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DIRECTED HOMOTOPY THEORY, II.
HOMOTOPY CONSTRUCTS

MARCO GRANDIS

ABSTRACT.

Directed Algebraic Topology studies phenomena where privileged directions appear,
derived from the analysis of concurrency, traffic networks, space-time models, etc.

This is the sequel of a paper, ‘Directed homotopy theory, I. The fundamental cate-
gory’, where we introduced directed spaces, their non reversible homotopies and their
fundamental category. Here we study some basic constructs of homotopy, like homotopy
pushouts and pullbacks, mapping cones and homotopy fibres, suspensions and loops,
cofibre and fibre sequences.

Introduction

Directed Algebraic Topology is a recent subject, arising from domains where privileged
directions appear, like concurrent processes, traffic networks, space-time models, etc. (cf.
[2, 3, 4, 5, 9, 10]). Its domain should be distinguished from classical Algebraic Topology by
the principle that directed spaces have privileged directions, and directed paths therein need
not be reversible. Its homotopical tools will also be ‘non-reversible’: directed homotopies
and fundamental category instead of ordinary homotopies and fundamental groupoid.

This is a sequel of a paper which will be cited as Part I [11]; I.1 (resp. I.1.2, or I.1.2.3)
will refer to Section 1 of Part I (resp. its Subsection 1.2, or item (3) in the latter).

In Part I, we introduced directed spaces, their directed homotopies and their funda-
mental category, including a ‘Seifert-van Kampen’ type theorem, to compute it. The
notion of ‘directed space’ which we are using is a topological space X equipped with a
family dX of ‘directed paths’ [0, 1] → X, containing all constant paths and closed under
increasing reparametrisation and concatenation. Such objects, called directed spaces or
d-spaces, with the obvious d-maps - preserving the assigned paths - form a category dTop
which has general properties similar to Top. (The prefixes d, ↑ are used to distinguish
a directed notion from the corresponding ‘reversible’ one.) Relations of d-spaces with
preordered spaces, locally preordered spaces, bitopological spaces and generalised metric
spaces with ‘asymmetric’ distance have been discussed in I.1 and I.4.
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Directed homotopies are based on the standard directed interval ↑I, the directed cylin-
der functor, ↑I(X) = X×↑I, and its right adjoint, the directed path functor, ↑P (X) = X↑I.
Such functors, with a structure consisting of faces, degeneracy, connections and inter-
change, satisfy the axioms of an IP-homotopical category, as studied in [7] for a different
case of directed homotopy, cochain algebras; moreover, for d-spaces, paths and homotopies
can be concatenated.

We develop here a study of homotopy pushouts and pullbacks (Section 1); the main
results deal with their 2-dimensional universal property and its consequences, and are sim-
ilar to certain general results of [G1] (for categories equipped with ‘formal homotopies’),
yet more delicate because here we have to take care of the direction of homotopies. In
Sections 2-3, mapping cones and suspensions are dealt with, as well as homotopy fibres
and loop-objects (for pointed d-spaces, of course); higher homotopy monoids ↑πn(X, x)
are introduced in 3.4. Combining the present results with the general theory developed
in [7], we obtain the cofibre sequence of a map and the fibre sequence of a pointed map,
including their ‘exactness property’ (Theorem 2.5), by comparison with sequences of it-
erated mapping (co)cones, alternatively lower or upper. Note that, even if paths in a
d-space X cannot be reversed, generally, they can nevertheless be reflected in the opposite
object RX = Xop; thus, lower and upper cones determine each other (2.1). The fibre
sequence of a pointed map (3.3) produces a sequence of higher homotopy monoids which
is not exact, generally (3.5); but it has already been observed in Part I that the homotopy
monoids ↑π1(X, x) contain only a fragment of the fundamental category ↑Π1(X): higher
dimensional properties should probably be studied by higher fundamental categories (as
introduced in [9] for simplicial sets). Finally, in Section 4, we shall see how, on ‘comma
categories’ dTop\A of d-spaces under a discrete object, the d-homotopy invariance of the
fundamental functor ↑Π1 is strict ‘on the base points’.

As in Part I, category theory intervenes at an elementary level. Some basic facts are
of frequent use: all (categorical) limits (generalising cartesian products and projective
limits) can be constructed from products and equalisers; dually, all colimits (generalising
sums and injective limits) can be constructed from sums and coequalisers. Left adjoint
functors preserve all the existing colimits, while right adjoints preserve limits; F � G
means that F is left adjoint to G. Comma categories are only used in the last section
(see [12, 1]). A map between topological spaces is a continuous mapping. A homotopy
ϕ between maps f, g: X → Y can be written as ϕ: f → g: X → Y , or ϕ: f → g, or
ϕ: X ⇒ Y . An order relation is reflexive, transitive and anti-symmetric; a mapping which
preserves such relations is said to be increasing (always used in the weak sense). The
index α takes values 0, 1, written −, + in superscripts.

1. Directed homotopy pushouts and pullbacks

Homotopy pushouts of d-spaces can be constructed in the usual way, from the directed
cylinder. We shall always work with the standard ones, determined up to isomorphism by
strict universal properties. The main results, here, concern their 2-dimensional properties.
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1.1. A review of directed spaces. A directed topological space X = (X, dX), or d-
space (I.1.1), is a topological space equipped with a set dX of (continuous) maps a: I → X,
defined on the standard interval I = [0, 1]; these maps, called directed paths or d-paths,
must contain all constant paths and be closed under (weakly) increasing reparametrisation
and concatenation. The d-space X is thus equipped with a path-preorder x � x′, defined
by the existence of a directed path from x to x′.

A directed map f : X → Y (or d-map, or map of d-spaces) is a continuous mapping
between d-spaces which preserves the directed paths: if a ∈ dX, then fa ∈ dY .

The category of d-spaces is written as dTop. It has all limits and colimits, constructed
as in Top and equipped with the initial or final d-structure for the structural maps; for
instance a path I → ΠXi is directed if and only if all its components I → Xi are so.
The forgetful functor U : dTop → Top preserves thus all limits and colimits; a topological
space is generally viewed as a d-space by its natural structure, where all paths are directed
(via the right adjoint to U, I.1.1).

Reversing d-paths, by the involution r(t) = 1 − t, yields the reflected, or opposite,
d-space RX = Xop, where a ∈ d(Xop) if and only if aop = ar ∈ dX. A d-space is
symmetric if it is invariant under reflection. More generally, it is reflexive, or self-dual, if
it is isomorphic to its reflection.

The directed real line, or d-line ↑R, is the Euclidean line with directed paths given by
the (weakly) increasing maps I → R. Its cartesian power in dTop, the n-dimensional real
d-space ↑Rn is similarly described (with respect to the product order, x ≤ y if xi ≤ yi

for all i). The standard d-interval ↑I = ↑[0, 1] has the subspace structure of the d-line;
the standard d-cube ↑In is its n-th power, and a subspace of ↑Rn. These d-spaces are not
symmetric (for n > 0), yet reflexive. The standard directed circle ↑S1 = ↑I/∂I has the
obvious ‘counter-clockwise’ d-structure; but we also consider the natural circle S1 and the
ordered circle ↑O1 ⊂ R×↑R (I.1.2); for higher spheres, see 2.3, 3.2.

