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A SURVEY OF DEFINITIONS OF n-CATEGORY

TOM LEINSTER

ABSTRACT. Many people have proposed definitions of ‘weak n-category’. Ten of them
are presented here. Each definition is given in two pages, with a further two pages
on what happens when n ≤ 2. The definitions can be read independently. Chatty
bibliography follows.
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Introduction

Lévy . . . once remarked to me that reading other mathematicians’ research
gave him actual physical pain.

—J. L. Doob on the probabilist Paul Lévy, Statistical Science 1, no. 1, 1986.

Hell is other people.

—Jean-Paul Sartre, Huis Clos.

The last five years have seen a vast increase in the literature on higher-dimensional
categories. Yet one question of central concern remains resolutely unanswered: what
exactly is a weak n-category? There have, notoriously, been many proposed definitions,
but there seems to be a general perception that most of these definitions are obscure,
difficult and long. I hope that the present work will persuade the reader that this is not
the case, or at least does not need to be: that while no existing approach is without its
mysteries, it is quite possible to state the definitions in a concise and straightforward way.

What’s in here, and what’s not. The sole purpose of this paper is to state several
possible definitions of weak n-category. In particular, I have made no attempt to compare
the proposed definitions with one another (although certainly I hope that this work will
help with the task of comparison). So the definitions of weak n-category that follow may
or may not be ‘equivalent’; I make no comment. Moreover, I have not included any notions
of weak functor or equivalence between weak n-categories, which would almost certainly
be required before one could make any statement such as ‘Professor Yin’s definition of
weak n-category is equivalent to Professor Yang’s’.

I have also omitted any kind of motivational or introductory material. The ‘Further
Reading’ section lists various texts which attempt to explain the relevance of n-categories
and other higher categorical structures to mathematics at large (and to physics and com-
puter science). I will just mention two points here for those new to the area. Firstly,
it is easy to define strict n-categories (see ‘Preliminaries’), and it is true that every
weak 2-category is equivalent to a strict 2-category, but the analogous statement fails
for n-categories when n > 2: so the difference between the theories of weak and strict
n-categories is nontrivial. Secondly, the issue of comparing definitions of weak n-category
is a slippery one, as it is hard to say what it even means for two such definitions to be
equivalent. For instance, suppose you and I each have in mind a definition of algebraic
variety and of morphism of varieties; then we might reasonably say that our definitions
of variety are ‘equivalent’ if your category of varieties is equivalent to mine. This makes
sense because the structure formed by varieties and their morphisms is a category. It is
widely held that the structure formed by weak n-categories and the functors, transforma-
tions, . . . between them should be a weak (n + 1)-category; and if this is the case then
the question is whether your weak (n + 1)-category of weak n-categories is equivalent to
mine—but whose definition of weak (n+ 1)-category are we using here. . . ?
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This paper gives primary importance to n-categories, with other higher categorical
structures only mentioned where they have to be. In writing it this way I do not mean
to imply that n-categories are the only interesting structures in higher-dimensional cate-
gory theory: on the contrary, I see the subject as including a whole range of interesting
structures, such as operads and multicategories in their various forms, double and n-
tuple categories, computads and string diagrams, homotopy-algebras, n-vector spaces,
and structures appropriate for the study of braids, knots, graphs, cobordisms, proof nets,
flowcharts, circuit diagrams, . . . . Moreover, consideration of n-categories seems inevitably
to lead into consideration of some of these other structures, as is borne out by the defi-
nitions below. However, n-categories are here allowed to upstage the other structures in
what is probably an unfair way.

Finally, I do not claim to have included all the definitions of weak n-category that
have been proposed by people; in fact, I am aware that I have omitted a few. They are
omitted purely because I am not familiar with them. More information can be found
under ‘Further Reading’.

Layout. The first section is ‘Background’. This is mainly for reference, and it is not
really recommended that anyone starts reading here. It begins with a page on ordinary
category theory, recalling those concepts that will be used in the main text and fixing
some terminology. Everything here is completely standard, and almost all of it can be
found in any introductory book or course on the subject; but only a small portion of it is
used in each definition of weak n-category. There is then a page each on strict n-categories
and bicategories, again recalling widely-known material.

Next come the ten definitions of weak n-category. They are absolutely independent
and self-contained, and can be read in any order. This means that there is a certain
amount of redundancy: in particular, sizeable passages occur identically in definitions B
and L, and similarly in definitions Si and Ta. (The reasons for the names are explained
below.) No significance should be attached to the order in which they are presented; I
tried to arrange them so that definitions with common themes were grouped together
in the sequence, but that is all. (Some structures just don’t fit naturally into a single
dimension.)

Each definition of weak n-category is given in two pages, so that if this is printed
double-sided then the whole definition will be visible on a double-page spread. This is
followed, again in two pages, by an explanation of the cases n = 0, 1, 2. We expect weak
0-categories to be sets, weak 1-categories to be categories, and weak 2-categories to be
bicategories—or at least, to resemble them to some reasonable degree—and this is indeed
the case for all of the definitions as long as we interpret the word ‘reasonable’ generously.
Each main definition is given in a formal, minimal style, but the analysis of n ≤ 2 is less
formal and more explanatory; partly the analysis of n ≤ 2 is to show that the proposed
definition of n-category is a reasonable one, but partly it is for illustrative purposes. The
reader who gets stuck on a definition might therefore be helped by looking at n ≤ 2.

Taking a definition of weak n-category and performing a rigorous comparison between
the case n = 2 and bicategories is typically a long and tedious process. For this reason,
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I have not checked all the details in the n ≤ 2 sections. The extent to which I feel
confident in my assertions can be judged from the number of occurrences of phrases such
as ‘probably’ and ‘it appears that’, and by the presence or absence of references under
‘Further Reading’.

There are a few exceptions to this overall scheme. The section labelled B consists, in
fact, of two definitions of weak n-category, but they are so similar in their presentation
that it seemed wasteful to give them two different sections. The same goes for definition
L, so we have definitions of weak n-category called B1, B2, L1 and L2. A variant for
definition St is also given (in the n ≤ 2 section), but this goes nameless. However,
definition X is not strictly speaking a mathematical definition at all: I was unable to find
a way to present it in two pages, so instead I have given an informal version, with one
sub-definition (opetopic set) done by example only. The cases n ≤ 2 are clear enough to
be analysed precisely.

Another complicating factor comes from those definitions which include a notion of
weak ω-category (= weak ∞-category). There, the pattern is very often to define weak
ω-category and then to define a weak n-category as a weak ω-category with only trivial
cells in dimensions > n. This presents a problem when one comes to attempt a precise
analysis of n ≤ 2, as even to determine what a weak 0-category is involves considering an
infinite-dimensional structure. For this reason it is more convenient to redefine weak n-
category in a way which never mentions cells of dimension > n, by imitating the original
definition of weak ω-category. Of course, one then has to show that the two different
notions of weak n-category are equivalent, and again I have not always done this with full
rigour (and there is certainly not the space to give proofs here). So, this paper actually
contains significantly more than ten possible definitions of weak n-category.

‘Further Reading’ is the final section. To keep the definitions of n-category brief and
self-contained, there are no citations at all in the main text; so this section is a combination
of reference list, historical notes, and general comments, together with a few pointers to
literature in related areas.

Overview of the definitions. Table 1 shows some of the main features of the definitions
of weak n-category. Each definition is given a name such as A or Z, according to the name
of the author from whom the definition is derived. (Definition X is a combination of the
work of many people, principally Baez, Dolan, Hermida, Makkai and Power.) The point of
these abbreviations is to put some distance between the definitions as proposed by those
authors and the definitions as stated below. At the most basic level, I have in all cases
changed some notation and terminology. Moreover, taking what is often a long paper
and turning it into a two-page definition has seldom been just a matter of leaving out
words; sometimes it has required a serious reshaping of the concepts involved. Whether
the end result (the definition of weak n-category) is mathematically the same as that
of the original author is not something I always know: on various occasions there have
been passages in the source paper that have been opaque to me, so I have guessed at the
author’s intended meaning. Finally, in several cases only a definition of weak ω-category
was explicitly given, leaving me to supply the definition of weak n-category for finite n.
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Definition Author(s) Shapes used A/the ω?

Tr Trimble globular the x
P Penon globular the �
B Batanin globular the (B1), a (B2) �
L Leinster globular the (L1), a (L2) �
L

′ Leinster globular a �
Si Simpson simplicial/globular a x
Ta Tamsamani simplicial/globular a x
J Joyal globular/simplicial a �
St Street simplicial a �
X see text opetopic a x

Table 1: Some features of the definitions

• ❘
✒❄

• •

•

•✡
✡✣❏
❏✲❄ •

• • •
•✂✂✍

✟✟✯❍❍❥
❇❇�✲❄

globular simplicial opetopic

Figure 1: Shapes used in the definitions

In summary, then, I do believe that I have given ten reasonable definitions of weak n-
category, but I do not guarantee that they are the same as those of the authors listed in
Table 1; ultimately, the responsibility for them is mine.

The column headed ‘shapes used’ refers to the different shapes of m-cell (or ‘m-arrow’,
or ‘m-morphism’) employed in the definitions. These are shown in Figure 1.

It has widely been observed that the various definitions of n-category fall into two
groups, according to the attitude one takes to the status of composition. This distinction
can be explained by analogy with products. Given two sets A and B, one can define
a product of A and B to be a triple (P, p1, p2) where P is a set and p1 : P ✲ A,
p2 : P ✲ B are functions with the usual universal property. This is of course the
standard thing to do in category theory, and in this context one can strictly speaking
never refer to the product of A and B. On the other hand, one could define the product
of A and B to be the set A × B of ordered pairs (a, b) = {{a}, {a, b}} with a ∈ A and
b ∈ B; this has the virtue of being definite and allowing one to speak of the product
in the customary way, but involves a wholly artificial construction. Similarly, in some
of the proposed definitions of weak n-category, one can never speak of the composite of
morphisms g and f , only of a composite (of which there may be many, all equally valid);
but in some of the definitions one does have definite composites g◦f , the composite of g and
f . (The use of the word ‘the’ is not meant to imply strictness, e.g. the three-fold composite
h◦(g◦f) will in general be different from the three-fold composite (h◦g)◦f .) So this is the
meaning of the column headed ‘a/the’; it might also have been headed ‘indefinite/definite’,
‘relational/functional’, ‘universal/coherent’, or even ‘geometric/algebraic’.
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All of the sections include a definition of weak n-category for natural numbers n, but
some also include a definition of weak ω-category (in which there are m-cells for all natural
m). This is shown in the last column.

Finally, I warn the reader that the words ‘contractible’ and ‘contraction’ occur in many
of the definitions, but mean different things from definition to definition. This is simply
to save having to invent new words for concepts which are similar but not identical, and
to draw attention to the common idea.
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Background

Category Theory. Here is a summary of the categorical background and terminology
needed in order to read the entire paper. The reader who isn’t familiar with everything
below shouldn’t be put off: each individual Definition only uses some of it.

I assume familiarity with categories, functors, natural transformations, adjunctions,
limits, and monads and their algebras. Limits include products, pullbacks (with the pull-
back of a diagram X ✲ Z ✛ Y sometimes written X ×Z Y ), and terminal objects
(written 1, especially for the terminal set {∗}); we also use initial objects. A monad
(T, η, µ) is often abbreviated to T .

I make no mention of the difference between sets and classes (‘small and large collec-
tions’). All the Definitions are really of small weak n-category.

Let C be a category. X ∈ C means that X is an object of C, and C(X,Y ) is the set of
morphisms (or maps, or arrows) from X to Y in C. If f ∈ C(X,Y ) then X is the domain
or source of f , and Y the codomain or target.

Set is the category (sets + functions), and Cat is (categories + functors). A set is
just a discrete category (one in which the only maps are the identities).

Cop is the opposite or dual of a category C. [C,D] is the category of functors from C
to D and natural transformations between them. Any object X of C induces a functor
C(X,−) : C ✲ Set, and a natural transformation from C(X,−) to F : C ✲ Set is the
same thing as an element of FX (the Yoneda Lemma); dually for C(−, X) : Cop ✲ Set.

A functor F : C ✲ D is an equivalence if these equivalent conditions hold: (i) F is
full, faithful and essentially surjective on objects; (ii) there exist a functor G : D ✲ C
(a pseudo-inverse to F ) and natural isomorphisms η : 1 ✲ GF , ε : FG ✲ 1 ; (iii)
as (ii), but with (F,G, η, ε) also being an adjunction.

Any set D0 of objects of a category C determines a full subcategory D of C, with object-
set D0 and D(X,Y ) = C(X,Y ). Every category C has a skeleton: a subcategory whose
inclusion into C is an equivalence and in which no two distinct objects are isomorphic. If
F,G : C ✲ Set, GX ⊆FX for each X ∈ C, and F and G agree on morphisms of C,
then G is a subfunctor of F .

A total order on a set I is a reflexive transitive relation≤ such that if i = j then exactly
one of i ≤ j and j ≤ i holds. (I,≤) can be seen as a category with object-set I in which
each hom-set has at most one element. An order-preserving map (I,≤) ✲ (I ′,≤′) is a
function f such that i ≤ j ⇒ f(i) ≤′ f(j).

Let ∆ be the category with objects [k] = {0, . . . , k} for k ≥ 0, and order-preserving
functions as maps. A simplicial set is a functor ∆op ✲ Set. Every category C has
a nerve (the simplicial set NC : [k] �−→Cat([k], C)), giving a full and faithful functor
N : Cat ✲ [∆op,Set]. So Cat is equivalent to the full subcategory of [∆op,Set] with
objects {X |X ∼=NC for some C}; there are various characterizations of such X, but we
come to that in the main text.

Leftovers: a monoid is a set (or more generally, an object of a monoidal category) with
an associative binary operation and a two-sided unit. Cat is monadic over the category
of directed graphs. The natural numbers start at 0.
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Strict n-Categories. If V is a category with finite products then there is a category
V-Cat of V-enriched categories and V-enriched functors, and this itself has finite products.
(A V-enriched category is just like an ordinary category, except that the ‘hom-sets’ are
now objects of V .) Let 0-Cat = Set and, for n ≥ 0, let (n + 1)-Cat = (n-Cat)-Cat; a
strict n-category is an object of n-Cat. Note that 1-Cat = Cat.

Any finite-product-preserving functor U : V ✲ W induces a finite-product-preserving
functor U∗ : V-Cat ✲ W-Cat, so we can define functors Un : (n+ 1)-Cat ✲ n-Cat
by taking U0 to be the objects functor and Un+1 = (Un)∗. The category ω-Cat of strict
ω-categories is the limit of the diagram

· · · Un+1✲ (n+ 1)-Cat
Un✲ · · · U1✲ 1-Cat = Cat

U0✲ 0-Cat = Set.

Alternatively: a globular set (or ω-graph) A consists of sets and functions

· · · s✲
t
✲ Am

s✲
t
✲ Am−1

s✲
t
✲ · · · s✲

t
✲ A0

such that for m ≥ 2 and α ∈ Am, ss(α) = st(α) and ts(α) = tt(α). An element

of Am is called an m-cell, and we draw a 0-cell a as a• , a 1-cell f as a•
f✲

b
• (where

a = s(f), b = t(f)), a 2-cell α as a•
f

g

α❘
✒❄ b

• , etc. For m > p ≥ 0, write Am ×Ap Am =

{(α′, α) ∈ Am × Am | sm−p(α′) = tm−p(α)}.
A strict ω-category is a globular setA together with a function ◦p : Am×ApAm

✲ Am

(composition) for each m > p ≥ 0 and a function i : Am
✲ Am+1 (identities, usually

written i(α) = 1α) for each m ≥ 0, such that

i. if m > p ≥ 0 and (α′, α) ∈ Am ×Ap Am then

s(α′ ◦p α) = s(α) and t(α′ ◦p α) = t(α′) for m = p+ 1
s(α′ ◦p α) = s(α′) ◦p s(α) and t(α′ ◦p α) = t(α′) ◦p t(α) for m ≥ p+ 2

ii. if m ≥ 0 and α ∈ Am then s(i(α)) = α = t(i(α))

iii. if m > p ≥ 0 and α ∈ Am then im−p(tm−p(α)) ◦p α = α = α ◦p im−p(sm−p(α)); if also
α′, α′′ are such that (α′′, α′), (α′, α) ∈ Am×Ap Am, then (α′′ ◦p α′) ◦p α = α′′ ◦p (α′ ◦p α)

iv. if p > q ≥ 0 and (f ′, f) ∈ Ap ×Aq Ap then i(f ′) ◦q i(f) = i(f ′ ◦q f); if also m > p and
α, α′, β, β′ are such that (β′, β), (α′, α) ∈ Am×ApAm and (β′, α′), (β, α) ∈ Am×AqAm,
then (β′ ◦p β) ◦q (α′ ◦p α) = (β′ ◦q α′) ◦p (β ◦q α).

The composition ◦p is ‘composition of m-cells by gluing along p-cells’. Pictures for
(m, p) = (2, 1), (1, 0), (2, 0) are in the Bicategories section below.

Strict n-categories are defined similarly, but with the globular set only going up to An.
Strict n- and ω-functors are maps of globular sets preserving composition and identities;
the categories n-Cat and ω-Cat thus defined are equivalent to the ones defined above.
The comments below on the two alternative definitions of bicategory give an impression
of how this equivalence works.
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Bicategories. Bicategories are the traditional and best-known formulation of ‘weak
2-category’. A bicategory B consists of

• a set B0, whose elements a are called 0-cells or objects of B and drawn a•

• for each a, b ∈ B0, a category B(a, b), whose objects f are called 1-cells and drawn

a•
f✲

b
• , whose arrows α : f ✲ g are called 2-cells and drawn a•

f

g

α❘
✒❄ b

• , and

whose composition a•

f

g

h

α

β
✲❄

❄
�
✍b
• �−→ a•

f

h

β◦α❘
✒❄ b

• is called vertical composition of 2-cells

• for each a ∈ B0, an object 1a ∈ B(a, a) (the identity on a); and for each a, b, c ∈ B0,
a functor B(b, c)×B(a, b) ✲ B(a, c), which on objects is called 1-cell composition,

a•
f✲

b
• g✲

c• �−→ a•
g◦f✲

c• , and on arrows is called horizontal composition of 2-cells,

a•
f

g

α❘
✒❄a′

•
f ′

g′
α′❘
✒❄ a′′

• �−→ a•
f ′◦f

g′◦g

α′∗α❘
✒❄ a′′

•

• coherence 2-cells: for each f ∈ B(a, b), g ∈ B(b, c), h ∈ B(c, d), an associativity iso-
morphism ξh,g,f : (h◦g)◦f ✲ h◦(g◦f); and for each f ∈ B(a, b), unit isomorphisms
λf : 1b◦f ✲ f and ρf : f ◦1a ✲ f

satisfying the following coherence axioms :

• ξh,g,f is natural in h, g and f , and λf and ρf are natural in f

• if f ∈ B(a, b), g ∈ B(b, c), h ∈ B(c, d), k ∈ B(d, e), then ξk,h,g◦f ◦ ξk◦h,g,f = (1k ∗
ξh,g,f ) ◦ ξk,h◦g,f ◦ (ξk,h,g ∗ 1f ) (the pentagon axiom); and if f ∈ B(a, b), g ∈ B(b, c),
then ρg ∗ 1f = (1g ∗ λf ) ◦ ξg,1b,f (the triangle axiom).

An alternative definition is that a bicategory consists of a diagram of sets and functions

B2

s✲
t
✲ B1

s✲
t
✲ B0 satisfying ss = st and ts = tt, together with functions determining

composition, identities and coherence cells (in the style of the second definition of strict
ω-category above). The idea is that Bm is the set of m-cells and that s and t give the
source and target of a cell. Strict 2-categories can be identified with bicategories in which
the coherence 2-cells are all identities.

A 1-cell a•
f✲

b
• in a bicategory B is called an equivalence if there exists a 1-cell

b
• g✲

a• such that g◦f ∼=1a and f ◦g∼=1b.

A monoidal category can be defined as a bicategory with only one 0-cell, * say: for
such a bicategory is just a category B(*, *) equipped with an object I, a functor ⊗ :
B(*, *)2 ✲ B(*, *), and associativity and unit isomorphisms satisfying coherence.

We can consider strict functors of bicategories, in which composition etc is pre-
served strictly; more interesting are weak functors F , in which there are isomorphisms
Fg◦Ff ✲ F (g◦f) and 1Fa ✲ F (1a) satisfying coherence axioms.
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Definition Tr

Topological Background

Spaces. Let Top be the category of topological spaces and continuous maps. Recall that
compact spaces are exponentiable in Top: that is, if K is compact then the set ZK of
continuous maps from K to a space Z can be given a topology (namely, the compact-
open topology) in such a way that there is an isomorphism Top(Y, ZK)∼=Top(K×Y, Z)
natural in Y, Z ∈ Top.

