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THE CATEGORY OF OPETOPES AND THE CATEGORY OF
OPETOPIC SETS

EUGENIA CHENG

ABSTRACT.

We give an explicit construction of the category Opetope of opetopes. We prove that
the category of opetopic sets is equivalent to the category of presheaves over Opetope.

Introduction

In [3], Baez and Dolan give a definition of weak n-category in which the underlying shapes
of cells are ‘opetopes’ and the underlying data is given by ‘opetopic sets’. The idea is
that opetopic sets should be presheaves over the category of opetopes. However Baez and
Dolan do not explicitly construct the category of opetopes, so opetopic sets are defined
directly instead. A relationship between this category of opetopic sets and a category of
presheaves is alluded to but not proved.

The main result of this paper is that the category of opetopic sets is equivalent to
the category of presheaves over the category of opetopes. However, we do not use the
opetopic definitions exactly as given in [3] but continue to use the modifications given
in our earlier work [4, 5]. In these papers we use a generalisation along lines which the
original authors began, but chose to abandon as they thought it would lead to an incorrect
definition of braided monoidal categories. This question remainds unresolved. However,
the generalisation enables us, in [4], to exhibit a relationship with the work of Hermida,
Makkai and Power [7] and, in [5], with the work of Leinster [13]. Given these useful
results, we continue to study the modified theory in this work.

We begin in Section 1 by giving an explicit construction of the category of opetopes.
The idea is as follows. In [4] we constructed, for each k ≥ 0, a category Ok of k-opetopes.
For the category Opetope of opetopes of all dimensions, each category Ok should be
a full subcategory of Opetope; furthermore there should be ‘face maps’ exhibiting the
constituent m-opetopes, or ‘faces’ of a k-opetope, for m ≤ k. We refer to the m-opetope
faces as m-faces. Note that there are no degeneracy maps.

The (k − 1)-faces of a k-opetope α should be the (k − 1)-opetopes of its source and
target; these should all be distinct. Then each of these faces has its own (k−2)-faces, but
all these (k − 2)-opetopes should not necessarily be considered as distinct (k − 2)-faces
in α. For α is a configuration for composing its (k − 1)-faces at their (k − 2)-faces, so
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the (k − 2)-faces should be identified with one another at places where composition is to
occur. That is, the face maps from these (k− 2)-opetopes to α should therefore be equal.
Some further details are then required to deal with isomorphic copies of opetopes.

Recall that a ‘configuration’ for composing (k − 1)-opetopes is expressed as a tree
(see [4]) whose nodes are labelled by the (k − 1)-opetopes in question, with the edges
giving their inputs and outputs. So composition occurs along each edge of the tree, via
an object-morphism label, and thus the tree tells us which (k−1)-opetopes are identified.
In order to express this more precisely, we use a more formal characterisation of such a
‘configuration’; see [6] for a complete treatment of this subject.

In Section 2, we examine the theory of opetopic sets. We begin by following through
our modifications to the opetopic theory to include the theory of opetopic sets. (Our
previous work has only dealt with the theory of opetopes.) We then use results of [12] to
prove that the category of opetopic sets is indeed equivalent to the category of presheaves
on Opetope. This is the main result of this work.

Finally, a comment is due on the notion of ‘multitope’ as defined in [7]. In this work,
Hermida, Makkai and Power begin a definition of n-category explicitly analogous to that
of [3], the analogous concepts being ‘multitopes’ and ‘multitopic sets’. In [4] we prove
that ‘opetopes and multitopes are the same up to isomorphism’, that is, for each k ≥ 0
the category of k-opetopes is equivalent to the (discrete) category of k-multitopes. In
[7], Hermida, Makkai and Power do go on to give an explicit definition of the analogous
category Multitope, of multitopes. Given the above equivialences, and assuming the
underlying idea is the same, this would be equivalent to the category Opetope, but we
do not attempt to prove it in this work.

Acknowledgements. This work was supported by a PhD grant from EPSRC. I would
like to thank Martin Hyland for his support and guidance.

Some of the diagrams in this work were produced using Paul Taylor’s diagram package;
others were produced using LATEX-cad.

1. The category of opetopes

In this section we give an explicit construction of the category Opetope of opetopes.
This construction will enable us, in Section 2, to prove that the category of opetopic sets
is in fact a presheaf category.

