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HOMOTOPY IS NOT CONCRETE

PETER FREYD

Theorem:

Let T be a category of base-pointed
topological spaces including all finite-
dimensional cw-complexes. Let T : T → S
be any set-valued functor that is homotopy-
invariant. There exists f : X → Y
such that f is not null-homotopic but
T (f) = T (�), where � is null-homotopic.

Corollary:

Let κ be any cardinal number. There
exist finite-dimensional cw-complexes X,Y
and a map f : X → Y not null-homotopic
but such that f |X ′ is null-homotopic when-
ever X ′ ⊂ X is a sub-cw-complex with
fewer than κ cells.

The corollary follows from the theorem
as follows: let Z be the wedge1 of all cw-
complexes with fewer than κ cells. The the-
orem says that there must exist f : X → Y

not null-homotopic such that [Z,X]
[Z, f ]→

[Z, Y ] is constant. For any X ′ ⊂ X with
fewer than κ cells there exists X ′ → Z →
X ′ = 1X′ , from which we may conclude that

[X ′, X]
[X ′, f ]→ [X ′, Y ] is constant and in

particular that f |X ′ is null-homotopic.

Let H be the homotopy category
obtained from T . Its objects are the ob-

jects of T , its maps are homotopy-classes of
maps. The theorem says that H may not
be faithfully embedded in the category of
sets—or in the language of Kurosh— H is
not concrete. There is no interpretation
of the objects of H so that the maps may be
interpreted as functions (in a functorial way,
at least). H has always been the best exam-
ple of an abstract category, historically and
philosophically. Now we know that it was
of necessity abstract, mathematically.

The theorem says a bit more: H has a
zero-object, that is, an object 0 such that
for any X there is a unique 0 → X and a
unique X → 0, and consequently for any
X,Y a unique X → 0 → Y , the zero-map
from X to Y .

We shall shortly restrict our attention to
zero-preserving functors between categories
with zero. Instead of functors into the cat-
egory of sets, S we’ll consider functors into
the category of base-pointed sets S� and
only those functors that preserve zero. But
first:
Proposition:

If C is a category with zero and T :
C → S any functor, then there exists a zero-
preserving functor T� : C → S� such that
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1“Wedge” is the topologist’s word for the coproduct in T .
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for all f, g : A → B in C it is the case that
T (f) = T (g) iff T�(f) = T�(g)

Proof:

Let G be the category of abelian groups
and F : S → G the functor that assigns free
groups. F is faithful, hence T (f) = T (g)
iff FT (f) = FT (g). Let Z be the constant
functor valued FT (0). There exist transfor-
mations Z → FT → Z = 1Z , and FT splits
as Z ⊕ Z ′ (remember that the category of
functors from G to G is an abelian category).
Z ′ preserves zero and FT (f) = FT (g) iff
Z ′(f) = Z ′(g). Finally, let U : G → S� be
the forgetful functor and define T� = UZ ′.
2

In light of this proposition the main the-
orem is equivalent with

For any zero-preserving functor T :
H → S�, there exists f in H such that f �= �
and T (f) = �.

H is thus worse than non-concrete: not
only must any T : H → S� confuse two dis-
tinct maps, it must confuse two maps one of
which is a zero-map. Such failure to be con-
crete is easier to work with than the more
general. We will say that a functor T :

C → S� is faithful-at-zero if T (f) = �
iff f = � and C is concrete-at-zero if
there exists faithful-at-zero T : C → S�.

3

We wish to show that H is not concrete-at-
zero; we shall isolate a property that any
concrete-at-zero category must possess and
then demonstrate its failure in H.

We shall work for a while in an arbi-
trary category C with zero. Given A ∈ C we
may define an equivalence relation on the
monomorphisms into A as follows: (B1 →
A) ≡ (B2 → A) if there exists an isomor-
phism B1 → B2 such that B1 → B2 → A =
B1 → A.