Operads. A (non-symmetric, topological) operad D is a sequence (D(k))k≥0 of spaces
together with an element (the identity) of D(1) and for each k, r1, . . . , rk ≥ 0 a map

D(k)×D(r1)× · · · ×D(rk) ✲ D(r1 + · · ·+ rk)

(composition), obeying unit and associativity laws. (Example: fix an object M of a
monoidal category M, and define D(k) = M(M⊗k,M).)

The All-Important Operad. There is an operad E in which E(k) is the space of
continuous endpoint-preserving maps from [0, 1] to [0, k]. (‘Endpoint-preserving’ means
that 0 maps to 0 and 1 to k.) The identity element of E(1) is the identity map, and
composition in the operad is by substitution.

Path Spaces. For any space X and x, x′ ∈ X, a path from x to x′ in X is a map
p : [0, 1] ✲ X satisfying p(0) = x and p(1) = x′. There is a space X(x, x′) of paths
from x to x′, a subspace of the exponential X [0,1].

Operad Action on Path Spaces. Fix a space X. For any k ≥ 0 and x0, . . . , xk ∈ X,
there is a canonical map

actx0,...,xk
: E(k)×X(x0, x1)× · · · ×X(xk−1, xk) ✲ X(x0, xk).

These maps are compatible with the composition and identity of the operad E, and the
construction is functorial in X.

Path-Components. Let Π0 : Top ✲ Set be the functor assigning to each space its
set of path-components, and note that Π0 preserves finite products.

The Definition

We will define inductively, for each n ≥ 0, a categoryWk-n-Cat with finite products and
a functor Πn : Top ✲Wk-n-Cat preserving finite products. A weak n-category is an
object of Wk-n-Cat. (Maps in Wk-n-Cat are to be thought of as strict n-functors.)

Base Case. Wk-0-Cat = Set, and Π0 : Top ✲ Set is as above.
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Objects of Wk-(n+ 1)-Cat. Inductively, a weak (n+1)-category (A, γ) consists of

• a set A0

• a family (A(a, a′))a,a′∈A0 of weak n-categories

• for each k ≥ 0 and a0, . . . , ak ∈ A0, a map

γa0,...,ak
: Πn(E(k))× A(a0, a1)× · · · × A(ak−1, ak) ✲ A(a0, ak)

in Wk-n-Cat,

such that the γa0,...,ak
’s satisfy compatibility axioms of the same form as those satisfied by

the actx0,...,xk
’s. (All this makes sense because Πn preserves finite products andWk-n-Cat

has them.)

Maps in Wk-(n+ 1)-Cat. A map (A, γ) ✲ (B, δ) in Wk-(n+ 1)-Cat consists of

• a function F0 : A0
✲ B0

• for each a, a′ ∈ A0, a map Fa,a′ : A(a, a′) ✲ B(F0a, F0a
′) of weak n-categories,

satisfying the axiom

Fa0,ak
◦ γa0,...,ak

= δF0a0,...,F0ak
◦ (1Πn(E(k)) × Fa0,a1 × · · · × Fak−1,ak

)

for all k ≥ 0 and a0, . . . , ak ∈ A0.

Composition and Identities in Wk-(n+ 1)-Cat. Obvious.

Πn+1 on Objects. For a space X we define Πn+1(X) = (A, γ), where

• A0 is the underlying set of X

• A(x, x′) = Πn(X(x, x′))

• for x0, . . . , xk ∈ X, the map γx0,...,xk
is the composite

Πn(E(k))× Πn(X(x0, x1))× · · · × Πn(X(xk−1, xk))
∼✲ Πn(E(k)×X(x0, x1)× · · · ×X(xk−1, xk))

Πn(actx0,...,xk
)✲ Πn(X(x0, xk)).

Πn+1 on Maps. The functor Πn+1 is defined on maps in the obvious way.

Finite Products Behave. It is easy to show that Wk-(n+ 1)-Cat has finite products
and that Πn+1 preserves finite products: so the inductive definition goes through.
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Definition Tr for n ≤ 2

First observe that the space E(k) is contractible for each k (being, in a suitable sense,
convex). In particular this tells us that E(k) is path-connected, and that the path space
E(k)(θ, θ′) is path-connected for every θ, θ′ ∈ E(k).

n = 0

By definition, Wk-0-Cat = Set and Π0 : Top ✲ Set is the path-components functor.

n = 1

The Category Wk-1-Cat. A weak 1-category (A, γ) consists of

• a set A0

• a set A(a, a′) for each a, a′ ∈ A0

• for each k ≥ 0 and a0, . . . , ak ∈ A0, a function

γa0,...,ak
: Π0(E(k))× A(a0, a1)× · · · × A(ak−1, ak) ✲ A(a0, ak)

such that these functions satisfy certain axioms. So a weak 1-category looks something
like a category: A0 is the set of objects, A(a, a′) is the set of maps from a to a′, and
γ provides some kind of composition. Since E(k) is path-connected, we may strike out
Π0(E(k)) from the product above; and then we may suggestively write

(fk◦ · · · ◦f1) = γa0,...,ak
(f1, . . . , fk).

The axioms on these ‘k-fold composition functions’ mean that a weak 1-category is, in
fact, exactly a category. Maps in Wk-1-Cat are just functors, and so Wk-1-Cat is
equivalent to Cat.

The Functor Π1. For a space X, the (weak 1-)category Π1(X) = (A, γ) is given by

• A0 is the underlying set of X

• A(x, x′) is the set of path-components of the path-space X(x, x′): that is, the set of
homotopy classes of paths from x to x′

• Let x0
p1✲ · · · pk✲ xk be a sequence of paths in X, and write [p] for the homo-

topy class of a path p. Then

([pk]◦ · · · ◦[p1]) = [actx0,...,xk
(θ, p1, . . . pk)]

where θ is any member of E(k)—it doesn’t matter which. In other words, compo-
sition of paths is by laying them end to end.

Hence Π1(X) is the usual fundamental groupoid of X, and indeed Π1 : Top ✲ Cat is
the usual fundamental groupoid functor.
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n = 2

A weak 2-category (A, γ) consists of

• a set A0

• a category A(a, a′) for each a, a′ ∈ A0

• for each k ≥ 0 and a0, . . . , ak ∈ A0, a functor

γa0,...,ak
: Π1(E(k))× A(a0, a1)× · · · × A(ak−1, ak) ✲ A(a0, ak)

such that these functors satisfy axioms expressing compatibility with the composition and
identity of the operad E.

By the description of Π1 and the initial observations of this section, the category
Π1(E(k)) is indiscrete (i.e. all hom-sets have one element) and its objects are the elements
of E(k). So γ assigns to each θ ∈ E(k) and ai ∈ A0 a functor

θ : A(a0, a1)× · · · × A(ak−1, ak) ✲ A(a0, ak),

and to each θ, θ′ ∈ E(k) and ai ∈ A0 a natural isomorphism

ωθ,θ′ : θ
∼✲ θ′.

(Really we should add ‘a0, . . . , ak’ as a subscript to θ and to ωθ,θ′ .) Functoriality of γa0,...,ak

says that
ωθ,θ = 1, ωθ,θ′′ = ωθ′,θ′′ ◦ωθ,θ′ .

The ‘certain axioms’ say firstly that

θ ◦ (θ1, . . . , θk) = θ ◦ (θ1 × · · · × θk), 1 = 1

for θ ∈ E(k) and θi ∈ E(ri), where the left-hand sides of the two equations refer re-
spectively to composition and identity in the operad E; and secondly that the natural
isomorphisms ωθ,θ′ fit together in a coherent way.

So a weak 2-category is probably not a structure with which we are already familiar.
However, it nearly is. For define tr(k) to be the set of k-leafed rooted trees which are
‘unitrivalent’ (each vertex has either 0 or 2 edges coming up out of it); and suppose
we replaced Π1(E(k)) by the indiscrete category with object-set tr(k), so that the θ’s
above would be trees. A weak 2-category would then be exactly a bicategory: e.g. if

θ = •∨ then θ is binary composition, and if (θ, θ′) = ( ••∨∨ , ••∨∨) then ωθ,θ′ is the associativity
isomorphism. And in some sense, a k-leafed tree might be thought of as a discrete version
of an endpoint-preserving map [0, 1] ✲ [0, k].

With this in mind, any weak 2-category (A, γ) gives rise to a bicategory B (although
the converse process seems less straightforward). First pick at random an element θ2 of
E(2), and let θ0 be the unique element of E(0). Then take B0 = A0, B(a, a′) = A(a, a′),
binary composition to be θ2, identities to be θ0, the associativity isomorphism to be
ωθ2◦(1,θ2),θ2◦(θ2,1), and similarly units. The coherence axioms on B follow from the coherence
axioms on ω: and so we have a bicategory.
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Definition P

Some Globular Structures

Reflexive Globular Sets. Let R be the category whose objects are the natural numbers
0, 1, . . ., and whose arrows are generated by

· · · m+ 1
σm+1

τm+1

ιm+1

✲✲
�

m
σm

τm

ιm

✲✲
�

· · · σ1

τ1

ι1

✲✲
�

0

subject to the equations

σm◦σm+1 = σm◦τm+1, τm◦σm+1 = τm◦τm+1, σm◦ιm = 1 = τm◦ιm

(m ≥ 1). A functor A : R ✲ Set is called a reflexive globular set. I will write s for
A(σm), and t for A(τm), and 1a for (A(ιm))(a) when a ∈ A(m− 1).

Strict ω-Categories, and ω-Magmas. A strict ω-category is a reflexive globular set
S together with a function (composition) ◦p : S(m)×S(p) S(m) ✲ S(m) for each m >
p ≥ 0, satisfying

• axioms determining the source and target of a composite (part (i) in the Preliminary
section ‘Strict n-Categories’)

• strict associativity, unit and interchange axioms (parts (iii) and (iv)).

An ω-magma is like a strict ω-category, but only satisfying the first group of ax-
ioms ((i)) and not necessarily the second ((iii), (iv)). A map of ω-magmas is a map of
reflexive globular sets which commutes with all the composition operations. (A strict ω-
functor between strict ω-categories is, therefore, just a map of the underlying ω-magmas.)

Contractions

Let φ : A ✲ B be a map of reflexive globular sets. For m ≥ 1, define

Vφ(m) = {(f0, f1) ∈ A(m)× A(m) | s(f0) = s(f1), t(f0) = t(f1), φ(f0) = φ(f1)},
and define

Vφ(0) = {(f0, f1) ∈ A(0)× A(0) | φ(f0) = φ(f1)}.
A contraction γ on φ is a family of functions

(γm : Vφ(m) ✲ A(m+ 1))m≥0

such that for all m ≥ 0 and (f0, f1) ∈ Vφ(m),

s(γm(f0, f1)) = f0, t(γm(f0, f1)) = f1, φ(γm(f0, f1)) = 1φ(f0)(= 1φ(f1)),

and for all m ≥ 0 and f ∈ A(m),

γm(f, f) = 1f .
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M : ω-magma

:
map of
ω-magmas

S

π

❄
:

strict ω-
category

a
f0 ✲

f1

✲ b

�−→
a

f0

f1

γ1(f0,f1)
❘

✒❄
b

π(f0) = π(f1) π(γ1(f0, f1)) = 1π(f0)

Figure 2: An object of Q, with γ shown for m = 1

The Mysterious Category Q
Objects. An object of Q (see Fig. 2) is a quadruple (M,S, π, γ) in which

• M is an ω-magma

• S is a strict ω-category

• π is a map of ω-magmas from M to (the underlying ω-magma of) S

• γ is a contraction on π.

Maps. A map (M,S, π, γ) ✲ (M ′, S ′, π′, γ′) in Q is a pair (M
χ✲ M ′, S

ζ✲ S ′)
commuting with everything in sight. That is, χ is a map of ω-magmas, ζ is a strict
ω-functor, π′◦χ = ζ◦π, and γ′

m(χ(f0), χ(f1)) = χ(γm(f0, f1)) for all (f0, f1) ∈ VM(m).

Composition and Identities. These are defined in the obvious way.

The Definition

An Adjunction. Let U : Q ✲ [R,Set] be the functor sending (M,S, π, γ) to the
underlying reflexive globular set of the ω-magma M . It can be shown that U has a left
adjoint: so there is an induced monad T on [R,Set].

Weak ω-Categories. A weak ω-category is a T -algebra.

Weak n-Categories. Let n ≥ 0. A reflexive globular set A is n-dimensional if for
all m ≥ n, the map A(ιm+1) : A(m) ✲ A(m + 1) is an isomorphism (and so s = t =
(A(ιm+1))

−1). A weak n-category is a weak ω-category whose underlying reflexive globular
set is n-dimensional.
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Definition P for n ≤ 2

Direct Interpretation

The Left Adjoint in Low Dimensions. Here is a description of what the left adjoint
F to U does in dimensions ≤ 2. It is perhaps not obvious that F as described does form
the left adjoint; we come to that later. For a reflexive globular set A, write

F (A) =



A#

A∗
πA❄ , γA


 .

A∗ is, in fact, relatively easy to describe: it is the free strict ω-category on A, in which
an m-cell is a formal pasting-together of cells of A of dimension ≤ m.

Dimension 0 We have A#(0) = A∗(0) = A(0) and (πA)0 = id.

Dimension 1 Next, A∗(1) is the set of formal paths of 1-cells in A, where we identify
each identity cell 1a with the identity path on a. The set A#(1) and the functions
s, t : A#(1) ✲ A(0) are generated by the following recursive clauses:

• if a0
f✲ a1 is a 1-cell in A then A#(1) contains an element called f , with

s(f) = a0 and t(f) = a1

• if w,w′ ∈ A#(1) with t(w) = s(w′) then A#(1) contains an element called
(w′ •0 w), with s(w′ •0 w) = s(w) and t(w′ •0 w) = t(w′).

The identities map A(0) ✲ A#(1) sends a to 1a ∈ A(1)⊆A#(1); the map πA
removes parentheses and sends •0 to ◦0 ; the contraction γA is given by γA(a, a) = 1a.

Dimension 2 A∗(1) is the set of formal pastings of 2-cells in A, again respecting the
identities. A#(2) and s, t : A#(2) ✲ A#(1) are generated by:

• if α is a 2-cell in A then A#(2) has an element called α, with the evident
source and target

• if a
w0✲
w1

✲ b in A#(1) with πA(w0) = πA(w1) then A#(2) has an element called

γA(w0, w1), with source w0 and target w1

• if x, x′ ∈ A#(2) with t(x) = s(x′) then A#(2) has an element called (x′ •1 x),
with source s(x) and target t(x′)

• if x, x′ ∈ A#(2) with tt(x) = ss(x′) then A#(2) has an element called (x′ •0 x),
with source s(x′) •0 s(x) and target t(x′) •0 t(x);

furthermore, if f ∈ A(1) then 1f (from the first clause) is to be identified with
γA(f, f) (from the second). The identity mapA#(1) ✲ A#(2) sends w to γA(w,w).
The map πA sends cells of the form γA(w0, w1) to identity cells, and otherwise acts as
in dimension 1. The contraction γA is defined in the way suggested by the notation.
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Adjointness. We now have to see that this F is indeed left adjoint to U . First observe
that there is a natural embedding of A(m) into A#(m) (for m ≤ 2); this gives the unit of

the adjunction. Adjointness then says: given (M,S, π, γ) ∈ Q and a map A
φ✲ M of

reflexive globular sets, there’s a unique map

(χ, ζ) :



A#

A∗
πA❄


 ✲



M

S

π❄




in Q such that χ extends φ. This can be seen from the description above.

Weak 2-Categories. A weak 2-category consists of a 2-dimensional reflexive globular
set A together with:

• (a map A#(0) ✲ A(0) obeying axioms—which force it to be the identity)

• a map A#(1) ✲ A(1) obeying axioms, which amounts to a binary composition
on the 1-cells of A (not obeying any axioms)

• similarly, vertical and horizontal binary compositions of 2-cells, not obeying any
axioms ‘yet’

• for each string · f1✲ · · · fk✲ · of 1-cells, and each pair τ, τ ′ of k-leafed binary
trees, a 2-cell ωτ,τ ′ : ◦τ (f1, . . . , fk) ✲ ◦τ ′(f1, . . . , fk), where ◦τ indicates the iterated
composition dictated by the shape of τ

• amongst other things in dimension 3: whenever we have some 2-cells (αi), and two
different ways of composing all the αi’s and some ωτ,τ ′ ’s to obtain new 2-cells β
and β′ respectively, and these satisfy s(β) = s(β′) and t(β) = t(β′), then there is
assigned a 3-cell β ✲ β′. Since ‘the only 3-cells of A are equalities’, we get β = β′.

Analysing this precisely, we find that the category of weak 2-categories is equivalent to
the category of bicategories and strict functors. And more easily, a weak 1-category is
just a category and a weak 0-category is just a set.

Indirect Interpretation

An alternative way of handling weak n-categories is to work only with n-dimensional
(not infinite-dimensional) structures throughout: e.g. reflexive globular sets A in which
A(m) is only defined for m ≤ n. We then only speak of contractions on a map φ if
(f0, f1) ∈ Vφ(n) ⇒ f0 = f1 (and in particular, the map π must satisfy this in order for
(M,S, π, γ) to qualify as an object of Q). Our new category of weak n-categories appears
to be equivalent to the old one, taking algebra maps as the morphisms in both cases.

The analysis of n = 2 is easier now: we can write down the left adjoint F explicitly,
and so get an explicit description of the monad T on the category of ‘reflexive 2-globular
sets’. This monad is presumably the free bicategory monad.
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Definitions B

Globular Operads and their Algebras

Globular Sets. Let G be the category whose objects are the natural numbers 0, 1, . . .,
and whose arrows are generated by σm, τm : m ✲ m − 1 for each m ≥ 1, subject to
equations

σm−1◦σm = σm−1◦τm, τm−1◦σm = τm−1◦τm

(m ≥ 2). A functor A : G ✲ Set is called a globular set ; I will write s for A(σm), and
t for A(τm).

The Free Strict ω-Category Monad. Any (small) strict ω-category has an underlying
globular set A, in which A(m) is the set of m-cells and s and t are the source and target
maps. We thus obtain a forgetful functor U from the category of strict ω-categories and
strict ω-functors to the category [G,Set] of globular sets. U has a left adjoint, so there

is an induced monad (T, id
η✲ T, T 2 µ✲ T ) on [G,Set].

Collections. We define a monoidal category Coll of collections. Let 1 be the terminal

globular set. A (globular) collection is a map C
d✲ T1 into T1 in [G,Set]; a map

of collections is a commutative triangle. The tensor product of collections C
d✲ T1,

C ′ d′✲ T1 is the composite along the top row of

C ⊗ C ′ ✲ TC ′ Td′✲ T 21
µ1✲ T1

C
❄ d✲ T1,

T !
❄

where the right-angle symbol means that the square containing it is a pullback, and !

denotes the unique map to 1. The unit for the tensor is 1
η1✲ T1.

Globular Operads. A (globular) operad is a monoid in the monoidal category Coll; a
map of operads is a map of monoids.

Algebras. Any operad C induces a monad C ·− on [G,Set]. For an object A of [G,Set],
this is defined by pullback:

C · A ✲ TA

C
❄ d✲ T1.

T !
❄

The multiplication and unit of the monad come from the multiplication and unit of the
operad. A C-algebra is an algebra for the monad C · −. Note that every C-algebra has
an underlying globular set.
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Contractions and Systems of Composition

Contractions. Let C
d✲ T1 be a collection. For m ≥ 0 and ν ∈ (T1)(m), write

C(ν) = {θ ∈ C(m) | d(θ) = ν}. For m ≥ 1 and ν ∈ (T1)(m), define

QC(ν) = {(θ0, θ1) ∈ C(ν)× C(ν) | s(θ0) = s(θ1) and t(θ0) = t(θ1)},
and for ν ∈ (T1)(0), define QC(ν) = C(ν)×C(ν). Part of the strict ω-category structure
on T1 is that each element ν ∈ (T1)(m) gives rise to an element 1ν ∈ (T1)(m + 1). A
contraction on C is a family of functions

(γν : QC(ν) ✲ C(1ν))m≥0,ν∈(T1)(m)

satisfying
s(γν(θ0, θ1)) = θ0, t(γν(θ0, θ1)) = θ1

for every m ≥ 0, ν ∈ (T1)(m) and (θ0, θ1) ∈ QC(ν).

Systems of Compositions. The map η1 : 1 ✲ T1 picks out an element η1,m of
(T1)(m) for each m ≥ 0. The strict ω-category structure on T1 then gives an element

βm
p = η1,m ◦p η1,m ∈ (T1)(m)

for each m > p ≥ 0; also put βm
m = η1,m. Defining B(m) = {βm

p |m ≥ p ≥ 0}⊆ (T1)(m),
we obtain a collection B ⊂ ✲ T1.

