0

Sk)2

N × S

θ × S

�

ϕ1

�
∞∑
k=0

Sk

θSF
�

where

〈i, j, s〉 ϕ2 � 〈sss . . .︸ ︷︷ ︸
i

, sss . . .︸ ︷︷ ︸
j

〉

〈i+ j, s〉
�

ϕ1

� 〈sss . . .︸ ︷︷ ︸
i+j

〉.
�

Example. Let A be the category of abelian groups, G the category of all (small) groups,
M the category of monoids, R the category of rings, Mc and Rc those of commutative
monoids and rings respectively. Let A be the theory presented:

n S E
0 ε ε ≡ νε
1 ν π1

0 ≡ νν

Sn = En = 0 for n > 1.
Then there are obvious algebraic functors of degree one

A � Mc
� Rc

G
�

� M
�
� R

�

S(A∗)
1

�
� S1

�
� A

�
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forming a commutative diagram. (Actually all these functors are of the type known to
logicians as ‘reducts’, i.e. they are induced by maps of theories which are induced by in-
clusions on the usual presentations.) We now describe their adjoints (the description are
mostly immediate from [Bourbaki, (1950–1959)] or [Chevalley, 1956]). First, the adjoint
of any composite functor ending at S1 is the free-algebra functor of the appropriate type,
e.g. the adjoint to S(A∗)

1
� S1 assigns to each small set S the A-algebra X such that

X1 = {ε}+S+S, and νX switches the last two summands. The adjoint to any of the three
vertical functors from the first row to the second consists of ‘dividing by the commuta-
tor’ in the appropriate sense. The adjoint to the left vertical arrow from the second row
to the third assigns to each A-algebra X the group obtained by reducing the free group
over X1 modulo the relations ε ≡ e, x · ν(x) ≡ ν(x) · x ≡ e. The adjoint to the verti-
cal functor from rings to abelian groups assigns to each abelian group A the tensor ring
Z+A+A⊗A+A⊗A⊗A+. . . . The adjoints to the two horizontal functors from groups to
monoids are described in [Chevalley, 1956], pages 41-42. Finally, the adjoints to the two
horizontal functors from rings to monoids assign to a given monoid M the monoid ring
Z[M ] with integer coefficients.

The fact that the adjoint functors also form a commutative diagram (with arrows re-
versed) implies, for example, the well-known fact that a free ring may be constructed ei-
ther as the tensor ring of a free abelian group or as the monoid ring of a free monoid.

The above diagram and discussion have an obvious modification by applying a fixed
Λ ∈ R to each category in the right hand column.

The only functors in the above diagram which also have coadjoints are the two from
groups to monoids, whose coadjoints assign to a monoid or commutative monoid, respec-
tively, its group of units.

Example. For an example which is not a reduct, consider the functor from rings to Lie
rings induced by the T -map defined at the end of Chapter II. The adjoint to this func-
tor assigns to each Lie ring its associative enveloping ring. (See [Cartan & Eilenberg,
1956].)

Example. Let A be the theory of commutative associative rings with unity, and A
′ be

the theory presented like A with the exception that S ′0 = {i} + S0 where i satisfies the
identity i2 = −1. The adjoint to the obvious reduct is itself an algebraic functor, but of
degree two.
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Certain0-aryandunary extensions of
algebraic theories

1. Presentations of algebras: polynomial algebras

Consider the functor S1
T0� T such that ST0 = S · I0; that is, T0 assigns to each small

set S the free algebraic theory over the sequence of sets S0 = S, Sn = 0, n > 0. Since
T0 is right continuous and full, the subcategory of theories which arise as values of T0 is
closed under direct limits, in particular coproducts and coequalizers (quotients). The cor-
responding categories of algebras are not much more complicated than the category of
sets itself. For example, we have the

Proposition. If S is any small set, then coproducts in the category S(ST ∗
0 )

1 are ‘wedge
products’. That is, given any two ST0-algebras X, Y , their coproduct is the comeet (of
sets)

S � X1

Y1

�
� (X �ST0 Y )1

�

where S � X1, S � Y1 are the unique maps defining the structure of X, Y.

Definition. Let S be any small set, A any algebraic theory, N
E� S1 any sequence of

sets, and E
r� ((A �ST0)T )2 any map in SN1 (where T is the functor discussed in II.2).

Write A
′ = (A � ST0)/E for the coequalizer of the corresponding pair of maps 〈r0F, r1F 〉

in T , and denote by f the composite T -map

A � A � ST0
� (A � ST0)/E = A

′.

Then by the algebra presented by 〈A, S, E, r〉 is meant the A-algebra (0A
′)S(f∗)

1 , where

0A
′ = limS

(A
′∗)

1

→0
. A
′ is the theory of the presentation.

97
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Theorem 1. If X is the algebra presented by 〈A, S, E, r〉, then there is an equivalence

(X,S(A∗)
1 ) ∼= S(A

′∗)
1

where A
′ is the theory of the presentation. If X is any A-algebra, then (X,S(A∗)

1 ) is alge-
braic; in fact, there is a presentation of X such that the above relation holds.

Recall that the objects in the category (X,S(A∗)
1 ) are maps X � Y of A-algebras,

and that maps in this category are commutative triangles

X

��
�
�
�
� �

�
�
�
��

Y � Y ′

is S(A∗)
1 . The Theorem follows from Lemmas 1.1, 1.2, 1.3 below.

