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SEVERAL CONSTRUCTIONS FOR FACTORIZATION SYSTEMS

DALI ZANGURASHVILI

Abstract. The paper develops the previously proposed approach to constructing fac-
torization systems in general categories. This approach is applied to the problem of find-
ing conditions under which a functor (not necessarily admitting a right adjoint) “reflects”
factorization systems. In particular, a generalization of the well-known Cassidy-Hébert-
Kelly factorization theorem is given. The problem of relating a factorization system to
a pointed endofunctor is considered. Some relevant examples in concrete categories are
given.

1. Introduction

The problem of relating a factorization system on a category C to an adjunction

C
I

�� XH�� , (1.1)

was thoroughly considered by C. Cassidy, M. Hébert and G. M. Kelly in [CHK]. The
well-known theorem of these authors states that in the case of a finitely well-complete
category C the pair of morphism classes

(
I−1(Iso X ),

(
H(Mor X )

)↑↓)
(1.2)

is a factorization system on C (recall that for any morphism class N the symbol N↑ (resp.
N↓) denotes the class of all morphisms f with f ↓ n (resp. n ↓ f) for all n ∈ N).
Subsequently, G. Janelidze posed the problem whether this is still the case if Iso X and
Mor X in (1.2) are replaced by any morphism classes E and M, respectively, constituting
a factorization system on X . This problem is dealt with in the author’s recent works [Z1],
[Z2]. For instance, in [Z1] it is shown1 that the pair(

I−1(E), (H(M))↑↓
)

(1.3)

is a factorization system on C for any factorization system (E,M) on X if (1.1) is a semi-
left-exact reflection in the sense of [CHK], or, equivalently, an admissible reflection in the
sense of [J1].
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In [Z2] we proposed an approach of transporting factorization systems from X to C,
which sheds new light on the above-mentioned problem. In this paper we develop our
approach and apply it to the same problem, but in a more general situation, namely, to
the problem whether the pair of morphism classes(

I−1(E), (I−1(E))↓
)

(1.4)

is a factorization system, where
I : C �� X

is any functor, not necessarily admitting a right adjoint. We prove that the pair (1.4) is
a factorization system in any of the following cases:

– when the induced functor

IC : C/C �� X /I(C) (1.5)

between slice categories admits a right adjoint HC for each
C ∈ Ob C and all HC are full (this, in particular, includes the case of a fibra-
tion I; we point out that here C is not required to have pullbacks or any other
(co)limits);

– when C admits pullbacks, X = C, I is equipped with the structure of a pointed
endofunctor (with certain restrictions) and M ⊂ Mon X . In this connection, we
should make a special mention of the work [JT2] by G. Janelidze and W. Tholen,
where the problem of relating a factorization system to a pointed endofunctor is
investigated. Note that our treatment of this problem differs from that of [JT2];

– when C is complete and well-powered, each IC in (1.5) has a right adjoint and
M ⊂ Mon X ;

and, finally,

– when I has a right adjoint with various versions of the requirements given in [Z1],
[Z2] and in this paper.

In particular, we give the following generalization of the Cassidy-Hébert-Kelly theo-
rem:

Let C be a complete and well-powered category and let (E,M) be any factorization system
on X with M ⊂ Mon X ; then the pair (1.3) is a factorization system on C for any
adjunction (1.1).

The results obtained in the paper are illustrated by examples in concrete categories.
Namely, new factorization systems are constructed on the categories of Abelian groups
(more generally, on any Abelian category), groups with unary operators, locally com-
pact Hausdorff Abelian groups with compact sets of compact elements, Heyting algebras,
topological spaces over a given space and so on.

The author gratefully acknowledges valuable discussions with George Janelidze and
Mamuka Jibladze on the subject of this paper.
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2. Preliminaries

We use the terms “factorization system”, “prefactorization system” and “object orthog-
onal to a morphism” in the sense of P. J. Freyd and G. M. Kelly [FK]. Namely, a factor-
ization system on a category C is a pair of morphism classes (E,M) such that

(i) E, (M) is right-closed (left-closed) under composition with isomorphisms, i.e.,
ie ∈ E (mi ∈ M) whenever e ∈ E (m ∈ M) and i is an isomorphism;

(ii) for each e ∈ E and m ∈ M we have e ↓ m, which means that for each commutative
square

e ��

α

��
β

��m ��

there exists a unique δ, for which α = δe and β = mδ;

(iii) every morphism α admits an (E,M)-factorization, i.e., there are morphisms e ∈ E

and m ∈ M with α = me.

Every factorization system (E,M) satisfies E↓ = M and M↑ = E. A pair (E,M) satisfying
these equalities is called a prefactorization system on C.