Also, the elements βm
m = η1,m ∈ (T1)(m) determine a map 1 ✲ B.

A system of compositions in an operad C is a map B ✲ C of collections such that
the composite 1 ✲ B ✲ C is the unit of the operad C.

Initial Object. Let OCS be the category in which an object is an operad equipped with
both a contraction and a system of compositions, and in which a map is a map of operads
preserving both the specified contraction and the specified system of compositions. Then
OCS can be shown to have an initial object, whose underlying operad will be written K.

The Definitions

Definition B1. A weak ω-category is a K-algebra.

Definition B2. A weak ω-category is a pair (C,A), where C is an operad satisfying
C(0)∼=1 and on which there exist a contraction and a system of compositions, and A is
a C-algebra.

Weak n-Categories. Let n ≥ 0. A globular set A is n-dimensional if for all m ≥ n,

s = t : A(m+ 1) ✲ A(m)

and this map is an isomorphism. A weak n-category is a weak ω-category whose underlying
globular set is n-dimensional. This can be interpreted according to either B1 or B2.
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Definitions B for n ≤ 2

Definition B1

An alternative way of handling weak n-categories is to work with only n-dimensional (not
infinite-dimensional) structures throughout. So we replace G by its full subcategory Gn

with objects 0, . . . , n, and T by the free strict n-category monad Tn, to obtain definitions
of n-collection, n-operads, and their algebras. Contractions are defined as before, except
that we only speak of contractions on C if

∀ν ∈ (Tn1)(n), (θ0, θ1) ∈ QC(ν) ⇒ θ0 = θ1. (∗)

There is an initial n-operad Kn equipped with a contraction and a system of compositions,
and the category of weak n-categories turns out to be equivalent to the category of Kn-
algebras. The latter is easier to analyse.

n = 0. We have [G0,Set]∼=Set, T0 = id, and 0-Coll∼=Set; a 0-operad C is a monoid,
and a C-algebra is a set with a C-action. By (∗), the only 0-operad with a contraction is
the one-element monoid, so a weak 0-category is just a set.

n = 1. [G1,Set] is the category of directed graphs and T1 is the free category monad. K1

is the terminal 1-operad, by arguments similar to those under ‘n = 2’ below. It follows
that K1 · − is just T1, and so a weak 1-category is just a T1-algebra, that is, a category.

n = 2. A functor A : G2
✲ Set consists of a set of 0-cells (drawn a• ), a set of 1-cells

( a•
f✲

b
• ), and a set of 2-cells ( a•

f

g

α❘
✒❄ b

• ). A 2-collection C consists of a set C(0), a set

C(νk) for each k ≥ 0 (where νk indicates the ‘1-pasting diagram’ • ✲ . . . ✲• with
k arrows), and a set C(π) for each ‘2-pasting diagram’ π such as the πi in Fig. 3, together
with source and target functions.

A 2-operad is a 2-collection C together with ‘composition’ functions such as

C(ν3)× [C(ν2)×C(0) C(ν1)×C(0) C(ν2)] ✲ C(ν5),
C(π1)× [C(π2)×C(ν2) C(π3)] ✲ C(π4).

In the first, the point is that there are 3 terms 2, 1, 2 and their sum is 5. This makes sense
if an element of C(νk) is regarded as an operation which turns a string of k 1-cells into a
single 1-cell. (The ×C(0)’s denote pullbacks.) Similarly for the second; see Fig. 3. There
are also identities. A C-algebra is a functor A : G2

✲ Set together with functions

ψ : A(0) ✲ A(0) for each ψ ∈ C(0),

φ : {diagrams a0
• f1✲ · · · fk✲

ak
• in A} ✲ A(1) for each φ ∈ C(νk),

θ : {diagrams a•

f

g

h

α

β
✲❄

❄
�
✍b
•

l

m

γ❘
✒❄ c• in A} ✲ A(2) for each θ ∈ C


• ✲❄

❄
�
✍
• ❘

✒❄
•
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• ❘
✒❄

• ✲•
π2

• ✲❄

❄
�
✍
• ❘

✒❄
•

π3

• ✲❄

❄
�
✍
•
π1

• ❘
✒❄

• � •
❄

❄

❄

�
❃✗

• ❘
✒❄

•
π4

• ❘
✒❄

•�
�

� �

θ1

θ2

θ θ◦(θ1, θ2)

Figure 3: Composition of operations in a globular operad

(etc), all compatible with the source, target, composition and identities in C.
K2 is generated from the empty collection by adding in the minimal amount to obtain

a 2-operad with contraction and system of compositions. We have the identity 1 ∈
K2(0). Then, contraction gives an element (‘1-cell identities’) of K2(ν0), the system
of compositions gives an element (‘1-cell composition’) of K2(ν2), and composition in
K2 gives one element of K2(νk) for each k-leafed tree in which every vertex has 0 or
2 edges coming up out of it. Contraction at the next level gives associativity and unit
isomorphisms and identity 2-cells; the system of compositions gives vertical and horizontal
2-cell composition. Condition (∗) gives coherence axioms. Thus a weak 2-category is
exactly a bicategory.

Definition B2

Definition B2 of weak n-category refers to infinite-dimensional globular operads. So in
order to do a concrete analysis of n ≤ 2, we redefine a weak n-category as a pair (C,A)
where C is a n-operad admitting a contraction and a system of compositions and with
C(0)∼=1, and A is a C-algebra. (Temporarily, call such a C good.) I do not know to what
extent this is equivalent to B2, but the spirit, at least, is the same.

n = 0. From ‘n = 0’ above we see that a weak 0-category is just a set.

n = 1. The only good 1-operad is the terminal 1-operad, so by ‘n = 1’ above, a weak
1-category is just a category.

n = 2. A (non-symmetric) classical operad D is a sequence (D(k))k≥0 of sets together
with an element (the identity) of D(1) and for each k, r1, . . . , rk ≥ 0 a map D(k)×D(r1)×
· · · ×D(rk) ✲ D(r1 + · · · + rk) (composition), obeying unit and associativity laws. It
turns out that good 2-operads C correspond one-to-one with classical operads D such that
D(k) = ∅ for each k, via D(k) = C(νk). A C-algebra is then something like a 2-category
or bicategory, with one way of composing a string of k 1-cells for each element of D(k),
and all the appropriate coherence 2-cells. E.g. if D = 1 then a C-algebra is a 2-category;
if D(k) is the set of k-leafed trees in which each vertex has either 0 or 2 edges coming up
out of it then a C-algebra is a bicategory. C can, therefore, be regarded as a theory of
(more or less weak) 2-categories, and A as a model for such a theory.
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Definitions L

Globular Operads and their Algebras

Globular Sets. Let G be the category whose objects are the natural numbers 0, 1, . . .,
and whose arrows are generated by σm, τm : m ✲ m − 1 for each m ≥ 1, subject to
equations

σm−1◦σm = σm−1◦τm, τm−1◦σm = τm−1◦τm

(m ≥ 2). A functor A : G ✲ Set is called a globular set ; I will write s for A(σm), and
t for A(τm).

The Free Strict ω-Category Monad. Any (small) strict ω-category has an underlying
globular set A, in which A(m) is the set of m-cells and s and t are the source and target
maps. We thus obtain a forgetful functor U from the category of strict ω-categories and
strict ω-functors to the category [G,Set] of globular sets. U has a left adjoint, so there

is an induced monad (T, id
η✲ T, T 2 µ✲ T ) on [G,Set].

Collections. We define a monoidal category Coll of collections. Let 1 be the terminal

globular set. A (globular) collection is a map C
d✲ T1 into T1 in [G,Set]; a map

of collections is a commutative triangle. The tensor product of collections C
d✲ T1,

C ′ d′✲ T1 is the composite along the top row of

C ⊗ C ′ ✲ TC ′ Td′✲ T 21
µ1✲ T1

C
❄ d✲ T1,

T !
❄

where the right-angle symbol means that the square containing it is a pullback, and !

denotes the unique map to 1. The unit for the tensor is 1
η1✲ T1.

Globular Operads. A (globular) operad is a monoid in the monoidal category Coll; a
map of operads is a map of monoids.

Algebras. Any operad C induces a monad C ·− on [G,Set]. For an object A of [G,Set],
this is defined by pullback:

C · A ✲ TA

C
❄ d✲ T1.

T !
❄

The multiplication and unit of the monad come from the multiplication and unit of the
operad. A C-algebra is an algebra for the monad C · −. Note that every C-algebra has
an underlying globular set.
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Contractions

Contractions. Let C
d✲ T1 be a collection. For m ≥ 0 and ν ∈ (T1)(m), write

C(ν) = {θ ∈ C(m) | d(θ) = ν}. For m ≥ 2 and π ∈ (T1)(m), define

PC(π) = {(θ0, θ1) ∈ C(s(π))× C(t(π)) | s(θ0) = s(θ1) and t(θ0) = t(θ1)},

and for π ∈ (T1)(1), define PC(π) = C(s(π))×C(t(π)). A contraction γ on C is a family
of functions

(γπ : PC(π) ✲ C(π))m≥1,π∈(T1)(m)

satisfying
s(γπ(θ0, θ1)) = θ0, t(γπ(θ0, θ1)) = θ1

for every m ≥ 1, π ∈ (T1)(m) and (θ0, θ1) ∈ PC(π).

Initial Object. Let OC be the category in which an object is an operad equipped with
a contraction and a map is a map of operads preserving the specified contraction. Then
OC can be shown to have an initial object, whose underlying operad will be written L.

The Definitions

Definition L1. A weak ω-category is an L-algebra. (Maps of L-algebras should be
regarded as strict ω-functors.)

Definition L2. A weak ω-category is a pair (C,A), where C is an operad on which there
exists a contraction and satisfying C(0)∼=1, and A is a C-algebra.

Weak n-Categories. Let n ≥ 0. A globular set A is n-dimensional if for all m ≥ n,

s = t : A(m+ 1) ✲ A(m)

and this map is an isomorphism. A weak n-category is a weak ω-category whose underlying
globular set is n-dimensional. This can be interpreted according to either L1 or L2.



24 LEINSTER

Definitions L for n ≤ 2

Definition L1

An alternative way of handling weak n-categories is to work with only n- (not infinite-)
dimensional structures throughout. So we replace G by its full subcategory Gn with
objects 0, . . . , n, and T by the free strict n-category monad Tn, to obtain definitions of
n-collection, n-operads, and their algebras. Contractions are defined as before, except
that we only speak of contractions on C if

∀ν ∈ (Tn1)(n),∀θ0, θ1 ∈ C(ν), s(θ0) = s(θ1) & t(θ0) = t(θ1) ⇒ θ0 = θ1 (†)

(taking C(−1) = 1 to understand this when n = 0). There is an initial n-operad Ln

equipped with a contraction, and the category of weak n-categories turns out to be equiv-
alent to the category of Ln-algebras. The latter is easier to analyse.

n = 0. We have [G0,Set]∼=Set, T0 = id, and 0-Coll∼=Set; a 0-operad C is a monoid,
and a C-algebra is a set with a C-action. By (†), the only 0-operad with a contraction is
the one-element monoid, so a weak 0-category is just a set.

n = 1. [G1,Set] is the category of directed graphs and T1 is the free category monad. L1

is the terminal 1-operad, by arguments similar to those under ‘n = 2’ below. It follows
that L1 · − is just T1, and so a weak 1-category is just a T1-algebra, that is, a category.

n = 2. A functor A : G2
✲ Set consists of a set of 0-cells (drawn a• ), a set of 1-cells

( a•
f✲

b
• ), and a set of 2-cells ( a•

f

g

α❘
✒❄ b

• ). A 2-collection C consists of a set C(0), a set

C(νk) for each k ≥ 0 (where νk indicates the ‘1-pasting diagram’ • ✲ . . . ✲• with
k arrows), and a set C(π) for each ‘2-pasting diagram’ π such as the πi in Fig. 4, together
with source and target functions.

A 2-operad is a 2-collection C together with ‘composition’ functions such as

C(ν3)× [C(ν2)×C(0) C(ν1)×C(0) C(ν2)] ✲ C(ν5),
C(π1)× [C(π2)×C(ν2) C(π3)] ✲ C(π4).

In the first, the point is that there are 3 terms 2, 1, 2 and their sum is 5. This makes sense
if an element of C(νk) is regarded as an operation which turns a string of k 1-cells into a
single 1-cell. (The ×C(0)’s denote pullbacks.) Similarly for the second; see Fig. 4. There
are also identities. A C-algebra is a functor A : G2

✲ Set together with functions

ψ : A(0) ✲ A(0) for each ψ ∈ C(0),

φ : {diagrams a0
• f1✲ · · · fk✲

ak
• in A} ✲ A(1) for each φ ∈ C(νk),

θ : {diagrams a•

f

g

h

α

β
✲❄

❄
�
✍b
•

l

m

γ❘
✒❄ c• in A} ✲ A(2) for each θ ∈ C(• ✲❄

❄
�
✍
• ❘

✒❄
•)
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• ❘
✒❄

• ✲•
π2

• ✲❄

❄
�
✍
• ❘

✒❄
•

π3

• ✲❄

❄
�
✍
•
π1

• ❘
✒❄

• � •
❄

❄

❄

�
❃✗

• ❘
✒❄

•
π4

• ❘
✒❄

•�
�

� �

θ1

θ2

θ θ◦(θ1, θ2)

Figure 4: Composition of operations in a globular operad

(etc), all compatible with the source, target, composition and identities in C.
L2 is generated from the empty collection by adding in the minimal amount to obtain

a 2-operad-with-contraction. We have the identity 1 ∈ L2(0). Then, contraction gives an
element of L2(νk) for each k, so that composition in L2 gives an element of L2(νk) for each
k-leafed tree. Contraction at the next level (with (†)) says that if π is a 2-pasting diagram
of width k then L2(π) = L2(νk) × L2(νk). So L2(0) = {1}, L2(νk) = {k-leafed trees},
L2(π) = {k-leafed trees}2. An L2-algebra is, then, an ‘unbiased bicategory’: that is, just
like a bicategory except that there is specified k-fold composition for every k ≥ 0 rather
than just k = 2 (binary composition) and k = 0 (identities). Since these are essentially
the same as ordinary bicategories, so too are weak 2-categories.

Definition L2

Definition L2 of weak n-category refers to infinite-dimensional globular operads. So in
order to do a concrete analysis of n ≤ 2, we redefine a weak n-category as a pair (C,A)
where C is a n-operad admitting a contraction and with C(0)∼=1, and A is a C-algebra.
(Temporarily, call such a C good.) I do not know to what extent this is equivalent to L2,
but the spirit, at least, is the same.

n = 0. From ‘n = 0’ above we see that a weak 0-category is just a set.

n = 1. The only good 1-operad is the terminal 1-operad, so by ‘n = 1’ above, a weak
1-category is just a category.

n = 2. A (non-symmetric) classical operad D is a sequence (D(k))k≥0 of sets together
with an element (the identity) of D(1) and for each k, r1, . . . , rk ≥ 0 a map D(k)×D(r1)×
· · · ×D(rk) ✲ D(r1 + · · · + rk) (composition), obeying unit and associativity laws. It
turns out that good 2-operads C correspond one-to-one with classical operads D such that
D(k) = ∅ for each k, via D(k) = C(νk). A C-algebra is then something like a 2-category
or bicategory, with one way of composing a string of k 1-cells for each element of D(k),
and all the appropriate coherence 2-cells. E.g. if D = 1 then a C-algebra is a 2-category;
if D(k) is the set of k-leafed trees in which each vertex has either 0 or 2 edges coming up
out of it then a C-algebra is a bicategory. C can, therefore, be regarded as a theory of
(more or less weak) 2-categories, and A as a model for such a theory.
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Definition L′

Globular Multicategories

Globular Sets. Let G be the category whose objects are the natural numbers 0, 1, . . .,
and whose arrows are generated by σm, τm : m ✲ m − 1 for each m ≥ 1, subject to
equations

σm−1◦σm = σm−1◦τm, τm−1◦σm = τm−1◦τm

(m ≥ 2). A functor A : G ✲ Set is called a globular set ; I will write s for A(σm), and
t for A(τm).

The Free Strict ω-Category Monad. Any (small) strict ω-category has an underlying
globular set A, in which A(m) is the set of m-cells and s and t are the source and target
maps. We thus obtain a forgetful functor U from the category of strict ω-categories and
strict ω-functors to the category [G,Set] of globular sets. U has a left adjoint, so there

is an induced monad (T, id
η✲ T, T 2 µ✲ T ) on [G,Set].

Globular Graphs. For each globular set A, we define a monoidal category GraphA.
An object of GraphA is a (globular) graph on A: that is, a globular set R together with
maps of globular sets

R

✠�
�
�dom ❅

❅
❅
cod
❘

TA A.

A map (R, dom, cod) ✲ (R′, dom′, cod′) of graphs on A is a map R ✲ R′ making the
evident triangles commute. The tensor product of graphs (R, dom, cod), (R′, dom′, cod′)
is given by composing along the upper edges of the following diagram, in which the right-
angle symbol means that the square containing it is a pullback:

R⊗R′

��❅❅✠�
�
� ❅

❅
❅❘

TR′ R

✠�
�
�Tdom′ ❅

❅
❅T cod′ ❘ ✠�

�
�

dom
❅
❅
❅
cod
❘

T 2A TA A.

✠�
�
�µA

TA
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q0
•

r0

r1

∃ρ ❘
✒

·······❄ q1
• d�−→

d(q0)
•

d(r0)

d(r1)

φ ❘
✒❄ d(q1)

•

Figure 5: Part (ii) of the definition of contractibility, shown for m = 1

The unit for the tensor is the graph

A

✠�
�
�ηA ❅

❅
❅
1
❘

TA A.

Globular Multicategories. A globular multicategory is a globular set A together with
a monoid inGraphA. A globular multicategory A therefore consists of a globular set A, a
graph (R, dom, cod) on A, and maps comp : R⊗R ✲ R and ids : A ✲ R compatible
with dom and cod and obeying associativity and identity laws.

Contractible Maps

A map d : R ✲ S of globular sets is contractible (Figure 5) if

i. the function d0 : R(0) ✲ S(0) is bijective, and

ii. for every

m ≥ 0,

r0, r1 ∈ R(m) with s(r0) = s(r1) and t(r0) = t(r1),

φ ∈ S(m+ 1) with s(φ) = dm(r0) and t(φ) = dm(r1),

there exists ρ ∈ R(m + 1) with s(ρ) = r0, t(ρ) = r1, and dm+1(ρ) = φ. In the case
m = 0 we drop the (nonsensical) conditions that s(r0) = s(r1) and t(r0) = t(r1).

The Definition

Weak ω-Categories. A weak ω-category is a globular multicategory A = (A,R, dom,
cod, comp, ids) such that dom : R ✲ TA is contractible.

Weak n-Categories. Let n ≥ 0. A globular set A is n-dimensional if for all m ≥ n,

s = t : A(m+ 1) ✲ A(m)

and this map is an isomorphism. A weak n-category is a weak ω-category A such that
the globular sets A and R are n-dimensional.
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Definition L′ for n ≤ 2

An alternative way of handling weak n-categories is to work with only n-dimensional (not
infinite-dimensional) structures throughout. Thus we replace G by its full subcategory
Gn with objects 0, . . . , n, replace T by the free strict n-category monad Tn, and so obtain
a definition of n-globular multicategory. We also modify part (ii) of the definition of
contractibility by changing ‘m ≥ 0’ to ‘n − 1 ≥ m ≥ 0’, and ‘there exists ρ’ to ‘there
exists a unique ρ’ in the case m = n− 1. From these ingredients we get a new definition
of weak n-category.

The new and old definitions give two different, but equivalent, categories of weak n-
categories (with maps of multicategories as the morphisms); the analysis of n ≤ 2 is more
convenient with the new definition.

n = 0. We have [G0,Set]∼=Set and T0 = id, and the contractible maps are the bijections.
So a weak 0-category is a category whose domain map is a bijection; that is, a discrete
category; that is, a set.

n = 1. [G1,Set] is the category of directed graphs, T1 is the free category monad on
it, and a map of graphs is contractible if and only if it is an isomorphism. So a weak
1-category is essentially a 1-globular multicategory whose underlying 1-globular graph

looks like T1A ✛
1

T1A
cod✲ A. Such a graph has at most one multicategory structure,

and it has one if and only if cod is a T1-algebra structure on A. So a weak 1-category is
just a T1-algebra, i.e., a category.

n = 2. The free 2-category T2A on a 2-globular set A ∈ [G2,Set] has the same 0-cells as
A; 1-cells of T2A are formal paths ψ in A as in Fig. 6(a); and a typical 2-cell of T2A is
the diagram φ in Fig. 6(b).