Lemma 1. If X is any A-algebra, then the functor

(X,S(A∗)
1 )

V� S(A∗)
1

has an adjoint, which assigns to each A-algebra Y the injection X � Y �AX, considered
as an object Y V̂ in (X,S(A∗)

1 ).

Proof. Since (X � Y � X)V = Y � X, there is an obvious map

Y
ϕ� Y V̂ V , namely the injection Y � Y �X. If X

y� Y ′ is any object in (X,S(A∗)
1 ),

and if Y
ψ� yV = Y ′ is any map in S(A∗)

1 , then there is a unique map λ in S(A∗)
1 such

that

X � Y �A X � ϕ
Y

������������

y

 ���
��

��
��

��
��

ψ

Y ′

λ

�

is commutative. Because the left hand triangle is commutative, λ defines a map Y V̂
λ� y

in (X,S(A∗)
1 ), which is the unique map such that ϕ(λV ) = ψ.
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Lemma 2. Consider the composite functor U :

(X,S(A∗)
1 ) � S(A∗)

1

UA� S1.

The value at X � Y of U is the set of maps 0A � X � Y in S(A∗)
1 such that

X

��
�
�
�
� �

�
�
�
��

0A � X � Y

is commutative. If A
′ = UŜ is the algebraic structure of U , then the map U

Φ� UŜS

in K is an equivalence, i.e.

(X,S(A∗)
1 )

Φ

≈
� S(A′∗)

1�������������

U


S(A∗)

1

�

UA

� S1

UA′

�

is commutative in C2 and Φ is an equivalence of categories.

Proof. The first assertion is immediate by Lemma 1.1. The commutativity in C2 fol-
lows from our work in Chapter III (where the definition of Φ was given). We need to show

that Φ is an equivalence. Now the n-ary operations 1A
′ θ�

nA
′ of A

′ are in one-to-one
correspondence with commutative triangles

X

��
�
�
�
� �

�
�
�
��

1A �A X �
nA �A X

in S(A∗)
1 (where the legs are the injections). In particular, every n-ary operation of A de-

termines such a triangle, so that there is a map A
f� A

′ of theories and a correspond-

ing map A
′S

fS� AS in K. We also have, since 0A�A X ∼= X, that the 0-ary operations
of A

′ are in one-to-one correspondence with maps 1A �A X � X in S(A∗)
1 such that

X �
1A �A X � X is the identity, which in turn are in one-to-one correspondence

with maps 1A � X in S(A∗)
1 Therefore (0A

′)S(f∗)
1

∼= X. Since 0A
′ = lim

→0
, there is, for
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each A
′-algebra Y , a unique map 0A

′ � Y in S(A
′∗)

1 which gives a map YΨ : X =

(0A
′)S(f∗)

1
� Y S(f∗)

1 in S(A∗)
1 . There thus results a functor S(A

′∗)
1

Ψ� (X,S(A∗)
1 ) such

that ΨΦ ∼= S(A
′∗)

1 and ΦΨ ∼= (X,S(A∗)
1 ).

Lemma 3. If X is any A-algebra, then the algebraic structure A
′ = UŜ of the functor

(X,S(A∗)
1 ) � S(A∗)

1
� S1 is the theory of a presentation 〈A, S, E, r〉 of which X is the

algebra presented.

Proof. It was pointed out in the proof of Lemma 1.2 that X = (0A
′)S(f∗)

1 . A map

A
f� A

′ of theories was constructed and it was pointed out that (1A,X) ∼= (1A
′, 0A

′).
Thus setting S = (1A,X), we have a map g of theories defined by

A � A � ST0
� ST0

������������

f

 ���
��

��
��

��
��

h

A
′

g

�

where h corresponds to the isomorphism S ∼= (A′T )0 under the isomorphism

(ST0,A
′) ∼= (S, (A′T )0)

determined by the definition of T0. Letting K be the equalizer of

(A � ST0)
2 �� A � ST0

g� A
′

and defining E, r by

KT = E
r� ((A � ST0)T )2

it follows that 〈A, S, E, r〉 has all the correct properties, as it is clear from Chapter II that
g is the coequalizer of

EF � K � (A � ST0)
2 �� A � ST0

where F is the free theory functor.

Example. In particular, if S ∈ |S1|, then

(S,S1) ∼= S(ST ∗
0 )

1 .

Example. If Λ ∈ Rc, then (Λ,Rc) is equivalent to the usual category of commutative
associative Λ-algebras. However, if Λ ∈ R, then the usual (algebraic) category of asso-

ciative Λ-algebras is the full subcategory of (Λ,R) determined by objects Λ
x� X such

that the image of x lies in the center of X.
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The structure of a category of the form (X,S(A∗)
1 ) can of course be studied entirely within

S(A∗)
1 . This may be considered a partial motivation for the introduction of the following

Definition. If A is an algebraic theory and if X is an A-algebra, then by the algebra of
polynomials in n variables with coefficients in X is meant the A-algebra nA �A X.

Example. If Λ ∈ R, then the algebra of polynomials in n variables with coefficients in
Λ in the ring Λ[πn0 , . . . , π

n
n−1] of polynomials in n noncommuting variables.

Proposition 1. If X, A, A
′ are as in the preceding Theorem, the members of the algebra

of polynomials in n variables with coefficients in X are in one-to-one correspondence with
the n-ary operations of A

′.

Proof. Obvious from the foregoing. Here by ‘members’ of nA �A X we mean of course
maps 1A �

nA �A X.