Opetopes themselves are constructed by iterating a ‘slice’ construction on a certain
symmetric multicategory. We begin this section with a terse account of the definitions
required for this theory. We include it for the sake of completeness; none of the material
in Sections 1.1–1.3 is new, and it is treated in full in [4].

1.1. Symmetric Multicategories. We write F for the ‘free symmetric strict
monoidal category’ monad on Cat, and Sk for the group of permutations on k objects;
we also write ι for the identity permutation.
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A symmetric multicategory Q with a category of objects is given by the following data

1) A category o(Q) = C of objects. We refer to C as the object-category, the morphisms
of C as object-morphisms, and if C is discrete, we say that Q is object-discrete.

2) For each p ∈ FC
op × C, a set Q(p) of arrows. Writing

p = (x1, . . . , xk;x),

an element f ∈ Q(p) is considered as an arrow with source and target given by

s(f) = (x1, . . . , xk)

t(f) = x.

3) For each object-morphism f : x −→ y, an arrow ι(f) ∈ Q(x; y). In particular we
write 1x = ι(1x) ∈ Q(x;x).

4) Composition: for any f ∈ Q(x1, . . . , xk;x) and gi ∈ Q(xi1, . . . , ximi
;xi) for 1 ≤ i ≤

k, a composite

f ◦ (g1, . . . , gk) ∈ Q(x11, . . . , x1m1 , . . . , xk1, . . . , xkmk
;x)

5) Symmetric action: for each permutation σ ∈ Sk, a map

σ : Q(x1, . . . , xk;x) −→ Q(xσ(1), . . . , xσ(k);x)
f �−→ fσ

satisfying the following axioms:

1) Unit laws: for any f ∈ Q(x1, . . . , xm;x), we have

1x ◦ f = f = f ◦ (1x1 , . . . , 1xm)

2) Associativity: whenever both sides are defined,

f ◦ (g1 ◦ (h11, . . . , h1m1), . . . , gk ◦ (hk1, . . . , hkmk
)) =

(f ◦ (g1, . . . , gk)) ◦ (h11, . . . , h1m1 , . . . , hk1, . . . , hkmk
)

3) For any f ∈ Q(x1, . . . , xm;x) and σ, σ′ ∈ Sk,

(fσ)σ′ = f(σσ′)

4) For any f ∈ Q(x1, . . . , xk;x), gi ∈ Q(xi1, . . . , ximi
;xi) for 1 ≤ i ≤ k, and σ ∈ Sk, we

have
(fσ) ◦ (gσ(1), . . . , gσ(k)) = f ◦ (g1, . . . , gk) · ρ(σ)

where ρ : Sk −→ Sm1+...+mk
is the obvious homomorphism.
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5) For any f ∈ Q(x1, . . . , xk;x), gi ∈ Q(xi1, . . . , ximi
;xi), and σi ∈ Smi

for 1 ≤ i ≤ k,
we have

f ◦ (g1σ1, . . . , gkσk) = (f ◦ (g1, . . . , gk))σ

where σ ∈ Sm1+···+mk
is the permutation obtained by juxtaposing the σi.

6) ι(f ◦ g) = ι(f) ◦ ι(g)

1.2. The slice multicategory. We now define the ‘slice’, a way of moving up one
dimension. Let Q be a symmetric multicategory with a category C of objects, so Q may
be considered as a functor Q : FC

op × C −→ Set with certain extra structure. Then
we can form eltQ, the category of elements of the functor Q. eltQ has as objects pairs
(p, g) with p ∈ FC

op × C and g ∈ Q(p); a morphism α : (p, g) −→ (p′, g′) is an arrow
α : p −→ p′ ∈ FC

op × C such that

Q(α) : Q(p) −→ Q(p′)
g �−→ g′ .

The slice multicategory Q+ is given by:

• Objects: o(Q+) = elt(Q)

• Arrows: Q+(f1, . . . , fn; f) is given by the set of ‘configurations’ for composing
f1, . . . , fn as arrows of Q, to yield f .