Next, what is a 2-globular multicategory A = (A,R, dom, cod, comp, ids)? Since we
ultimately want to consider just those A in which dom is contractible, let us assume
immediately that R(0) = A(0). Then A consists of:

• a 2-globular set A ∈ [G2,Set]

• for each ψ and f as in Fig. 6(a), a set of cells r : ψ⇒ f ; such an r is a 1-cell of R,
and can be regarded as a ‘reason why f is a composite of ψ’

• for each φ and g0, g1, α as in Fig. 6(b), a set of cells ρ : φ�α; such a ρ is a 2-cell of
R, and can be regarded as a ‘reason why α is a composite of φ’

• source and target functions R(2) ✲✲ R(1), which, for instance, assign to ρ a reason

s(ρ) why g0 is a composite of a0
• f1✲

a1
• f5✲

a2
• f6✲

a3
•

• composition and identities: given r as in Fig. 6(a) and similarly ri : (f
1
i , . . . , f

pi
i )⇒ fi

for each i = 1, . . . , k, there is a composite r ◦ (r1, . . . , rk) : (f 1
1 , . . . , f

pk
k )⇒ f ; and

similarly for 2-cells and for identities,
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ψ = a0
• f1✲ . . . fk✲

ak
•

⇓r
a0
• f✲

ak
•

(a)

φ = a0
•

f1

f2

f3

f4

α1

α2

α3

❄

❄

❄

�
❃✗a1

• f5✲
a2
•

f6

f7

f8

α4

α5

✲❄

❄
�
✍a3
•

⇓ρ
a0
•

g0

g1

α❘
✒❄ a3

•

(b)

Figure 6: (a) A 1-cell, and (b) a typical 2-cell, of R. Here ai, fi, f, gi, αi and α are all cells
of A

such that the composition and identities satisfy associativity and identity axioms and are
compatible with source and target.

Contractibility says that for each ψ as in Fig. 6(a) there is at least one pair (r, f)
as in Fig. 6(a), and that for each φ as in Fig. 6(b) and each r0 : (f1, f5, f6)⇒ g0 and
r1 : (f4, f5, f8)⇒ g1, there is exactly one pair (ρ, α) as in Fig. 6(b) satisfying s(ρ) = r0

and t(ρ) = r1. That is: every diagram of 1-cells has at least one composite, and every
diagram of 2-cells has exactly one composite once a way of composing the 1-cells along
its boundary has been chosen.

When φ = a0
•

f0

f1

f2

α1

α2

✲❄

❄
�
✍a1
• , the identity reasons for f0 and f2 give via contractibility a

composite α2◦α1 : f0
✲ f2, and in this way the 1- and 2-cells between a0 and a1 form

a category A(a0, a1). Now suppose that ψ is as in Fig. 6(a) and r : ψ⇒ f , r′ : ψ⇒ f ′.
Applying contractibility to the degenerate 2-cell diagram φ which looks exactly like ψ,

we obtain a 2-cell a0
•

f

f ′

❘
✒❄ ak

• ; and similarly the other way round; so by the uniqueness

property of the ρ’s, f ∼= f ′ in A(a0, ak). Thus any two composites of a string of 1-cells are
canonically isomorphic.

A weak 2-category is essentially what is known as an ‘anabicategory’. To see how one
of these gives rise to a bicategory, choose for each a0

• f✲
a1
• g✲

a2
• in A a reason rf,g :

(f, g)⇒h and write h = (g◦f); and similarly for identities. Then, for instance, the hori-

zontal composite of 2-cells a0
•

f0

f1

❘
✒❄a1

•
g0

g1

❘
✒❄ a2

• comes via contractibility from rf0,g0 and rf1,g1 ,

the associativity cells arise from the degenerate 2-cell diagram φ = a0
• f1✲

a1
• f2✲

a2
• f3✲

a3
• ,

and the coherence axioms come from the uniqueness of the ρ’s.
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Definition Si

Simplicial Objects

The Simplicial Category. Let ∆ be a skeleton of the category of nonempty finite
totally ordered sets: that is, ∆ has objects [k] = {0, . . . , k} for k ≥ 0, and maps are
order-preserving functions (with respect to the usual ordering ≤).

Some Maps in ∆. Let σ, τ : [0] ✲ [1] be the maps in ∆ with respective values 0 and
1. Given k ≥ 0, let ι1, . . . , ιk : [1] ✲ [k] denote the ‘embeddings’ of [1] into [k], defined
by ιj(0) = j − 1 and ιj(1) = j.

The Segal Maps. Let k ≥ 0. Then the following diagram in ∆ commutes:

[k]

✏✏
✏✏
✏✏
✏✏
✏✏
✏✏

ι1

✶

✑
✑
✑
✑
✑

ι2
✸

. . .

✐������������

ιk

[1] [1] . . . [1]

�❅
❅
❅τ �

�
�

σ
✒ �❅

❅
❅τ �

�
�

σ
✒ �❅

❅
❅τ �

�
�

σ
✒

[0] [0] · · · [0].

Let X : ∆op ✲ E be a functor into a category E possessing finite limits, and write
X[1]×X[0] · · · ×X[0] X[1] (with k occurrences of X[1]) for the limit of the diagram

X[1] X[1] . . . X[1]

❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
X[0] X[0] · · · X[0]

(with, again, k occurrences of X[1]) in E . Then by commutativity of the first diagram,
there is an induced map in E—a Segal map—

X[k] ✲ X[1]×X[0] · · · ×X[0] X[1]. (‡)

Contractibility

Sources and Targets. If 0 ≤ p ≤ r, write Ip for the object ([1], . . . , [1]︸ ︷︷ ︸
p

, [0], . . . , [0]︸ ︷︷ ︸
r−p

) of

∆r. Let X : (∆r)op ✲ Set, 0 ≤ p ≤ r, and x, x′ ∈ X(Ip). Then x, x′ are parallel if
p = 0 or if p ≥ 1 and s(x) = s(x′) and t(x) = t(x′); here s and t are the maps

X(Ip)
X(id, . . . , id, σ, id, . . . , id)✲

X(id, . . . , id, τ, id, . . . , id)
✲ X(Ip−1).
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x ............
g
✲ x′

φ(x)
h✲

φ↓
φ(x′)

Figure 7: Contractibility, shown for p = 0

Contractible Maps. Let r ≥ 1 and let X,Y : (∆r)op ✲ Set. A natural transforma-
tion φ : X ✲ Y is contractible (Figure 7) if

• the function φI0 : X(I0) ✲ Y (I0) is surjective

• given p ∈ {0, . . . , r − 1}, parallel x, x′ ∈ X(Ip), and h ∈ Y (Ip+1) satisfying

s(h) = φIp(x), t(h) = φIp(x
′),

there exists g ∈ X(Ip+1) satisfying

s(g) = x, t(g) = x′, φIp+1(g) = h

• given parallel x, x′ ∈ X(Ir) satisfying φIr(x) = φIr(x
′), then x = x′.

If r = 0 then X and Y are just sets and φ is just a function X ✲ Y ; call φ
contractible if it is bijective.

The Definition

Let n ≥ 0. A weak n-category is a functor A : (∆n)op ✲ Set such that for each
m ∈ {0, . . . , n− 1} and K = ([k1], . . . , [km]) ∈ ∆m,

i. the functor A(K, [0],−) : (∆n−m−1)op ✲ Set is constant, and

ii. for each [k] ∈ ∆, the Segal map

A(K, [k],−) ✲ A(K, [1],−)×A(K,[0],−) · · · ×A(K,[0],−) A(K, [1],−)

is contractible. (We are taking E = [(∆n−m−1)op,Set] and X[j] = A(K, [j],−) in
the definition of Segal map.)
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Definition Si for n ≤ 2

n = 0. Parts (i) and (ii) of the definition are vacuous, so a weak 0-category is just a
functor (∆0)op ✲ Set, that is, a set.

n = 1. A weak 1-category is a functor A : ∆op ✲ Set (that is, a simplicial set)
satisfying (i) and (ii). Part (i) is always true, and (ii) says that for each k ≥ 0 the Segal
map (‡) (with X = A) is a bijection—in other words, that A is a nerve. The category of
nerves and natural transformations between them is equivalent to Cat, where a nerve A
corresponds to a certain category with object-set A[0] and morphism-set A[1]. So a weak
1-category is essentially just a category.

n = 2. A weak 2-category is a functor A : (∆2)op ✲ Set such that

i. the functor A([0],−) : ∆op ✲ Set is constant

ii. for each k ≥ 0, the Segal map

A([k],−) ✲ A([1],−)×A([0],−) · · · ×A([0],−) A([1],−)

is contractible, and for each k1, k ≥ 0, the Segal map

A([k1], [k]) ✲ A([k1], [1])×A([k1],[0]) · · · ×A([k1],[0]) A([k1], [1])

is a bijection.

The second half of (ii) says that A([k1],−) is a nerve for each k1, so we can regard A as
a functor ∆op ✲ Cat. Note that if X and Y are nerves then a natural transformation
φ : X ✲ Y is the same thing as a functor between the corresponding categories, and
that φ is contractible if and only if this functor is full, faithful and surjective on objects.
So a weak 2-category is a functor A : ∆op ✲ Cat such that

i. A[0] is a discrete category (i.e. the only morphisms are the identities)

ii. for each k ≥ 0, the Segal functor

A[k] ✲ A[1]×A[0] · · · ×A[0] A[1]

is full, faithful and surjective on objects.

I will now argue that a weak 2-category is essentially the same thing as a bicategory.
First take a weak 2-category A : ∆op ✲ Cat, and let us construct a bicategory B.

The object-set of B is A[0]. The two functors s, t : A[1] ✲ A[0] express the category
A[1] as a disjoint union

∐
a,b∈A[0] B(a, b) of categories; the 1-cells from a to b are the

objects of B(a, b), and the 2-cells are the morphisms. Vertical composition of 2-cells in
B is composition in each B(a, b). To define horizontal composition of 1- and 2-cells,

first choose for each k a pseudo-inverse A[1] ×A[0] · · · ×A[0] A[1]
ψk✲ A[k] to the Segal
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functor φk (an equivalence of categories), and natural isomorphisms ηk : 1 ✲ ψk ◦φk,
εk : φk ◦ψk

✲ 1. Horizontal composition is given by

A[1]×A[0] A[1]
ψ2✲ A[2]

Aδ✲ A[1],

where δ : [1] ✲ [2] is the injection whose image omits 1 ∈ [2]. The associativity
isomorphisms are built up from ηk’s and εk’s, and the pentagon commutes just as long
as the equivalence (φk, ψk, ηk, εk) was chosen to be an adjunction too (which is always
possible). Identities work similarly.

Conversely, take a bicategory B and construct a weak 2-category A : (∆2)op ✲ Set
(its ‘2-nerve’) as follows. An element of A([j], [k]) is a quadruple

((au)0≤u≤j, (f
z
uv) 0≤u<v≤j

0≤z≤k

, (αz
uv) 0≤u<v≤j

1≤z≤k

, (ιzuvw) 0≤u<v<w≤j

0≤z≤k

)

where

• au is an object of B

• f z
uv : au ✲ av is a 1-cell of B

• αz
uv : f

z−1
uv

✲ f z
uv is a 2-cell of B

• ιzuvw : f z
vw◦f z

uv

∼✲ f z
uw is an invertible 2-cell of B

such that

• ιzuvw ◦ (αz
vw ∗ αz

uv) = αz
uw ◦ ιz−1

uvw whenever 0 ≤ u < v < w ≤ j, 1 ≤ z ≤ k

• ιzuwx ◦ (1fz
wx

∗ ιzuvw) ◦ (associativity isomorphism) = ιzuvx ◦ (ιzvwx ∗ 1fz
uv
) whenever 0 ≤

u < v < w < x ≤ j, 0 ≤ z ≤ k.

This defines the functor A on objects of ∆2; it is defined on maps by a combination of
inserting identities and forgetting data.

To get a rough picture of A, consider the analogous construction for strict 2-categories,
in which we insist that the isomorphisms ιzuvw are actually equalities. Then an element
of A([j], [k]) is a grid of jk 2-cells, of width j and height k. (When j = 0 this is just a
single object of B, regardless of k.) The bicategorical version is a suitable weakening of
this construction.

Finally, passing from a bicategory to a weak 2-category and back again gives a bicat-
egory isomorphic (in the category of bicategories and weak functors) to the original one.
Passing from a weak 2-category to a bicategory and back again gives a weak 2-category
which is ‘equivalent’ to the original one in a sense which we do not have quite enough
vocabulary to make precise here.
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Definition Ta

Simplicial Objects

The Simplicial Category. Let ∆ be a skeleton of the category of nonempty finite
totally ordered sets: that is, ∆ has objects [k] = {0, . . . , k} for k ≥ 0, and maps are
order-preserving functions (with respect to the usual ordering ≤).

Some Objects and Morphisms. Given k ≥ 0, let ι1, . . . , ιk : [1] ✲ [k] denote the
‘embeddings’ of [1] into [k], defined by ιj(0) = j−1 and ιj(1) = j. Let σ, τ : [0] ✲ [1] be
the maps in ∆ with respective values 0 and 1. Given p ≥ 0, write 0p = ([0], . . . , [0]) ∈ ∆p

and 1p = ([1], . . . , [1]) ∈ ∆p. Let X : (∆r)op ✲ Set, 0 ≤ p ≤ r, and x, x′ ∈ X(1p, 0r−p).
Then x, x′ are parallel if p = 0 or if p ≥ 1 and s(x) = s(x′) and t(x) = t(x′); here s and t
are the maps

X(1p, 0r−p)
X(id, . . . , id, σ, id, . . . , id)✲

X(id, . . . , id, τ, id, . . . , id)
✲ X(1p−1, 0r−p+1).

The Segal Maps. Let k ≥ 0. Then the following diagram in ∆ commutes:

[k]

✏✏
✏✏
✏✏
✏✏
✏✏
✏✏

ι1

✶

✑
✑
✑
✑
✑

ι2
✸

. . .

✐������������

ιk

[1] [1] . . . [1]

�❅
❅
❅τ �

�
�

σ
✒ �❅

❅
❅τ �

�
�

σ
✒ �❅

❅
❅τ �

�
�

σ
✒

[0] [0] · · · [0].

Let X : ∆op ✲ E be a functor into a category E possessing finite limits, and write
X[1]×X[0] · · · ×X[0] X[1] (with k occurrences of X[1]) for the limit of the diagram

X[1] X[1] . . . X[1]

❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
❅
❅
❅Xτ ❘ ✠�

�
�

Xσ
X[0] X[0] · · · X[0]

(with, again, k occurrences of X[1]) in E . Then by commutativity of the first diagram,
there is an induced map in E—a Segal map—

X[k] ✲ X[1]×X[0] · · · ×X[0] X[1]. (§)
Nerves. Call X : ∆op ✲ Set a nerve if for each k ≥ 0, the Segal map (§) is a bijection.
The category of nerves and natural transformations is equivalent to Cat, where a nerve
X corresponds to a category with object-set X[0] and morphism-set X[1]. Let QX be
the set of isomorphism classes of objects of the category corresponding to X, and let
πX : X[0] ✲ QX be the quotient map.
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Truncatability

For each r ≥ 0, we define what it means for a functor X : (∆r)op ✲ Set to be truncat-
able, writing r-Trunc for the category of truncatable functors (∆r)op ✲ Set and natu-
ral transformations between them. We also define functors ob(r), Q(r) : r-Trunc ✲ Set
and a natural transformation π(r) : ob(r) ✲ Q(r).

The functor ob(r) is given by ob(r)X = X(0r). All functors (∆0)op ✲ Set are
truncatable, and Q(0) and π(0) are identities. Inductively, when r ≥ 1, a functor X :
(∆r)op ✲ Set is truncatable if

• for each k ≥ 0, the functor X([k],−) : (∆r−1)op ✲ Set is truncatable

• the functor X̂ : ∆op ✲ Set defined by [k] �−→Q(r−1)(X([k],−)) is a nerve.

If X is truncatable then we define Q(r)(X) = Q(X̂) and π
(r)
X = π

X̂
◦ π(r−1)

X([0],−).

Equivalence

Internal Equivalence. Let 0 ≤ p ≤ r, let X : (∆r)op ✲ Set be truncatable, and let
x1, x2 ∈ X(1p, 0r−p). We call x1 and x2 equivalent, and write x1 ∼ x2, if x1 and x2 are

parallel and π
(r−p)
X(1p,−)(x1) = π

(r−p)
X(1p,−)(x2).

External Equivalence. Let r ≥ 0. A natural transformation φ : X ✲ Y of truncat-
able functors X,Y : (∆r)op ✲ Set is called an equivalence if

• for each y ∈ Y (0r) there is a unique-up-to-equivalence x ∈ X(0r) such that φ0r(x)∼ y

• for all 0 ≤ p ≤ r− 1, parallel x, x′ ∈ X(1p, 0r−p), and h ∈ Y (1p+1, 0r−p−1) satisfying

s(h) = φ(1p,0r−p)(x), t(h) = φ(1p,0r−p)(x
′),

there is an element g ∈ X(1p+1, 0r−p−1), unique up to equivalence, satisfying

s(g) = x, t(g) = x′, φ(1p+1,0r−p−1)(g)∼h.

The Definition

Let n ≥ 0. A weak n-category is a truncatable functor A : (∆n)op ✲ Set such that for
each m ∈ {0, . . . , n− 1} and K = ([k1], . . . , [km]) ∈ ∆m,

i. the functor A(K, [0],−) : (∆n−m−1)op ✲ Set is constant, and

ii. for each [k] ∈ ∆, the Segal map

A(K, [k],−) ✲ A(K, [1],−)×A(K,[0],−) · · · ×A(K,[0],−) A(K, [1],−) (¶)
is an equivalence. (We are taking E = [(∆n−m−1)op,Set] and X[j] = A(K, [j],−)
in the definition of Segal map, and we can check that both the domain and the
codomain of (¶) are truncatable.)



36 LEINSTER

Definition Ta for n ≤ 2

n = 0. Parts (i) and (ii) of the definition are vacuous, and truncatability is automatic, so
a weak 0-category is just a functor (∆0)op ✲ Set, that is, a set.

n = 1. Note that a functor A : ∆op ✲ Set is truncatable exactly when it is a nerve;
that a functor X : (∆0)op ✲ Set is merely a set, and two elements of X are equivalent
just when they are equal; and that a map φ : X ✲ Y of functorsX,Y : (∆0)op ✲ Set
is an equivalence just when it is a bijection. A weak 1-category is a truncatable functor
A : ∆op ✲ Set satisfying (i) and (ii). Part (i) is trivially true, and both truncatability
and (ii) say that A is a nerve. So a weak 1-category is just a nerve, that is, a category.

n = 2. First note that if X : ∆op ✲ Set is a nerve then two elements of X[0] are
equivalent just when they are isomorphic (as objects of the category corresponding to X),
and two elements of X[1] are equivalent just when they are equal. Note also that a map
φ : X ✲ Y of nerves is an equivalence if and only if (regarded as a functor between the
corresponding categories) it is full, faithful and essentially surjective on objects—that is,
an equivalence of categories.

A weak 2-category is a truncatable functor A : (∆2)op ✲ Set such that

i. the functor A([0],−) : ∆op ✲ Set is constant

ii. for each k ≥ 0, the Segal map

A([k],−) ✲ A([1],−)×A([0],−) · · · ×A([0],−) A([1],−)

is an equivalence, and for each k1, k ≥ 0, the Segal map

A([k1], [k]) ✲ A([k1], [1])×A([k1],[0]) · · · ×A([k1],[0]) A([k1], [1])

is a bijection.

The second half of (ii) says that A([k1],−) is a nerve for each k1, so we can regard A as a
functor A : ∆op ✲ Cat; then the first half of (ii) says that the Segal map (§) (with X =
A) is an equivalence of categories. Truncatability of A says that the functor ∆op ✲ Set
given by [k] �−→{isomorphism classes of objects of A[k]} is a nerve, which follows anyway
from the other conditions. So a weak 2-category is a functor A : ∆op ✲ Cat such that

i. A[0] is a discrete category (i.e. the only morphisms are the identities)

ii. for each k ≥ 0, the Segal functor A[k] ✲ A[1]×A[0] · · ·×A[0] A[1] is an equivalence
of categories.

It seems that a weak 2-category is essentially just a bicategory.
First take a weak 2-category A : ∆op ✲ Cat, and let us construct a bicategory B.

The object-set of B is A[0]. The two functors s, t : A[1] ✲ A[0] express the category
A[1] as a disjoint union

∐
a,b∈A[0] B(a, b) of categories; the 1-cells from a to b are the
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objects of B(a, b), and the 2-cells are the morphisms. Vertical composition of 2-cells in
B is composition in each B(a, b). To define horizontal composition of 1- and 2-cells, first

choose for each k a pseudo-inverse A[1]×A[0] · · · ×A[0] A[1]
ψk✲ A[k] to the Segal functor

φk, and choose natural isomorphisms ηk : 1 ✲ ψk ◦φk, εk : φk ◦ψk
✲ 1. Horizontal

composition is then given as

A[1]×A[0] A[1]
ψ2✲ A[2]

Aδ✲ A[1],

where δ : [1] ✲ [2] is the injection whose image omits 1 ∈ [2]. The associativity
isomorphisms are built up from ηk’s and εk’s, and the pentagon commutes just as long
as the equivalence (φk, ψk, ηk, εk) was chosen to be an adjunction too (which is always
possible). Identities work similarly.