Let us recall some needed definitions and results from [CHK]. Let C have a terminal
object 1. Consider the partially ordered collection of prefactorization systems (E,M) on
C satisfying the condition:

(∗) every morphism with codomain 1 admits an (E,M)-factorization,

with usual order, i.e., (E,M) ≤ (E′,M′) iff M ⊂ M′. This collection is regarded as a
category and denoted by PFS∗(C). Let FRS(C) be the collection of full replete reflective
subcategories of C, ordered by the inclusion and also regarded as a category. There is an
adjunction

FRS (C)
ΦC

�� PFS ∗(C)
ΨC�� ,

where the right adjoint Ψc maps each (E,M) to the full subcategory of objects C for
which the unique morphism C →1 lies in M, while

ΦC(X ) =
(
I−1(Iso X ), (I−1(Iso X ))↓

)
for a full replete reflective subcategory X with the reflector I : C −→ X . The well-known
result from [CHK] asserts that if C is finitely well-complete, then ΦC(X ) is not only a
prefactorization system, but, what is more, a factorization system as well.

One has ΨC ΦC = 1FRS (C). The pair ΦC ΨC(E,M) is called the reflective interior of a

prefactorization system (E,M) from PFS ∗(C). Like [CHK] we denote it by (
◦
E,

◦
M). The

morphisms of
◦
E are characterized as follows:

α ∈
◦
E if and only if eα ∈ E for some e ∈ E. (2.1)
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(E,M) is called reflective if
◦
E = E (or, equivalently,

◦
M = M).

Let C be finitely complete, and let X be a full reflective subcategory with reflector I
and unit η. The reflection of C onto X is said to be semi-left-exact if for any pullback
diagram

P α ��

��

X

��
C

η
C �� IC

with X ∈ Ob X , I(α) is an isomorphism. The equivalent notion is that of an admissible
reflection [J1]. It is defined as a reflection such that all right adjoints HC in the induced
adjunctions between slice categories

C/C
IC

�� X /I(C)
HC

��

are full and faithful. The reflection of C onto X is called simple [CHK], or direct [BG],
[H] if, for any morphism f : B −→ C, the image under I of the canonical morphism in
the diagram

B

f

���
��

��
��

��
��

��
��

���
�

�
�

η
B

����������������

P ��

��
pb

IB

If
��

C η
C

�� IC

is an isomorphism. Every semi-left-exact reflection is simple. The converse fails to be
valid.

As mentioned in the Introduction, in this paper we develop the procedure proposed
in [Z2] for transporting factorization systems from a category X to a category C. Let us
recall its essence. We deal not with adjunctions (1.1), but, more generally, with families
of adjunctions between slice categories

A :
(
C/C

IC
�� X /T (C)

)
C∈Ob C

HC
�� , (2.2)

(here T is any mapping Ob C −→ Ob X and HC are right adjoints). The arguments
justifying why we do so are as follows. A factorization system (E,M) on X gives the full
reflective subcategory M/T (C) of X /T (C) for each C; recall that the objects of M/T (C)
are the morphisms X → T (C) which lie in M. If all HC are full, then HC(M/T (C))
are full reflective subcategories of C/C, and the point is that sometimes they induce a
factorization system on C. More generally, if HC is not necessarily full, then HC(M/T (C))
can be replaced by the full subcategory CC of C/C generated by HC(Ob M/T (C)). If CC
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turns out to be reflective for any C, then we may again obtain a factorization system on
C, which we denote by (EA,MA). Let us clarify that

MA =
⋃

C∈Ob C
MC ,

where MC consists of all morphisms isomorphic to the images of the objects of M/T (C)
under HC , while

EA = M
↑
A .

Let f : B −→ C be a morphism in C, and let

IC(f) = me

be the (E,M)-factorization of IC(f). We can consider e as a morphism IC(f) −→ m in
X /T (C); therefore it has the adjunct ef under the corresponding adjunction from (2.2).
Clearly,

f = mf ef , (2.3)

where mf = HC(m). In [Z2] various sufficient conditions are given for (EA,MA) to be a
factorization system (then (E,M) is called locally transferable along (2.2)). Note that it
is (2.3) that frequently gives the (EA,MA)-factorization of morphisms.

The considered procedure naturally led to the notion of a local factorization system
introduced in [Z2]. By definition, a local factorization system with respect to some class
of objects C′ (or, shortly, a C′-factorization system) is a pair of morphism classes (E,M),
satisfying the axioms (i), (ii) above and

(iii′) every morphism α with codomain in C′ admits an (E,M)-factorization;

(iv) for each m ∈ M, codom m ∈ C′;

(v) for each e ∈ E there exists m ∈ M with codom e = dom m.