Proposition 2. If X is an A-algebra, then every n-tuple 1A
x� Xn of members of X

determines an evaluation homomorphism nA �A X
(x)� X.

Proof. 1A
x� Xn is equivalent to a map nA

x� X, which together with the identity
map X yields

X �
nA �A X �

nA
������������

X

 ���
��

��
��

��
��

x

X

(x)

�

Definition. If θ is a polynomial in n variables with coefficients in X (i.e. a member

1A
θ�

nA �A X of nA �A X) and if x is an n-tuple of members of X, then the composite
θ(x) is a member of X, the value at x of θ.

Remark. This shows that it is consistent to write θ(x) for the evaluation (or composi-
tion) of polynomials, and xf for the evaluation of homomorphisms f. This may be re-
garded as another manifestation of the duality between structure and maps as expressed
by our Theorem III.1.2.

Example. Let M ∈ M be a monoid, n = 1. Because of the ‘interlacing’ description
of the coproduct of monoids, and since 1A ∼= N (the additive monoid of non-negative
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integers) in this case, we see that any unary polynomial θ with coefficients in M can be
represented as a string

m0 n0 m1 n1 . . .mk−1nk−1

where mi ∈M , ni ∈ N for i ∈ k. The value of θ at a member x of M is the product

θ(x) = m0x
n0m1x

n1m2x
n2 . . .mk−1x

nk−1 .

A similar remark holds for groups, except that the ni may have negative values in that
case.

2. Monoids of operators

If M is any small monoid, then there are unique functors 1 �� M. If B is any complete
category, these induce functors

BM
α��
β

B

and we have βα = B. By Theorem I.2.5 and its dual, α and β have adjoints α̂, β̂ and
coadjoints α̌, β̌.

Proposition 1.
α̂β̂ = B , α̌β̌ = B
ββ̂ = B , ββ̌ = B

Proof. The first two equations follow from the equation βα = B. The other two are
immediate since β is full.

Proposition 2. If X ∈ |BM |, then Xβ̂ = X/M , the ‘orbit object’, and there is a regular
epimap X � (X/M)β. Xβ̌ = M\X, the ‘fixed object’, and there is a regular monomap
(M\X)β � X.

Proof. Immediate from the proof of Theorem I.2.2 and the fact that β̂ = limB
→M

while

β̌ = limB
←M

.

Remark. If M is not a group, and if e.g. B = S1, then the ‘orbit object’ does not nec-
essarily consist of ‘orbits’ in the usual sense, since these need not form a partition if M
is not a group. However, by X/M we mean the quotient by the smallest equivalence (or
more generally congruence) relation which requires that any two points on the same orbit
are equivalent. In case M is commutative, this equivalence relation is simply

x ≡ y iff ∃m ∃m′ [xm = ym′].
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Proposition 3. If B ∈ |B|, then Bα̂ is the functor M � B whose value at the ob-

ject 1
e� M is the object (e, e) · B in B. For any m′ ∈ M , m′(Bα̂) is the map (e, e) ·

B � (e, e) ·B determined by the commutativity of

B
B � B

(e, e) ·B

jm

�

m′(Bα̂)
� (e, e) ·B

jmm′

�

for every m ∈ (e, e) = |M2| =set of members of M (the jm being the injections into the
(e, e)-fold coproduct). Bα̂ is the functor M � B whose value at e is the (e, e)-fold prod-
uct B(e,e) and whose value at any m′ ∈ M is the map B(e,e) � B(e,e) determined by the
commutativity of

B(e,e) m′(Bα̌) � B(e,e)

B

pm′m

�

B
� B

pm

�

for every m ∈ (e, e) (the pm being the projections).

Proof. The formula of the corollary to Theorem I.2.5 specialized to this case.

Remark. In the case M = N, the additive monoid of non-negative integers, B∞ =
Bα̌α (the ‘object of sequences of B’) is characterized in B by the generalized and dualized
Peano’s postulate:

∀X ∀t ∀x ∃!f B∞
s � B∞

e0 � B

X

f

�

t
� X

f

�

x
� B

B

�

This shows that the N -fold product (and dually coproduct) of an object with itself is a
concept which is definable within the first-order theory of a category, whereas infinite
products and coproducts in general are of course not first-order definable (without pass-
ing to the theory of the category of categories).
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By Theorem III.2.2, if B is an algebraic category and M is a small monoid (i.e. cate-
gory with one object), then BM is also algebraic. Our aim now will be to describe explic-
itly the algebraic structure of BM � B � S, and to show that the functors α and β
discussed above are algebraic functors of degree one.

For any small monoid M , let MT1 be the algebraic theory whose n-ary operations are
all of the form

mπni , m ∈M, i ∈ n

and which satisfies the relations

m′(mπni ) = (mm′)πni

where mm′ on the right hand side is composition in M.
This defines a functor

M1
T1� T .

In particular (1)T1 = S0.
Consider the functor

T ×M � T
which assigns to 〈A,M〉 the algebraic theory

A[M ] = (A � MT1)/R(A,M)

where R(A,M) is the smallest congruence (in the sense of T ) containing all relations of
the form

θ{mπn0 ,mπn1 , . . . ,mπnn−1} = mθ{πn0 , . . . πnn−1}
where θ is an n-ary operation of A and m ∈M. In particular A[1] ∼= A for each algebraic

theory, and for each monoid M , the maps 1 �� M induce maps A
a��
b

A[M ] in T .

