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CATEGORIES OF SPACES MAY NOT BE GENERALIZED SPACES
AS EXEMPLIFIED BY DIRECTED GRAPHS

F. WILLIAM LAWVERE

Author commentary: When this paper was distributed at the 1986 international cat-
egory theory meeting in Cambridge, its reception was mixed. So when Xavier Caicedo, the
academic editor of the “Revista Colombiana de Matemáticas” proposed to publish it to-
gether with the proceedings of the 1983 Bogotà Workshop, I was pleased to accept; thanks
to his continued generosity in granting copyright permission, it can now be reprinted in
TAC.

The simple idea at the core of this paper has not yet been much pursued by workers in
topos theory, even though I have tried in several later publications to point out its impor-
tance to various branches of mathematics, where those colleagues with greater knowledge
and ability could, I believe, contribute.

Already in SGA4, Grothendieck had made a major advance on this problem, in a series
of ten exercises for which he quite justly awarded himself “une médaille de chocolat”. His
construction, generalizing Giraud’s gros topos of a topological space, is in terms of sites
and has apparently not yet been assimilated well enough to suggest a corresponding
invariant description.

In a broad sense, any topos over a base S can be conceived as a “generalized space”;
even the basic facts that it may have a proper class of points, or that these points may form
a category that does not reduce to a poset, do not prevent this imagination from being
useful. For example, not only terminology such as “connected”, taken from geometry,
but even far-reaching constructions such as distributions, the “space” of distributions
studied by Bunge and Carboni, and supports of distributions seen as singular coverings,
studied by Bunge and Funk, are partly motivated by that exuberant generality. More
precise results depend on limiting the generality, even on taking into explicit account
some opposite qualitative distinctions within the generality.

The completeness theorems of Barr, Deligne, Diaconescu, Freyd, Joyal, Makkai, Reyes,
and others, summed up by Johnstone in 1983 [J], in particular involve constructions
showing that any S-topos (for example conceived as the infinitary positive theory of some
kind of structure) has “enough” morphisms (= points, models) from other S -toposes of a
very special kind, localic (i.e. with poset site) or sometimes groupoidal. Extending those
methods, Tierney and Moerdijk, in collaboration with Joyal, showed by 1990 that every
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S-topos agrees with respect to certain cohomological invariants (not only with respect to
internal logic) with special toposes deserving of being called generalized spaces in a more
concrete sense.

That concrete sense was already much alive before category theory was made explicit:
the invention of the cohomology of groups stemmed from discoveries by Hopf, Hurewicz,
Steenrod, and others. Today those discoveries could be summed up by noting that both
classical spaces and abstract groups are fully embedded in a single larger category (on
which cohomology is defined) and participate there in mixed exact sequences embodying
fundamental groups, universal covers, and even more particular geometric information.
This single larger category could be taken to be the one of all S-toposes; however, a much
smaller category suffices for that, namely the category of étendu (i.e. of those toposes
having a site consisting entirely of monomorphisms). Grothendieck established the étendu
as generalized spaces in a concrete sense, by qualitatively extending the classical work
through the construction of more informative quotients of spaces.

But then, around 1960, Grothendieck made a remarkable pair of constructions. Work-
ers in topos theory have yet to come to grips with the specific content of those two
constructions, in spite of the 35 year development of a simplified general methodology.
The petit étale topos of a scheme, brilliantly overcoming the lack of an inverse function
theorem, is clearly a generalized space in a very concrete sense; yet it is not an étendu,
and so it’s specifically topos-theoretic particularity begs for clarification. On the other
hand, the techniques of construction for analytic spaces [G2] involve embedding them
in a single large topos qualitatively different from the sheaves on any concrete kind of
generalized space.

A general topos incorporating all spaces of a given kind is not a new idea either. Since
1950 the topos of simplicial sets has been widely used, and in fact this combinatorial
example served as a kind of model for the discussion in the present paper. That it has
a connected object with distinct points concretely implies the axioms 1 and 2. The gros
Zariski topos and other environments for algebraic and smooth geometry also enjoy that
feature.