The directed interval ↑I = ↑[0, 1] is a lattice in dTop; its structure (I.2.1) consists of
two faces (∂−, ∂+), a degeneracy (e), two connections or main operations (g−, g+) and an
interchange (s)

{∗}
∂α

���� ↑I
e

�� ↑I2
gα

���� ↑I2 s �� ↑I2 (1)

∂−(∗) = 0, ∂+(∗) = 1,
g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′), s(t, t′) = (t′, t).

As a consequence, the (directed) cylinder endofunctor of d-spaces, ↑I(X) = X×↑I,
has natural transformations, which are denoted by the same symbols and names

1
∂α

���� ↑I
e

�� ↑I2
gα

���� ↑I2 s �� ↑I2 (2)

and satisfy the axioms of a cubical monad with interchange ([8], Section 2).
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The directed interval ↑I is exponentiable (Theorem I.1.7): this means that the cylinder
functor ↑I = −×↑I has a right adjoint, the (directed) path functor, or cocylinder ↑P

↑P : dTop → dTop, ↑P (Y ) = Y ↑I, (3)

where the d-space Y ↑I is the set of d-paths dTop(↑I, Y ) with the usual compact-open
topology and the d-structure where a map c: ↑I → dTop(↑I, Y ) is directed if and only if,
for all increasing maps h, k: ↑I → ↑I, the derived path t �→ c(h(t))(k(t)) is in dY (I.2.2).

The lattice structure of ↑I in dTop produces - contravariantly - a dual structure on
↑P (a cubical comonad with interchange [8]); the derived natural transformations (faces,
etc.) will be named and written as above, but proceed in the opposite direction and
satisfy dual axioms (note that ↑P 2(Y ) = (Y ↑I)↑I = Y ↑I2 , by composing adjunctions)

1
e

�� ↑P��
∂α

�� gα
���� ↑P 2 ↑P 2 s �� ↑P 2 (4)

∂−(a) = a(0), ∂+(a) = a(1), e(x)(t) = x,
g−(a)(t, t′) = a(max(t, t′)), . . .

Now, a (directed) homotopy ϕ: f → g: X → Y is defined as a d-map ϕ: ↑IX =
X×↑I → Y whose two faces ∂±(ϕ) = ϕ.∂±: X → Y are f and g, respectively. Equivalently,
it is a d-map X → ↑P (Y ) = Y ↑I, with faces as above. A (directed) path a: ↑I → X is
the same as a d-path a ∈ dX, and amounts to a homotopy between two points, a: x →
x′: {∗} → X. The structure of d-homotopies (I.2.3) essentially consists of the following
operations (for u: X ′ → X, v: Y → Y ′, ψ: g → h)

(a) whisker composition of maps and homotopies:
v◦ϕ◦u: vfu → vgu (v◦ϕ◦u = v.ϕ.↑Iu: ↑IX ′ → Y ′),

(b) trivial homotopies:
0f : f → f (0f = fe: ↑IX → Y ),

(c) concatenation of homotopies:
ϕ + ψ: f → h (defined via the concatenation of d-paths).

(The whisker composition will also be written by juxtaposition, when this is not am-
biguous.) The category of d-spaces is an IP-homotopical category ([7], 2.7); loosely speak-
ing, it has:

- adjoint endofunctors ↑I � ↑P, with the required structure (faces, etc., satisfying the
axioms);

- all pushouts (preserved by the cylinder) and all pullbacks (preserved by the cocylinder);

- initial and terminal object.
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Therefore, all results of [7] for such a structure apply (as for cochain algebras). More-
over, here we can concatenate paths and homotopies.

Let us also briefly recall that ‘d-homotopy relations’ require some care (cf. I.2.4, I.2.7).
First, we have a d-homotopy preorder f � g, defined by the existence of a homotopy f → g
(and extending the path-preorder of points); it is consistent with composition but non-
symmetric (f � g being equivalent to Rg � Rf). Second, we write f � g the equivalence
relation generated by �: there is a finite sequence f � f1  f2 � f3 . . . g (of d-maps
between the same objects); it is a congruence of categories on dTop.

To conclude this review of Part I, a d-homotopy equivalence is a d-map f : X → Y
having a d-homotopy inverse g: Y → X, in the sense that gf � idX, fg � idY ; then
we say that X and Y have the same d-homotopy type, or are d-homotopy equivalent (in
n steps if n instances of the homotopy preorder � are sufficient for each of the previous
�-relations, cf. I.2.7). In particular, if idX � gf and idY � fg, we say that X and Y are
immediately d-homotopy equivalent, in the future; if, further, idX = gf , then f embeds
X as a future deformation retract of Y .

1.2. Homotopy pushouts. Let f : X → Y and g: X → Z be two morphisms of directed
spaces, with the same domain. The standard (directed) homotopy pushout, or h-pushout,
from f to g is a four-tuple (A; u, v; λ), as in the left diagram, where λ: uf → vg: X → A
is a homotopy satisfying the following universal property (of cocomma squares)

X
g ��

f

��

Z

v

��

X
id ��

id

��

X

∂+

��
Y u

��

λ ��

A X
∂−

��

evX ��

↑IX

(5)

- for every λ′: u′f → v′g: X → A′, there is precisely one map h: A → A′ such that
u′ = hu, v′ = hv, λ′ = h◦λ.

The existence of the solution is proved below; its uniqueness up to isomorphism is
obvious. The object A, a ‘double mapping cylinder’, will be denoted as ↑I(f, g). Note
that ↑I(g, f) = R(↑I(Rf,Rg)), where RX = Xop is the reflected d-space (1.1).

As shown in the right diagram, the cylinder itself ↑I(X) = X×↑I, equipped with the
obvious homotopy (cylinder evaluation, represented by the identity of the cylinder)

evX : ∂− → ∂+: X → ↑IX, evX(x, t) = (x, t), (6)

is the h-pushout of the pair (idX, idX): by the very definition of homotopies, it establishes
a bijection between maps h: ↑IX → W and homotopies h◦evX : h∂− → h∂+: X → W. On
the other hand, every homotopy pushout in dTop can be constructed from the cylinder
and ordinary pushouts, by the colimit of the following diagram (which amounts to two
ordinary pushouts)

Y X
f�� ∂−

�� ↑IX X
∂+

�� g �� Z (7)
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i.e. as the quotient of the sum (↑IX) + Y + Z, under the equivalence relation identifying
(x, 0) with f(x) and (x, 1) with g(x). The forgetful functor U : dTop → Top preserves
cylinders and pushouts, hence h-pushouts as well.

1.3. Homotopy pullbacks. Dualising 1.2, the h-pullback from f : Y → X to g: Z → X
is a four-tuple (A; u, v; λ), as in the left diagram, where λ: fu → gv: A → X satisfies the
following universal property (of comma squares)

Y
f �� X X

id �� X

λ

��

evX

��
A v

��

u

��

Z

g

��

↑PX
∂+

��

∂−

��

X

id

��

(8)

- for every λ′: fu′ → gv′: A′ → X, there is exactly one map h: A′ → A such that u′ =
uh, v′ = vh, λ′ = λ◦h.