Theorem 1. For any algebraic theory A and for any small monoid M ,

S(A∗)
1

M ∼= S(A[M ]∗)
1 .

Also, for the functors

S(A∗)
1

M α��
β

S(A∗)
1

induced by 1 �� M we have

α ∼= S(a∗)
1

β ∼= S(b∗)
1 .

Proof. Both S(A∗)
1

M
and S(A[M ]∗)

1 are equivalent to the full subcategory of SA∗×M
1 de-

termined by functors X such that 〈nA, e〉X = 〈1A, e〉Xn for all n ∈ |S0|. By the results

of I.2, the functor SA∗
1

� SA∗×M
1 induced by A

∗ × M � A
∗ takes S(A∗)

1 into this
subcategory. But the restriction of this functor to A-algebras is β. It follows easily that
β = S(b∗)

1 , and similarly α = S(a∗)
1 .
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3. Rings of operators (Theories of categories of modules)

Let R be the category of (small) rings and define a functor

R T ′
1� T

as follows. For each R ∈ |R|, RT ′1 is the algebraic theory presented as follows. (Note that
(Z[π1

0], R) is the set of members of R.)

n S E

0 � empty

1 λ 0 + π1
0 ≡ π1

0

for λ ∈ (Z[π1
0], R) π1

0 + 0 ≡ π1
0

1 ≡ π1
0

(�)(0 � 1) ≡ 0

(λ+ λ′)π1
0 ≡ λπ1

0 + λ′π1
0

(λ · λ′)π1
0 ≡ λ′(λπ1

0)

for λ, λ′ ∈ (Z[π1
0], R)

2 + λ(π2
0 + π2

1) ≡ λπ2
0 + λπ2

1

for λ ∈ (Z[π1
0], R)

3 empty empty

4 empty (π4
0 + π4

1) + (π4
2 + π4

3) ≡ (π4
0 + π4

2) + (π4
1 + π4

3)

Sn = En = 0 for n > 4.
Thus ZT ′1 is the theory of abelian groups, Z[π1

0]T
′
1 is the theory of abelian groups

with a distinguished endomorphism, and in general S(RT
′∗
1 )

1 is the category of (right)
R-modules.

Proposition 1. For any map ϕ : Λ � Γ in R, the functor S(ϕT
′∗)

1 has a coadjoint (as
well as an adjoint).
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Proof. Well known, see e.g. [Cartan & Eilenberg, 1956]. The adjoint is

X � X ⊗ ΛΓ

and the coadjoint is
X � HomΛ(Γ, X).

Proposition 2. The diagram

R×M � R

T ×M

T ′1

�

M

�
� T

T ′1

�

is commutative (up to equivalence) where the bottom row is the functor 〈A,M〉 � A[M ]
of Section 2, and where the top row is 〈R,M〉 � R[M ] = R⊗ Z[M ].

Proof. It is well known that S(R[M ]T
′∗
1 )

1
∼= S(RT

′∗
1 )M

1 . By the Theorem of Section 2,

S(RT
′∗
1 )M

1
∼= S(RT ′

1[M ]∗)
1 . Since these equivalences preserve underlying sets, the algebraic

structures are also equivalent by III.1. That is

R[M ]T ′1
∼= RT ′1[M ].
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Introduction

The categorical approach to universal algebra, initiated in [Lawvere, 1963] has been ex-
tended from finitary to infinitary operations in [Linton, 1966a], from sets to arbitrary base
categories through the use of triples (monads) in [Eilenberg & Moore, 1965] and [Barr &
Beck, 1966] and from one-sorted theories over l-dimensional categories to Γ-sorted theo-
ries over 2-dimensional categories in [Bénabou, 1966]. But despite this generality, there
is still enough information in the machinery of algebraic categories, algebraic functors,
adjoints to algebraic functors, the semantics and structure superfunctors, etc. to allow
consideration of specific problems analogous to those arising in group theory, ring theory,
and other parts of classical algebra. The approach also suggests new problems. As ex-
amples of the latter we may mention Linton’s considerations of general “commutative”
theories [Linton, 1966b], Barr’s discussion of general “distributive” laws [Barr, 1969], and
Freyd’s construction of Kronecker products of arbitrary theories and tensor products of
arbitrary algebras [Freyd, 1966]. It is our purpose here to indicate some of the “specific”
aspects of the approach, and also to mention some of the representative problems which
seem to be open. We restrict ourselves to the case of finitary single-sorted theories over
sets.

1. Basic concepts

An elegant exposition of part of the basic machinery appears in [Eilenberg & Wright,
1967] – we content ourselves here with a brief summary. An algebraic theory is a category
A having as objects

1, A,A2, A3, . . .

and, for each n = 0, 1, 2, 3, . . . , n, morphisms

An
Π

(n)
i� A, i = 0, 1, . . . , n− 1

such that for any n morphisms

Am
θi� A, i = 0, 1, . . . , n− 1

in A there is exactly one morphism

Am
〈θ0,θ1,...,θn−1〉� An

in A so that
〈θ0, θ1, . . . , θn−1〉Π(n)

i = θi, i = 0, 1, . . . , n− 1.