Conversely, take a bicategory B and construct a weak 2-category A : (∆2)op ✲ Set
(its ‘2-nerve’) as follows. An element of A([j], [k]) is a quadruple

((au)0≤u≤j, (f
z
uv) 0≤u<v≤j

0≤z≤k

, (αz
uv) 0≤u<v≤j

1≤z≤k

, (ιzuvw) 0≤u<v<w≤j

0≤z≤k

)

where

• au is an object of B

• f z
uv : au ✲ av is a 1-cell of B

• αz
uv : f

z−1
uv

✲ f z
uv is a 2-cell of B

• ιzuvw : f z
vw◦f z

uv

∼✲ f z
uw is an invertible 2-cell of B

such that

• ιzuvw ◦ (αz
vw ∗ αz

uv) = αz
uw ◦ ιz−1

uvw whenever 0 ≤ u < v < w ≤ j, 1 ≤ z ≤ k

• ιzuwx ◦ (1fz
wx

∗ ιzuvw) ◦ (associativity isomorphism) = ιzuvx ◦ (ιzvwx ∗ 1fz
uv
) whenever 0 ≤

u < v < w < x ≤ j, 0 ≤ z ≤ k.

This defines the functor A on objects of ∆2; it is defined on maps by a combination of
inserting identities and forgetting data.

To get a rough picture of A, consider the analogous construction for strict 2-categories,
in which we insist that the isomorphisms ιzuvw are actually equalities. Then an element
of A([j], [k]) is a grid of jk 2-cells, of width j and height k. (When j = 0 this is just a
single object of B, regardless of k.) The bicategorical version is a suitable weakening of
this construction.

Finally, it appears that passing from a bicategory to a weak 2-category and back again
gives a bicategory isomorphic (by weak functors) to the original one, and that passing
from a weak 2-category to a bicategory and back again gives a weak 2-category equivalent
to the original one.
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Definition J

Disks

Disks. A disk D is a diagram of sets and functions

· · · Dm
pm

um

vm

✲
��

Dm−1 · · · p2

u2

v2

✲
��

D1
p1

u1

v1

✲
��

D0 = 1

equipped with a total order on the fibre p−1
m (d) for each m ≥ 1 and d ∈ Dm−1, such that

for each m ≥ 1 and d ∈ Dm−1,

• um(d) and vm(d) are respectively the least and greatest elements of p−1
m (d)

• um(d) = vm(d) ⇐⇒ d ∈ image(um−1) ∪ image(vm−1).

When m = 1, the second condition is to be interpreted as saying that u1 = v1 (or
equivalently, that D1 has at least two elements).

A map D
ψ✲ D′ of disks is a family of functions (Dm

ψm✲ D′
m)m≥0 commuting with

the p’s, u’s and v’s and preserving the order in each fibre. (The last condition means that
if d ∈ Dm−1 and b, c ∈ p−1

m (d) with b ≤ c, then ψm(b) ≤ ψm(c) ∈ p′−1
m (ψm−1(d)).) Call ψ a

surjection if each ψm is a surjection.

Interiors, Volume, Dimension. Let D be a disk. For m ≥ 1, define

ιDm = Dm\(image(um) ∪ image(vm)),

(the interior of Dm), and define ιD0 = D0. If the set
∐

m≥1 ιDm is finite then we call D
finite and define the volume |D| of D to be its cardinality. In this case we may also define
the dimension of D to be the largest m ≥ 0 for which ιDm = ∅.

Finite Disks. Write D for a skeleton of the category of finite disks and maps between
them. In other words, take the category of all finite disks and choose one object in each
isomorphism class; the objects of D are all these chosen objects, and the morphisms in D

are all disk maps between them. Thus D is equivalent to the category of finite disks and
no two distinct objects of D are isomorphic.

Faces and Horns, Cofaces and Cohorns

Cofaces. Let D ∈ D. A (covolume 1) coface of D is a surjection D
φ✲ E in D where

|E| = |D| − 1. We call φ an inner coface of D if φm(ιDm)⊆ ιEm for all m ≥ 0.
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Cohorns. For each D ∈ D and coface D
φ✲ E of D, define the cohorn

ΛD
φ : D ✲ Set

by

ΛD
φ (C) = {ψ ∈ D(D,C) | ψ factors through some coface of D other than φ}.

That is, a map ψ : D ✲ C is a member of ΛD
φ (C) if and only if there is a coface

(D
φ′
✲ E ′) = (D

φ✲ E) of D and a map χ : E ′ ✲ C such that

D
φ′

✲ E ′
◗
◗
◗
◗
◗ψ !

C

χ
❄

commutes. There is an inclusion ΛD
φ (C) ⊂ ✲ D(D,C) for each C, and ΛD

φ is thus a
subfunctor of D(D,−). Write iDφ : ΛD

φ
⊂ ✲ D(D,−) for the inclusion.

Fillers. Let A : D ✲ Set, let D ∈ D, and let φ be a coface of D. A (D,φ)-cohorn in
A is a natural transformation h : ΛD

φ
✲ A; if φ is an inner coface then h is an inner

cohorn in A.
A filler for a (D,φ)-cohorn h in A is a natural transformation h : D(D,−) ✲ A

making the following diagram commute:

ΛD
φ

⊂
iDφ ✲ D(D,−)

◗
◗
◗
◗
◗h !

A.

h
❄

The Definition

Weak ω-Categories. A weak ω-category is a functor A : D ✲ Set such that there
exists a filler for every inner cohorn in A.

Weak n-Categories. Let n ≥ 0. A functor A : D ✲ Set is n-dimensional if, whenever
ψ : D ✲ E is a map in D such that

• D has dimension n

• ψm is a bijection for every m ≤ n,

then A(ψ) is a bijection. A weak n-category is an n-dimensional weak ω-category.



40 LEINSTER

Definition J for n ≤ 2

Let n ≥ 0. An n-disk is defined in the same way as a disk, except that Dm, pm, um
and vm are now only defined for m ≤ n: so an n-disk is essentially the same thing as
a disk of dimension ≤ n. Write Dn for a skeleton of the category of finite n-disks. An
n-dimensional functor D ✲ Set is determined by its effect on disks of dimension ≤ n,
and conversely any functor Dn

✲ Set extends uniquely to become an n-dimensional
functor D ✲ Set. So the category of n-dimensional functors D ✲ Set is equivalent
to [Dn,Set].

Take an n-dimensional functor A : D ✲ Set and its restriction Ã : Dn
✲ Set.

Then there is automatically a unique filler for every cohorn of dimension ≥ n + 2 in A
(that is, cohorn ΛD

φ
✲ A where D has dimension ≥ n + 2). Moreover, there exists a

filler for every inner cohorn of dimension n+1 in A if and only if there is at most one filler
for every inner cohorn of dimension n in Ã. (We do not prove this, but the idea of the
method is in the last sentence of ‘n = 2’.) So: a weak n-category is a functor Dn

✲ Set
such that every inner cohorn has a filler, unique when the cohorn is of dimension n.

n = 0. D0 is the terminal category 1. The unique 0-disk has no cofaces, so a weak
0-category is merely a functor 1 ✲ Set, that is, a set.

n = 1. An interval is a totally ordered set with a least and a greatest element, and is
called strict if these elements are distinct. D1 is (a skeleton of) the category of finite strict
intervals, so we can take its objects to be the intervals 〈k〉 = {0, . . . , k+1} for k ≥ 0 and
its morphisms to be the interval maps.

The cofaces of 〈k〉 are the surjections 〈k〉 ✲ 〈k − 1〉 (assuming k ≥ 1; if k = 0 then
there are none). They are φ0, . . . , φk, where φi identifies i and i+1; of these, φ1, . . . , φk−1

are inner. The cohorn Λ
〈k〉
φi

: D1
✲ Set sends 〈l〉 to

{ψ : 〈k〉 ✲ 〈l〉 | ψ factors through φi′ for some i′ ∈ {0, . . . , i− 1, i+ 1, . . . , k}}.

Now, let ∆ be a skeleton of the category of nonempty finite totally ordered sets, with
objects [k] = {0, . . . , k} (k ≥ 0). Then D1

∼=∆op, with 〈k〉 corresponding to [k], the
cofaces φi : 〈k〉 ✲ 〈k − 1〉 to the usual face maps [k− 1] ✲ [k], and the inner cofaces

to the inner faces (i.e. all but the first and last). Trivially, cohorns Λ
〈k〉
φi

correspond to
horns in the standard sense, and fillers to fillers. Hence a weak 1-category is a functor
A : ∆op ✲ Set in which every inner horn has a unique filler—exactly the condition
that A is the nerve of a category. So a weak 1-category is just a category.

n = 2. Again we use a duality. Given natural numbers l1, . . . , lk, let Tl1,...,lk be the strict 2-
category generated by objects x0, . . . , xk, 1-cells pji : xi−1

✲ xi (1 ≤ i ≤ k, 0 ≤ j ≤ li),
and 2-cells ξji : pj−1

i
✲ pji (1 ≤ i ≤ k, 1 ≤ j ≤ li). (E.g. the lower half of Fig. 8(a)

shows T1,0.) Let ∆2 be the category whose objects are sequences (l1, . . . , lk) with k, li ≥ 0,
and whose maps (l1, . . . , lk) ✲ (l′1, . . . , l

′
k′) are the strict 2-functors Tl1,...,lk

✲ Tl′1,...,l
′
k′
.

Then D2
∼=∆op

2 . On objects, this says that a finite 2-disk is just a finite sequence of
numbers, e.g. (1, 0) in Fig. 8(a).
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◦ ◦ •w◦ ◦ ◦ ◦
❇
❇
❇✂
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✂
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❙
❙
❙#
#
#

✑✑
✑✑

•

◦ ◦ ◦w ◦ ◦ ◦
❇
❇
❇✂
✂
✂ ❇

❇
❇✂
✂
✂

◦ •u •v ◦◗◗◗◗
❙
❙
❙#
#
#

✑✑
✑✑

•

◦ ◦w ◦ ◦ ◦ ◦
❇
❇
❇✂
✂
✂ ❇

❇
❇✂
✂
✂

◦ •u •v ◦◗◗◗◗
❙
❙
❙#
#
#

✑✑
✑✑

•

◦ ◦ •w◦ ◦
◦ •u
❇
❇
❇✂
✂
✂

◦v
❙
❙
❙#
#
#

•

◦ ◦ •w◦ ◦
◦ •u v

❇
❇
❇✂
✂
✂

◦
❙
❙
❙#
#
#

•
• ❘

✒❄
• ✲• • ❘• ✲• •

✒
• ✲• • ❘

✒❄
• • ❥✯❄ •

(a) (b) (c) (d) (e)

Figure 8: The duality. In the upper row, • denotes an interior element and ◦ an endpoint
of a fibre, and the labels u, v, w show what the coface maps ‘φ’ do

Any bicategory B has a ‘nerve’ A : ∆op
2

✲ Set, where A(l1, . . . , lk) = {weak func-
tors Tl1,...,lk

✲ B strictly preserving identities}. We can recover B from A, so weak
2-categories are the same as bicategories just as long as the definition gives the right
conditions on functors D2

∼=∆op
2

✲ Set. I do not have a full proof that this is so, hence
there are gaps in what follows.

Defining faces of an object of ∆2 as cofaces of the corresponding object of D2, and
similarly horns, a weak 2-category is a functor ∆op

2
✲ Set in which every 1- (respec-

tively, 2-) dimensional horn has a filler (respectively, unique filler). Faces are certain
subcategories: e.g. Fig. 8(b)–(e) shows the 4 cofaces of a disk and correspondingly the 4
faces of T1,0, of which only (e) is inner.

For the converse of the nerve construction, we take a weak 2-category A and form
a bicategory B. Its graph B2

✲✲ B1
✲✲ B0 is the image under A of the diagram

• ❘
✒❄

• ✛ ⊃✛ ⊃ • ✲• ✛ ⊃✛ ⊃ • in ∆2. A diagram a•
f✲

b
• g✲

c• in B is a horn in A for

the unique inner face of T0,0 = • ✲• ✲•; choose a filler Kf,g and write g◦f for its
third face. This gives 1-cell composition; vertical 2-cell composition works similarly but

without choice. Next, a diagram a•
f

f ′
α❘
✒❄ b

• g✲
c• , with Kf,g and Kf ′,g, forms a horn for the

unique inner face of T1,0 (Fig. 8), so has a unique filler Kα,g; write g◦α : g◦f ✲ g◦f ′ for
face (e) ofKα,g. Horizontal 2-cell composition is defined via this construction, its dual, and

vertical composition. Next, a•
f✲

b
• g✲

c• h✲
d
• , together with Kf,g, Kg,h, Kg◦f,h, gives an

inner horn for T0,0,0. There’s a (unique?) filler, whose final face Lf,g,h is itself a filler of

a•
f✲

b
• h◦g✲

d
• with third face h◦(g◦f). Considering a•

f

f

1❘
✒❄ b

• h◦g✲
d
• with Kf,h◦g and Lf,g,h

gives an invertible 2-cell (h◦g)◦f ✲ h◦(g◦f).



42 LEINSTER

Definition St

Simplicial Sets

The Simplicial Category. Let ∆ be a skeleton of the category of nonempty finite
totally ordered sets: that is, ∆ has objects [m] = {0, . . . ,m} for m ≥ 0, and maps are
order-preserving functions (with respect to the usual ordering ≤). A simplicial set is a
functor ∆op ✲ Set.

Maps in ∆. Let m ≥ 1: then there are injections δ0, . . . , δm : [m − 1] ✲ [m] in ∆,
determined by saying that the image of δi is [m]\{i}.

Let A : ∆op ✲ Set and m ≥ 0. An element a ∈ A[m] is called degenerate if there
exist a natural number m′ < m, a surjection σ : [m] ✲ [m′], and an element a′ ∈ A[m′]
such that a = (Aσ)a′.

Horns. Given 0 ≤ k ≤ m, we define the horn Λk
m : ∆op ✲ Set by

Λk
m[m

′] = {ψ ∈ ∆([m′], [m]) | image(ψ) ⊇ [m]\{k}}.

That is, Λk
m[m

′] is the set of all maps ψ : [m′] ✲ [m] in ∆ except for the surjec-
tions and the maps with image {0, . . . , k − 1, k + 1, . . . ,m}. So for each m′ we have an
inclusion Λk

m[m
′] ⊂ ✲ ∆([m′], [m]), and Λk

m is thus a subfunctor of ∆(−, [m]). Write
ikm : Λk

m
⊂ ✲ ∆(−, [m]) for the inclusion.

Let A be a simplicial set. A horn in A is a natural transformation h : Λk
m

✲ A, for
some 0 ≤ k ≤ m. A filler for the horn h is a natural transformation h : ∆(−, [m]) ✲ A
making the following diagram commute:

Λk
m

⊂ ikm✲ ∆(−, [m])
◗
◗
◗
◗
◗h !

A.

h
❄

Orientation

Alternating Sets. A set of natural numbers is alternating if its elements, when written
in ascending order, alternate in parity.

Let 0 ≤ k ≤ m, and write k± = {k−1, k, k+1}∩[m]. A subset S⊆ [m] is k-alternating
if

• k±⊆S

• the set k± ∪ ([m]\S) is alternating.
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Admissible Horns. A simplicial set with hollowness is a simplicial set A together with
a subset Hm⊆A[m] for each m ≥ 1, whose elements are called the hollow elements of
A[m] (and may also be thought of as ‘thin’ or ‘universal’).

Let (A,H) be a simplicial set with hollowness, and 0 ≤ k ≤ m. A horn h : Λk
m

✲ A
is admissible if for every m′ ≥ 1 and ψ ∈ Λk

m[m
′],

image(ψ) is a k-alternating subset of [m] ⇒ h[m′](ψ) is hollow.

The Definition

Weak ω-Categories. A weak ω-category is a simplicial set with hollowness (A,H) such
that

i. for m ≥ 1, Hm ⊇ {degenerate elements of A[m]}
ii. for m ≥ 1 and 0 ≤ k ≤ m, every admissible horn h : Λk

m
✲ A has a filler h

satisfying h[m](1[m]) ∈ Hm (‘every admissible horn has a hollow filler’)

iii. for m ≥ 2 and 0 ≤ k ≤ m, if a ∈ Hm has the property that (Aδi)a ∈ Hm−1 for each
i ∈ [m]\{k} then also (Aδk)a ∈ Hm−1.

Weak n-Categories. Let n ≥ 0. A weak n-category is a weak ω-category (A,H) such
that

i′. for m > n, Hm = A[m]

ii′. in condition (ii) above, when m > n there is a unique filler h for h (which necessarily
satisfies h[m](1[m]) ∈ Hm).
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Definition St for n ≤ 2

Let m ≥ 0 and let S be a nonempty subset of [m]; then in ∆ there is a unique injection
φ into [m] with image S. Given a simplicial set A and an element a ∈ A[m], the S-face
of a is the element (Aφ)a of A[l], where l+1 is the cardinality of S. Similarly, the S-face
of a horn h : Λk

m
✲ A is h[l](φ) ∈ A[l] (which makes sense as long as S ⊇ [m]\{k}).

To compare weak 1-(2-)categories with (bi)categories, we need to interpret elements
a ∈ A[m] as arrows pointing in some direction. Our convention is: if S is an m-element
subset of the (m+1)-element set [m] and the missing element is odd, then we regard the
S-face of a as a source; if even, a target. See Fig. 9.

Suppose (A,H) is a simplicial set with hollowness satisfying (i), and let h : Λk
m

✲ A
be a horn satisfying the defining condition for admissibility for just the injective ψ ∈
Λk
m[m

′]. Then, in fact, h is admissible. So h is admissible if and only if: for every k-
alternating subset S of [m], the S-face of h is hollow. Table 2 shows the k-alternating
subsets of [m] in the cases we need.

n = 0

A weak 0-category is a simplicial set A in which every horn has a unique filler—including
those of shape Λk

1. It follows that the functor A : ∆op ✲ Set is constant, so a weak
0-category is just a set.

n = 1

A horn of shape Λk
m is called inner if 0 < k < m; a simplicial set is the nerve of a

category if and only if every inner horn has a unique filler. If (A,H) is a simplicial set
with hollowness satisfying (i′) for n = 1 then every inner horn is admissible, hence, if (ii)
and (ii′) also hold, has a unique filler: so A is (the nerve of) a category. Working out
the other conditions, we find that a weak 1-category is a category equipped with a set
H1 of isomorphisms containing all the identity maps and closed under composition and
inverses. So given a weak 1-category we obtain a category by forgetting H; conversely,
given a category we can take H1 = {all isomorphisms} (or {all identities}) to obtain a
weak 1-category.

k k-alternating subsets of [m] of cardinality ≤ 3
0 {0, 1}, {0, 1,m}

1, . . . ,m− 1 {k − 1, k, k + 1}
m {m− 1,m}, {0,m− 1,m}

Table 2: k-alternating subsets of [m] of cardinality ≤ 3, for m ≥ 1
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(a)
• •✲a0 a1

f01

(b)
• •

•

✲✜
✜
✜✒

❘

✻
a0

a1

a2

f01 f12

f02

α012

(c)
• •

•

✲✜
✜
✜✒

❘

✻
a0

a1

a2

f01 f12

(d)
• •

•

✲✜
✜
✜✒

❘
✻

a0

a1

a2

f01

f02

∼

(e)
• •

• •

✲✔
✔
✔✣

✲
❚
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✲
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• •
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✲
❚
❚
❚
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✟✟✯

a0
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Figure 9: (a) Element of A[1], with, for instance, the {0}-face labelled a0; (b) element of
A[2]; (c) (admissible) horn Λ1

2
✲ A; (d) admissible horn Λ0

2
✲ A, with ∼ indicating

a hollow face; (e) admissible horn Λ0
3

✲ A, with labels fij, αijk omitted; (f) as (e), but
for Λ1

3.

n = 2

A weak 2-category is a simplicial set A equipped with subsets H1 ⊆A[1] and H2 ⊆A[2],
satisfying certain axioms. It appears that this is the same as a bicategory equipped with
a set H1 of 1-cells which are equivalences and a set H2 of 2-cells which are isomorphisms,
satisfying closure conditions similar to those under ‘n = 1’ above.