Johnstone’s topological topos and my bornological topos (sheaves for finite coverings
of countable sets) are intuitively also “general” in content (as opposed to “particular”)
and yet do not satisfy my axioms; but I share with Grothendieck the belief that a suitable
development of tame topology will avoid phenomena such as Peano’s space filling curves
and the non-discreteness of anti-connected spaces. (According to a Joyal-Johnstone result
in the 1992 book by Mac Lane and Moerdijk, the topos-theoretic match between continu-
ous and combinatorial topology requires that the continuous interval be totally ordered,
and it seems that a tame interval might satisfy that even though the classical one, taken
as a site in its own right, does not.)

It was fortunate that the simple enterprise of clarifying the role of two kinds of graphs
provided sufficient illustration of the basic distinction here discussed. A feature apparent
in this example, namely that the “sheaves” on a particular space B in a general topos are
contained in a “particular” topos (obtained by collapsing idempotents in a site), I later
found in many other examples in geometry.
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Abstract. Axioms are proposed for the distinctive internal connectedness of a topos
that models all spaces of a “general” combinatorial, algebraic, or smooth kind. It is
shown that sheaves on any particular space, like representations of any particular group,
do not satisfy these axioms. For each object B in a general topos, a topos of the
“opposite” or “particular” kind (containing sheaves and unramified coverings of B) is
constructed. All these features are illustrated by the simple example of reflexive directed
graphs.

It has long been recognized [G1], [L] that even within geometry (that is, even apart
from their algebraic/logical role) toposes come in (at least) two varieties: as spaces (pos-
sibly generalized, treated via the category of sheaves of discrete sets), or as categories of
spaces (analytic [G2], topological [J], combinatorial, etc.). The success of theorems [J’]
which approximate toposes by generalized spaces has perhaps obscured the role of the
second class of toposes, though some explicit knowledge of it is surely necessary for a
reasonable axiomatic understanding of toposes of C∞ spaces or of the topos of simpli-
cial sets. Perhaps some of the confusion is due to the lack of a stabilized definition of
morphism appropriate to categories of spaces in the way that “geometric morphisms” are
appropriate to generalized spaces.

There are certain properties which a topos of spaces often has; a wise selection of these
should serve as an axiomatic definition of the subject. While we have not achieved that
goal yet, we list some important properties and show that these properties cannot be true
for a “generalized space” of the localic or groupoid kind.

We consider a topos E defined over another topos S. The latter need not be the
category of abstract sets, though it will often be Boolean. In many cases it is instructive
to think of S as derived from E (rather than the other way around), as Cantor derived
“cardinal numbers” (= abstract sets) from “Mengen” (= sets with topological or similar
structure, as they arise in geometry and analysis). Indeed S can be viewed as a sheaf
topos in E , for an essential topology:

Axiom 0. E −→ S is local; Γ∗ � Γ∗ � Γ!.

The Γ∗ may be considered as the inclusion of discrete spaces S into “all” spaces E ,
whereas the sheaf inclusion Γ! may be considered as the inclusion of codiscrete or chaotic
spaces into E ; that these inclusions have the same domain category S may be summed
up in Hegelian fashion by “pure becoming is identical with non-becoming”.1

Of course, there are some spatial toposes which satisfy axiom 0, although they are
extremely special since Γ∗ is the fiber-functor for a canonically-defined extremal point of
E ; for example, the Zariski spectrum of a local ring does admit such a point Γ!. On the
other hand, the topos of G-sets for a groupoid G cannot satisfy axiom 0.

Our further axioms will be stated in terms of a further left adjoint Π0 = Γ! assigning
to each space a discrete space of components.

1That is, completely random motion, as a category in itself, is indistinguishable from immobility, as
a category in itself, even though they are of course completely different (except for 0, 1) as subcategories
of the category of spaces (= frames for continuous motion).
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Axiom 1. E −→ S is essential, that is Γ! � Γ∗ exists, but moreover we require that it
preserves finite products

Γ!(X × Y )
∼−→ Γ!(X) × Γ!(Y )

Γ!(1)
∼−→ 1

for all X, Y in E .