The arbitrary morphisms An
ϕ� A are called the n-ary operations of A. The algebraic

category associated with A is the full subcategory

A
� ⊂ SA
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consisting of those covariant set-valued functors which are product-preserving; its objects
are called A-algebras and its morphisms A-homomorphisms. Clearly there is a full em-
bedding A

op ⊂
→

A
� which preserves coproducts; its values are the finitely-generated free

A-algebras, where “free” refers to the left adjoint of the functor “underlying”

A
� UA� S

whose value at the algebra X is the value of X at A:

XUA = AX.

The underlying functor is a particular algebraic functor, where the latter means a func-
tor

A
� f�

� B
�

induced by composition of functors from a theory morphism B
f� A, where a theory

morphism is just a functor f such that

(
Π

(n)
i

)
f = Π

(n)
i , for all i ∈ n ∈ ω.

Clearly all the theory morphisms determine a category T , and every algebraic functor
preserves the underlying functors. Hence f � f � determines a semantics functor

T op � (Cat,S)

where the category on the right has as morphisms all commutative triangles

X Φ � X ′

�
�
�
�
�

U
� ��

�
�
�
�

U ′

S
of functors. Switching functor categories a bit shows that structure, the left adjoint of
semantics, may be calculated as follows: Given a set-valued functor U , the n-ary opera-

tions of its algebraic structure are just the natural transformations Un ϕ� U , where Un

is the n-th cartesian power of U in the functor category SX , i.e. ϕ is a way of assigning
an operation to every value of U in such a way that all morphisms of X are homomor-
phisms with respect to it. Several applications of Yoneda’s Lemma show that if in fact
U = UA,X = A

� for some theory A, then the algebraic structure of U is isomorphic to
A. As a corollary every functor A

� � B
� which preserves underlying sets is induced

by one and only one theory morphism B � A. More generally, if we denote by In the
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free theory generated by one n-ary operation, then the n-ary operations of the algebraic

structure of any X U� S are in one-to-one correspondence with the functors

X Φ� I
�
n

for which U = ΦUIn .
Algebraic functors are faithful and possess left adjoints. In fact (as pointed out by M.

André and H.Volger), if B
f� A is a morphism of theories then the usual (left) Kan

adjoint
SB � SA

corresponding to f actually takes product-preserving functors into product-preserving
functors, and so restricts to a functor f∗ with

f∗ � f �.

Thus we have the commutative diagram of functors

B
op f op

� A
op

B
�

∩
�

f∗ � A
�

∩
�

SB

∩
� Kan � SA

∩
�

Explicitly, for any B-algebra Y , the underlying set of the “relatively free” A-algebra Y f∗
is the colimit of

(f,A) � B
Y� S

where the first factor of this composite is the obvious forgetful functor from the category
whose morphisms are triples θ, ϕ, θ′ with θ, θ′ operations in A and ϕ a morphism in B

such that

• ϕf � •
�
�
�
�
�

θ
� ��

�
�
�
�

θ′

A
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is commutative in A. In particular, free algebras can be computed by such a direct limit
by taking B = the initial theory � the dual of the category of finite sets and maps. For
the unique f in this case we also write f∗ = FA.

Given two theories A and B, the category of all product-preserving functors B � A
�

has an obvious underlying set functor, whose algebraic structure is denoted by A⊗B, the
Kronecker product of A with B. The Kronecker product is a coherently associative functor
T ×T � T having the initial theory as unit object; it also satisfies A⊗B ∼= B⊗A. The
foregoing semantical definition of A⊗B is equivalent to the following wholly “theoretical”
definition.

A ⊗ B = (A ∗ B)/R

where A ∗ B denotes the coproduct in T and R is the congruence relation generated by

the conditions that each An
ϕ� A in A should be a “homomorphism” with respect to

each Am
ψ� A in B [(An)m

σ� (Am)n
ψn
� An being defined as the operation of ψ

on An, σ being the transpose isomorphism] and that, symmetrically, each B-operation is
an “A-homomorphism”. A famous example is: if G is the theory of groups, G⊗G is the
theory of abelian groups.

2. Methodological remarks and examples

Having briefly described some of the main tools of the functorial semantics point of view
in general algebra, we now make some methodological remarks which this point of view
suggests. First, many problems will take the forms: Characterize, in terms of T , those A

for which A
� has a given property stated in terms of (Cat,S), or characterize those f ∈ T

for which f � has a given property; or for which f∗ has a given property. Properties of A

may be viewed as properties of UA or of FA and as such may have natural “relativiza-
tions” to properties of f � or f∗. Properties of diagrams in T may be “semantically” de-
fined via arbitrary “mixtures” of the processes f � f �, g � g∗, and algebraic structure
from properties in (Cat,S), and direct descriptions in T of such properties of diagrams
may be sought. Most of the solved and unsolved problems mentioned below are of this
general sort. For example, light would be shed on many situations in algebra if one could
give a computation entirely in terms of T of the algebraic structure of

G
� g�

� M
� f∗� R

� UR� S

for any given diagram

G �g
M

f� R

in T . A case in point is that where G = theory of groups, M = theory of monoids, R =
theory of rings with g and f the obvious inclusions; what is sought in the example is in
this case the full algebraic structure of group rings - this is a very “rich” theory, having
linear “p-th power” unary operations for all p and more generally an n-ary multilinear
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operation for every element of the free group on n letters (e.g. convolution corresponds
to the binary operation of group multiplication). Are these multilinear operations a gen-
erating set for the theory in question? Probably this case is simpler than the example in
general, since it is equivalent to the structure of

G
� UG� S FA� A

� � S

where A is the theory of abelian groups, and A
� has a convenient tensor product.