Writing fi ∈ Q(xi1, . . . ximi
;xi) for 1 ≤ i ≤ n, such a configuration is given by (T, ρ, τ)

where

1) T is a tree with n nodes. Each node is labelled by one of the fi, and each edge is
labelled by an object-morphism ofQ in such a way that the (unique) node labelled by
fi has precisely mi edges going in from above, labelled by ai1, . . . , aimi

∈ arr(C), and
the edge coming out is labelled ai ∈ a(C), where cod(aij) = xij and dom(ai) = xi.

2) ρ ∈ Sk where k is the number of leaves of T .

3) τ : {nodes of T} −→ [n] = {1, . . . , n} is a bijection such that the node N is labelled
by fτ(N). (This specification is necessary to allow for the possibility fi = fj, i �= j.)

The arrow resulting from this composition is given by composing the fi according to their
positions in T , with the aij acting as arrows ι(aij) of Q, and then applying ρ according to
the symmetric action on Q. This construction uniquely determines an arrow (T, ρ, τ) ∈
Q+(f1, . . . , fn; f).

Note that (T, ρ) may be considered as a ‘combed tree’, that is, a tree with a ‘twisting’
of branches at the top given by ρ. An example of such a tree is given below:
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Note that there is a ‘null tree’ with no nodes

.

• Composition

When it can be defined, (T1, ρ1, τ1) ◦m (T2, ρ2, τ2) = (T, ρ, τ) is given by

1) (T, ρ) is the combed tree obtained by replacing the node τ1
−1(m) by the tree (T2, ρ2),

composing the edge labels as morphisms of C, and then ‘combing’ the tree so that
all twists are at the top.

2) τ is the bijection which inserts the source of T2 into that of T1 at the mth place.

• Identities: given an object-morphism

α = (σ, f1, . . . , fm; f) : g −→ g′,

ι(α) ∈ Q+(g; g′) is given by a tree with one node, labelled by g, twist σ, and edges
labelled by the fi and f as in the example above.

• Symmetric action: (T, ρ, τ)σ = (T, ρ, σ−1τ)

1.3. Opetopes. For any symmetric multicategory Q we write Qk+ for the kth iterated
slice of Q, that is

Qk+ =

{
Q k = 0

(Q(k−1)+)
+

k ≥ 1

Let I be the symmetric multicategory with precisely one object, precisely one (identity)
object-morphism, and precisely one (identity) arrow. A k-dimensional opetope, or simply
k-opetope, is defined in [3] to be an object of Ik+. We write Ok = o(Ik+), the category of
k-opetopes.
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1.4. Formal description of trees. In this section we give a formal description of
the above trees, that will enable us, in Section 1.7, to determine which faces of faces are
identified in an opetope. We only give the details necessary for the construction of the
category of opetopes; for a full treatment of trees in this way, we refer the reader to [6].

We consider a tree with k nodes N1, . . . , Nk where Ni has mi inputs and one output.
Let N be a node with (

∑
imi)− k+ 1 inputs; N will be used to represent the leaves and

root of the tree.

Then a tree gives a bijection

∐
i

{inputs of Ni}
∐

{output of N} −→
∐

i

{output of Ni}
∐

{inputs of N}

since each input of a node is either connected to a unique output of another node, or it is
a leaf, that is, input of N . Similarly each output of a node is either attached to an input
of another node, or it is the root, that is, output of N .

We express this formally as follows.

1.5. Lemma. Let T be a tree with nodes N1, . . . , Nk, where Ni has inputs {xi1, . . . , ximi
}

and output xi. Let N be a node with inputs {z1, . . . , zl} and output z, with

l = (
k∑

i=1

mi) − k + 1.

Then T gives a bijection

α :
∐

i

{xi1, . . . , ximi
}

∐
{z} −→

∐
i

{xi}
∐

{z1, . . . , zl}.

In fact for the construction of opetopes we require the ‘labelled’ version of these trees.
A tree labelled in a category C is a tree as above, with each edge labelled by a morphism
of C considered to be pointing ‘down’ towards the root.

1.6. Proposition. Let T ′ be a labelled tree whose underlying tree is a tree T as above.
Then T ′ is gives a bijection as above, together with, for each

y ∈
∐

i

{xi1, . . . , ximi
}

∐
{z}

a morphism f ∈ C giving the label of the edge joining y and α(y). Then y is considered
to be labelled by the object cod(f) and α(y) by the object dom(f).
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1.7. The category of opetopes. In our earlier work [4] we constructed for each
k ≥ 0 the category Ok of k-opetopes. We now construct a category Opetope of opetopes
of all dimensions whose morphisms are, essentially, face maps. Each category Ok is to
be a full subcategory of Opetope, and there are no morphisms from an opetope to one
of lower dimension. For brevity we write Opetope = O and construct this category as
follows.