The object A will be denoted as ↑P (f, g). Again, ↑P (g, f) = R(↑P (Rf,Rg)). As shown
in the right diagram above, the path-object ↑PX is the h-pullback of the pair (idX, idX),
via the obvious homotopy evX : ∂− → ∂+: ↑PX → X (path evaluation, represented by
id(↑PX)). All homotopy pullbacks in dTop can be constructed from paths and ordinary
pullbacks, by the following limit (which amounts to two ordinary pullbacks)

Y
f �� X ↑PX∂−

�� ∂+
�� X Z

g�� (9)

i.e. as the following d-subspace of the product (↑PX)×Y ×Z

↑P (f, g) = {(a, y, z) ∈ (↑PX)×Y ×Z | a(0) = f(y), a(1) = g(z)}. (10)

Note that the forgetful functor U : dTop → Top does not preserve path-objects (nor
h-pullbacks): U(↑PX) is a subspace of P (UX), and a proper one unless ↑PX is just a
‘space’.

In the rest of this section we shall study h-pushouts, in a rather formal way (which
could be easily extended to an abstract IP-homotopical category with concatenation and
‘accelerations’, cf. I.2.6.3)); also the dual properties, for h-pullbacks, hold.

1.4. Theorem. [The higher property] The h-pushout A = ↑I(f, g) satisfies also a 2-
dimensional universal property. Precisely, given two maps a, b, two homotopies σ, τ and
a double homotopy Φ (I.2.5) with the following boundaries

Y
u

		�
��

��
��

au ��

bu

↓σ �� W

λ

��

auf aλ ��

σf
��

avg

τg
��X

f


�������

g 		�
��

��
��

A
a ��
b

�� W Φ

buf
bλ

�� bvg

Z

v



������� av ��

bv

↓τ �� W

(11)
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a, b: A → W, σ: au → bu, τ : av → bv, Φ: X×↑I2 → W,
∂−

1 (Φ) = Φ.(X×∂−×↑I) = σ◦f, ∂−
2 (Φ) = Φ.(X×↑I×∂−) = a◦λ, . . .

there is some homotopy ϕ: a → b such that ϕ◦u = σ, ϕ◦v = τ (and precisely one which
also satisfies ϕ.(λ×↑I) = Φ)).

Proof. By the adjunction ↑I � ↑P, we can view the data as d-maps with values in ↑PW,
namely

σ′: Y → ↑PW, τ ′: Z → ↑PW,
Φ′ : X×↑I → ↑PW, ∂−Φ′ = σ′f, ∂+Φ′ = τ ′g.

(12)

There is thus one map ϕ′: A → ↑PW such that ϕ′u = σ′, ϕ′v = τ ′, ϕ′ ◦λ = Φ′. This is
the same as a homotopy ϕ: ↑IA → W satisfying our conditions. Moreover, its lower face
is a (and the upper one is b) because

(∂−ϕ′).u = ∂−σ′ = au, (∂−ϕ′).v = ∂−τ ′ = av,
(∂−ϕ′)◦λ = Φ.∂−(X×↑I) = a◦λ.

(13)

1.5. Theorem. [The h-pushout functor] The double mapping cylinder ↑I(f, g) acts func-
torially on the variables f, g (precisely, it is a functor dTopv → dTop, where v is the
category formed by two diverging arrows: • ← • → •) and turns coherent d-homotopies
into d-homotopies, as specified below.

(a) Given a morphism (x, y, z): (f, g) → (f ′, g′), consisting of two commutative squares in
dTop

Y

y

��

X
f�� g ��

x

��

Z

z

��
Y ′ X ′

f ′
��

g′
�� Z ′

(14)

there is precisely one map a = ↑I(x, y, z): ↑I(f, g) → ↑I(f ′, g′) coherent with the h-
pushouts, i.e. such that (as in the left cube below)

au = u′y, av = v′z, a◦λ = λ′ ◦x; (15)

Y
u

���������

y

���
�
�
�
�
� Y

u

���������

η

��
�
�
�
�
�

�
�
�
�
�

λ
��

λ
��X

f
������������

g ���������

x

��

A

a

��

X

f
������������

g ���������

ξ

��

A

ϕ

��

Z
v

������������

z

��

Z
v

������������

ζ

��

Y ′
u′

������ Y ′
u′

������

λ′
���

�
λ′

���

�

X ′
f ′ 						

g′ ��������� A′ X ′
f ′ 						

g′ ��������� A′

Z ′ v′

											 Z ′ v′

											

(16)
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(b) Given a coherent system of homotopies, from the pair (f, g) to the pair (f ′, g′), as in
the right cube above (where the double arrow at ξ stands for ξ: x → x′: X → X ′; etc).

(ξ, η, ζ): (x, y, z) → (x′, y′, z′): (f, g) → (f ′, g′),
ξ: x → x′, η: y → y′, ζ: z → z′,
f ′ ◦ξ = η◦f, g′ ◦ξ = ζ ◦g,

(17)

there is some homotopy ϕ: a → a′: ↑I(f, g) → ↑I(f ′, g′) which completes coherently the
cube

ϕ: a → a′, ϕ◦u = u′ ◦η, ϕ◦v = v′ ◦ζ, (18)

and precisely one such ϕ if we also ask that ϕ.(λ×↑I) = λ′.(ξ×↑I).s.
Proof. (a) Immediate, from the first universal property of the h-pushout λ of (f, g).
(b) Follows from the 2-dimensional property of the same h-pushout, with respect to the
double homotopy Φ = λ′.(ξ×↑I).s: X×↑I2 → X ′×↑I → A′

Y
u

		












au ��

a′u

↓u′η �� A′

λ

��

auf aλ ��

u′ηf
��

avg

v′ζg
��X

f


�������

g 		�
��

��
��

A
a ��
a′

�� A′ Φ

a′uf
a′λ

�� a′vg

Z

v



������� av ��

a′v

↓u′ζ �� A′

(19)

∂−
1 (Φ) = u′f ′ ◦ξ = u′ ◦η◦f, ∂−

2 (Φ) = λ′ ◦x = a◦λ, . . .

There is thus some homotopy ϕ: a → a′ such that ϕ◦u = u′◦η, ϕ◦v = v′◦ζ; and precisely
one which also satisfies ϕ.(λ×↑I) = Φ.

1.6. Theorem. [Pasting of h-pushouts] Let ξ, η, ζ be standard homotopy pushouts

X
f ��

x

��

Y
g ��

y

��

Z

z

��

Z

b

��
T u

��

ξ ��

A
v ��
w

���������

η ��

B

T a
��

ζ ��

C

(20)

Then B and C are immediately d-homotopy equivalent, in the future (1.1), by canon-
ical maps and homotopies.

Precisely, define w: A → C, h: B → C and k: C → B through the universal property
of ξ, η, ζ, respectively (and the concatenation of homotopies, for k).
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w.u = a: T → C, w.y = bg: Y → C, w◦ξ = ζ: ax → bgf,
h.v = w: A → C, h.z = b: Z → C, h◦η = 0: wy → bg,
k.a = vu: T → B, k.b = z: Z → B, k◦ζ = (v◦ξ + η◦f): vux → zgf.