A subobject of A is defined to be an
equivalence class of monomorphisms. A ker-
nel of a map A → B is usually defined as a
monomorphism into A satisfying the well-
known universal property. We note here
that “the” kernel of A → B may be de-
fined as a subobject, removing completely
the ambiguity. (Every monomorphism in
the equivalence class must of necessity be
a kernel.) A normal subobject is one
that appears as a kernel. The following will
be a corollary of a later theorem:

2There are two other lemmas of a somewhat similar nature that should, perhaps, be pointed out here.
I had assumed—until I learned otherwise—that each of these lemmas went without saying. The first is
that we can easily replace any pointed-set-valued functor with an equivalent functor that is an injection
as far as objects go: given T define T ′ by T ′(A) = T (A)×{A}. The second is that we can replace
any set-valued “pre-functor” (one that preserves composition but not identities) with a functor: given T
define T ′ with the slogan:

T ′(A
f→B) = Image(T (1A))

T (f)→ Image(T (1B)).

Actually, I did know that this last lemma needed saying: when, at the original exposition, I explained
what I meant by “homotopy is not concrete” the most honored member of the audience interrupted with
a putative faithful functor. At that time, the best I could do was point out that the putative functor did
not preserve identity maps. Later, when I was writing the paper, I decided to forget the whole thing.

3To see that not being concrete-at-zero is, indeed, strictly worse than not being concrete, take any
non-concrete category C and formally adjoin a zero object. (To the objects add a new object, 0, and for
each ordered pair of objects, old or new, A,B add a new map, A 0→ B.) There’s an obvious faithful-
at-zero functor to the category of pointed-sets-with-at-most-two-elements. (Obvious or not it’s what the
construction below yields: every old object has exactly two gnss.)
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If C is concrete-at-zero then each of its
objects has only a set of normal subobjects.
Moreover, if every map in G has a kernel
then the converse holds.

This theorem—as it stands—is not use-
ful for H. There are very few kernels, in-
deed there are very few monomorphisms in
H. We therefore introduce another equiva-
lence relation, this time on all the maps into
a fixed object A.

(X → A) ≡ (X ′ → A) if they kill the
same maps coming out of A, that is, if for all
A → Y it is the case that X → A → Y = �
iff X ′ → A → Y = �. We shall call the
equivalence classes generalized normal
subobjects, of A. We’ll abbreviate the no-
tion as gns.4 The connection with normal
subobjects is this:

Proposition:

If each map in C has a kernel and a
cokernel then each gns uniquely contains a
unique normal subobject.

Proof:

One may first check that two normal
monomorphisms are equivalent in the pre-
vious (the “subobject” sense) iff they are
equivalent in the new sense (the “general-
ized normal subobject” sense). If C has ker-
nels and cokernels then given f : X → A we
note that Ker(Cok(f)) is equivalent to f .

Theorem:

C is concrete-at-zero iff each object has
only a set of generalized normal subobjects.

Proof:

If TX → TA and TX ′ → TA have the
same image and if T : C → S� is faithful-
at-zero then necessarily (X → A) ≡ (X ′ →
A), hence there could not be more gnss of
A then there are subsets of TA.

For the converse, define T : C → S� by

letting TA be the set of gnss of A. Given
f : A → B note that if (X → A) ≡ (X ′ →
A) then (X → A → B) ≡ (X ′ → A → B);
thus A → B induces a function TA → TB,
clearly seen to be functorial. If TA → TB

were constant then (A 1→A → B) ≡ (0 →
A → B) and from A 1→ A → B = �
iff 0 → A → B = � we conclude that
A → B = �.

The previous assertion for categories in
which each map has a kernel: the fact that
concreteness-at-zero is equivalent with each
object having only a set of normal subob-
jects may be seen by looking at the dual
category, C◦, and noticing that in general
(X → A) ≡ (X ′ → A) iff Cok(X →
A) = Cok(X ′ → A). This would yield
T : C◦ → S�. However, the contravariant
functor represented by the two-point set is
faithful and we would obtain C → S�.