For the objects:

ob O =
∐
k≥0

Ok.

The morphisms of O are given by generators and relations as follows.

• Generators

1) For each morphism f : α −→ β ∈ Ok there is a morphism

f : α −→ β ∈ O.

2) Let k ≥ 1 and consider α ∈ Ok = o(Ik+) = elt(I(k−1)+). Write α ∈ I(k−1)+(x1, . . . , xm;x),
say. Then for each 1 ≤ i ≤ m there is a morphism

si : xi −→ α ∈ O
and there is also a morphism

t : x −→ α ∈ O.
We write Gk for the set of all generating morphisms of this kind.

Before giving the relations on these morphisms we make the following observation
about morphisms in Ok. Consider

α ∈ I(k−1)+(x1, . . . , xm;x)

β ∈ I(k−1)+(y1, . . . , ym; y)

A morphism α
g−→ β ∈ Ok is given by a permutation σ and morphisms

xi
fi−→ yσ(i)

x
f−→ y ∈ Ok−1

So for each face map γ there is a unique ‘restriction’ of g to the specified face, giving a
morphism γg of (k − 1)-opetopes.

Note that, to specify a morphism in the category FOk−1
op × Ok−1 the morphisms fi

above should be in the direction yσ(i) −→ xi, but since these are all unique isomorphisms
the direction does not matter; the convention above helps the notation. We now give the
relations on the above generating morphisms.
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• Relations

1) For any morphism

α
g−→ β ∈ Ok

and face map
xi

si−→ α

the following diagrams commute

xi

si � α x
t � α

yσ(i)

si(g)



sσ(i)

� β

g


y

t(g)



t
� β

g



We write these generally as

x
γ � α

y

γg



γ′
� β

g



2) Faces are identified where composition occurs: consider θ ∈ Ok where k ≥ 2. Recall
that θ is constructed as an arrow of a slice multicategory, so is given by a labelled
tree, with nodes labelled by its (k−1)-faces, and edges labelled by object-morphisms,
that is, morphisms of Ok−2.

So by the formal description of trees (Section 1.4), θ is a certain bijection, and the
elements that are in bijection with each other are the (k − 2)-faces of the (k − 1)-
faces of θ; they are given by composable pairs of face maps of the second kind above.
That is, the node labels are given by face maps α

γ−→ θ and then the inputs and
outputs of those are given by pairs

x
γ1−→ α

γ2−→ θ

where γ2 ∈ Gk and γ1 ∈ Gk−1. Now, if

x
γ1−→ α

γ2−→ θ

and y
γ3−→ β

γ4−→ θ
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correspond under the bijection, there must be a unique object-morphism

f : x −→ y

labelling the relevant edge of the tree. Then for the composites in O we have the
relation: the following diagram commutes

x
γ1 � α

�����
γ2

�
θ

y

f

 γ3 � β
�����

γ4

�
.

3) Composition in Ok is respected, that is, if g ◦ f = h ∈ Ok then g ◦ f = h ∈ O.

4) Identities in Ok are respected, that is, given any morphism x
γ−→ α ∈ O we have

γ ◦ 1x = γ.

Note that only the relation (2) is concerned with the identification of faces with one
another; the other relations are merely dealing with isomorphic copies of opetopes.

We immediately check that the above relations have not identified any morphisms of
Ok.

1.8. Lemma. Each Ok is a full subcategory of O.

Proof. Clear from definitions.

We now check that the above relations have not identified any (k − 1)-faces of k-
opetopes.

1.9. Proposition. Let x ∈ Ok−1, α ∈ Ok and γ1, γ2 ∈ Gk with

γ1, γ2 : x −→ α

Then γ1 = γ2 ∈ O =⇒ γ1 = γ2 ∈ Gk.