The axiom is necessary for the naive construction of the homotopic passage from
quantity to quality; namely, it insures that (not only Γ∗ but also) Γ! is a closed functor,
thus inducing a second way of associating an S-enriched category to each E-enriched
category

E-cat
[ ]

��
�� S-cat.

For example, E itself as an E-enriched category gives rise to a homotopy category in which

[E ](X,Y ) = Γ!(Y
X).

This product-preserving property of Γ! is well-known to be false in the group case,
where Γ!(G × G) = n, where n = #G, whereas Γ!(G) = 1. Again, it can hold for some
(extremely special) spaces: For a topos E localic over S, Γ! is left exact if only it preserves
products, and hence there is again a canonically defined point, at the opposite extreme;
for example, the Zariski spectrum of an integral domain admits a product preserving Γ!.
If S is an “exponential variety” in E , then Γ!(Γ

∗(A)×Y )
∼−→ A×Γ!(Y ) which is, however,

only a fragment of our axiom 1. It is at this point that the constructions of generalized
spaces which “cover” a given topos insofar as the “internal logic” is concerned, fail to
preserve the structure of a “topos of spaces”. (For covering as an “exponential variety”
would preserve our axiom 2).

Axiom 2. Γ!(Ω) = 1, where Ω is the truth-value object in the topos E of spaces.

Since Ω has the structure of a monoid with zero, in the presence of axiom 1 its being
connected (axiom 2) implies its being contractible in that

[E ](X, Ω) = 1

for all X in E , and hence that X −→ ΩX is a natural embedding of every space into a
contractible space; moreover, any retract, such as Ωj for a topology j, (for example the
Boolean algebra Ω¬¬) is also contractible. Of course axiom 2 cannot be true of a Boolean
topos since Γ! preserves any sum such as 1 + 1.

PROPOSITION 1. Axioms 1 and 2 cannot both be true for a localic topos E over sets
S.
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Proof. Axiom 1 implies that Γ! preserves pullbacks in the localic case. In any case there
is a pullback diagram

2 ��

��

1

��

Ω �� Ω

in E where 2 = 1 + 1. Thus applying Γ! we get an impossible pullback diagram

2 ��

��

1

��

1 �� 1

in S.

The above axioms (incomplete though they may be) enable us to make some rather
sharp distinctions. For example, there are (at least) two distinct toposes commonly re-
ferred to as “the category of directed graphs” and even commonly considered to be more
or less of the same value since, for example, the notion of “free category” generated by
either kind of graph makes sense. The two are

S∆op
1 S ·⇒·

where ∆1 is the three-element monoid of all order-preserving endomaps of the two-element
linearly ordered set [1]; splitting the idempotents shows that Γ∗ is essentially representable
and hence Γ!, the notion of codiscrete graph, exists for S∆op

1 , though not for S ·⇒·. However,
the one-dimensional simplicial sets S∆op

1 and the “irreflexive” graphs S ·⇒· differ already
in regard to axiom 1: the functor Γ! is in either case just the coequalizer of the structural
maps, but, as is well-known, reflexive coequalizers preserve products, whereas irreflexive
coequalizers do not. The subobject classifier for S∆op

1 has five elements

•
0

��•
1

�� ��

and is obviously connected. A similar statement is true for S ·⇒· but the foregoing remarks
are sufficient to show the following.

PROPOSITION 2. The topos S∆op
1 satisfies the axioms 0, 1, 2 for a “topos of spaces”,

whereas the topos S ·⇒· of diagram schemes does not satisfy 0 or 1.

In fact, at least two arguments can be given to show that S ·⇒· definitely belongs to
the other variety of toposes, namely that it is in fact a simple example of a generalized
space. For one thing, the category S ·⇒· of irreflexive graphs is an étendue; in fact, it is
locally localic in an illuminating manner: Consider the space

��������• ��������•
•
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which has three points and five open sets. A sheaf on this space consists of a set E of
global sections, two sets V0, V1 of sections over the two open points, and two restriction
maps E −→ V0, E −→ V1.