A weak-kernel of A → Y is a map
X → A such that

wk1: X → A → Y = �.

wk2: If Z → A → Y = � then there exists
Z → X such that Z → X → A = Z → A.

Z ↘
A↓ ↗

X

(no uniqueness condition).

If both X → A and X ′ → A are weak-
kernels (of possibly different things) then
(X → A) ≡ (X ′ → A) iff there exist

X ↘
A↓ ↗

X ′
and

X ′
↘

A↓ ↗
X

by direct application of the definitions of ≡
and weak-kernels.

In H we have many weak-cokernels (in-
deed, the suspension of any map is always
such). We are directed, therefore, to look

4The term I used in 1970 was “abstract normal subobject”. The reason for changing it here is given
below in Footnote 10.
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at the dual side, keeping in mind that a
contravariant faithful-at-zero T : H → S�

yields a covariant functor if followed by the
faithful (−, 2). We wish to find a space A,
a proper class of maps {A → Xi}i∈I all of
which are weak-cokernels such that for i �= j
not both

Xj↗
A ↓↘

Xi

and

Xi↗
A ↓↘

Xj

exist.5

From the theory of abelian groups:
Lemma:

For any prime integer p there exists a
family of p-primary torsion abelian groups
{Gα}, for α running through the ordinal
numbers and for each Gα a special element
xα ∈ Gα with the properties that xα �= 0,
pxα = 0 and for any homomorphism f :
Gβ → Gα with β > α it is the case that
f(xβ) = 0.
Proof:

We recall the theory of “height” in tor-
sion groups. Let Gp be the category of p-
primary torsion abelian groups, let I be its
identity functor. For each ordinal α we de-
fine a subfunctor inductively by:

I0 = I;
Iα+1 = Image(Iα

p→Iα);
Iα =

⋂
β<α Iβ for α a limit ordinal.

We must show that this descending se-
quence continues to descend forever. Given
α we shall find Gα such that Iα(Gα) �=
0, Iα+1(Gα) = 0. By letting xα be
a non-zero element in Iα(Gα) we will
achieve the announced end, because if
β > α then Iβ(Gβ) → Iβ(Gα) but
Iβ(Gα) ⊂ Iα+1(Gα) = 0.

Given α let Wα be the set of finite words
of ordinals 〈γ1γ2 · · · γn〉 where γ1 < γ2 <
· · · < γn ≤ α, including the empty word
〈〉. Let Gα be the group generated by
Wα subject to the relations p〈γ1γ2 · · · γn〉 =
〈γ2 · · · γn〉 and 〈〉 = 0. Then Gα is p-primary
torsion. Note that every non-zero element
in Gα is expressible uniquely as something
of the form a1w1 +a2w2 + · · ·+anwn, where
0 < qi < p, wi ∈ Wα − 〈〉. We may then
show, inductively, that Iγ(Gα) is generated
by elements of the form 〈γ1γ2 · · · γn〉 where
γ ≤ γ1. Hence Iα(Gα) is isomorphic to
Zp, the cyclic group with p elements, and
Iα+1(Gα) = O. 6

Let M(G) denote the Moore space,
H1(M(G)) � G.7 Choose a prime p, a gen-
erator x for H1(M(Z2)) and for each ordi-
nal α a map fα : H1(M(Z2)) → H1(M(Gα))
such that (H1(fα))(x) = xα. We use Σ to
denote the suspension functor.

For β > α there is no

ΣM(Gβ)Σfβ→
ΣM(Zp) ↓

Σfα
→

ΣM(Gα)

because application of H2 would contradict
the choice of xα, Gα. Each Σfα is a weak-
cokernel. Hence each Σfα represents a dif-
ferent generalized normal quotient object.
Hence ΣM(Z2) has more than a set of gen-
eralized normal quotient objects. Hence H
is not concrete-at-zero.

We may be more specific: for any n > 0

5Going to the dual is not needed. The maps into A for which these maps out of A are weak cokernels
would necessarily represent different GNSs.