Sometimes the problem is in the other direction: for example, the product A × B of
course has an easy description in terms of T , but a bit of computation is needed to de-
duce from general principles that (A × B)� consists of algebras which canonically split
as sets into a product X × Y , where X carries the structure of an A-algebra and Y the
structure of a B-algebra).

A second general methodological remark is that the structure functor often yields
much more information than the usual Galois connection of Birkhoff between classes
of algebras of a given type and sets of equations, precisely because in many situations
it is natural to change the type. Namely, a subcategory X ⊆ B

� of an algebraic cate-
gory (even a full one) may have an algebraic structure with more operations (as well as
more equations) than B, i.e. the induced morphism B � AX may be non-surjective,

where AX denotes the algebraic structure of X � B
� UB� S. An obvious example

is that in which B is the theory of monoids and X is the full subcategory consisting of
those monoids in which every element has a two-sided inverse. Two other examples arise
from subcategories of the algebraic category of commutative rings: the algebraic struc-
ture of the full category of fields includes the theory Rθ generated by an additional unary
operation θ subject to

1θ = 1
(x · y)θ = xθ · yθ
x2 · xθ = x
(xθ)θ = x

and similarly the algebraic structure of the category of integral domains and monomor-
phisms includes the theory Re generated by an additional operation e subject to

0e = 0
(x · y)e = xe · ye

(xe)e = xe

xe · x = x

The inclusion of fields in integral domains corresponds to the morphism

Re
� Rθ

which, while the identity on the common subtheory Rc (= theory of commutative rings),
takes e into the operation of Rθ defined as follows

xe
def
= x · xθ.
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The third general methodological remark is that, within the doctrine of universal alge-
bra, the “natural” domain of a construction used in some classical theorem may be in fact
much larger than the domain for which the theorem itself can be proved. For example,
the only Re-algebras which can be embedded in fields are integral domains, but the usual
“field of fractions” construction is just the restriction of the adjoint functor (Re

� Rθ)∗
whose domain is all of R

�
e. To the same point, the usual construction of Clifford algebras

is defined only for K-modules V equipped with a quadratic form V
q� K; these pairs

〈V, q〉 do not form an algebraic category. But if we allow ourselves to consider quadratic
forms V � S with values in arbitrary commutative K-algebras S, we can
(1) define the underlying set to be V ×S and find that these generalized quadratic forms

do constitute an algebraic category,

(2) extend the Clifford algebra construction to this domain and find that there it is en-
tirely a matter if algebraic functors and their adjoints (for this certain idempotent
operations have to be introduced, as below).

Certain constructions which have the form of algebraic functors composed with ad-
joints to algebraic functors may also be interpretable along the line of the foregoing re-
mark. For example, the “natural” domain of the group ring construction might be said
to be the larger category of all monoids, for there it becomes simply the adjoint of an al-
gebraic functor. Similar in this respect is the construction of the exterior algebra of a
module, whose usual universal property is not that of a single left adjoint, but does al-
low interpretation in terms of the composition of algebraic functors and the adjoint of an
algebraic functor:

A
� f�

� A
�
P

g∗� R
�
P

h�
� R

�

where A is the theory of K-modules, AP is the theory of modules with an idempotent K-
linear operator P , R is the theory of K-algebras, and RP is the theory of K-algebras with
an idempotent K-linear unary operation P satisfying the equation

(xP )2 = 0

(f , g, h being the obvious inclusions). Thus one might claim that the natural domain of
the exterior algebra functor consists really of modules with given split submodules whose
elements are destined to have square zero.

The problem mentioned earlier, of computing the structure of a composition: algebraic
functor followed by an adjoint of an algebraic functor, is of relevance also in the above ex-
amples, since e.g. the natural anti-automorphism of Clifford algebras is an element of the
structure theory of that functor, while composing the exterior algebra functor with the
forgetful functor from Lie algebras or K[x]-modules and then taking algebraic structure
should yield exterior differentiation and determinant, respectively, as operations in appro-
priate algebraic theories.

It is obvious and well-known that the constructions of tensor algebras, symmetric al-
gebras, universal enveloping algebras of Lie algebras, abelianization of groups, and of the
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group engendered by a monoid are all of the form f∗ for a suitable morphism f ∈ T . Per-
haps less well-known is the theory M(−) of monoids equipped with a unary operation “mi-
nus” satisfying

−(−x) = x
(−x) · (−y) = x · y

and the functor M
�
(−)

f∗� R
� associated to the obvious inclusion f of M(−) into the the-

ory of rings; this functor has the quaternions as one of its values, the eight quaternions
{±1,±i,±j,±k} forming an M(−)-algebra. The quaternions also appear in another way,
namely as a value of the Cayley-Dickson monad (triple) which is the composition of a cer-
tain algebraic functor with its adjoint and is defined on an appropriate algebraic category
of non-associative (not even all alternative) algebras with involution.

An algebraic functor whose adjoint does not seem to have been investigated is the
Wronskian, which assigns to each commutative algebra equipped with a derivation x� x′

the Lie algebra consisting of the same module with

[a, b]
def
= a · b′ − a′ · b.

For example, is the adjunction always an embedding, giving an entirely different sort of
“universal enveloping algebra” for a Lie algebra?