We prove this by expressing all morphisms from (k− 1)-opetopes to k-opetopes in the
following “normal form”; this is a simple exercise in term rewriting (see [11]).
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1.10. Lemma. Let x ∈ Ok−1, α ∈ O. Then a morphism

x −→ α ∈ O

is uniquely represented by

x
γ−→ α

or a pair

x
f−→ y

γ−→ α

where f ∈ Ok−1 and γ ∈ Gk.

Proof. Any map x −→ α is represented by terms of the form

x
f1−→ x1

f2−→ · · · fm−→ xm
γ−→ α1

g1−→ · · · gj−1−→ αj
gj−→ α

where each fi ∈ Ok−1 and each gr ∈ Ok. Equalities are generated by equalities in
components of the following forms:

1)
γ � g � =

γg � γ′ �

2)
f � f ′

� =
f ′ ◦ f � ∈ Ok−1

3)
g � g′ � =

g′ ◦ g � ∈ Ok

4)
1 � γ � =

γ �

where γ ∈ Gk and γg and γ′ are as defined above. That is, equalities in terms are
generated by equations t = t′ where t′ is obtained from t by replacing a component of t
of a left hand form above, with the form in the right hand side, or vice versa.

We now orient the equations in the term rewriting style in the direction

=⇒

from left to right in the above equations. We then show two obvious properties:

1) Any reduction of t by =⇒ terminates in at most 2j +m steps.

2) If we have

������

t
������

t′ t′′
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then there exists t′′′ with
������

t
������

t′
�

�
��
t′′′

��
�

�
t′′

where the dashed arrows indicate a chain of equations (in this case of length at
most 2).

The first part is clear from the definitions; for the second part the only non-trivial
case is for a component of the form

γ � g1 � g2 � .

This reduces uniquely to
γ(g2 ◦ g1)� γ′ �

since ‘restriction’ is unique, as discussed earlier.
It follows that, for any terms t and s, t = s if and only if t and s reduce to the same

normal form as above.

Proof of Proposition 1.9. γ1 and γ2 are in normal form.

2. Opetopic Sets

In this section we examine the theory of opetopic sets. We begin by following through
our modifications to the opetopic theory to include the theory of opetopic sets. We then
use results of [12] to prove that the category of opetopic sets is indeed equivalent to the
category of presheaves on O, the category of opetopes defined in Section 1.

Recall that, by the equivalences proved in [4] and [5], we have equivalent categories
of opetopes, multitopes and Leinster opetopes. So we may define equivalent categories
of opetopic sets by taking presheaves on any of these three categories. In the following
definitions, although the opetopes we consider are the ‘symmetric multicategory’ kind,
the concrete description of an opetopic set is not precisely as a presheaf on the category
of these opetopes. The sets given in the data are indexed not by opetopes themselves
but by isomorphism classes of opetopes; so at first sight this resembles a presheaf on the
category of Leinster opetopes. However, we do not pursue this matter here, since the
equivalences proved in our earlier work are sufficient for the purposes of this article.

We adopt this presentation in order to avoid naming the same cells repeatedly accord-
ing to the symmetries; that is, we do not keep copies of cells that are isomorphic by the
symmetries.
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In [3], weak n-categories are defined as opetopic sets satisfying certain universality
conditions. However, opetopic sets are defined using only symmetric multicategories with
a set of objects; in the light of the results of our earlier work, we seek a definition using
symmetric multicategories with a category of objects. The definitions we give here are
those given in [3] but with modifications as demanded by the results of our previous work.

The underlying data for an opetopic n-category are given by an opetopic set. Recall
that, in [3], given a symmetric multicategory Q a Q-opetopic set X is given by, for each
k ≥ 0, a symmetric multicategory Q(k) and a set X(k) over o(Q(k)), where

Q(0) = Q

and Q(k + 1) = Q(0)X(0)
+.

An opetopic set is then an I-opetopic set, where I is the symmetric multicategory with
one object and one (identity) arrow.