So, let (A,H) be a weak 2-category. We construct a bicategory whose 0- and 1-cells
are the elements of A[0] and A[1]; a 2-cell f ✲ g is an element of A[2] of the form

• •

•

✲�
��✒❅

❅❅❘
✻

a

a

b

1a g

f

, where 1a indicates a degenerate 1-cell. Composition of 1-cells is defined

by making a random choice of hollow filler for each horn of shape Λ1
2; composition of

2-cells is defined by filling in 3-dimensional horns Λk
3; identities are got from degeneracies.

See Fig. 9. The associativity and unit isomorphisms are certain hollow cells, and the
coherence axioms hold because of the uniqueness of certain fillers.

Conversely, let B be a bicategory, and construct a weak 2-category (A,H) as follows.
A[0] and A[1] are the sets of 0- and 1-cells of B; an element of A[2] as in Fig 9(b) is a
2-cell α012 : f02

✲ f12◦f01 in B. (In general, an element of A[m] is a ‘strictly unitary
colax morphism’ [m] ✲ B, where [m] is regarded as a 2-category whose only 2-cells
are identities.) H1 ⊆A[1] is the set of 1-cells which are equivalences, and H2 is the set of
2-cells which are isomorphisms. Then all the axioms for a weak 2-category are satisfied.

Variant

We could add to conditions (i)–(iii) on (A,H) the further condition that H is maximal
with respect to (i)–(iii): that is, if (A,H ′) also satisfies (i)–(iii) and H ′

m ⊇ Hm for all
m then H ′ = H. (Compare the issue of maximal atlases in the definition of smooth
manifold.) With this addition, a weak 1-category is essentially just a category, and a
weak 2-category a bicategory. This is in contrast to the original St (as analysed above),
where the flexibility in the choice of H means that the correspondence between weak
1-(2-)categories and (bi)categories is inexact.
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Definition X

This definition is not intended to be rigorous, although it can be made so.

Opetopic Sets

An opetopic set A is a commutative diagram of sets and functions

· · · s

t
✲ A′

2

s

t
✲ A′

1

s

t
✲ A′

0 = A0

· · ·
❅
❅
❅
❅
❅❘�

�
�
�
�✒ ❅

❅
❅
❅
❅❘�

�
�
�
�✒ ❅

❅
❅
❅
❅❘�

�
�
�
�✒

· · ·
s

t
✲ A2

s

t
✲ A1

s

t
✲ A0

where for each m ≥ 1, the set A′
m and the functions s : A′

m
✲ A′

m−1 and t : A′
m

✲

Am−1 are defined from the sets Am, A′
m−1, Am−1, . . . , A

′
1, A1, A0 and the functions s, t be-

tween them in the following way.
An element a ∈ A0 is regarded as a 0-cell, and drawn a• . An element f ∈ A1 is regarded

as a 1-cell a•
f✲

b
• , where a = s(f) and b = t(f). A′

1 is the set of ‘1-pasting diagrams’

in A, that is, diagrams of 1-cells pasted together, that is, paths a0
• f1✲

a1
• f2✲ . . . fk✲

ak
•

(k ≥ 0) in A. An element α ∈ A2 has a source s(α) of this form and a target t(α) of the
form a0

• g✲
ak
• , and is drawn as

•

•

•#
##✼
✏✏✏✶

❙
❙❙✇✲❄

· · ·

a0

a1

ak
f1

f2

fk

g

α (‖)

Next, A′
2 is the set of ‘2-pasting diagrams’, that is, diagrams of cells of the form (‖) pasted

together, such as

•

•
•

• •
•

•
•

•
•❏

❏❏
��✒
���- ✲##✼

/
◗
◗◗!
✑
✑✑✰✦✦✮
❄

#
#
#✼ ❙

❙
❙✇✲

❄
❅❅❘ ��✠ ✛

a0

a1

a2
a3 a4

a5
a6

a7

a8
a9

f1

f2
f3 f4

f5
f6

f7

f8
f9

f10
f11f12

f13

α1

α2
α3 α4 (∗∗)

Note that the arrows go in compatible directions: e.g. the target or ‘output’ edge f11 of α3

is a source or ‘input’ edge of α1. The source of this element of A′
2 is a0

• f1✲ · · · f9✲
a9
• ∈

A′
1, and the target is f13 ∈ A1. Next, if γ ∈ A3 and s(γ) is (∗∗) then t(γ) is of the form (‖)

with k = 9 and g = f13, and we picture γ as a 3-dimensional cell with a flat bottom face
(labelled α) and four curved faces on top (labelled α1, α2, α3, α4). Carrying on, A′

3 is the
set of 3-pasting diagrams, A4 is the set of 4-cells, etc.

We need some terminology concerning cells. Let Φ
α✲ g be an m-cell: that is, let

α ∈ Am with s(α) = Φ ∈ A′
m−1 and t(α) = g ∈ Am−1.
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For any p-cell e, there is a p-pasting diagram 〈e〉 consisting of e alone. If 〈g〉 β✲ h

then α and β can be pasted to obtain (Φ
β∗(α)✲ h) ∈ A′

m.
The faces of Φ are the (m− 1)-cells which have been pasted together to form it, e.g.

if α is as in (‖) then Φ has faces f1, . . . , fk, and the Φ of (∗∗) has faces α1, α2, α3, α4. If
f is a face of Φ and e is a cell parallel to f (i.e. e ∈ Am−1 with s(e) = s(f), t(e) = t(f))
then we obtain a new pasting diagram Φ(e/f) ∈ A′

m−1 by replacing f with e in Φ. (Read

Φ(e/f) as ‘Φ with e replacing f ’.) If also 〈e〉 β✲ f then α and β can be pasted to obtain

(Φ(e/f)
β∗(α)✲ g) ∈ A′

m.

Universal Cells

Let A be an opetopic set and fix n ≥ 0. We define what it means for a cell Φ
ε✲ g of

A to be ‘universal’, and, when f is a face of Φ, what it means for f to be ‘liminal’ in
the cell. The definitions depend on n, so I should really say ‘n-universal’ rather than just
‘universal’, and similarly ‘n-liminal’; but I will drop the ‘n’ since it is regarded as fixed.

The two definitions are given inductively in an interdependent way.

Universality. For m ≥ n+1, a cell (Φ
ε✲ g) ∈ Am is universal if whenever (Φ

ε′✲ g′)

∈ Am, then ε′ = ε. Now let 1 ≤ m ≤ n. A cell (Φ
ε✲ g) ∈ Am is universal if both

i. for every α : Φ ✲ h, there exist α : 〈g〉 ✲ h and a universal U : α∗(ε) ✲ α,

ii. for every α : Φ ✲ h, α : 〈g〉 ✲ h and universal U : α∗(ε) ✲ α, α is liminal
in U .

Liminality. Let m ≥ 1, let (Φ
ε✲ g) ∈ Am, and let f be a face of Φ. Then f is liminal

in ε if m ≥ n+ 2 or

i. for every cell e parallel to f and β : Φ(e/f) ✲ g, there exist β : 〈e〉 ✲ f and a
universal cell U : β

∗
(ε) ✲ β, and

ii. for every e parallel to f , β : Φ(e/f) ✲ g, β : 〈e〉 ✲ f and universal U :
β
∗
(ε) ✲ β, β is liminal in U .

The Definition

Let n ≥ 0. A weak n-category is an opetopic set A satisfying

existence of universal fillers: for every m ≥ 0 and Φ ∈ A′
m, there exists a universal

cell of the form Φ
ε✲ g

closure of universals under composition: if m ≥ 2, (Φ
ε✲ g) ∈ Am, each face of

Φ is universal, and ε is universal, then g is universal.
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Definition X for n ≤ 2

First consider high-dimensional cells in an n-category A. For every m ≥ n + 1 and
Φ ∈ A′

m−1, there is a unique ε ∈ Am whose source is Φ: in other words, s : Am
✲ A′

m−1

is a bijection. This means that the entire opetopic set is determined by the part of
dimension ≤ n and the map t : An+1

✲ An. Identifying An+1 with A′
n, this map t

assigns to each n-pasting diagram Φ the target g of the unique (n+1)-cell with source Φ,
and we regard g as the composite of Φ. (In general, we may regard the target of a universal
cell as a composite of its source; note that all cells of dimension > n are universal.) This
composition of n-cells is strictly associative and unital. A weak n-category therefore
consists of a commutative diagram

A′
n

s

t
✲ · · · s

t
✲ A′

1

s

t
✲ A′

0 = A0

❅
❅
❅
❅
❅❘�

�
�
�
�✒ ❅

❅
❅
❅
❅❘�

�
�
�
�✒ ❅

❅
❅
❅
❅❘�

�
�
�
�✒

An

◦

❄ s

t
✲ · · ·

s

t
✲ A1

s

t
✲ A0

(††)

of sets and functions such that n-dimensional composition ◦ obeys strict laws and the
defining conditions on existence and closure of universals hold in lower dimensions.

n = 0. A weak 0-category is a set A0 together with a function ◦ : A0
✲ A0 obeying

strict laws—which say that ◦ is the identity. So a weak 0-category is just a set.

n = 1. When n = 1, diagram (††) is a directed graph A1

s✲
t
✲ A0 together with a map

◦ : A′
1

✲ A1 compatible with the source and target maps: in other words, assigning to
each string of edges

a0
f1✲ a1

f2✲ · · · fk✲ ak

in A a new edge a0
(fk◦···◦f1)✲ ak. The axioms on ◦ say that

((f rk
k ◦ · · · ◦f 1

k )◦ · · · ◦(f r1
1 ◦ · · · ◦f 1

1 )) = (f rk
k ◦ · · · ◦f 1

1 ), (f) = f

—in other words, that A forms a category. A weak 1-category is therefore a category
satisfying the extra conditions that every object is the domain of some universal morphism
and that the composite of universal morphisms is universal. I claim that the universal
morphisms are the isomorphisms, so that these conditions hold automatically and a weak
1-category is just a category.

So: a morphism ε : a ✲ b is universal if (i) every morphism α : a ✲ c factors

as α = α◦ε, and (ii) such an α is always liminal in the unique 2-cell
• •

•

✲�
��✒❅

❅❅❘❄a

b

c

ε α

α

U .

Liminality of α in U means, in turn, that if α̃ : b ✲ c satisfies α̃◦ε = α then α̃ = α.
(This is part (i) of the definition of liminality; part (ii) holds trivially.) So ε : a ✲ b is
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universal if and only if every morphism out of a factors uniquely through ε, which holds
if and only if ε is an isomorphism.

n = 2. A weak 2-category is essentially the same thing as a bicategory. More precisely,
the category of bicategories and weak functors is equivalent to the category whose objects
are weak 2-categories and whose morphisms are those maps of opetopic sets which send
universal cells to universal cells. The equivalence works as follows.

Given a bicategory B, define a weak 2-category A by taking A0 and A1 to be the sets
of 0- and 1-cells in B, and a 2-cell (‖) in A to be a 2-cell (fk◦ · · · ◦f1) ✲ g in B. Here
(fk◦ · · · ◦f1) is defined inductively as fk◦(fk−1◦ · · · ◦f1) if k ≥ 1, or as 1 if k = 0; any other
iterated composite would do just as well. Composition ◦ : A′

2
✲ A2 is pasting of 2-cells

in B. Then a 1-cell (respectively, 2-cell) in A turns out to be universal if and only if the
corresponding 1-cell (2-cell) in B is an equivalence (isomorphism), and it follows that A
is a weak 2-category.

Conversely, take a weak 2-category A and construct a bicategory B as follows. The
0- and 1-cells of B are just those of A, and a 2-cell of B is an element of A2 of the form

a b

f

g

α
✲• •❄ (i.e. α : 〈f〉 ✲ g). For each diagram a•

f✲
b
• g✲

c• of 1-cells, choose at

random a universal filler
• •

•

✲�
��✒❅

❅❅❘❄a

b

c

f g

g◦f

εf,g , where by definition g◦f = t(εf,g); this defines

composition of 1-cells. Vertical composition of 2-cells comes from ◦ : A′
2

✲ A2. To

define the horizontal composite of a•
f

g

α❘
✒❄a′

•
f ′

g′
α′❘
✒❄ a′′

• , consider pasting εg,g′ to α and α′, and

then use the universality of εf,f ′ . Next observe that given two universal fillers Φ
ε✲ g,

Φ
ε′✲ g′ for a 1-pasting diagram Φ = ( a0

• f1✲ . . . fk✲
ak
• ), there is a unique 2-cell

〈g〉 δ✲ g′ such that the composite ◦(δ∗(ε)) is ε′. Applying this observation to a certain

pair of universal fillers for (• f✲• g✲• h✲•) gives the associativity isomorphism, and
the word ‘unique’ in the observation gives the pentagon axiom. Identities work similarly,
where this time we choose a random universal filler for each degenerate 1-pasting diagram

a• .
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Further Reading

This section contains the references and historical notes missing in the main text. It is
not meant to be a survey of the literature. Where I have omitted relevant references it is
almost certainly a result of my own ignorance, and I hope that the authors will forgive
me.

First are some references to introductory and general material, and a very brief account
of the history of higher-dimensional category theory. Then there are references for each
of the sections in turn: ‘Background’, followed by the ten definitions. Finally there are
references to some proposed definitions of n-category which I didn’t include, and a very
few references to areas of mathematics related to n-categories.

Citations such as math.CT/9810058 and alg-geom/9708010 refer to the electronic
mathematics archive at http://arXiv.org. Readers unfamiliar with the archive may
find it easiest to go straight to the address of the form http://arXiv.org/abs/math.

CT/9810058 .

Introductory Texts

Introductions to n-categories come slanted towards various different audiences. One for
theoretical computer scientists and logicians is

[1] A. J. Power, Why tricategories?, Information and Computation 120 (1995), no. 2,
251–262; also LFCS report ECS-LFCS-94-289, April 1994, available via http://
www.lfcs.informatics.ed.ac.uk

and another with a logical slant, but this time with foundational concerns, is

[2] M. Makkai, Towards a categorical foundation of mathematics, in Logic Colloquium
’95 (Haifa), Lecture Notes in Logic 11, Springer, 1998, pp. 153–190.

Moving to introductions for those more interested in topology, geometry and physics,
one which starts at a very basic level (the definition of category) is

[3] John C. Baez, A tale of n-categories, available via http://math.ucr.edu/home/
baez/week73.html, 1996–97.

With similar themes but at a more advanced level, there are

[4] John C. Baez, An introduction to n-categories, in Category theory and computer
science (Santa Margherita Ligure, 1997), Lecture Notes in Computer Science 1290,
Springer, 1997, pp. 1–33; also e-print q-alg/9705009, 1997

(especially sections 1–3) and

[5] Tom Leinster, Topology and higher-dimensional category theory: the rough idea,
e-print math.CT/0106240, 2001, 15 pages.
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The ambitious might, if they can find a copy, like to look at the highly discursive 600-page
letter of Grothendieck to Quillen,

[6] A. Grothendieck, Pursuing stacks, manuscript, 1983,

in which (amongst many other things) the idea is put that tame topology is really the
study of weak ω-groupoids. A more accessible discussion of what higher-dimensional
algebra might ‘do’, especially in the context of topology, is

[7] Ronald Brown, Higher dimensional group theory, available via http://www.bangor.
ac.uk/∼mas010.

General Comments and History

The easiest way to begin a history of n-categories is as follows.
0-categories—sets or classes—came into the mathematical consciousness around the

end of the 19th century. 1-categories—categories—arrived in the middle of the 20th
century. Strict 2-categories and, implicitly, strict n-categories, made their presence felt
around the late 1950s and early 1960s, with the work of Ehresmann [19]. Weak 2-categories
were first introduced by Bénabou [23] in 1967, under the name of bicategories, and there-
after the question was in the air: ‘what might a weak n-category be?’ The first precise
proposal for a definition was given by Street [66] in 1987. This was followed by three
more proposals around 1995: Baez and Dolan’s [73], Batanin’s [31], and Tamsamani’s
[46]. A constant stream of further proposed definitions has issued forth since then, and
will doubtless continue for a while. Work on low values of n was also going on at the same
time: an axiomatic definition of weak 3-category was proposed in

[8] R. Gordon, A. J. Power, Ross Street, Coherence for Tricategories, Memoirs of the
American Mathematical Society 117, no. 558, 1995,

and a proposal in similar vein for n = 4 was made in

[9] Todd Trimble, The definition of tetracategory, manuscript, 1995.

Crucially, it was shown in [8] that not every tricategory is equivalent to a strict 3-category
(in contrast to the situation for n = 2), from which it follows that the theory of weak
n-categories is genuinely different from that of strict ones.

But this is far too simplistic. A realistic history must take account of categorical
structures other than n-categories per se: for instance, the various kinds of monoidal
category (plain, symmetric, braided, tortile/ribbon, . . . ), and of monoidal 2-categories
and monoidal bicategories. The direct importance of these is that a monoidal category is a
bicategory with only one 0-cell, and similarly a braided monoidal category is a tricategory
with only one 0-cell and one 1-cell. The basic reference for braided monoidal categories is

[10] André Joyal, Ross Street, Braided tensor categories, Advances in Mathematics 102
(1993), no. 1, 20–78,
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and they can also be found in the new edition of Mac Lane’s book [18].
Moreover, around the same time as the theory of n-categories was starting to de-

velop, another theory was emerging with which it was later to converge: the theory of
multicategories and operads. Multicategories first appeared in

[11] Joachim Lambek, Deductive systems and categories II: standard constructions and
closed categories, in Category Theory, Homology Theory and their Applications, I
(Battelle Institute Conference, Seattle, 1968, Vol. One), ed. Hilton, Lecture Notes
in Mathematics 86, Springer, 1969, pp. 76–122.

(The definition is on page 103.) A multicategory is like a category, but each arrow has as
its source or input a sequence of objects (and, as usual, as its target or output a single
object). An operad is basically just a multicategory with only one object. For this reason,
multicategories are sometimes called ‘coloured operads’, and the objects are then named
after colours (black, white, etc.). The development of operads is generally attributed to
Boardman, Vogt and May:

[12] J. M. Boardman, R. M. Vogt, Homotopy Invariant Algebraic Structures on Topo-
logical Spaces, Lecture Notes in Mathematics 347, Springer, 1973,

[13] J. P. May, The Geometry of Iterated Loop Spaces, Lectures Notes in Mathemat-
ics 271, Springer, 1972,

although I am told that essentially the same idea was the subject of

[14] Michel Lazard, Lois de groupes et analyseurs, Annales Scientifiques de l’École Nor-
male Supérieure (3) 72 (1955), 299–400

(where operads go by the name of ‘analyseurs’).
It seems to have taken a long time before it was realized that operads and multicat-

egories were so closely related; I do not know of any pre-1995 text which mentions both
Lambek and Boardman-Vogt or May in its bibliography. This can perhaps be explained
by the different fields in which they were being studied: multicategories were introduced
in the context of logic and found application in linguistics, whereas operads were used for
the theory of loop spaces. Moreover, if one uses the terms in their original senses then it is
not strictly true that an operad is the same thing as a one-object multicategory; operads
are also equipped with a symmetric structure, and the ‘hom-sets’ (sets of operations) are
topological spaces rather than just sets. (It is also very natural to consider multicategories
with both these pieces of extra structure, but historically this is beside the point.)

Many short introductions to operads have appeared as section 1 of papers by topol-
ogists and quantum algebraists. The interested reader may also find useful the following
texts dedicated to the subject:

[15] J. P. May, Definitions: operads, algebras and modules, in Operads: Proceedings of
Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemporary Mathemat-
ics 202, AMS, 1997, pp. 1–7; also available via http://www.math.uchicago.edu/
∼may,
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[16] J. P. May, Operads, algebras and modules, in Operads: Proceedings of Renaissance
Conferences (Hartford, CT/Luminy, 1995), Contemporary Mathematics 202, AMS,
1997, pp. 15–31; also available via http://www.math.uchicago.edu/∼may,

[17] Martin Markl, Steve Shnider, Jim Stasheff, Operads in Algebra, Topology and Physics,
book in preparation.

A glimpse of the role of operads and multicategories in higher-dimensional category
theory can be seen in the definitions of weak n-category above. Often the ‘operads’ and
‘multicategories’ used are not the original kinds, but more general kinds adapted for the
different shapes and dimensions which occur in the subject; for references, see ‘Definitions
B and L’ below.

Background

Category Theory. Almost any book on the subject will provide the necessary back-
ground. The second edition of the classic book by Mac Lane,

[18] Saunders Mac Lane, Categories for the Working Mathematician, second edition,
Graduate Texts in Mathematics 5, Springer, 1998,

is especially useful, containing as it does two new chapters on such topics as bicategories
and nerves of categories.