3. Solved problems

For the remainder of this paper we wish to discuss some problems exemplifying the canon-
ical sort of the first methodological remark. Some semantically-defined subcategories of
T admit not only simple descriptions entirely in terms of T , but also can themselves be
parameterized by single algebraic subcategories. Consider the full subcategory of T deter-
mined by those A for which UA has a right adjoint (as well as the usual left adjoint FA).
These A are easily seen to be characterized by the property that for each n = 0, 1, 2, . . .
each A-operation An � A factors uniquely through one of the projections Π

(n)
i . Such

unary theories are in fact parameterized by the full and faithful left adjoint of the “unary
core” functor

T Un� M
�

where M is the theory of monoids with

M(An, A) ∼=
∞∑
k=0

nk

and where (A)Un = A(A,A) as a monoid. Thus we may also say that a theory “is a
monoid” iff it is unary. Note that if we denote the left adjoint

M
� � T
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to Un by M �M , then we have

M1 ×M2 = M1 ⊗M2

for any two monoids M1,M2.
Another algebraically parameterized subcategory of T consists of all A for which A

� is
abelian. We often say that such a theory “is a ring”, for it must necessarily be isomorphic
to a value of the full and faithful functor

R
� Mat� T

which assigns to each ring R the category MatR whose morphisms are all the finite rect-
angular matrices with entries from R (i.e. the algebraic theory of R-modules). Here
R(An, A) ∼= Z[x1, . . . , xn] = the set of polynomials with integer coefficients in n non-
commuting indeterminates. The functor Mat commutes with the Kronecker product
operations defined in the two categories, and has a left adjoint given by A � Z ⊗ A

where we now mean by Z the theory corresponding to the ring Z (i.e. the theory of
abelian groups). Note that while a quotient theory of a ring is always a ring, e.g. the the-
ory of convex sets (consisting of all stochastic matrices) is a subtheory of a ring which is
not a ring.

Since A � Z ⊗ A canonically, we have the adjoint functor

A
� ........� (Z ⊗ A)�

from the category of A-algebras to the canonically associated abelian category, and for
each A-algebra X an adjunction morphism X � X if we denote by X the associated
Z ⊗ A-module. The kernel of this adjunction morphism may be denoted by [X,X], sug-
gesting notions of solvability for algebras over any theory A, which do in fact agree with
the usual notions for A = theory of groups, theory of Lie algebras, or theory of unitless
associative algebras. Sometimes [X,X] may actually be the empty set; for example, if A

is a monoid, X is a set on which the monoid acts, then X � X is the embedding of X
into the free abelian group generated by X (equipped with the induced action of A).

The composition

M
� ⊂� T Z⊗()� R

�

is another way of defining the monoid ring; more generally, for any theory A and monoid
M , A ⊗ M is the theory of A-algebras which are equipped with an action of M by A-
endomorphisms. In fact, thinking of theories as generalized rings often suggests a natural
extension of concepts or constructions ordinarily defined only for rings to arbitrary the-
ories. For example consider fractions: the category whose objects are theory-morphisms
M � A, M any monoid, A any theory, admits a reflection to the subcategory in which
M is a group, constructed by first ignoring A and forming the algebraic adjoint, and then
taking a pushout in T .

Part of the intrinsic characterization of those A which are rings is of course the con-
dition that for each n, An is the n-fold coproduct (as well as product) of A in A (in fact
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this alone is characteristic of semi-rings). Another condition which some theories A sat-
isfy is that An is the 2n-fold coproduct of A; such theories turn out to be parameterized
by the algebraic category of Boolean algebras.

One of the famous solved problems of our canonical type is: Which theories A are such
that in A

�, every reflexive subalgebra Y ⊆ X ×X is actually a congruence relation? The
answer is: those for which there exists at least one T -morphism B3

� A, where

B3 = I3/E

is the theory generated by one ternary operation θ satisfying the two equations E:

〈x, x, z〉θ = z
〈x, z, z〉θ = x.

For example, if A = G, the theory of groups, one could define such a morphism by

〈x, y, z〉θ def
= x · y−1 · z.

Also R, Mat(R) for any ring R, the theory of Lie algebras, as well as certain theories of
loops or lattices, share with G the property described.

Also by now well-known, but apparently more recently considered, is the problem: For
which A does A

� have a closed (autonomous) structure with respect to the standard un-
derlying set functor UA? The answer is: the commutative A, meaning those for which
every operation is also a homomorphism. Since a monoid or ring is commutative as a
monoid or ring iff it is commutative as a theory, one is not surprised to note that in the
category of commutative theories, the coproduct is the Kronecker product.

Less classical, but more trivial, is the question: for which A is the trivial algebra 1 a
good generator for A

�? The answer is: the affine A, meaning those for which

A
diag� An

ϕ� A

is the identity morphism for every n-ary A-operation ϕ and for every n = 0, 1, 2, . . . .
Being “equationally defined”, the inclusion (of affine theories into all) clearly has a left
adjoint, but more interesting seems to be the right adjoint which happens to exist; this
assigns to any A the subtheory Aff(A) consisting of all (tuples of) those ϕ which do satisfy
the above condition. Noting the first four letters of the word “coreflection”, we call Aff(A)
the affine core of A. The term “affine” was suggested by the fact that

R
� Mat� T Aff� TAff

⊂� T

assigns to each ring its theory of affine modules.
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4. Unsolved problems

We now list some semantically-defined subcategories C of T for which good characteriza-
tions in terms of T alone do not seem to be known. They will be presented in relativized
form, so that none of them are full subcategories of T but all of them contain all the iso-
morphisms of T . With each such relativized problem C there is a corresponding “abso-
lute” problem: namely to find those A such that the morphism f from the initial theory

to A belongs to the class C. We simply list the condition that arbitrary B
f� A belong

to C in each case:
(1) f � takes epimorphisms in A

� into epimorphisms in B
�. The corresponding absolute

question is: for which A
� are epimorphisms surjective? so that for example G has

the property while M does not.