The idea is that the category of opetopic sets should be equivalent to the presheaf
category

[Opetopeop,Set]

and we use this to motivate our generalisation of the Baez-Dolan definitions.
Recall that we have for each k ≥ 0 a category Ok of k-opetopes, and each Ok is a full

subcategory of Opetope. A functor

Opetopeop −→ Set

may be considered as assigning to each opetope a set of ‘labels’.
Recall that for each k, Ok is equivalent to a discrete category. So it is sufficient to

specify ‘labels’ for each isomorphism class of opetopes.
Recall [4] that we call a symmetric multicategory Q tidy if it is freely symmetric with a

category of objects C equivalent to a discrete category. Throughout this section we say ‘Q
has object-category C equivalent to S discrete’ to mean that S is the set of isomorphism
classes of C, so C is equipped with a morphism C

∼−→ S. We begin by defining the
construction used for ‘labelling’ as discussed above. The idea is to give a set of labels as
a set over the isomorphism classes of objects of Q, and then to ‘attach’ the labels using
the following pullback construction.

2.1. Pullback multicategory. Let Q be a tidy symmetric multicategory with
category of objects C equivalent to S discrete. Given a set X over S, that is, equipped
with a function f : X −→ S, we define the pullback multicategory QX as follows.

• Objects: o(QX) is given by the pullback

X

. C

S

�

�
 

f

∼

.
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Observe that the morphism on the left is an equivalence, so o(QX) is equivalent to
X discrete. Write h for this morphism.

• Arrows: given objects a1, . . . ak, a ∈ o(QX) we have

QX(a1, . . . , ak; a) ∼= Q(fh(a1), . . . , fh(ak); fh(a)).

• Composition, identities and symmetric action are then inherited from Q.

We observe immediately that since Q is tidy, QX is tidy. Also note that if Q is object-
discrete this definition corresponds to the definition of pullback symmetric multicategory
given in [3].

We are now ready to describe the construction of opetopic sets.

2.2. Q-opetopic sets. Let Q be a tidy symmetric multicategory with object-category
C equivalent to S discrete. A Q-opetopic set X is defined recursively as a set X(0) over
S together with a QX(0)

+-opetopic set X1.
So a Q-opetopic set consists of, for each k ≥ 0:

• a tidy symmetric multicategory Q(k) with object-category C(k) equivalent to S(k)
discrete

• a set X(k) and function X(k)
fk−→ S(k)

where

Q(0) = Q

and Q(k + 1) = Q(k)X(k)
+.

We refer to X1 as the underlying Q(0)X(0)
+-opetopic set of X.

2.3. Morphisms of Q-opetopic sets. We now define morphisms of opetopic sets.
Suppose we have opetopic setsX andX ′ with notation as above, together with a morphism
of symmetric multicategories

F : Q −→ Q′

and a function
F0 : X(0) −→ X ′(0)

such that the following diagram commutes

X ′(0)

X(0) S(0)

S ′(0)

�

�
 

F0 F

f0

f ′
0
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where the morphism on the right is given by the action of F on objects. This induces a
morphism

QX(0) −→ Q′
X′(0)

and so a morphism

QX(0)
+ −→ Q′

X′(0)
+
.

We make the following definition.

A morphism of Q-opetopic sets

F : X −→ X ′

is given by:

• an underlying morphism of symmetric multicategories and function F0 as above

• a morphism X1 −→ X ′
1 of their underlying opetopic sets, whose underlying mor-

phism is induced as above.

So F consists of

• a morphism Q −→ Q′

• for each k ≥ 0 a function Fk : X(k) −→ X ′(k) such that the following diagram
commutes

X ′(k)

X(k) S(k)

S ′(k)

�

�
 

Fk

fk

f ′
k

where the map on the right hand side is induced as appropriate.

Note that the above notation for a Q-opetopic set X and morphism F will be used
throughout this section, unless otherwise specified.

2.4. Definition. An opetopic set is an I-opetopic set. A morphism of opetopic sets
is a morphism of I-opetopic sets. We write OSet for the category of opetopic sets and
their morphisms.
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2.5. Intuitions. In this section we briefly discuss some of the intuition behind the idea
of an opetopic set.

Eventually, a weak n-category is defined as an opetopic set with certain properties.
The idea is that k-cells have underlying shapes given by the objects of Ik+. These are
‘unlabelled’ cells. To make these into fully labelled k-cells, we first give labels to the
0-cells, via the function X(0) −→ S(0), and then to 1-cells via X(1) −→ S(1), and so on.
This idea may be captured in the following ‘schematic’ diagram.

Q(2)X(2)
+

Q(2)X(2) Q(2) = Q(1)X(1)
+

Q(1)X(1) Q(1) = Q(0)X(0)
+

Q(0)X(0) Q(0) = I

I+

I2+

I3+















+

+

+

+

+

+

+

�

�

�

...