6For a real proof see the first addendum below.
7This material was written for a crowd of topologists. The second addendum below is an attempt to

broaden the audience. (John Moore, as it happened, was in the original audience.)
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consider the mapping-cone sequence

Σn−1M(Zp)
Σn−1fα→Σn−1M(Gα)

Σn−1f ′
α→Σn−1M(Gα/Zp)

Σn−1f ′′
α→

ΣnM(Zp)
Σnfα→ΣnM(Gα)

(The mapping cone of M(Zp) → M(Gα)
is a Moore space because Zp → Gα is a
monomorphism.) For β > α the composi-
tion ΣnfαΣn−1f ′′

β is not null-homotopic.
Let T : H → S� be any functor. Let β >

α be such that T (Σn−1f ′′
β ) and T (Σn−1f ′′

α)
have the same image in T (ΣnM(Zp)). Then
because T (ΣnfαΣn−1f ′′

α) = � it must be the
case that T (ΣnfαΣn−1f ′′

β ) = �.
Note that for each n we have shown

that the homotopy category of (n + 3)-
dimensional, n-connected cw-complexes is
not concrete-at-zero. With n ≥ 1 we know
that it is not the basepoints that prevent
concreteness.8 For n ≥ 3 we know that the
stable category is not concrete.9

On Concreteness in General
When we move away from zero, the no-

tion of normal subobjects is not enough. A
regular subobject is one that appears
as an equalizer. Accordingly define yet an-
other equivalence relation on maps into A:
(X → A) ≡ (X ′ → A) if they equalize the
same pairs of maps coming out of A, that

is, if for all f, g : A → Y it is the case

that X → A
f→ Y = X → A

g→ A iff

X ′ → A
f→ Y = X ′ → A

g→ A. We’ll call
the equivalence classes generalized reg-
ular subobjects.10

A necessary condition for concreteness is
that every object have only a set of general-
ized regular subobjects, and I have just re-
cently proved that for categories with finite
products this is a sufficient condition. For
categories without products a different con-
dition is available, discovered by John Isbell
(1963): fixing A,B define

A↗
X ↓↘

B

≡
A↗

X ′ ↓↘
B

iff for all

A ↘
Y↗

B

it is the case that
A↗ ↘

X Y↘ ↗
B

commutes iff

A↗ ↘
X ′ Y↘ ↗

B

commutes.

The condition, then, is that for any A,B
only a set of equivalence classes arise. This
condition allows us formally to adjoin finite
products in a way to get the generalized-
regular-subobject condition. That condi-
tion allows us formally to adjoin equalizers
(while preserving the products) to get the
condition that every object has only a set of
regular subobjects. Now the hard part. A

8That is, both free and strict homotopy fail to be concrete.
9In his review in the Mathematical Reviews John Isbell wrote “The author asserts also that the stable

category is not concrete.” He apologized when he next saw me saying “I didn’t know a stable result when
I saw one.” As do most of us category people, he had been thinking of the stable category as what one
obtains when one forces Σ, the suspension functor, to be an automorphism of the category. What he was
forgetting—mostly because the author in question didn’t take the trouble to point it out—was that the
subject of stable homotopy began with the Freudenthal theorem that if X and Y are of dimension n and
at least (n/2)-connected then the suspension functor induces an isomorphism [X,Y ] → [ΣX,ΣY ].

10The term I used in 1970 was “abstract regular subobject” which yielded the acronym “ARS”. Alas
in my 1973 paper, Concreteness, Journal of Pure and Applied Algebra, Vol. 3, 1973, that acronym, in its
repeated use, became a distraction. So I replaced the “abstract” with “generalized”.
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long rather arduous construction takes place
in the category of set-valued functors.