(21)

Then h, k form an immediate homotopy equivalence, with idC � hk and idB � kh;
the following higher coherence relations can also be obtained (note we are not saying that
ψ◦v = 0).

ϕ: idC → hk, ϕ◦a = 0a, ϕ◦b = 0b,
ψ: idB → kh, ψ◦z = 0z, ψ◦vu = 0vu, ψ◦vy = 0 + η.

(22)

By reflection, if we paste d-homotopy pushouts (placed as above) with the opposite
direction of homotopies, we get an immediate d-homotopy equivalence in the past.

Proof. (This result will be essential for the sequel, e.g. to prove the homotopical exact-
ness of the cofibre sequence, in Theorem 2.5. It is a refinement of a similar result in [6],
3.4.)

First, the higher universal property of ζ (1.4) yields a homotopy ϕ: idC → hk (with
ϕ◦a = 0a, ϕ◦b = 0b), provided by the acceleration double homotopy ζ → ζ + 0 (I.2.6.3),
denoted by #

ax
ζ ��

0ax

��

bgf

0bgf
��

hka = hvu = wu = a,

# hkb = hz = b,

hkax
hkζ

�� hkbgf hk◦ζ = hv◦ξ + h◦η◦f = w◦ξ + 0 = ζ + 0.

(23)

We exploit now the higher universal property of ξ to link the maps v, kw: A → B;
consider the following three double homotopies (acceleration, degeneracy and upper con-
nection)

vux
vξ ��

0x

��

vyf

0f

��
(0+η)f

��

# kwu = ha = vu,

vux
vξ ��

0x

��

vyf 0 ��

0
��

vyf

ηf

��
# # kw◦ξ = k◦ζ = v◦ξ + η◦f.

kwux
vξ

�� vyf
ηf

�� kwyf

(24)

Their pasting yields a homotopy ρ: v → kw such that ρ◦u = 0, ρ◦y = 0 + η. Finally,
the higher property of η produces a homotopy ψ: idB → kh (such that ψ◦v = ρ, ψ◦z = 0),
through a double homotopy deriving from degeneracy and lower connection
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vy η ��

0
��

ρy

��

zg

0g

��
# ρ◦y = 0 + η,

vy η ��

η

��

zg

0g

��
# kh◦η = 0: kwy → kbg.

zg
khη

�� zg

(25)

1.7. Cofibrations. Say that a d-map u: X → A is a lower d-cofibration if (see the
left diagram below), for every d-space W and every d-map h: A → W, every d-homotopy
ψ: h′ = hu → k′ can be ‘extended’ to a d-homotopy ϕ: h → k on A (so that ϕ◦u = ψ,
whence ku = k′)

X

u

��

h′
��

k′
↓ψ �� W W

h ��

k

↓ϕ �� X

p

��
A

h ��

k

↓ϕ �� W W
h′

��

k′
↓ψ �� B

(26)

The opposite notion (for every k and ψ: h′ → k′ = ku there is some ϕ such that ϕ◦u = ψ)
is called upper d-cofibration; a bilateral d-cofibration has to satisfy both conditions.

The right diagram above shows the definition of a lower d-fibration p: X → B: for
every h: W → X and ψ: h′ = ph → k′ there is some ϕ: h → k which lifts y (p◦ϕ = ψ).

1.8. Theorem. (a) In every h-pushout A = ↑I(f, g) (as in (5)), the first ‘injection’
u: Y → A is an upper d-cofibration, while the second v: Z → A is a lower one.
(a*) In every h-pullback, the first ‘projection’ is an upper d-fibration, while the second is
a lower one.

Proof. It is sufficient to verify the second statement of (a). Take a d-map h: A → W
and a d-homotopy ψ: h′ = hv → k′. Then, there is one map k: A → W such that

ku = hu, kv = k′, k◦λ = h◦λ + ψ◦g: huf → k′g: X → W. (27)

Moreover, by the last relation, we can construct a double homotopy as in the right
diagram below (as in (24), by acceleration, degeneracy and upper connection)

Y
u

��












hu ��

ku

↓0 �� W

λ

��

huf
hλ ��

0
��

hvg

ψg
��

X

f


�������

g 		�
��

��
��

A
h ��
k

�� W #

kuf
kλ

�� kvg

Z

v

��������� hv ��

kv

↓ψ �� W

(28)
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and this produces a homotopy ϕ: h → k such that ϕ◦v = ψ.

1.9. Theorem. [h-pushouts of cofibrations] If f : X → Y is a lower d-cofibration and
g: X → Z any map, the obvious map h: A → V from the h-pushout A = ↑I(f, g) to the
ordinary pushout V is an immediate d-homotopy equivalence, in the past

Y

u
		�

��
��

��
u′

������������������

λ

��

hu = u′, hv = v′,

X

f


�������

g 		�
��

��
��

A
h �� V

h◦λ = 0: u′f → v′g.

Z

v



������� v′

����������������

(29)

Proof. The extension property of f ensures that the homotopy λ: uf → vg can be
extended to some homotopy ϕ: u → w: Y → A; thus ϕ◦f = λ and wf = vg. There is then
one map k: V → A such that ku′ = w, kv′ = v.

First, 1A � kh, by the 2-dimensional property of λ, using a lower connection (since
ϕ◦f = λ and kh◦λ = 0)

Y
u

��












u ��

w

↓ϕ �� A

λ

��

uf λ ��

ϕf
��

vg

0
��

X

f


�������

g 		�
��

��
��

A
1 ��
kh

�� A #

khuf
khλ

�� khvg

Z

v

��������� v ��

v

↓0 �� A

(30)

Second, 1V � hk, by the 2-dimensional property of the ordinary pullback V (which
trivially holds since homotopies are represented by a cocylinder). Since the pair of homo-
topies h◦ϕ: u′ → hw, 0: v′ → v′ is coherent with f, g (h◦ϕ◦f = h◦λ = 0 = 0◦g), there is
one homotopy ψ such that ψ◦u′ = h◦ϕ and ψ◦v′ = 0v′ ; finally, ψ: 1V → hk, since

∂−(h◦ϕ) = hu = u′, ∂+(h◦ϕ) = hw = hk.u′, ∂±(0v′) = v′.

2. Mapping cones and the cofibre sequence

Mapping cones (i.e., homotopy cokernels) and suspensions are particular instances of
homotopy pushouts. The cofibre sequence of a map has strong properties of ‘homotopical
exactness’: it is homotopy equivalent to a sequence of iterated mapping cones.

2.1. Mapping cones. In contrast with ordinary homotopy, the lack of a reversion for
directed homotopies produces two mapping cones, generally non isomorphic, yet linked by
reflection.