Strict n-Categories. I do not know of any good text introducing strict n-categories.
Ehresmann’s original book

[19] Charles Ehresmann, Catégories et Structures, Dunod, Paris, 1965

could be consulted, but is generally regarded as a very demanding read. Probably more
useful is

[20] G. M. Kelly, Ross Street, Review of the elements of 2-categories, in Category Sem-
inar (Sydney, 1972/1973), Lecture Notes in Mathematics 420, Springer, 1974,
pp. 75–103,

which only covers strict 2-categories (traditionally just called ‘2-categories’) but should
give a good idea of strict n-categories for general n. This could usefully be supplemented
by

[21] Samuel Eilenberg, G. Max Kelly, Closed categories, in Proceedings of Conference on
Categorical Algebra (La Jolla, California, 1965), Springer, 1966, pp. 421–562

(see e.g. page 552), which also covers enrichment. For another reference on enriched
categories, see chapter 6 of

[22] Francis Borceux, Handbook of Categorical Algebra 2: Categories and Structures,
Encyclopedia of Mathematics and its Applications 51, Cambridge University Press,
1994.
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Bicategories. Bicategories were first explained by Bénabou:

[23] Jean Bénabou, Introduction to bicategories, in Reports of the Midwest Category
Seminar, ed. Bénabou et al, Lecture Notes in Mathematics 47, Springer, 1967,
pp. 1–77,

and further important work on them is in

[24] John W. Gray, Formal Category Theory: Adjointness for 2-Categories, Lecture
Notes in Mathematics 391, Springer, 1974.

(At least) two texts contain summaries of the ‘basic theory’ of bicategories: that is,
the definitions of bicategory and of weak functor (homomorphism), transformation and
modification between bicategories, together with the result that any bicategory is in a
suitable sense equivalent to a strict 2-category. These are section 9 of

[25] Ross Street, Categorical structures, in Handbook of Algebra 1, ed. M. Hazewinkel,
North-Holland, 1996, pp. 529–577

and the whole of

[26] Tom Leinster, Basic bicategories, e-print math.CT/9810017, 1998, 11 pages.

Definition Tr

The definition was given in a talk,

[27] Todd Trimble, What are ‘fundamental n-groupoids’?, seminar at DPMMS, Cam-
bridge, 24 August 1999,

and has not been written up previously. Trimble used the term ‘flabby n-category’ rather
than ‘weak n-category’.

As the title of the talk suggests, the idea was not to develop the weakest possible notion
of n-category, but to provide (in his words) ‘a sensible niche for discussing fundamental
n-groupoids’. In a world where all the definitions have been settled, it may be that
fundamental n-groupoids of topological spaces have certain special features (other than
the invertibility of their cells) not shared by all weak n-categories. Thus it may be that
the word ‘weak’ is less appropriate for definition Tr than the other definitions.

Evidence that this is the case comes from two directions. Firstly, the maps γa0,...,ak

describing composition of hom-(n − 1)-categories in an n-category are strict (n − 1)-
functors. This corresponds to having strict interchange laws. It therefore seems likely
that a precise analysis of n = 3 would show that every weak 3-category gives rise to a
tricategory (in a similar manner to n = 2) but that not every tricategory is triequivalent
to one arising from a weak 3-category.
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Secondly, forget Tr for the moment and consider in naive terms what the fundamental
ω-groupoid A of a space X might look like. In the notation of the Background section on
strict n-categories, we would probably imagine taking

A0 = underlying set of X,

A1 = {maps f : [0, 1] ✲ X},
A2 = {maps α : [0, 1]2 ✲ X such that α(0,−) and α(1,−) are constant},

with the obvious source and target functions. There are then composition functions

◦0 : A1 ×A0 A1
✲ A1, ◦0 : A2 ×A0 A2

✲ A2, ◦1 : A2 ×A1 A2
✲ A2

defined by the standard method of travelling at double speed whenever necessary, satis-
fying the usual source and target axioms. They are not strictly associative, nor are there
strict identities; however, they do obey the strict interchange law,

(β′ ◦1 α′) ◦0 (β ◦1 α) = (β′ ◦0 β) ◦1 (α′ ◦0 α)

for any α, α′, β, β′ ∈ A2 such that these composites make sense. More generally, one would
expect the fundamental n-groupoid of a space to obey strict interchange in all dimensions.
This provides the kind of ‘special feature’ of fundamental n-groupoids referred to above.

Other ideas on fundamental n-groupoids, n-categories, and how they tie together can
be found in Grothendieck’s letter [6]. More practical material on fundamental 1- and
2-groupoids is in

[28] K. H. Kamps, T. Porter, Abstract Homotopy and Simple Homotopy Theory, World
Scientific Publishing Co., 1997.

For more on operads, see the references under ‘General Comments and History’ above.
The name of the operad E was chosen not only to stand for ‘endpoint-preserving’, but
also because it comes after D for ‘disk’—the idea being that E is something like the one-
dimensional little disks operad D (crucial in the theory of loop spaces). A touch more
precisely, E seems to play the same kind of role for paths as D does for closed loops.

Prospects for comparing Tr with B and L look bright: it seems very likely that
weak n-categories according to Tr are just the algebras for a certain globular n-operad
(in the sense of B or L), namely, a truncated version of the globular operad Eop(D)
of endomorphisms of the coglobular space of disks. Eop(D) is discussed in section 9 of
Batanin’s paper [31], and can be regarded as a higher-dimensional version of the operad
E used in Tr.

More on how the theory of bicategories comes from the operad of trees can be found
in Appendix A (and Chapter 1) of my thesis, [34], and in my [90].

Definition P

Definition P of weak ω-category is in
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[29] Jacques Penon, Approche polygraphique des ∞-categories non strictes, Cahiers de
Topologie et Géométrie Différentielle 40 (1999), no. 1, 31–80.

His chosen term for weak ω-category is ‘prolixe’, whose closest English translation is
perhaps ‘waffle’. As far as I can see there is no actual definition of weak n-category or
n-dimensional prolixe in the paper, although he clearly has one in mind on page 48:

Les prolixes de dimension ≤ 2 s’identifient exactement aux bicatégories [. . . ]
la preuve de ce résultat sera montré dans un article ultérieur

(‘waffles of dimension ≤ 2 correspond exactly to bicategories [. . . ] the proof of this result
will be given in a forthcoming paper’).

Other translations: my category [R,Set] of reflexive globular sets is his category
∞-Grr of reflexive ∞-graphs; my s and t are his s and b; my strict ω-categories are his
∞-categories; my categoryQ is called by him EtC, the category of étirements catégoriques
(‘categorical stretchings’); my contractions γ are written [−,−] (with the arguments re-
versed: γm(f0, f1) = [f1, f0]); and my adjunction F 1U is called Ê 1 V̂ .

The word ‘magma’ is borrowed from Bourbaki, who used it to mean a set equipped
with a binary operation. It is a slightly inaccurate borrowing, in that ω-magmas are
equipped with (nominal) identities as well as binary compositions; put another way, it
would have been more suitable if Bourbaki had used the word to mean a set equipped
with a binary operation and a distinguished basepoint.

It seems plausible that Penon’s construction can be generalized to provide weak ver-
sions of structures other than ω-categories (e.g. up-to-homotopy topological monoids).
Batanin has done something precise along the lines of generalizing Penon’s definition and
comparing it to his own:

[30] M. A. Batanin, On the Penon method of weakening algebraic structures, to appear
in Journal of Pure and Applied Algebra; also available via http://www.math.mq.
edu.au/∼mbatanin/papers.html, 2001, 25 pages.

Definitions B and L

Batanin gave his definition, together with an examination of n = 2, in

[31] M. A. Batanin, Monoidal globular categories as a natural environment for the theory
of weak n-categories, Advances in Mathematics 136 (1998), no. 1, 39–103; also
available via http://www.math.mq.edu.au/∼mbatanin/papers.html.

Another account of it is

[32] Ross Street, The role of Michael Batanin’s monoidal globular categories, in Higher
category theory (Evanston, IL, 1997), Contemporary Mathematics 230, AMS, 1998,
pp. 99–116; also available via http://www.math.mq.edu.au/∼street.
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The definition of weak n-category which appears as 8.7 in [31] is (I believe) what is here
called definition B1. More precisely, let O be the category whose objects are (globular)
operads on which there exist a contraction and a system of compositions, and whose
maps are just maps of operads. What Batanin does is to construct an operad K which
is weakly initial in O. ‘Weakly initial’ means that there is at least one map from K to
any other object of O, so this does not determine K up to isomorphism; one needs some
further information. But in Remark 2 just before Definition 8.6, Batanin suggests that,
once given the appropriate extra structure, K is initial in the category OCS of operads
equipped with a contraction and a system of compositions, which does determine K. This
is the approach taken in B1.

A weak n-category according to B2 is (I believe) almost exactly what Batanin calls a
‘weak n-categorical object in Span’ in his Definition 8.6. The only difference is my extra
condition that the operad C is (in his terminology) normalized : C(0)∼=1. Now C(0) is the
set of operations in the operad which take a 0-cell of an algebra and turn it into another
0-cell, so normality means that there are no such operations except, trivially, the identity.
This seems reasonable in the context of n-categories, since one expects to have operations
for composing m-cells only when m ≥ 1. The lack of normality in Batanin’s version ought
to be harmless, since the contraction means that all the operations on 0-cells are in some
sense equivalent to the identity operation, but it does make the analysis of n ≤ 2 a good
deal messier. (Note that the operad K is normalized, so any weak ω-/n-category in the
sense of B1 is also one in the sense of B2; the same goes for L1 and L2.)

My modification L1 of Batanin’s definition first appeared in

[33] Tom Leinster, Structures in higher-dimensional category theory, e-print math.CT/
0109021, 1998, 81 pages,

but a more comprehensive and, I think, comprehensible account is in

[34] Tom Leinster, Operads in higher-dimensional category theory, Ph.D. thesis, Uni-
versity of Cambridge, 2000; also e-print math.CT/0011106, 2000, viii + 127 pages.

(There, C ⊗ C ′ is called C◦C ′, C · − is TC , and PC(π) is Pπ(C).) [34] also contains a
precise analysis of L1 for n ≤ 2, including proofs of (a) the equivalence of the two different
categories of weak n-categories (for finite n) mentioned at the start of the analysis of n ≤ 2
above, and (b) the equivalence of the category of unbiased bicategories and weak functors
with that of (classical) bicategories and weak functors. Definition L2 has not appeared
before, and has just been added here for symmetry.

The globular operads in B and L arise as a special case of two different, more general
theories of operads. Firstly, they are a special case of generalized operads, a family of
higher-dimensional categorical structures which are perhaps as interesting and applicable
as n-categories themselves. Briefly, the theory goes as follows. Given a monad T on a cate-
gory E , satisfying some natural conditions, one can define a category of T -multicategories.
For example, when T is the identity monad on the category E of sets, a T -multicategory
is just a category, and when T is the free-monoid monad on Set, a T -multicategory is just
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an ordinary multicategory (see ‘General Comments and History’ above). A T -operad is a
one-object T -multicategory, so in the first of these examples it is a monoid and in the sec-
ond it is an operad in the original sense (but without symmetric or topological structure).
Now take T to be the free strict ω-category monad on the category E of globular sets, as
in B and L: a T -operad is then exactly a globular operad. Algebras for T -multicategories
can be defined in the general context, and again this notion specializes to the one in B
and L.

Generalized (operads and) multicategories were first put forward in

[35] Albert Burroni, T -catégories (catégories dans un triple), Cahiers de Topologie et
Géométrie Différentielle 12 (1971), 215–321

and were twice rediscovered independently:

[36] Claudio Hermida, Representable multicategories, Advances in Mathematics 151
(2000), no. 2, 164–225; also available via http://www.cs.math.ist.utl.pt/s84.
www/cs/claudio.html,

[37] Tom Leinster, General operads and multicategories, e-print math.CT/9810053, 1997,
35 pages.

As far as I know, the notion of algebra for a T -multicategory only appears in the third of
these. ([37] also appears, more or less, as Chapter I of [33] and Chapter 2 of [34].)

Secondly, globular operads arise as the principal special case of Batanin’s theory of
operads in a monoidal globular category (see [31] and [32]). A strict monoidal globular
category is a strict ω-category in Cat; a monoidal globular category is a slightly relaxed
version of this. There is a particular monoidal globular category Span, and an operad in
Span is exactly what we call a globular operad. This general theory is capable of han-
dling coglobular structures and coalgebras for operads, as, for instance, in the discussion
above of Definition Tr, where the coglobular space (functor G

op ✲ Top) of disks was
mentioned.

The difference between definitions L1 and B1 can be summarized by saying that L1
takes B1, dispenses with the notions of system of compositions and B-style contraction,
and merges them into a single more powerful notion of contraction. A few more words on
the difference are in section 4.5 of [34]. The operad L canonically carries a B-style con-
traction and a system of compositions, so there is a canonical map K ✲ L of operads,
and this induces a functor in the opposite direction on the categories of algebras. Hence
every weak ω-/n-category in the sense of L1 gives rise canonically to one in the sense of
B1.

Definition L
′

This is the first time in print for definition L′. Once we have the language of generalized
multicategories (described in the previous section) and the theory of strict ω-categories, it
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is very quickly stated. My papers [34] and [33] (and to some extent [37]) cover generalized
multicategories and globular operads, but not specifically globular multicategories. The 1-
dimensional case, 1-globular multicategories, are the ‘fc-multicategories’ described briefly
in

[38] Tom Leinster, fc-multicategories, e-print math.CT/9903004, 1999, 8 pages,

at a little more length in

[39] Tom Leinster, Generalized enrichment of categories, to appear in Journal of Pure
and Applied Algebra,

and in detail in

[40] Tom Leinster, Generalized enrichment for categories and multicategories, e-print
math.CT/9901139, 1999, 79 pages.

Logicians might like to view L′ through proof-theoretic spectacles, substituting the
word ‘proof’ for ‘reason’. They (and others) might also be interested to read

[41] M. Makkai, Avoiding the axiom of choice in general category theory, Journal of
Pure and Applied Algebra 108 (1996), no. 2, 109–173; also available via http://
www.math.mcgill.ca/makkai

in which Makkai defines anafunctors and anabicategories and discusses the philosophical
viewpoint which led him to them. In the same vein, see also Makkai’s [2] and the remarks
on ‘a composite’ vs. ‘the composite’ towards the end of the Introduction to the present
paper.

A weak ω-/n-category in the sense of L2 (and so L1 too) gives rise to one in the
sense of L′. For just as ‘algebras’ for a category C (functors C ✲ Set) correspond
one-to-one with discrete opfibrations over C, via the so-called Grothendieck construction,
so the same is true in a suitable sense for globular multicategories. This generalization
is explained in section 4.2 of [37], section I.3 of [33], and section 3.4 of [34] (any one of
which will do, but they are listed in increasing order of clarity). What this means is that
an algebra for a globular operad gives rise to a globular multicategory (the domain of the
opfibration), and if the operad admits a contraction in the sense of L then the resulting
multicategory is a weak ω-category in the sense of L′.

Midway between L′ and J is another possible definition of weak ω-category, which for
various reasons I have not included here. It was presented in a talk,

[42] Tom Leinster, Not quite Joyal’s definition of n-category (a.k.a. ‘algebraic nerves’),
seminar at DPMMS, Cambridge, 22 February 2001,

notes from which, in the (2 + 2)-page format of this paper, are available on request.
The idea behind it can be traced back to Segal’s formalization of the notion of up-to-
homotopy topological commutative monoid, special Γ-spaces (and their non-commutative
counterparts, special ∆-spaces). The analogy is that just as Segal took the theory of
honest topological commutative monoids and did something to it to obtain an up-to-
homotopy version, so we take the theory of strict n-categories and do something similar
to obtain a weak version. Segal’s original paper is
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[43] Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

A different generalization of his idea defines up-to-homotopy algebras for any (classical)
operad. This is done at length in

[44] Tom Leinster, Homotopy algebras for operads, e-print math.QA/0002180, 2000, 101
pages,

or a much briefer explanation of the idea is

[45] Tom Leinster, Up-to-homotopy monoids, e-print math.QA/9912084, 1999, 8 pages.

Definitions Si and Ta

Tamsamani’s original definition appeared in

[46] Zouhair Tamsamani, Sur des notions de n-catégorie et n-groupöıde non strictes via
des ensembles multi-simpliciaux, K-Theory 16 (1999), no. 1, 51–99; also e-print
alg-geom/9512006, 1995.

What I have called truncatability of a functor (∆r)op ✲ Set is called ‘r-troncabilité’
by Tamsamani. It is not immediately obvious that the two conditions are equivalent, but
a thoroughly mundane induction shows that they are. Other translations: my 1p is his Ip,
my s and t are his s and b, my Q(m) is his Tm, my π(m) is his tm, my internal equivalence
of cells x1, x2 (as in the text of Ta) is his (r− p)-équivalence intérieure, and my external
equivalence of functors (∆r)op ✲ Set is his r-équivalence extérieure. His term for a
weak n-category is ‘n-nerf’ or ‘n-catégorie large’. (‘Large’ has nothing to do with large
and small categories: it means broad or generous, and can perhaps be translated here as
‘lax’; compare the English word ‘largesse’.)

Tamsamani also offers a proof that his weak 2-categories are essentially the same as
bicategories, but I believe that it is slightly flawed, in that he has omitted a necessary
axiom for the 2-nerve of a bicategory (the last bulleted item in ‘Definition Ta for n ≤ 2’,
starting ‘ιzuwx’). Without this, the constructed functor (∆2)op ✲ Set will not necessarily
be a weak 2-category in the sense of Ta. (In this context, my a’s are his x’s, my α’s are
his λ’s, and my ι’s are his ε’s.)

Working with him in Toulouse, Simpson produced a simplified version of Tamsamani’s
definition, which first appeared in

[47] Carlos Simpson, A closed model structure for n-categories, internal Hom, n-stacks
and generalized Seifert-Van Kampen, e-print alg-geom/9704006, 1997, 69 pages.

He used the term ‘easy n-category’ for his weak n-categories, and ‘easy equivalence’ for
what is called a contractible map in Si.

The simplification lies in the treatment of equivalences. Weak 1-categories according
to either Ta or Si are just categories, but whereas a Ta-style equivalence of weak 1-
categories is a functor which is full, faithful and essentially surjective on objects (that
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is, an ordinary equivalence of categories), an easy equivalence is a functor which is full,
faithful and genuinely surjective on objects. The latter property of functors is expressible
at a significantly more primitive conceptual level than the former, since it is purely in
terms of the underlying directed graphs and has nothing to do with the actual category
structure. For this reason, Si is much shorter than Ta. (But to develop the theory of
weak n-categories we still need Tamsamani’s more general notion of equivalence; this is,
for instance, the missing piece of vocabulary referred to at the very end of ‘Definition Si
for n ≤ 2’.)

As one would expect from this description, any easy equivalence (contractible map)
is an equivalence in the sense of Ta. So as long as it is true that any weak n-category
(∆n)op ✲ Set in the sense of Si is truncatable (which I cannot claim to have proved),
it follows that any weak n-category in the sense of Si is also one in the sense of Ta.

Following on from his definition, Tamsamani investigated homotopy n-groupoids of
spaces:

[48] Zouhair Tamsamani, Equivalence de la théorie homotopique des n-groupöıdes et
celle des espaces topologiques n-tronqués, e-print alg-geom/9607010, 1996, 24
pages.

Numerous papers by Simpson, using a mixture of his definition and Tamsamani’s and
largely in the language of Quillen model categories, push the theory of weak n-categories
further along:

[49] Carlos Simpson, Limits in n-categories, e-print alg-geom/9708010, 1997, 92 pages,

[50] Carlos Simpson, Homotopy types of strict 3-groupoids, e-print math.CT/9810059,
1998, 29 pages,

[51] Carlos Simpson, On the Breen-Baez-Dolan stabilization hypothesis for Tamsamani’s
weak n-categories, e-print math.CT/9810058, 1998, 36 pages,

[52] Carlos Simpson, Calculating maps between n-categories, e-print math.CT/0009107,
2000, 13 pages,

[53] Carlos Simpson, Some properties of the theory of n-categories, e-print math.CT/
0110273, 2001, 11 pages.

Toen has also applied Tamsamani’s definition, as in

[54] B. Toen, Dualité de Tannaka supérieure I: structures monoidales, Max-Planck-
Institut preprint MPI-2000-57, available via http://www.mpim-bonn.mpg.de, 2000,
71 pages

and
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[55] B. Toen, Notes on higher categorical structures in topological quantum field theory,
available via http://guests.mpim-bonn.mpg.de/rosellen/etqft00.html, 2000,
14 pages,

and the theory finds its way into some very grown-up mathematics in

[56] Carlos Simpson, Algebraic aspects of higher nonabelian Hodge theory, e-print math.
AG/9902067, 1999, 186 pages.

The connection between categories and their nerves is covered briefly in one of the
new chapters of Mac Lane’s book [18]; two early sources are

[57] Graeme Segal, Classifying spaces and spectral sequences, Institut des Hautes Études
Scientifiques Publications Mathématiques 34 (1968), 105–112,

[58] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Springer, 1967.