If we consider the two-element group acting on the space by interchanging the two
open points, we can take the “quotient” (descent) in the 2-category of toposes by the
equivalence relation associated to this action; this has the effect of forcing V0 = V1, but
allowing the two restrictions E

��
�� V to remain different. Conversely, there is an object

A in S ·⇒· such that S ·⇒·/A is (the topos of sheaves on) the three point space, showing
explicitly the local homeomorphism of the two toposes.

Another aspect of the status of S ·⇒· as a generalized space is revealed by its relationship
to the category of spaces S∆op

1 . If E over S is a topos of “spaces”, then each object B
of E should be capable of serving as a domain of variation in its own right; in particular
it should have sense to speak of abstract sets varying over B, giving rise to a topos
S(B) (usually a subcategory of E/B), which should be an example of a generalized space
(“should be” since we don’t yet have axioms strong enough to capture the special nature
of generalized spaces, yet general enough to include the classical petit étale example!). In
case B ∈ E = S∆op

1 is a graph, one reasonable definition of

E/B ⊃ S(B)

is simply to take all E −→ B which have discrete fibers in the sense that

Γ∗Γ∗ E ��

��

E

��

Γ∗Γ∗ B �� B

is a pullback. These might be called “B-partite graphs” generalizing the bipartite graphs
which arise as the special case where

B = • �� •��

The toposes S(B) are all étendues, and behave with excellent functorial comportment
under morphisms B −→ B′ in the topos of spaces E = S∆op

1 ; thus they seem to embody
well one idea of the generalized spaces associated to objects of E .

PROPOSITION 3. If L = • �� is the object of S∆op
1 obtained by identifying the

two points of the representable object ∆[1], then irreflexive graphs may be identified with
L-partite graphs:

S ·⇒· � S(L).



CATEGORIES OF SPACES MAY NOT BE GENERALIZED SPACES 7

References

[G1] Grothendieck, A., SGA IV, Springer Verlag LNM 269(1972), pp. 358–365.

[G2] Grothendieck, A., Methods of Construction in Analytic Geometry, Cartan Seminar
1960.

[L] Lawvere, F. W., Introduction to Springer Verlag LNM 274(1972), pp. 1–12.

[J] Johnstone, P., Topological Topos, Proc. London Math. Soc. (3) 38(1979), pp. 237–271.

[J’] Johnstone, P., How general is a generalized space, in Aspects of Topology, in memory
of Hugh Dowker, London Math. Soc. Lecture Notes Series 93, 1985, 77–111.

University at Buffalo, Department of Mathematics
244 Mathematics Building, Buffalo, N.Y. 14260-2900, USA
Email: wlawvere@buffalo.edu

This article may be accessed from http://www.tac.mta.ca/tac/reprints or by anony-
mous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/tac/reprints/articles/9/tr9.{dvi,ps}



REPRINTS IN THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles from the
body of important literature in Category Theory and closely related subjects which have never been
published in journal form, or which have been published in journals whose narrow circulation makes
access very difficult. Publication in ‘Reprints in Theory and Applications of Categories’ will permit
free and full dissemination of such documents over the Internet. Articles appearing have been critically
reviewed by the Editorial Board of Theory and Applications of Categories. Only articles of lasting
significance are considered for publication. Distribution is via the Internet tools WWW/ftp.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address.
For institutional subscription, send enquiries to the Managing Editor.

Selection of reprints. After obtaining written permission from any copyright holder, any
three TAC Editors may propose a work for TAC Reprints to the Managing Editor. The proposal will
be reported to all Editors. The Managing Editor may either accept the proposal or require that the
Editors vote on it. Before such a vote, the author, title and original publication data will be circulated
to Editors. If a 2/3 majority of those TAC Editors responding within one month agrees, the work will
be accepted for TAC Reprints. After a work is accepted, the author or proposer must provide to TAC
either a usable TeX source or a PDF document acceptable to the Managing Editor that reproduces a
typeset version. Up to five pages of corrections, commentary and forward pointers may be appended by
the author. When submitting commentary, authors should read and follow the Format for submission of
Theory and Applications of Categories at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: mbarr@barrs.org

Transmitting editors.
Richard Blute, Université d’ Ottawa: rblute@mathstat.uottawa.ca
Lawrence Breen, Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: r.brown@bangor.ac.uk
Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu
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