Every d-map f : X → Y has an upper h-cokernel, or upper mapping cone ↑C+f =
↑I(f, tX), the h-pushout from f to the terminal map tX : X → {∗}, as in the left diagram
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below; it can be obtained as the quotient of the sum ↑IX +Y +{∗} under the equivalence
relation identifying (x, 0) with f(x) and (x, 1) with {∗}, for all x ∈ X (cf. (7)); its vertex
v+ ‘is in the future’: it can be reached from every point (it is a maximum in the path
preorder, and actually the only one)

X
tX ��

f

��

{∗}
v+

��

X
f ��

tX
��

Y

c+

��
Y

c−
��

γ ��

↑C+f {∗}
v−

��

γ ��

↑C−f

(31)

(This is called the ‘lower’ mapping cone in [7]; the present choice of terms, based on the
vertex rather than the basis, derives from the analysis of contractility, at the end of 2.2).

Symmetrically, one obtains the lower mapping cone ↑C−f = ↑I(tX , f) = R↑C+(Rf)),
as in the right diagram; the equivalence relation identifies now (x, 0) with ∗ and (x, 1)
with f(x); the vertex v− ‘is in the past’: it can reach every point (is a minimum in the
path preorder).

As an easy consequence of the homotopy invariance of the h-pushout functor (Theorem
1.5), the mapping cone functor is d-homotopy invariant as well, in the same sense

↑Cα: dTop2 → dTop; (32)

(2 is ‘the one-arrow category’ • → •; an object of dTop2 is a d-map, while a morphism
is a commutative square of d-maps, as in (14) with Z = {∗}).

Note that h-cokernels are based on the terminal object {∗}. Working dually with the
initial object ∅ would give trivial results: all h-kernels would be empty; as in the ordinary
case, one has to move to the pointed case to get h-kernels of interest; this will be considered
in the next section.

2.2. Cones. Applying these constructs to an identity, we have the upper d-cone ↑C+X =
↑C+(idX) of an object, from the basis (in the past) to the vertex (in the future); and the
lower one, ↑C−X. The functors ↑Cα: dTop → dTop are d-homotopy invariant.

In Top, the cone of the circle is the compact disc. In dTop, we get six different d-
spaces by letting ↑Cα act on S1, ↑S1 and ↑O1. Thus, the natural circle S1 has an upper
d-cone ↑C+S1, where a path has to move - anyhow - towards the centre (the vertex), at
least in the weak sense, and a lower d-cone ↑C−S1 = R(↑C+S1), where paths proceed the
other way and the centre is the only point which can reach all the others. In the d-spaces
↑Cα(↑S1), a ‘pointlike vortex’ appears at the centre (showing that such d-spaces cannot
be defined by a local preorder, cf. I.1.6);
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↑C+S1 ↑C−S1 ↑C+↑S1 ↑C−↑S1

.
↓
↑

→ ← .
↑
↓

← → .
↓
↑

→ ← .
↑
↓

← →�������� �������� �������� ���������� ��

(33)

the fundamental category of these d-spaces has been computed in I.3.5, I.3.7.
In Top, again, the projective plane P2 is the ordinary mapping cone of the endomap

f :S1 → S1 of degree 2. In dTop, the same mapping, viewed as f :S1 → S1 and g: ↑S1 →
↑S1, yields four directed versions of the projective plane: the quotients of the previous
disks under the usual equivalence relation, namely ↑C+f , ↑C−f ∼= R(↑C+f), ↑C+g, ↑C−g ∼=
R(↑C+g). The last isomorphism follows from ↑S1 being reflexive, i.e. isomorphic to
R(↑S1).

A d-space X is said to be future contractible if it has a future deformation retract
at some point (1.1; I.2.7). This happens if and only if the basis c−: X → ↑C+X has a
retraction h: ↑C+X → X (apply the universal property of ↑C+X). The cone ↑C+X itself
is future contractible (to its vertex v+, and only to this point) by means of the homotopy
induced on ↑C+X×↑I by the lower connection (constant at t = 1 and at t′ = 1)

g−: ↑C+X×↑I → ↑C+X, g−[x, t, t′] = [x, max(t, t′)]. (34)

2.3. Suspension. The (directed, non-pointed) suspension ↑ΣX is a lower and upper
d-cone, at the same time

X
tX ��

tX

��

{∗}
v+

��

↑ΣX = ↑I(tX , tX) = ↑C−(tX) = ↑C+(tX),

R.↑Σ = ↑Σ.R.

{∗}
v−

��

γ ��

↑ΣX

(35)

Concretely, it is the quotient of the sum ↑IX + {v−}+ {v+} which identifies the lower
basis with a lower vertex v−, and the upper basis with an upper vertex v+. It is equipped
with a homotopy (suspension evaluation)

evX : v−tX → v+tX : X → ↑ΣX, (x, t) �→ [x, t], (36)

which is universal for homotopies between constant maps. In particular, ↑Σ({∗}) = ↑I
and ↑Σ(∅) = S0 (note that the latter is not a quotient of ↑I(∅) = ∅ !).

The suspension ↑Σ is an endofunctor of dTop (by 1.5): given f : X → Y , the suspended
map ↑Σf : ↑ΣX → ↑ΣY is the unique morphism which satisfies the conditions

↑Σf.v− = v−, ↑Σf.v+ = v+, (↑Σf)◦evX = evY ◦f ; (37)



382 MARCO GRANDIS

moreover, by 1.5, this functor is homotopy invariant: given a homotopy ϕ: f → g, there
is some homotopy ψ: ↑Σf → ↑Σg (in fact, there is precisely one such that ψ.(evX×↑I) =
evY .(ϕ×↑I).s). Therefore, ↑Σ preserves immediate homotopy equivalences, and n-step
homotopy equivalences as well.

The (unpointed!) suspension of S0 is the quotient of ↑I + ↑I which identifies lower
and upper endpoints, separately. This coincides with the d-structure induced by R×↑R
on the standard circle (or any circle), called the ordered circle (in I.1.2.5), because it is of
(partial) order type

↑Σ(S0) = ↑O1 ⊂ R×↑R. (38)

More generally, one can define the ordered n-sphere ↑On = ↑Σn(S0). It is isomorphic
to the structure induced on the standard n-sphere by R×↑Rn, as well as to the pasting
of two ordered discs ↑Bn ⊂ ↑Rn along their boundary; the latter description shows that
↑On is indeed of order type (while R×↑Rn is just of preorder type, since the natural R
has the chaotic preorder, cf. 1.1).

2.4. The cofibre sequence. Every d-map f : X → Y has a lower cofibre sequence,
produced by lower h-cokernels (as well as an upper one)

X
f �� Y

x �� ↑C−f d �� ↑ΣX
↑Σf �� ↑ΣY

↑Σx �� ↑Σ(↑C−f)
↑Σd �� ↑Σ2X . . . (39)

x = c+: Y → ↑C−f ;
d.v− = v−: {∗} → ↑ΣX, d.x = v+.tY : Y → ↑ΣX,
d◦γ = evX : v−.tX → v+.tX : X → ↑ΣX.