Presumably the ‘Segal maps’ are so named because of the prominent role they play in
Segal’s paper [43] on loop spaces and homotopy-algebraic structures.

The basic method by which a Simpson or Tamsamani weak 2-category gives rise to
a bicategory seems implicit in Segal’s [43], is made explicit in section 3 of my [45], and
is done in even more detail in section 3.3 of my [44]. (Actually, these last two papers
only describe the method for monoidal categories rather than bicategories in general, but
there is no substantial difference.) There is also a discussion of the converse process in
section 4.4 of [44], and the idea behind this is once more implicit in the work of Segal.

Definition J

Joyal gave his definition in an unpublished note,

[59] A. Joyal, Disks, duality and Θ-categories, preprint, 1997, 6 pages.

There he defined a notion of weak ω-category, which he called ‘θ-category’. He also wrote
a few informal words about structures called θn-categories, and how one could derive
from them a definition of weak n-category; but I was unable to interpret his meaning,
and consequently definition J of weak n-category might not be what he envisaged.

The term ‘disk’ comes from the case where, in the notation of J, Dm is the closed m-
dimensional unit disk (= ball) in R

m, pm is projection onto the first (m− 1) coordinates,
and the order on the fibres is given by the usual order on the real numbers. The second
bulleted condition in the paragraph headed ‘Disks’ holds at a point d of Dm if and only if
d is on the boundary of Dm. From another point of view, this condition can be regarded
as a form of exactness.

The handling of faces in J is not necessarily equivalent to that in [59]; again, I had
trouble understanding the intended meaning and made my own path. In fact, Joyal works
the duality discussed under n ≤ 2 into the definition itself, putting Θ = D

op and calling
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Θ the category of ‘Batanin cells’ (for reasons suggested by Figures 3 and 8). So he does
not speak of cofaces and cohorns in D, but rather of faces and horns in Θ.

Of the analyses of n ≤ 2 for the ten definitions, that for J is probably the furthest
from complete. It appears to be the case that in a weak n-category A : Dn

✲ Set, any
cohorn ΛD

φ
✲ A where D has volume > n has a unique filler. (We know that this is true

when the dimension of D is n.) If this conjecture holds then we can complete the proof
(sketched in ‘n ≤ 2’) that any weak 2-category gives rise to a bicategory; for instance,
applied to T0,0,0 it tells us that there is a canonical choice of associativity isomorphism,
and applied to T0,0,0,0 it gives us the pentagon axiom. However, I have not been able to
find a proof (or counterexample).

Introductory material on simplicial sets and horns can be found in, for instance, Kamps
and Porter’s book [28].

The duality between the skeletal category ∆ of nonempty finite totally ordered sets
and the skeletal category I of finite strict intervals has been well-known for a long time.
Nevertheless, I have been unable to trace the original reference, or even a text where it
is explained directly—except for Joyal’s preprint [59], which the reader may have trouble
obtaining. A slightly indirect explanation is in section VIII.7 of

[60] Saunders Mac Lane, Ieke Moerdijk, Sheaves in Geometry and Logic, Springer, 1992,

as part of a discussion of the related fact that the category of simplicial sets is a classifying
topos for the theory of intervals. The duality is also a restricted version of the duality
between finite distributive lattices and finite posets. Put briefly, it comes from mapping
into the 2-element ordered set: if k is a natural number then the set ∆([k], [1]) naturally
has the structure of an interval (isomorphic to 〈k〉) and the set I(〈k〉, 〈0〉) naturally has the
structure of a totally ordered set (isomorphic to [k]). This provides functors ∆(−, [1]) :
∆op ✲ I and I(−, 〈0〉) : I

op ✲ ∆ which are mutually inverse, so ∆op ∼= I.
Some of the fundamental facts on the higher duality were established in

[61] Clemens Berger, A cellular nerve for higher categories, to appear in Advances in
Mathematics; Université de Nice—Sophia Antipolis Prépublication 602 (2000), 50
pages; also available via http://math.unice.fr/∼cberger

(where a closed model category structure on [D,Set] is also discussed), and more on this
and on the relationship between definitions J and B is in

[62] Michael Batanin, Ross Street, The universal property of the multitude of trees,
Journal of Pure and Applied Algebra 154 (2000), no. 1-3, 3–13; also available via
http://www.math.mq.edu.au/∼mbatanin/papers.html.

The higher duality has also been the subject of detailed investigation by Makkai and
Zawadowski:

[63] Mihaly Makkai, Marek Zawadowski, Duality for simple ω-categories and disks, The-
ory and Applications of Categories 8 (2001), 114–243,



64 LEINSTER

[64] Marek Zawadowski, Duality between disks and simple categories, talk at 70th Peri-
patetic Seminar on Sheaves and Logic, Cambridge, 1999,

[65] Marek Zawadowski, A duality theorem on disks and simple ω-categories, with appli-
cations to weak higher-dimensional categories, talk at CT2000, Como, Italy, 2000.

(Slides and notes from Zawadowski’s talks have the virtue of containing some pictures
absent in the published version.)

As mentioned above, there is another way to define weak n-category which has strong
connections to both J and L′: [42].

Definition St

Street proposed his definition of weak ω-category in a very tentative manner, in the final
sentence of

[66] Ross Street, The algebra of oriented simplexes, Journal of Pure and Applied Alge-
bra 49 (1987), no. 3, 283–335.

He did not explicitly formulate a notion of weak n-category for finite n; this small addition
is mine, as is the Variant at the end of the section on n ≤ 2.

There is one minor but material difference, and a small number of cosmetic differences,
between Street’s definition and St. The material difference is that in a weak ω-category as
proposed in [66], the only hollow 1-cells are the degenerate ones. One terminological dif-
ference is that a pair (A,H) is called a ‘simplicial set with hollowness’ in [66] only when (i)
and the aforementioned condition on 1-cells hold: so the term has a narrower meaning
there than here. (Street informs me that he and Verity have used the term ‘stratified
simplicial set’ for the same purpose, either with the two conditions or without.) Another
is that he uses ‘ω-category’ in a wider sense: his potentially have infinite-dimensional
cells, and the category of strict ω-categories in the sense of the present paper is denoted
ω-Cath. Further translations: I say that a subset S⊆ [m] is k-alternating where Street
says that the set [m]\S is ‘k-divided’, and he calls a map [l] ✲ [m] ‘k-monic’ if it is
monic and its image is a k-alternating subset of [m].

The focus of [66] is actually on strict n- and ω-categories. To this end he considers the
condition on 1-cells mentioned above, and conditions (i)–(iii) of St with ‘unique’ inserted
before the word ‘filler’ in (ii). Having spent much of the paper constructing the nerve
of a strict ω-category (this being a simplicial set with hollowness), he conjectures that a
given simplicial set with hollowness is the nerve of some strict ω-category if and only if
all the conditions just mentioned hold. (The conjecture was a result of joint work with
John Roberts.) The necessity of these conditions was proved soon afterwards in

[67] Ross Street, Fillers for nerves, in Categorical algebra and its applications (Louvain-
La-Neuve, 1987), Lecture Notes in Mathematics 1348, Springer, 1988, pp. 337–341.
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A proof of their sufficiency was supplied by Dominic Verity; this has not appeared in print,
but was presented at various seminars in Berkeley, Bangor and Sydney around 1993.

It is entirely possible that most of the detailed work for n ≤ 2 has already been done
by Duskin. A short account of his work on this was presented as

[68] John W. Duskin, A simplicial-matrix approach to higher dimensional category the-
ory, talk at CT2000, Como, Italy, 2000,

and a full-length version is in preparation:

[69] John W. Duskin, A simplicial-matrix approach to higher dimensional category the-
ory I: nerves of bicategories, preprint, 2001, 82 pages,

[70] John W. Duskin, A simplicial-matrix approach to higher dimensional category the-
ory II: bicategory morphisms and simplicial maps, preprint, 2001, 53 pages.

What Duskin does is to construct the nerve of any bicategory (this being a simplicial set)
and to give exact conditions saying which simplicial sets arise in this way. He moreover
shows how to recover a bicategory from its nerve. Duskin does not deal explicitly with
Street’s conditions or his notion of hollowness (although he does mention them); indeed,
the results just mentioned suggest that for n = 2, the hollow structure on the nerve of a
bicategory is superfluous. The same point is addressed in a recent note,

[71] Ross Street, Weak omega-categories, to appear in Contemporary Mathematics; also
available via http://www.math.mq.edu.au/∼street, 2001, 7 pages,

where Street modifies definition St so that a weak ω-category is now a simplicial set with
properties rather than structure.

The word ‘thin’ has been used for the same purpose as ‘hollow’, hence the name T-
complex, as discussed in III.2.26 and onwards in Kamps and Porter’s book [28] (which
also contains basic information on simplicial sets and horn-filling). The original definition
of T-complex was given by M. K. Dakin in his 1975 Ph.D. thesis, published as

[72] M. K. Dakin, Kan complexes and multiple groupoid structures,Mathematical sketches
(Esquisses Mathématiques) 32 (1983), xi+92 pages, University of Amiens.

T-complexes are simplicial sets with hollowness satisfying conditions (i)–(iii), but with
‘admissible’ dropped and ‘filler’ changed to ‘unique filler’ in (ii). The dropping of ‘ad-
missible’ means that the delicate orientation considerations of Street’s paper are ignored
and any direction is as good as any other—everything can be run backwards. Thus,
T-complexes are meant to be like strict ω-groupoids rather than strict ω-categories.

Definition X

The story of X is complicated. Essentially it is a combination of the ideas of Baez, Dolan,
Hermida, Makkai and Power. Baez and Dolan proposed a definition of weak n-category,
drawing on that of Street, in
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[73] John C. Baez, James Dolan, Higher-dimensional algebra III: n-categories and the
algebra of opetopes, Advances in Mathematics 135 (1998), no. 2, 145–206; also
e-print q-alg/9702014, 1997.

An informal account is in section 4 of Baez’s [4], and another account, which also discusses
relations between homotopy theory and n-category theory, is in

[74] John C. Baez, James Dolan, Categorification, in Higher category theory (Evanston,
IL, 1997), Contemporary Mathematics 230, AMS, 1998, pp. 1–36; also e-print
math.QA/9802029, 1998.

In turn, Hermida, Makkai and Power drew on the work of Baez and Dolan, producing
a modified version of Baez and Dolan’s opetopic sets, which they called multitopic sets.
(My use in X of the former term rather than the latter should not be interpreted as
significant.) Their original preprint still seems to be available somewhere on the web:

[75] Claudio Hermida, Michael Makkai, John Power, On weak higher dimensional cate-
gories, available via http://fcs.math.sci.hokudai.ac.jp/doc/info/ncat.html,
1997, 104 pages

and is currently enjoying a journal serialization:

[76] Claudio Hermida, Michael Makkai, John Power, On weak higher dimensional cate-
gories I: Part 1, Journal of Pure and Applied Algebra 154 (2000), no. 1-3, 221–246,

[77] Claudio Hermida, Michael Makkai, John Power, On weak higher-dimensional cate-
gories I—2, Journal of Pure and Applied Algebra 157 (2001), no. 2-3, 247–277,

[78] Claudio Hermida, Michael Makkai, John Power, On weak higher-dimensional cate-
gories I—3, Journal of Pure and Applied Algebra 166 (2002), no. 1-2, 83–104.

A related paper with a somewhat different slant and in a much more elementary style is

[79] Claudio Hermida, Michael Makkai, John Power, Higher-dimensional multigraphs, in
Thirteenth Annual IEEE Symposium on Logic in Computer Science (Indianapolis,
IN, 1998), IEEE Computer Society, Los Alamitos, CA, 1998, pp. 199–206.

Hermida, Makkai and Power’s original work did not go as far as an alternative definition
of weak n-category, although see the description below of [84].

I learned something near to definition X from

[80] Martin Hyland, Definition of lax n-category, seminar at DPMMS, Cambridge, based
on a conversation with John Power, 18 June 1997.
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Whether this is closer to the approach of Baez and Dolan or of Hermida, Makkai and
Power is hard to say. The Baez-Dolan definition falls into two parts: the definition of
opetopic set, then the definition of universality. Certainly the universality in X is Baez
and Dolan’s, but the sketch of the definition of opetopic set is very elementary, in contrast
to the highly involved definitions of opetopic/multitopic set given by both these groups
of authors.

Opetopic sets are, it is claimed in [73], just presheaves on a certain category, the
category of opetopes. (The situation can be compared with that of simplicial sets, which
are just presheaves on the category ∆.) Multitopic sets are shown in [75] to be presheaves
on a category of multitopes. A third notion of opetope, going (perhaps reprehensibly) by
the same name, is given briefly in section 4.1 of my [37], and is laid out in more detail in
Chapter IV of my [33]. Roughly speaking, it is shown that all three notions are equivalent
in

[81] Eugenia Cheng, The relationship between the opetopic and multitopic approaches
to weak n-categories, available via http://www.dpmms.cam.ac.uk/∼elgc2, 2000,
36 pages

(which compares Baez-Dolan’s notion with Hermida-Makkai-Power’s) and

[82] Eugenia Cheng, Equivalence between approaches to the theory of opetopes, available
via http://www.dpmms.cam.ac.uk/∼elgc2, 2000, 36 pages

(which adds in my own). More accurately, Cheng begins [81] by modifying Baez and
Dolan’s notion of operad; the effect of this is that the symmetries present in Baez and
Dolan’s account are now handled much more cleanly and naturally, especially when it
comes to the crucial process of ‘slicing’. So this means that the Baez-Dolan opetopes
are not necessarily the same as the three equivalent kinds of opetope involved in Cheng’s
result, and it remains to be seen whether they fit in.

Let us now turn from opetopic sets to universality. The notion of liminality does not
appear in Baez and Dolan’s paper, and is in some sense a substitute for their notion
of ‘balanced punctured niche’. I made this change in order to shorten the inductive
definitions; it is just a rephrasing and has no effect on the definition of universal cell. The
price to be paid is that in isolation, liminality is probably a less meaningful concept than
that of balanced punctured niche.

More on the formulation of universality can be found in

[83] Eugenia Cheng, A notion of universality in the opetopic theory of n-categories,
available via http://www.dpmms.cam.ac.uk/∼elgc2, 2001, 12 pages.

Makkai appears to have hit upon a notion of ‘ω-dimensional universal properties’, and
thereby developed the definition of multitopic set into a new definition of weak ω-category:

[84] M. Makkai, The multitopic ω-category of all multitopic ω-categories, available via
http://mystic.biomed.mcgill.ca/M Makkai, 1999, 67 pages.

I do not, unfortunately, know enough about this to include an account here. Nor have I
included the definition of
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[85] Tom Leinster, Batanin meets Baez and Dolan: yet more ways to define weak n-
category, seminar at DPMMS, Cambridge, 6 February 2001,

which uses opetopic shapes but an algebraic approach like that of L. This definition can
be repeated for various other shapes, such as globular (giving exactly L) and computads
(which are like opetopes but with many outputs as well as many inputs), and perhaps
simplicial and even cubical.

Finally, the analysis of n ≤ 2 has been done in a very precise way, in

[86] Eugenia Cheng, Equivalence between the opetopic and classical approaches to bi-
categories, available via http://www.dpmms.cam.ac.uk/∼elgc2, 2000, 68 pages.

This uses the notion of opetopic/multitopic set given by Cheng’s modification of Baez
and Dolan, or by my opetopes, or by Hermida, Makkai and Power (for by her equivalence
result, all three notions are the same), together with the Baez-Dolan notion of universality.
I am fairly confident that this gives the same definition of weak 2-category as is described
in X above.

Other Definitions of n-Category

I have already mentioned several proposed definitions of weak n-category which are not
presented here. My own [42] and [85] are missing, as is Street’s recent modification [71] of
St. The opetopic definitions—those related to definition X—are under-represented, as I
have not given any such definition in precise terms; in particular, there is no exact presen-
tation of Baez-Dolan’s definition [73], of Cheng’s modification of Baez-Dolan’s definition
([81], [82]), or of Makkai’s definition [84].

In the final stages of writing this I received a preprint,

[87] J. P. May, Operadic categories, A∞-categories and n-categories, available via http://
www.math.uchicago.edu/∼may, 2001, 10 pages,

containing another definition of weak n-category. I have not had time to assimilate this;
nor have I yet digested the approach to weak n-categories in

[88] Hiroyuki Miyoshi, Toru Tsujishita, Weak ω-categories as ω-hypergraphs, e-print
math.CT/0003137, 2000, 26 pages,

[89] Akira Higuchi, Hiroyuki Miyoshi, Toru Tsujishita, Higher dimensional hypercate-
gories, e-print math.CT/9907150, 1999, 25 pages.
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Comparing Definitions

It seems that not a great deal of rigorous work has been done on comparing the proposed
definitions, although there are plenty of informal ideas floating about. The papers that I
know of are listed above under the appropriate definitions.

The ‘n ≤ 2’ sections show that there are many reasonable notions even of weak 2-
category. This is not diminished by restricting to one-object weak 2-categories, that is,
monoidal categories. So by examining and trying to compare various possible notions of
monoidal category, one can hope to get some idea of what things will be like for weak n-
categories in general. A proof of the equivalence of various ‘algebraic’ or ‘definite’ notions
of monoidal category is in

[90] Tom Leinster, What’s a monoidal category?, poster at CT2000, Como, Italy, 2000,

and a similar but less general result is in Chapter 1 of my [34] (actually stated for bicat-
egories). Hermida compares the indefinite with the definite in his paper [36] on repre-
sentable multicategories, and a different definite/indefinite comparison is in section 3 of
my [45] or section 3.3 of my [44]. (I use the terms ‘definite’ and ‘algebraic’ in the sense of
the Introduction.)

No-one who has seen the definition of tricategory given by Gordon, Power and Street
in [8] will take lightly the prospect of analysing the case n = 3. However, it is worth
pointing out an aspect of this definition less well-known than its complexity: that it is
not quite algebraic. In precise terms, what I mean by this is that the category whose
objects are tricategories and whose maps are strict maps of tricategories is not monadic
over the category of 3-globular sets. (3-globular sets are globular sets as in the ‘Strict
n-Categories’ section of ‘Background’, but with m only running from 0 up to 3. So the
graph structure of a tricategory is a 3-globular set.) For whereas most of the definition
of tricategory consists of some data subject to some equations, a small part does not: in
items (TD5) and (TD6), it is stipulated that certain transformations of bicategories are
equivalences. This is not an algebraic axiom; to make it into one, we would have to add
in as data a pseudo-inverse for each of these equivalences, together with two invertible
modifications witnessing the fact that it is a pseudo-inverse, and then we would want
to add more coherence axioms (saying, amongst other things, that this data forms an
adjoint equivalence). So there is little chance that the category of weak 3-categories and
strict maps according to P, B1, L1, or any other algebraic definition is equivalent to the
category of tricategories and strict maps, in contrast to the situation for n = 2.

Related Areas

I will be extremely brief here; as stated above, this is not meant to be a survey of the
literature. However, there are two areas I feel it would be inappropriate to omit. Most of
the references that follow are meant to function as ‘meta-references’, and are chosen for
their comprehensive bibliographies.

The first area is the Australian school of 2-dimensional algebra, a representative of
which is
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[91] R. Blackwell, G. M. Kelly, A. J. Power, Two-dimensional monad theory, Journal of
Pure and Applied Algebra 59 (1989), no. 1, 1–41.

The issues arising there merge into questions of coherence, one starting point for which is
the paper ‘On braidings, syllepses and symmetries’ by Sjoerd Crans:

[92] Sjoed Crans, On braidings, syllapses and symmetries, Cahiers de Topologie et
Géométrie Différentielle 41 (2000), no. 1, 2–74; also available via http://math.
unice.fr/∼crans,

[93] S. Crans, Erratum: ‘On braidings, syllapses and symmetries’, Cahiers de Topologie
et Géométrie Différentielle 41 (2000), no. 2, 156.

More references for work in this area are to be found in Street’s [25].
The second area is from algebraic topology: where higher-dimensional category theo-

rists want to take strict algebraic structures and weaken them, stable homotopy theorists
like to take strict topological-algebraic structures and do them up to homotopy (in a more
sensitive way than one might at first imagine). The two have much in common. Various
systematic ways of doing the latter have been proposed, and some of these are listed on
the last page of text in my [44]. Missing from that list is the method of

[94] Mikhail A. Batanin, Homotopy coherent category theory and A∞-structures in mo-
noidal categories, Journal of Pure and Applied Algebra 123 (1998), no. 1-3, 67–103;
also available via http://www.math.mq.edu.au/∼mbatanin/papers.html.

Another connection with homotopy theory and loop spaces is in

[95] C. Balteanu, Z. Fiedorowicz, R. Schwänzl, R. Vogt, Iterated monoidal categories,
e-print math.AT/9808082, 1998, 55 pages.

Further references for these two areas and more can be found in the ‘Introductory
Texts’ listed above.
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