Clearly, Ob C-factorization systems are just usual factorization systems on C. Local
factorization systems possess most of the properties of factorization systems. In particular,
M/C is a reflective subcategory of C/C for each C ∈ C′. Hence we can carry out the
procedure not only in the case where (E,M) is a (usual) factorization system on X , but
also in a more general case where it is a local factorization system with respect to a class
X ′ of objects such that T (Ob C) ⊂ X ′. Our previous notations related to the procedure
remain in force for this general case as well.

Finally, we wish to recall two results that are repeatedly used in this paper. The first
of them is well-known and proved, for instance, in [T], [CHK].

Let C be an arbitrary category.
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2.1. Theorem. Let N be a class of morphisms in C, closed under composition; let
C admit all pullbacks (along any morphism) of morphisms in N, and all intersections of
morphisms in N; and let these pullbacks and intersections again belong to N. Then (N↑,N)
is a factorization system and N ⊂ Mon C. 2

2.2. Proposition. [Z2] Let (CC)C∈Ob C be a family of full replete reflective subcat-
egories of slice categories C/C with reflectors

rC : C/C �� CC

and units ζC, and let

M =
⋃

C∈Ob C
Ob CC .

The following conditions are equivalent:

(i) the pair (M↑,M) is a factorization system on C;

(ii) for each pair of objects C,C ′ of C and each f ∈ Ob C/C, if ζC
f : α −→ β is a

morphism in C/C ′, then rC′
(ζC

f ) is an isomorphism.

When these conditions are satisfied, we have

M↑ =
⋃

C∈Ob C

{
i ζC

f |f ∈ Ob C/C, i is isomorphism
}
. (2.4)

If C admits pullbacks, then each of the above conditions is equivalent to

(iii) M is stable under pullbacks, and for each object C, each f ∈ Ob C/C and C ′ =
codom ef , the morphism rC′

(ζC
f ) is an isomorphism.

If, in addition, C has all intersections of monomorphisms and Ob CC ⊂ Mon C for any
C, then we have one more equivalent condition:

(iv) M is stable under pullbacks and is closed under composition and intersection.

Throughout the paper, when there is no risk that confusion might arise, we use the
same notation for different morphisms in a slice category provided that they have the
same underlying morphism from the entire category (as is, for instance, the case with
Proposition 2.2 (ii)).

2In fact, as is shown in [T], for any morphism class N, the existence of all intersections of morphisms
from N is sufficient for the fulfillment of the condition N ⊂ Mon C.
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3. The Initial Case

In this section, unless it is specified otherwise, C and X always denote arbitrary categories
without any requirement related to the existence of (co)limits.

Let T : Ob C −→ Ob X be any mapping, and let A be any family of adjunctions

(
C/C

IC
�� X /T (C)

HC
��

)
C∈Ob C

(3.1)

with right adjoints HC and counits εC . Suppose (E,M) is any factorization system on
X . If HC is full, HC(M/T (C)) is a reflective subcategory of C/C and its units are
ef : f −→ mf . Applying Proposition 2.2, we obtain

3.1. Proposition. Let all HC be full. Then the following conditions are equivalent:

(i) (EA,MA) is a factorization system;

(ii) for all objects C,C ′ of C and each f ∈ Ob C/C, if ef : α −→ β is a morphism in
C/C ′, then there exists an C/C ′-isomorphism eα ≈ eβ ef for eα : α −→ mα and
eβ : β −→ mβ;

(iii) for all objects C,C ′ of C and each f ∈ Ob C/C, if ef : α −→ β is a morphism in
C/C ′, then there exists a morphism e : IC′

(β) −→ x in X /T (C ′) such that both e
and eIC′

(ef ) lie in E;

(iv) for all objects C,C ′ of C and each f ∈ Ob C/C, if ef : α −→ β is a morphism in

C/C ′, then we have IC′
(ef ) ∈

◦
E, where (

◦
E,

◦
M) is the reflective interior of (E,M)

considered as a factorization system on X /T (C ′);

(v) for each morphism f , we have ef ∈ EA.

If, in addition, C admits pullbacks and each IC preserves the terminal object, then (i)–(v)
are also equivalent to each of the following conditions:

(vi) MA is stable under pullbacks and for each f ∈ Ob C/C, the object C ′ = codom ef

and the corresponding morphism ef : ef −→ 1
C′ , we have IC′

(ef ) ∈ E;

(vii) MA is stable under pullbacks and for each f ∈ Ob C/C and the object C ′ =
codom ef , we have IC′

(ef ) ∈ E;

(viii) MA is stable under pullbacks, and for each C ∈ Ob C and each f ∈ Ob C/C, the
morphism mef

is an isomorphism.
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Proof. Observe in the first place that one always has

(iii) ⇔ (iv) ⇒ (v) ⇒ (i).