(2) f � has a right adjoint (as well as the usual left adjoint). Note that this second cat-
egory (2) is included in the category (1) defined above, and that the corresponding
absolute question was answered with “unary theories”. However, the present relative
question is definitely more general than just morphisms of unary theories since every
morphism between rings is included in category (2) as is the inclusion M � G (re-
call the “group of units”). Since the right adjoint of f � would have to be represented
by f ·X1, X1 being the free A-algebra on one generator, the question is related to the
more general one of computing, for any f , the algebraic structure of the set-valued
functor B � S so represented.

(3) f∗ is right adjoint to f �. This very strong condition obviously implies (2). We call
the f satisfying (3) Frobenius morphisms since a typical example is a morphism in

T of the form K
f� R where K is a commutative ring, R is a ring, and f makes R

a Frobenius K-algebra. It does not seem to be known if there are any examples in
T of Frobenius morphisms which are not ring morphisms. In the context of triples
in arbitrary categories, a characterization in terms of the existence of a “nonsingular
associative quadratic form” can be given, but it is not clear what the abstract form
of this condition means when restricted back to theories (unless they are rings).

(4) f � takes finitely generated A-algebras into finitely generated B-algebras. A thorough
understanding of this category would imply the solution of the restricted Kurosh and
restricted Burnside problems as special cases. In fact the restricted Burnside problem
belongs to the absolute case of the question, taking A = Gr = theory of groups of
exponent r, and the restricted Kurosh problem to the case relative to B = ground
field, taking A = theory of algebras satisfying a given polynomial identity.

(5) The adjunction morphism Y � f · (Y f∗) is monomorphic for all B-algebras Y .
This category includes the f defined by the Lie bracket, but not that defined by the
Jordan bracket, into the theory of associative algebras over a field. Since when ap-
plied to finitely generated free algebras, the adjunction reduces to f itself, it is clear
that all f in category (5) are necessarily monomorphisms themselves. But this is not
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sufficient, as the morphism Z
f� Q from the ring of integers to the ring of ratio-

nals shows (apply f∗ to an abelian group with torsion). Linton has suggested that
the universally mono-morphic f in T may coincide with category (5).

(6) f � reflects the existence of quasi-sections; i.e. for any A-homomorphism h, if there
is a B-homomorphism g with (h)f · g · (h)f = (h)f , there is an A-homomorphism g
with h ·g ·h = h. The absolute form of this condition applies to a ring A if it is semi-
simple Artinian. Since simplicity, chain conditions, etc. have sense in the category
T , it would be interesting if subcategory (6) could be characterized in these terms.

5. Completion problems

Finally, various completion processes on the category of theories are suggested by the ad-
jointness of the structure functor. For example, consider the inclusion Sfin

� S of finite
sets into all sets. Pulling back and composing with this functor yields an adjoint pair

(Cat,S)
�

�........ (Cat,Sfin)

which, when composed with the semantics-structure adjoint pair, yields a triple (monad)
on the category T . This triple assigns to each theory A the algebraic theory A consist-
ing of all operations naturally definable on the finite A algebras. For example G is the
(finitary part of) the theory of profinite groups.

Burnside’s general problem suggests a different, “unary” completion Ã for a theory A,
namely let Ã be the structure of (the underlying set functor of) the category of those A-
algebras which are finitely generated and in which each single element x generates a finite
sub-algebra Fx. Since this category is a union and semantics is an adjoint we have

Ã ∼= lim
←−F

AF

where F ranges over finite sets of finite cyclic A-algebras, since structure is an adjoint.
Note that this completion is not functorial unless we restrict ourselves to category (4).
Since every finite A-algebra satisfies the two finiteness conditions above, one obtains a
morphism.

Ã � A

the study of which reflects one form of a generalized Burnside problem.
The functorial completion can also be done relative to a given theory B◦ by using

finitely generated or finitely presented B◦-algebras, and considering theories A equipped
with B◦ � A. For example, with B◦ = a field K, the completion of A = K[x] is the
full natural operational calculus K[x] for arbitrary operators on finite-dimensional spaces;
explicitly this ring consists of all functions θ assigning to every square matrix a over K
another aθ of the same size, such that for every suitable rectangular matrix b and square
a1, a2

a1b = ba2 ⇒ aθ1b = baθ2.
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If K is the field of complex numbers, one has

K[[x]]

�
�
�
�
��

K[x] � E(K) � K[x]

�
�
�
�
��

KK

where E(K) is the ring of entire functions and K[[x]] the ring of formal power series. (For-
mal power series also arise as algebraic structure, by restricting to the subcategory where
the action of x is nilpotent.) The ring K[x] would seem to have a possible role in “for-
mal analytic geometry”; it has over formal power series the considerable advantage that
substitution is always defined, so that formal endomorphisms of the formal line would be
composable. This monoid is extended to A, (the dual of) a category of formal maps of
formal spaces of all dimensions by applying the structure-semantical completion process
over finite-dimensional K-vector spaces to the theory A of commutative K-algebras.
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