(More generally, this works for any category with cylinder functor, terminal object and
pushouts; cf. [7], Section 1.) Moreover, as sketched below, in 2.5 (and proved - more
generally - in [7], 1.10, 3.4), this sequence can be linked, via a homotopically commutative
diagram, to a sequence of iterated h-cokernels of f , where each map is, alternatively, the
lower or upper h-cokernel of the preceding one

X
f �� Y

x �� ↑C−f d �� ↑ΣX
↑Σf �� ↑ΣY

↑Σx �� ↑Σ(↑C−f)
↑Σd �� ↑Σ2X . . .

� � �
X

f
�� Y x

�� ↑C−f x2

�� ↑C+x x3

��

h1

��

↑C−x2 x4

��

h2

��

↑C+x3 x5

��

h3

��

↑C−x4 . . .

h4

��

(40)

If f is an upper d-cofibration (1.7), we can replace ↑C−f with the ordinary pushout
of f along X → {∗}, i.e. the quotient Y/f(X) (Theorem 1.9), which is immediately
d-homotopy equivalent to the former (in the future).



DIRECTED HOMOTOPY THEORY, II. HOMOTOPY CONSTRUCTS 383

2.5. Theorem. [Homotopical exactness of the cofibre sequence] Every comparison hn

in the diagram (40) is a d-homotopy equivalence in m steps (possibly less), where m is
the integral part of (n + 2)/3.

Proof. (Note that this need not be true in the setting of [7], where the concatenation
of homotopies is missing; and actually, it is not true for cochain algebras, where the
comparisons are just homotopy equivalences of cochain complexes.)

In fact, the map h1: ↑C+x → ↑ΣX derives from pasting the h-pushouts ↑C−f , ↑C+x
and comparing them to the suspension (it is constructed as h in (21)); Theorem 1.6
ensures that it is an immediate d-homotopy equivalence, in the future

X
f ��

tX
��

Y
tY ��

x

��

{∗}
v+

��

{∗}

v+

��

{∗}
v−

��

γ ��

↑C−f
x2 ��

d
�����������

δ ��

↑C+x

{∗}
v−

��

ev ��

↑ΣX

(41)

h1.x2 = d: ↑C−f → ↑ΣX, h1.v
+ = v+: {∗} → ↑ΣX,

h1.δ = 0: dx → v+.tY : Y → ↑ΣX.

The maps h2 and h3 are similarly defined, and are immediate d-homotopy equivalences
as well, in the past and the future, respectively. Then h4 = ↑Σh1.k4 is a 2-step d-homotopy
equivalence, obtained by composing ↑Σh1 (an equivalence in the future, by the homotopy
invariance of suspension, in 2.3) with a map k4: ↑C−x4 → ↑Σ(↑C+x) obtained as the
previous three comparisons (an equivalence in the past). One proceeds this way, adding
one step every third index.

Finally, by the homotopy invariance of the mapping cone functors (32), the cofibre
sequence acts functorially on the variable f (in dTop2), and this functor preserves d-
homotopies.

2.6. An example. Let X = c0I be the Euclidean interval with the d-discrete structure
(where d-paths are constant) and Y = ↑I; let f : X → Y be the d-map provided by idI.
We want to compute the comparison h1: ↑C+x → ↑ΣX.

First, ↑ΣX is the quotient of c0I×↑I which identifies the lower (resp. upper) basis with
a point v− (resp. v+); its d-paths a: v− → v+ move up the fibres (more precisely, they are
all maps t �→ [t0, a(t)] where a: ↑I → ↑I is a d-path from 0 to 1), and are homotopic (with
fixed endpoints) if and only if they pertain to the same fibre (same t0 ∈ c0I); thus, the
set of homotopy classes ↑Π1(↑ΣX)(v−, v+) can be identified with the interval [0, 1]
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↑ΣX ↑C−f ↑C+x.

0 1

v−

v+

• t0
0 1

v−

∂+(↑I)

0 1

v−

v+

�������������

������������� ��
��

��
��

��
��

�

��
��

��
��

��
��

� ���������������
��

��
��

��
��

�

������������� ��
��

��
��

��
��

�

��
��

��
��

��
��

� �������������

��

��

����� �����

��

����� �����

�����
�����

(42)

On the other hand, ↑C+x = ↑C+(∂+: Y → ↑C−f) has a coarser structure on its ‘upper
half’, deriving from the cone on Y = ↑I. The comparison h1: ↑C+x → ↑ΣX is now the
obvious map which collapses this upper half.

3. Pointed d-spaces and the fibre sequence

Pointed d-spaces have a homotopy structure similar to the unpointed case. Their homo-
topy fibres (i.e., homotopy kernels) and loop-objects form a fibre sequence with exactness
properties dual to the ones of the cofibre sequence. But the derived sequence of higher
homotopy monoids is not exact.

3.1. Pointed d-spaces. The category dTop∗ of pointed d-spaces behaves (with respect
to dTop) much as its ordinary counterpart, the category Top∗ of pointed spaces (with
respect to Top).

Limits and coequalisers in dTop∗ are computed as in dTop (and conveniently pointed);
the sum is a quotient of the unpointed sum, modulo the equivalence relation which iden-
tifies all base points; but it will be preferably realised in the usual form of a join, as a
pointed subspace of the corresponding product. Thus, in the binary case

(X, x0) ∨ (Y, y0) = ((X×{y0}) ∪ ({x0}×Y ), (x0, y0)) ⊂ (X×Y, (x0, y0)). (43)

Also here, the smash product, formed by collapsing the join in the product

(X, x0) ∧ (Y, y0) = ((X×Y )/((X×{y0}) ∪ ({x0}×Y )), [(x0, y0)]), (44)

yields a symmetric monoidal structure, whose identity is (S0, 1).
A (pointed directed) homotopy of pointed d-maps, ϕ: f → g: (X, x0) → (Y, y0) is

defined as a dTop-homotopy such that ϕ(x0, t) = y0 (for all t). To represent such homo-
topies, the (pointed directed) cylinder of (X, x0) is a quotient of the cylinder of X, where
the fibre at the base point, {x0}×↑I, is collapsed to a base point

↑I(X, x0) = (X×↑I)/({x0}×↑I) = (X, x0) ∧ ↑I∗, (45)
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and can be obtained as the smash product with the pointed d-interval ↑I∗, where an
isolated base-point has been added (applying the left adjoint (−)∗: dTop → dTop∗ of the
forgetful functor).

More simply, the pointed path functor is the same as the unpointed one, pointed at
the constant path at the base point

↑P (X, x) = (↑P (X), 0x), ↑I � ↑P (on dTop∗). (46)

3.2. Pointed h-pushouts. All pointed homotopy pushouts can be constructed from
the pointed cylinder described above, via the usual colimit (7) calculated in dTop∗. Thus,
the pointed d-suspension can be obtained as a quotient of the unpointed cylinder

↑Σ(X, x0) = (X×↑I)/(({x0}×↑I) ∪ (X×S0)) = (X, x0) ∧ (↑S1, [0]), (47)

and also as the smash product with the directed circle ↑S1 = ↑I/∂I pointed at [0] = [1].
As a relevant difference from the ordinary case, the pointed d-suspension of a d-sphere is

different from the unpointed one (cf. (38)): here we obtain ↑Σ(S0, 1) = (↑S1, [0]). Actually,
it is easy to deduce from the definition of higher directed spheres, ↑Sn = (↑In)/(∂In)
(I.1.2.4), that

↑Σn(S0, 1) = (↑Sn, [0]). (48)

The cofibre sequence of a pointed d-map f : X → Y behaves as in the unpointed case
(Section 2).