Indeed, the equivalence (iii)⇔(iv) follows from (2.1). For (iii)⇒(v), note that
ef ↓ HC′

(m′) means precisely the orthogonality of an object HC′
(m′) of C/C ′ to all

C/C ′-morphisms, the underlying morphisms of which are ef . This in turn is equivalent to
the condition that m′ is orthogonal to the images of the above-mentioned C/C ′-morphisms
under IC′

. The latter condition clearly holds. (v)⇒(i) is obvious, since f = mf ef for any
f ∈ Mor C.

Now let us assume that each HC is full.
(i)⇔(ii). By Proposition 2.2, (EA,MA) is a factorization system if and only if

rC′
(ef ) : mα → mβ is an isomorphism; here rC′

is the reflector C/C ′ → HC′
(M/T (C ′)).

It remains to observe that eβef = rC′
(ef )eα.

(ii)⇒(iii) follows from the fact that, as is shown in [Z2], for every f : B −→ C and
the corresponding morphism ef : f −→ mf in C/C, we have

IC(ef ) ∈ E. (3.2)

(3.2) is implied by the equality e = εC
mI

C(ef ) and the fact that εC
m is a split monomorphism.

Let C admit pullbacks and each IC preserve the terminal object.
(iii)⇒(vi): If β = 1

C′ , then the morphism e in (iii) is a split monomorphism. Therefore

IC′
(ef ) ∈ E.
(vi)⇒(vii) and (vii)⇒(viii) are obvious. (viii)⇔(i) follows from Proposition 2.2.

3.2. Remark. If the conditions of Proposition 3.1 are fulfilled, then EA consists
precisely of morphisms isomorphic to ef for some f ∈ Mor C. Moreover, the (EA,MA) -
factorization of f is f = mf ef .

3.3. Remark. The equivalence of (i), (ii), (v) and (viii) holds if (3.1) satisfies a milder
condition than the fullness of all HC :

The mapping

HC : Mor (m,m) �� Mor (HC(m), HC(m)) (3.3)

is surjective for any m ∈ M/T (C) such that there exists e ∈ E with me ∈ IC(C/C).

The proof employs Lemma 4.1 of Section 4.

Let all HC be full. Then (3.2) implies that the statement (iii) of Proposition 3.1 holds
if the following condition is satisfied (we call it the condition of compatibility with respect
to E ):

For all C,C ′ ∈ Ob C and h ∈ Mor C, if h : α1 −→ β1 and h : α2 −→ β2 are morphisms
in C/C and C/C ′, respectively, then

IC(h) ∈ E if and only if IC′
(h) ∈ E.

This observation immediately gives rise to
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3.4. Theorem. Let
I : C �� X (3.4)

be any functor, and let (E,M) be a factorization system on X . Suppose, for each
C ∈ Ob C, the induced functor

IC : C/C �� X /I(C) (3.5)

has a right adjoint HC, and let all HC be full. Then the pair of morphism classes(
I−1(E), (I−1(E))↓

)
(3.6)

is a factorization system on C.

Proof. We only have to show that EA = I−1(E). The inclusion EA ⊂ I−1(E) follows
from (3.2), while the converse inclusion is obtained from the following assertion which is
easy to prove.

3.5. Lemma. Let A be a family of adjunctions (3.1), and let h ∈ Mor C. If for any
C ∈ Ob C we have IC(h) ∈ E whenever h : α −→ β is a morphism in C/C, then h ∈ EA.

We wish to emphasize the fact that in Theorem 3.4 there is no requirement for the
existence of any (co)limits in C. If C admits pullbacks and I has a right adjoint H, then,
as known, each IC has a right adjoint HC (HC pulls back the H-image of morphisms
along the corresponding unit). Therefore Theorem 3.4 generalizes

3.6. Theorem. [Z1,Z2] Let C have pullbacks, and let

C
I

�� XH�� (3.7)

be an adjunction. If each HC is full, then the pair of morphism classes(
I−1(E), (H(M))↑↓

)
(3.8)

is a factorization system on C.