In a paper written just before this
one (see bibliography) 11 I show that the
category of small-categories-and-natural-
equivalence-classes-of-functors is not con-
crete. I also give an unenlightening proof
that the category of groups-and-conjugacy-
classes-of-homomorphism is concrete, a fact
rather easily seen from the sufficiency
of the generalized-regular-subobject condi-
tion. Also, the characterization therein of
those categories C for which the category of
“petty” functors from C is concrete becomes
much easier. The Eckmann-Hilton analogue
of homotopy in abelian categories usually
yields non-concrete categories, as do the no-
tions of homotopy on chain complexes.
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43–49.

Addendum: p-height done right

I’m going to construct a leaner Gα (it
appears as a subgroup of the previously de-
fined group). Let Wα be the set of finite as-
cending words of ordinals strictly less than
α.

The generators-and-relations construc-
tion does not easily yield the necessary
proofs, so I’m going to use a different ap-
proach, one very familiar to logicians and
computer scientists. Let Sα be the set of
words on Wα, which instead of being called
words of words will be called “sentences”.
By a “rewrite rule” is meant an ordered
pair of sentences denoted S1 ⇒ S2. By an
application of such a rule we mean the re-
sult of starting with a sentence S, finding a
subsentence equal to S1 and replacing that
subsentence with S2. We’ll stipulate a set
of rewrite rules on Sα and observe that 1)
the rules are “strongly normalizing”, that
is, there is a chain condition on applica-
tions of the rewrite rules, or put another
was, starting with any sentence we must in
a finite number of steps reach a “terminal”
sentence, one on which no rewrite rules ap-
ply; 2) the terminal sentence reached is in-
dependent of the order in which the rewrite

11There’s another result from this paper that should be mentioned here. The Whitehead Theorem says
that the (ordinary spherical) homotopy functors jointly reflect isomorphisms in H and that seems to be
saying that H though not concrete is not as unconcrete as it could be. Not so. In the mentioned paper
I observed that every locally small category has a canonical isomorphism-reflecting set-valued functor.
It’s not hard to construct. First define yet another equivalence relation on maps targeted at A, to wit,
X → A ≡ X ′ → A if for all A → Y it is the case that X → A → Y is an isomorphism iff X ′ → A → Y is
an isomorphism. Define F (A) to be the family of equivalence classes and note that F—if we ignore for
the moment the possibility that it is too big—is easily seen to be a covariant functor. If there are maps
into A that are not split monos we use � to denote their (common) equivalence class. Define F�(A) to be
the same as F (A) if there are such maps into A and F�(A) = F (A) ∪ {�} if not. Clearly F� remains a
covariant functor. It isn’t hard to see that it reflects both right and left invertability and that’s a stronger
property than merely reflecting isomorphisms. To finish, construct a partial map from the set, End(A),
of endomorphisms of A to F (A) that hits every element except �. Given e ∈ End(A) such that e is a
split-idempotent, that is, such that there exist maps A → X and X → A with A → X → A = e and
X → A → X = 1 then the equivalence class of X → A is independent of choice of splitting and we use
that fact to construct a function as advertised from the set of split-idempotents on A to the non-trivial
elements of F�(A).
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rules are applied.

Gα is then defined as the set of termi-
nal sentences. The binary operation ap-
plied to elements S and S ′ of Gα is the
result of starting with the catenation SS ′

and then normalizing. The result is clearly
a monoid; the associativity is an immedi-
ate consequence of the associativity of cate-
nation and the uniqueness of the terminal
sentence reached and the empty sentence is
clearly a unit.

I do the case p = 2 and mention how to
do the general case. (Note that any prime
would suffice for the non-concreteness of ho-
motopy.)

We stipulate two kinds of rules:

The Order Rules: vu ⇒ uv if u is a
shorter word than v; or if they are the same
length and u lexicographically precedes v.

The Shortening Rules: uu ⇒ u′ if u =
βu′; and ee ⇒ 0 where e is the empty word
and 0 is the empty sentence.

The terminal sentences are then eas-
ily seen to be just the strictly ascending
sequences of words (with the ordering on
words obvious from the order rule). That
the rules are strongly normalizing is clear.