3.3. Pointed h-pullbacks. When a pointed object is denoted by a single letter, say
X, its base point will be written as ∗X or ∗.

All pointed h-pullbacks can be constructed as pointed limits (cf. (9)), from the pointed
cocylinder (46). Dualising 2.1, the upper homotopy kernel of a pointed d-map f : X → Y ,
or upper homotopy fibre ↑K+f = ↑P (f, iY ), is the h-pullback from f to the initial map
iY : {∗} → Y , as in the left diagram below; similarly one has the upper cocone of an object,
↑K+X, as in the right diagram

X
f �� Y X

id �� X

κ

��

κ

��↑K+f ��

��

{∗}

��

↑K+X ��

��

{∗}

��

(49)

↑K+f = ↑P (f, iY ) = {(x, b) ∈ X×↑PY | b(0) = f(x), b(1) = ∗Y },
↑K+X = ↑K+(idX) = {a ∈ ↑PX | a(1) = ∗X},

pointed at (∗X , 0∗Y
) and 0∗X

, respectively. The lower analogues are written ↑K−f and
↑K−X.

Dualising 2.3, the (directed) loop-object ↑ΩX is a lower and upper h-kernel, at the
same time
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{∗} f �� X

evX

��↑ΩX ��

��

{∗}

��

(50)

↑ΩX = ↑P (iX , iX) = {c ∈ ↑PX | c(0) = ∗X = c(1)}, ∗ = 0∗X
.

It comes equipped with a d-homotopy evX : 0 → 0: ↑ΩX → X (loop evaluation), uni-
versal for d-endohomotopies of null maps in X: for every ϕ: 0 → 0: A → X there is one
d-map f : A → ↑ΩX such that ϕ = evX◦f . The functors produced by h-kernel, cocone and
loop-objects (on dTop2

∗ and dTop∗) are homotopy invariant, as proved previously for the
dual cases.

A pointed d-map f : X → Y has a lower fibre sequence, produced by lower h-kernels

. . . ↑Ω2Y
↑Ωd �� ↑Ω(↑K−f)

↑Ωp �� ↑ΩX
↑Ωf �� ↑ΩY d �� ↑K−f

p �� X
f �� Y (51)

and satisfying dual properties with respect to the cofibre sequence (Section 2). In partic-
ular, it is d-homotopy equivalent to the sequence of iterated lower and upper h-kernels;
and acts functorially on the variable f , preserving (pointed) d-homotopies of d-maps. If
f is a (pointed) upper d-fibration (cf. 1.7), we can replace ↑K−f with the ordinary kernel
of f , the fibre F = f−1{∗Y }, which is d-homotopy equivalent.

3.4. Higher homotopy monoids. A pointed d-space A produces a sequence of d-
homotopy invariant functors (n ≥ 0)

↑πA
n : dTop∗ → Set∗, ↑πA

n (X) = [↑ΣnA,X]∗ = [A, ↑ΩnX]∗, (52)

where [A,X]∗ is the pointed set of classes of maps A → X in dTop∗, up to pointed
d-homotopy. Plainly, the concatenation of loops (↑ΩX)× (↑ΩX) → ↑ΩX produces a
structure of monoid on all such sets, for n ≥ 1, which is commutative for n ≥ 2 (by the
middle-four interchange of pasting, as usual; cf. I.2.5.3).

The superscript A will be omitted when A = S0 = {−1, 1}, pointed at 1. Then, ↑π0(X)
is the set of d-path components ↑Π0(X) = |X|/ � (I.1.5.2), pointed at the component of
the base point, while the remaining functors ↑πn yield the homotopy monoids of a pointed
d-space

↑π0(X) = [↑S0, X]∗ = (|X|/ �, [∗X ]),
↑πn(X) = [↑Sn, X]∗ = [S0, ↑ΩnX]∗ = ↑π0(↑ΩnX) (n ≥ 1).

(53)

In particular, ↑π1(X) is (as previously defined, in I.3.3) the monoid of endoarrows
[c]: ∗X → ∗X in the fundamental category ↑Π1(X)

↑π1(X) = [↑S1, X]∗ = ↑π0(↑ΩX) = ↑Π1(X)(∗, ∗); (54)
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it is (strictly) invariant up to pointed d-homotopy and can be computed via ↑Π1(X) (by
the methods developed in I.3, especially the van Kampen-type pasting theorem).

Replacing ↑S1 with the reversible circle Ĩ /∂I (I.1.3c), we get the group of invertible
loops Inv(↑π1(X)). The ordered circle ↑O1 (cf. (38)), pointed at its minimum or maxi-
mum, yields two other d-homotopy invariants of interest, [(↑O1, vα),−]∗: dTop∗ → Set∗.

3.5. Sequences of homotopy monoids. Applying the functor ↑π0 to the fibre se-
quence of a pointed d-map f : X → Y (see (51)), we obtain the fibre sequence of homotopy
monoids (and pointed sets)

. . . f∗2 �� ↑π2Y
d∗1 �� ↑π1(↑K−f)

p∗1 �� ↑π1X
f∗1 �� ↑π1Y

d∗0 �� ↑π0(↑K−f)
p∗0 �� ↑π0X

f∗0 �� ↑π0Y
(55)

which is of order two but not exact, and probably much less interesting than its ordinary
analogue, the fibre sequence of homotopy groups (which is exact).

Actually, each composition in (55) is null (since, up to d-homotopy equivalence, every
map in the fibre sequence (51) is the h-kernel of the following one). On the other hand,
take [x] ∈ ↑π0X such that f∗0[x] = [f(x)] = [∗Y ]; this only means that there is a finite
sequence of paths in Y

f(x) = y0 → y1 ← y2 → . . . yn = ∗Y , (56)

but does not give, generally, a path ∗Y → f(x′) with [x′] = [x].
If f is a bilateral fibration (1.7) we do get exactness at ↑π0X (but nothing more). In

fact, we can lift in X all the previous paths

x = x0 → x1 ← x2 → . . . xn, f(xn) = ∗Y , (57)

so that p∗0: ↑π0(↑K−f) → ↑π0(X) takes [xn, 0∗Y
] to [xn] = [x].

4. Based directed spaces

Generalising pointed objects, one can keep fixed a set of base-points, with the same
advantage of controlling homotopy invariance at them.

4.1. Bipointed objects. Let us begin considering the ‘comma’ category dTop\S0 =
(S0↓dTop) of bipointed d-spaces. An object (X, x, x′) is a d-space equipped with a pair
of points (possibly equal); bipointed maps preserve them and bipointed (directed) homo-
topies leave each of them fixed.

We already know (from I.3.3.2) that the homotopy functor

↑π1: dTop\S0 → Set,
↑π1(X, x, x′) = ↑Π1(X)(x, x′) = [(↑I, 0, 1), (X, x, x′)]S0 ,

(58)
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is (strictly) invariant up to bipointed d-homotopy; this is also evident by its presentation
as a representable homotopy functor, in the last formula above.

