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CHARACTERIZATION OF POINTED VARIETIES OF UNIVERSAL
ALGEBRAS WITH NORMAL PROJECTIONS

ZURAB JANELIDZE

ABSTRACT. We characterize pointed varieties of universal algebras in which (A × B)/A ≈ B,
i.e. all product projections are normal epimorphisms.

1. Definition. We will say that a pointed category C has normal projections if every
product projection A × B → B in C is a normal epimorphism.

Equivalently, for any two objects A and B in such a category C, forming the product
A×B and then factoring it by A ≈ A×0 results in B. In particular, every Jónsson-Tarski
variety of universal algebras [3] (considered as a category) has this property; the same is
true for the pointed subtractive varieties in the sense of Ursini [4].

The purpose of this paper is to characterize pointed varieties with normal projections
(Theorem 3 below).

Before stating the theorem, we make a simple reformulation of Definition 1.

2. Proposition. Let C be a pointed variety. The following conditions are equivalent:

(a) C has normal projections;

(b) there exists a natural number n, such that for all A and B in C, and for all a ∈ A
and b ∈ B, ((a, b), (0, b)) ∈ Rn, where R is the reflexive homomorphic relation on
A × B generated by the set {((a′, 0), (a′′, 0))| a′ = 0 or a′′ = 0};

(c) let F [x] be the free algebra in C generated by x; there exists a natural number n
such that ((x, x), (0, x)) ∈ Qn, where Q is the reflexive homomorphic relation on
F [x] × F [x] generated by the set {((x, 0), (0, 0)), ((0, 0), (x, 0))}.

Moreover, the number n in (b) and in (c) can be supposed to be the same.

3. Theorem. A pointed variety C has normal projections if and only if the corresponding
theory contains

• unary terms t1, ..., tm and u1, ..., um;

• (m + 2)-ary terms v1, ..., vn;
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and the following identities hold in C:

• x = v1(t1(x), ..., tm(x), x, 0);

• vi+1(t1(x), ..., tm(x), x, 0) = vi(t1(x), ..., tm(x), 0, x) for each i ∈ {1, ..., n − 1};

• 0 = vn(t1(x), ..., tm(x), 0, x);

• x = vi(u1(x), ..., um(x), 0, 0) for each i ∈ {1, ..., n}.

Moreover, for each n this characterizes the pointed varieties of universal algebras which
satisfy 2(b) (for the same n).

Proof. According to Proposition 2, we have to characterize pointed varieties for which
((x, x), (0, x)) ∈ Qn, i.e. for which there exist s1, ..., sn+1 ∈ F [x] such that s1 = x, sn+1 = 0,
and for each i ∈ {1, ..., n} the pair ((si, x), (si+1, x)) is in Q. On the other hand,
((si, x), (si+1, x)) ∈ Q if and only if for some (m+2)-ary term vi and unary terms t1, ..., tm,
u1, ..., um ∈ F [x], one has the equalities (si, x) = vi((t1, u1), ..., (tm, um), (x, 0), (0, 0))
and (si+1, x) = vi((t1, u1), ..., (tm, um), (0, 0), (x, 0)). Moreover, we can assume that the
t’s, u’s and the number m are the same for each i ∈ {1, ..., n}. Writing the equal-
ities above separately for the components of pairs, we obtain si = vi(t1, ..., tm, x, 0),
si+1 = vi(t1, ..., tm, 0, x), x = vi(u1, ..., um, 0, 0). Since s’s are expressed by v’s, we may
omit them; after this the identities become exactly as in the formulation of the theorem.

4. Example. Let C be a pointed variety with normal projections, for which we
could take n = 1 in Theorem 3. Then, the theory corresponding to C has unary terms
t1, ..., tm, u1, ..., um and an (m + 2)-ary term v, which satisfy the identities

x = v(t1(x), ..., tm(x), x, 0), x = v(u1(x), ..., um(x), 0, 0), 0 = v(t1(x), ..., tm(x), 0, x).

When the unary terms are either x or 0, an easy argument shows that we could rewrite
these identities as

x = w(x, 0, x, x, 0), x = w(x, x, 0, 0, 0), 0 = w(x, 0, x, 0, x).

If the term w = w(x1, x2, x3, x4, x5) depends only on the first variable x1 and the last
variable x5, then we can write w(x1, x2, x3, x4, x5) = x1 + x5 and our identities become

x = x + 0, 0 = x + x;

in this case the variety C becomes nothing but a pointed subtractive variety in the sense
of Ursini [4]. On the other hand, w(x1, x2, x3, x4, x5) = x2 + x4 would give

x = 0 + x, x = x + 0

which defines a Jónsson-Tarski variety [3].
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5. Remark. It is known that every semi-abelian category has normal projections (see
Condition SA*3a in [2]). More generally, every pointed category in which every pair of
canonical morphisms (1A, 0) : A → A × B, (0, 1B) : B → A × B is jointly epimorphic
has this property. In particular, this is the case for the unital categories in the sense of
Bourn [1].
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