The uniqueness is a clear consequence of
the “confluence” property:

Suppose that S1 is a sentence and that S2

and S3 are each the result of a single appli-
cation of a rewrite rule to S1. Then, using
the rules one may reach a common sentence
S4 from each of S2 and S3.

The verification of the confluence prop-
erty is clear if the “domains” of the appli-
cations needed to arrive at S2 and S3 are
disjoint. In the case at hand, different rules
have different domains and all domains are
of length two, hence we need consider only
the cases where S1 is a three-word sentence.
A little case analysis reduces the problem

to four patterns, to wit, S1 is uuu, vvu, vuu
or wvu where u < v < w. Each of these
three cases is easily dispatched by a follow-
your-nose application of the rewrite rules (as
must be the case if confluence holds).

As already noted, the set of terminal
sentences is clearly a monoid. As such it is
generated by one-word sentences and the or-
der rules say that one-word sentences com-
mute with each other, hence the monoid is
commutative. Switching to additive nota-
tion, we know that each one-word sentence
is a torsion element: 2n+1u = 0 where n is
the length of u. A commutative monoid in
which the generators are all torsion is, of
course, a torsion monoid. And any torsion
monoid is a group.

We can now easily verify inductively
that IβGα, for β ≤ α, consists of all terminal
sentences in which all ordinals are at least
β (and, of course, still less than α). Hence
IαGα has only one non-trivial element (the
one-word sentence whose one word is the
empty word) and Iα+1Gα has none.

(For p > 2 keep the order rules but
change the shortening rules so that they ap-
ply to iterated strings of length p. The ter-
minal sentences are characterized as those
of the form u1u2 · · ·un where ui ≤ ui+1 and
in which no word appears more than p − 1
times.)

This construction of Gα produces a
group isomorphic to the subgroup of the
one produced by the 1970 construction, to
wit, the subgroup generated by those words
that end with α. Note that there are nat-
ural inclusions Gα ⊂ Gβ for α ≤ β
and that these inclusions preserve the dis-
tinguished element (the one named by the
empty word).
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Addendum: topology done fast

Given X and a subcomplex X ′ ⊂ X de-
note the cokernel of the inclusion map X ′ →
X as defined in the category of connected
pointed cw-complexes, T , as X/X ′. It is
usually described as the result of “smashing
X ′ to a point”.

The homotopy extension theorem tells
us that X → X/X ′ remains a weak-cokernel
in the homotopy category H because if f :
X → Y is such that f |X ′ is null-homotopic
then the homotopy extension theorem says
that f is homotopic to a map g : X → Y
such that g|X ′ is constant. (If the failure
of uniqueness is not evident, consider the
case where X is a closed n-ball and X ′ is its
boundary. Then X/X ′ is an n-sphere.)

All maps in T have weak-cokernels—not
just inclusions of subcomplexes—indeed,
canonically so. Give X → Y we can re-
place Y with the mapping cylinder of f ,
to wit, the pushout in T :

X
f→ Y

i↓ ↓
X×I→Cy(f)

where I is the unit interval and i : X → X×I
sends x to 〈x, 1〉. Then Cy(f) is homotopi-
cally equivalent with Y and we can use that
fact to construct the mapping cone, Cf ,
as Cy(f)/(X×{0}).12

It is easy to check that f ′ : Y → Cf

is a weak-cokernel of f . In the case that
X → Y is already the inclusion of a sub-
complex this construction obviously results
in a different space but one that can be seen
to be homotopically equivalent. Note that

Y automatically appears as a subcomplex of
Cf and we can use the first construction for
the weak-cokernel of f ′. But now a startling
thing becomes evident. By smashing Y to a
point we have effectively removed all traces
of Y from Cf/Y . Not even f has a trace.
This last weak-cokernel is none other than
the suspension of X, denoted ΣX, the re-
sult of smashing each of the two ends of the
cylinder, X×I, each to a point.).13

Thus we obtain a sequence of three maps
where each is the weak-cokernel of the pre-
vious:

X → Y → Cf → ΣX.