For instance, one can examine by such functors the following d-space X ⊂ ↑R2

X = ([0, 9]×[0, 4]) \ (U ∪ V )

X

U V

C

B

A

D

0 1 9

0

1

4

x •

x′
•

         

�
�
�
�
�
�
�
�
�

�������������

�
�
�
�
�
�
�
�
�
�
�

��

��

(59)

Keeping x′ fixed at (9, 4) and letting x vary in X, we get different results for the set
↑π1(X, x, x′): two equivalence classes if x is in the rectangle A or in B, three if it is in C,
none in D, one in the rest of X. As it happens for the fundamental monoid (3.4), each
such information is invariant up to bipointed d-homotopy and can be computed via the
fundamental category.

The ordered circle ↑O1, bipointed at minimum and maximum, yields a representable
homotopy functor [↑O1,−]: dTop\S0 → Set, which counts the ‘linked pairs of paths’ in
X, from x to x′, up to bipointed homotopy. But the obvious symmetry ↑O1 → ↑O1

produces a symmetry on [↑O1, X], i.e. an action of the group Z2, and we may prefer to
count those pairs of paths up to this action

O1: dTop\S0 → Set, O1(X, x, x′) = ([(↑O1, v−, v+), (X, x, x′)]S0)/Z2; (60)

it might be interesting to develop methods of deducing this invariant from ↑Π1X.

4.2. Based objects. More generally, let A be a fixed d-space, called the basis, and
consider the comma category dTop\A = (A↓dTop) of d-spaces under A. An object is a
pair (X, x), where x: A → X is a d-map; a map f : (X, x) → (Y, y) is defined by a d-map
f : X → Y such that f.x = y. A based (directed) homotopy ϕ: f → g: (X, x) → (Y, y) is
a homotopy ϕ: f → g in dTop which is ‘trivial on the basis’, i.e. ϕ◦x = 0y (each path
ϕ(x(i),−): ↑I → Y is constant, for i ∈ A).

The category dTop\A acquires thus a d-homotopy structure similar to that of dTop,
by suitable cylinder and cocylinder (as proved - in a more complex situation - in [8],
Section 4; the crucial point is the fact that pushouts in dTop exist and are preserved by
↑I, a left adjoint).
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We shall only recall how to construct the based cylinder and cocylinder. The latter is
obvious

↑P (X, x) = (↑PX, xP ), xP = ↑Px.e: A → ↑PA → ↑PX, (61)

while the cylinder ↑I(X, x) is obtained from a pushout in dTop, which collapses (inde-
pendently) each fibre at a point x(i), for all i ∈ A

A
∂α

��

x

���
�
� ↑IA

e ��

↑Ix

��

A

xI

��


�
�

X
∂α

�� ↑IX �� ↑I(X, x)

(62)

(to be precise, ↑I(X, x) is in fact this pushout object equipped with the d-map xI).
The fundamental category can then be viewed as a functor

↑Π1: dTop\A → Cat\↑Π1(A). (63)

In particular, if A is a set (viewed as a discrete d-space and a discrete category), we
have

↑Π1: dTop\A → Cat\A, ↑Π1(X, x) = (↑Π1X, x∗), (64)

a functor invariant up to A-based d-homotopies, of d-spaces and of categories (trivial on
each point of A, in both domains). Again, the crucial fact is that this functor cannot
destroy information at the base points x(i), for i ∈ A, (in contrast with the free ↑Π1 on
dTop, cf. I.3.5).

This follows immediately from the invariance theorem I.3.2. First, if ϕ: f → g is A-
based, then each path ϕ(x(i)): f(x(i)) → g(x(i)) is trivial. Second, if f : (X, x) → (Y, y)
is an A-based d-homotopy equivalence, then

f∗1: ↑Π1(X)(x(i), x(j)) → ↑Π1(Y )(fx(i), fx(j)) (65)

is bijective (for i, j ∈ A).

4.3. Variable basis. Finally, we want to be able to change bases, and to have mor-
phisms between objects with different bases. This is solved by the category of morphisms
dTop2, already considered in 2.1.

An object is a d-map x: X ′ → X ′′, and a morphism is a commutative square in dTop

f = (f ′, f ′′): x → y, f ′: X ′ → Y ′, f ′′: X ′′ → Y ′′; yf ′ = f ′′x. (66)

Again, the homotopy structure of this category of functors 2 → dTop has already
been studied, in general, in [8], Section 4. It is of the same type as the one of dTop,
with the obvious derived cylinder and cocylinder functors, whose values on objects are,
respectively
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↑I(x: X ′ → X ′′) = (↑Ix: ↑IX ′ → ↑IX ′′),
↑P (x: X ′ → X ′′) = (↑Px: ↑PX ′ → ↑PX ′′).

(67)

The fundamental category can then be viewed as a functor

↑Π1: dTop2 → Cat2. (68)

Also here, it is interesting to restrict to the case where the domain of our d-maps
x, y, . . . is a (variable) set, viewed as a discrete d-space via the functor D:Set → dTop (or
a discrete category, via D:Set → Cat). We obtain then the comma category (D↓dTop) ⊂
dTop2: an object is a d-map x: DA → X, a map (f0, f) consists of a set-mapping f0 and
a d-map f forming a commutative square (Df0 is written as f0)

DA
f0 ��

x

��

DB

y

��
(f0, f): (x: DA → X) → (y: DB → Y ).

X
f

�� Y

(69)

A based d-homotopy ϕ: (f0, f) → (g0, g): x → y can only exist if f0 = g0, and consists
then of a d-homotopy ϕ: f → g such that ϕ◦x = 0yf0 . The category (D↓Cat) is similar.

The fundamental-category functor between such comma categories

↑Π1: (D↓dTop) → (D↓Cat), ↑Π1(x: DA → X) = (x: DA → ↑Π1X). (70)

associates to the above homotopy ϕ of (D↓dTop), a natural transformation ϕ∗1: f∗1 → g∗1
which is the identity on all objects x(i) (for i ∈ A): ϕ∗1x(i) = id: y(f0i) = y(g0i). Therefore

f∗1 = g∗1: ↑Π1(X)(x(i), x(j)) → ↑Π1(Y )(y(f0i), y(f0j)) (i, j ∈ A), (71)

and, again, all sets ↑Π1(X)(x(i), x(j)) are (bijectively) invariant up to based d-homotopy
equivalence.
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Università di Genova
Via Dodecaneso 35
16146-Genova, Italy
Email: grandis@dima.unige.it

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/10/14/10-14.{dvi,ps}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility
of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will
be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh,
rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX is the
preferred flavour. TEX source of articles for publication should be submitted by e-mail directly to an
appropriate Editor. They are listed below. Please obtain detailed information on submission format and
style files from the journal’s WWW server at http://www.tac.mta.ca/tac/. You may also write to
tac@mta.ca to receive details by e-mail.

Editorial board.

John Baez, University of California, Riverside: baez@math.ucr.edu
Michael Barr, McGill University: barr@barrs.org, Associate Managing Editor
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