Bearing in mind our modified definitions, we use the Baez-Dolan terminology as fol-
lows.

• A k-dimensional cell (or k-cell) is an element of X(k)
(i.e. an isomorphism class of objects of Q(k)X(k) ).

• A k-frame is an isomorphism class of objects of Q(k)
(i.e. an isomorphism class of arrows of Q(k − 1)X(k−1) ).

• A k-opening is an isomorphism class of arrows of Q(k − 1), for k ≥ 1.

So a k-opening may acquire (k−1)-cell labels and become a k-frame, which may itself
acquire a label and become a k-cell. We refer to such a cell and frame as being in the
original k-opening.

On objects, the above schematic diagram becomes:
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3-frames

2-cells

3-openings

2-frames

1-cells

.

2-openings

1-frames

0-cells

3-opetopes

2-opetopes

1-opetopes

0-opetopes















+

+

+

+

+

+

+

+

+

+







�

�

�

�

�

�

�

�

��

� � �
labels for 2-cells labels for 1-cells labels for 0-cells

.
Horizontal arrows represent the process of labelling, as shown; vertical arrows represent

the process of ‘moving up’ dimensions. Starting with a k-opetope, we have from right to
left the progressive labelling of 0-cells, 1-cells, and so on, to form a k-cell at the far left,
the final stages being:

k-opening

k-frame

k-cell

labels for constituent (k − 1)-cells

label for k-cell itself
�

�

A k-opening acquires labels as an arrow of Q(k − 1), becoming a k-frame as an arrow of
Q(k − 1)X(k−1) . That is, it has (k − 1)-cells as its source and a (k − 1)-cell as its target.
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2.6. OSet is a presheaf category. We now prove the main result of this work, that
the category of opetopic sets is a presheaf category, and moreover, that it is equivalent to
the presheaf category

[Opetopeop,Set] = [O op,Set].

To prove this we use [12], Theorem 5.26, in the case V = Set. This theorem is as follows.

2.7. Theorem. Let C be a V-category. In order that C be equivalent to [E op,V ] for
some small category E it is necessary and sufficient that C be cocomplete, and that there
be a set of small-projective objects in C constituting a strong generator for C.

We see from the proof of this theorem that if E is such a set and E is the full subcat-
egory of C whose objects are the elements of E, then

C � [E op,V ].

We prove the following propositions; the idea is to “realise” each isomorphism class of
opetopes as an opetopic set; the set of these opetopic sets constitutes a strong generator
as required.

2.8. Proposition. OSet is cocomplete.

2.9. Proposition. There is a full and faithful functor

G : O −→ OSet.

2.10. Proposition. Let α ∈ O. Then G(α) is small-projective in OSet.

2.11. Proposition. Let

E =
∐

{G(α) | α ∈ O} ⊆ OSet.

Then E is a strongly generating set for OSet.

2.12. Corollary. OSet is a presheaf category.

2.13. Corollary.

OSet � [O op,Set].
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Proof of Proposition 2.8. Consider a diagram

D : I −→ OSet

where I is a small category. We seek to construct a limit Z for D; the set of cells of Z of
shape α is given by a colimit of the sets of cells of shape α in each D(I).

We construct an opetopic set Z as follows. For each k ≥ 0, Z(k) is a colimit in Set:

Z(k) =

∫ I∈I

D(I)(k).

Now for each k we need to give a function

F (k) : Z(k) −→ o(Q(k))

where
Q(k) = Q(k − 1)Z(k−1)

+

Q(0) = I.

That is, for each α ∈ Z(k) we need to give its frame. Now

Z(k) =
∐
I∈I

D(I)(k) /
∼

where ∼ is the equivalence relation generated by

D(u)(αI′) ∼ αI for all u : I −→ I ′ ∈ I

and αI ∈ D(I)(k).

So α ∈ Z(k) is of the form [αI ] for some αI ∈ D(I)(k) where [αI ] denotes the equivalence
class of αI with respect to ∼.