If we apply the same argument to Y → Cf

we obtain

Y → Cf → ΣX → ΣY

where the last map turns out to be Σf
“turned upside down”. Fortunately, for pur-
poses of the following assertion we can ig-
nore the phrase in quotes. We obtain an
infinite sequence of weak-cokernels:

X
f→Y

f ′
→Cf

f ′′
→ΣX

Σf→ΣY
Σf ′
→ΣCf

Σf ′′
→Σ2X

Σ2f→Σ2Y
Σ2f ′

→Σ2Cf
Σ2f ′′

→· · ·

This may be formalized as a functor from
the category whose objects are maps in T
to the category of sequences:

T → → T →→···.

We need the theorem that a homology
functor, H, when applied to

X
f→Y

f ′
→Cf

12For strict homotopy we should use the “reduced cylinder” obtained by smashing the line {�}×I to
a point and then use it to obtain the “reduced mapping cone”. But, 1) the same homotopy extension
theorem tells us that smashing a contractable subcomplex of a cw-complex to a point doesn’t change its
homotopy type and 2) for purposes of this paper we could move the discussion to the realm of simply
connected spaces where strict and free homotopy are the same.

13If we use the reduced cone we get the “reduced suspension” (X×I)/{〈x, t〉|x = � or t = 0 or t = 1}.
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yields an exact sequence of abelian groups

H(X)
H(f)→H(Y )

H(f ′)→H(Cf ).

And that easily says that we get a long exact
sequence

H(X) → H(Y ) → H(Cf) → H(ΣX) → · · ·
If one uses the fact that for ordinary homol-
ogy Hn+1(ΣX) � Hn(X) we obtain

Hn+1(X) → Hn+1(Y ) → Hn+1(Cf )

→ Hn(X) → Hn(Y ) → Hn(Cf ) → · · ·
Consider the category, E of exact se-

quences of abelian groups of the form

0 →
∐

I

Z
f→

∐

J

Z → G → 0

We obtain a functor E → T by replicat-
ing the map f as a map between the bou-

quets14 of circles,
∨

I S1 f̂→
∨

J S1, so that

H1(
∨

I S1)
H1(f̂)→H1(

∨
J S1) is none other

than
∐

I Z
f→

∐
J Z. Define

M(0 →
∐

I

Z
f→

∐

J

Z → G → 0)

to be the mapping cone Cf̂ .
Given a map between sequences we can

play the same game to obtain a functor
E → H and the next step is to note that the
values of M depend really only on the right
end of the particular sequence in E . We ob-
tain, then, a functor M : G → E → H. It’s
called the moore space functor. For our
purposes the critical property is

G M→H H1→G

is naturally equivalent to the identity func-
tor. And so, consequently, is

G M→H Σn

→H Hn+1→G

To recapitulate: given a family in G

{Zp → Gα}α

such that
Gβ↗

Zp ↓↘
Gα

does not exist for β > α we obtain a family
of weak cokernels in H

{ΣnM(Zp) → ΣnM(Gα)}α

such that
ΣnM(Gβ)↗

ΣnM(Zp) ↓↘
ΣnM(Gα)

does not exist for β > α. And that suffices
to show that ΣnM(Zp) has more than a set
of generalized normal subobjects.

Addendum: the 2-sphere is huge

There’s a wonderful simplification
(which occured to the writer only after
he had communicated what he thought
was the final draft): erase the last five
subscripts from Z and set n = 1.

ΣM(Z) is the 2-sphere (reduced suspen-
sion or not) and we conclude that it has a
proper class of generalized normal subob-
jects. Using the first addendum’s observa-
tion that

ΣM(Gβ)↗
S2 ↓↘

ΣM(Gα)

does exist for β < α we further conclude
that a strictly ascending chain of the size of
the universe—indeed, the order-type of all
the ordinals—appears in the gns-poset of
little old S2.

J

J
14“Bouquet” is the topologist’s word for a coproduct of spheres in T
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Palo Alto Research Center: paiva@parc.xerox.com
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
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