Now suppose the frame of αI in D(I) is

(β1, . . . , βj)
?−→ β

where βi, β ∈ D(I)(k − 1) label some k-opetope x. We set the frame of [αI ] to be

( [β1], . . . , [βj] )
?−→ [β]

labelling the same opetope x. This is well-defined since a morphism of opetopic sets
preserves frames of cells, so the frame of D(u)(αI) is

( D(u)(β1) , . . . , D(u)(βj) )
?−→ D(u)(β)

also labelling k-opetope x. It follows from the universal properties of the colimits in Set
that Z is a colimit for D, with coprojections induced from those in Set. Then, since Set
is cocomplete, OSet is cocomplete.
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Proof of Proposition 2.9. Let α be a k-opetope. We express α as an opetopic set
G(α) = α̂ as follows, using the usual notation for an opetopic set. The idea is that the
m-cells are given by the m-faces of α.

For each m ≥ 0 set

X(m) = { [(x, f)] | x ∈ Om and x
f−→ α ∈ O

where [ ] denotes isomorphism class in O/α}.
So in particular we have

X(k) = {[(α, 1)]}
and for all m > k, X(m) = ∅. It remains to specify the frame of [(x, f)]. The frame is an
object of

Q(m) = Q(m− 1)X(m−1)
+

so an arrow of
Q(m− 2)X(m−2)

+

labelled with elements of X(m− 1). Now such an arrow is a configuration for composing
arrows of Q(m − 2)X(m−2); for the frame as above, this is given by the opetope x as a
labelled tree. Then the (m− 1)-cell labels are given as follows. Write

x : y1, . . . , yj −→ y

say, and so we have for each i a morphism

yi −→ x

and a morphism
y −→ x ∈ O.

Then the labels in X(m− 1) are given by

[yi −→ x
f−→ α] ∈ X(m− 1)

and
[y −→ x

f−→ α] ∈ X(m− 1).

Now, given a morphism
h : α −→ β ∈ O

we define
ĥ : α̂ −→ β̂ ∈ OSet

by
[(x, f)] �→ [(x, h ◦ f)]

which is well-defined since if (x, f) ∼= (x′, f ′) then (x, hf) ∼= (x′, hf ′) in O/α. This is
clearly a morphism of opetopic sets.

Observe that any morphism α̂ −→ β̂ must be of this form since the faces of α must
be preserved. Moreover, if ĥ = ĝ then certainly [(α, h)] = [(α, g)]. But this gives (α, h) =
(α, g) since there is a unique morphism α −→ α ∈ O namely the identity. So G is full
and faithful as required.
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Proof of Proposition 2.10. For any α ∈ Ok we show that α̂ is small-projective, that is
that the functor

ψ = OSet(α̂,−) : OSet −→ Set

preserves small colimits. First observe that for any opetopic set X

ψ(X) = OSet(α̂, X) ∼= {k-cells in X whose underlying k-opetope is α}
⊆ X(k)

and the action on a morphism F : X −→ Y is given by

ψ(F ) = OSet(α̂, F ) : OSet(α̂, X) −→ OSet(α̂, Y )
x �→ F (x).

So ψ is the ‘restriction’ to the set of cells of shape α. This clearly preserves colimits since
the cells of shape α in the colimit are given by a colimit of the sets cells of shape α in the
original diagram.

Proof of Proposition 2.11. First note that

α̂ = β̂ ⇐⇒ α ∼= β ∈ O
so

E ∼=
∐

k

Sk

where for each k, Sk is the set of k-dimensional Leinster opetopes. Since each Sk is a set
it follows that E is a set.

We need to show that, given a morphism of opetopic sets F : X −→ Y , we have

OSet(α̂, F ) is an isomorphism for all α̂ =⇒ F is an isomorphism.

Now, we have seen above that

OSet(α̂, X) ∼= {cells of X of shape α}
so

OSet(α̂, F ) = F |α = F restricted to cells of shape α.

So
OSet(α̂, F ) is an isomorphism for all α̂

⇐⇒ F |α is an isomorphism for all α ∈ O
⇐⇒ F is an isomorphism.

Proof of Corollary 2.12. Follows from Propositions 2.8, 2.9, 2.10, 2.11 and [12] Theorem
5.26.
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Proof of Corollary 2.13. Let E be the full subcategory of OSet whose objects are those
of E. Since G is full and faithful, E is the image of G and we have

O � E

and hence
OSet � [E op,Set] � [O op,Set].
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