3.7. Remark. The class (H(Mor X ))↑↓ is described in [CHK] for the case of semi-left-
exact reflection (3.7). It is shown that it consists precisely of those morphisms f : B −→ C
for which the square

B
η

B ��

f

��

IB

If

��
C

η
C �� IC

is a pullback (here η is the unit of (3.7)). Recall that such morphisms are called trivial
coverings in G. Janelidze’s Galois theory [J1], [J2]. In [Z1] we give an analogous charac-
terization of morphisms from (H(M))↑↓ if, again, (3.7) is a semi-left-exact reflection: we
have to restrict ourselves only to the trivial coverings which are mapped into M.
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3.8. Example. Take the variety Heyting of Heyting algebras and its reflective
subcategory Boole of Boolean algebras. The reflector

Heyting �� Boole (3.9)

maps every H to the Boolean algebra I(H) of all regular elements of H (i.e., elements
a ∈ H for which the equality ��a = a holds), while the unit ηH maps a to ��a. Note
that the homomorphicity of ηH follows from the fact that I(H) is a reflective subcategory
of H (regarded as a category) with reflector ηH [B]. It can be verified that the considered
reflection is semi-left-exact. “Reflecting” (E=surj.hom., M =monos (inj.hom.)) from
Boole, we obtain the factorization system (3.8) on Heyting:

f : H1 −→ H2 lies in I−1(E) precisely when for each regular b ∈ H2 there exists a regular
a ∈ H1 such that f(a) = b;
f : H1 −→ H2 lies in (H(M))↑↓ precisely when it satisfies the following two properties:

(i) the restriction of f on regular elements of H1 is injective;

(ii) for each regular element a of H1 and each b ∈ H2 such that ��b = f(a) there exists
a unique a′ ∈ H1 with ��a′ = a and f(a′) = b.

3.9. Example. Let C be an Abelian category, and let (V, ε) (or, shortly, V ) be
a copointed endofunctor with ε

C
being a monomorphism and V (C/V (C)) = 0 for each

C ∈ Ob C. Consider the reflective subcategory X of those C for which V (C) = 0. Recall
that the reflector

I : C �� X (3.10)

maps C to C/V (C), while η
C

= coker ε
C
.

Clearly, the pair (E,M), where E consists of all C-epimorphisms in X and M consists
of all monomorphisms, is a factorization system on X . We have:

f : C → C ′ lies in I−1(E) precisely when Im f + V (C ′) = C ′.

Indeed, consider the commutative diagram

Im f

i1
��

��

m

���
��

��
��

��
��

��
��

��
��

��
C

f

��

e���� �� �� C/V (C)

I(f)

��

Im f ⊕ V (C ′)

s

����������

V (C ′) ��
ε
C′

��

i2

��

C ′ �� �� C ′/V (C)

with evident e,m and s. If I(f) is an epimorphism, then for any α : A → C ′ we have
morphisms β, γ, δ such that η

C′α = I(f)β, η
C
γ = β and α− si1eγ = ε

C′δ = si2δ, whence
α = s(i1eγ + i2δ), and therefore s is an epimorphism. The converse is verified similarly.
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It is proved in [JT2] that if C is the category of (left) R-modules (R is a commutative
ring with unit), then the reflection of C onto X is semi-left-exact if and only if V is
idempotent, i.e., εV is an isomorphism. It can be verified that the latter assertion remains
true for arbitrary Abelian C.

Let V be idempotent. In order to calculate the class (H(M))↑↓ we observe that for any
trivial covering m there exists θ such that mθ = ε

C
. Consider an arbitrary monomorphism

m satisfying the latter equality for some θ. As is easy to see, V (m) is an isomorphism.
Let us show that the right square in the commutative diagram

V (C) ��
ε
C ��

≈ V (m)

��

C
coker ε

C �� ��
��

m

��

C/V (C)

I(m)

��
V (C ′) ��

ε
C′ �� C ′ coker ε

C′ �� �� C ′/V (C ′)

is a pullback. To this end, consider arbitrary ϕ and ψ with I(m)ϕ = coker ε
C
· ψ. We have

ϕ′ and ψ′ such that ϕ = coker ε
C
·ϕ′ and ε

C′ψ
′ = mϕ′−ψ. Then m(ϕ′−ε

C
V (m)−1ψ′) = ψ

and coker ε
C
(ϕ′ − ε

C
V (m)−1ψ′) = ϕ. Next, we show that I(m) is a monomorphism.

Indeed, there exist morphisms ρ and τ such that ker I(m) = coker ε
C
· ρ and mρ = ε

C′τ ,
where kerm′ = coker ε

C
· ε

C
V (m)−1τ = 0. We obtain:

f : C −→ C ′ lies in (H(M))↑↓ precisely when f is a monomorphism and V (C ′) ⊂ C (i.e.,
there exists θ with fθ = ε

C′ ).

Thus, when V is idempotent, the above-described morphism classes constitute a fac-
torization system on C.

3.10. Remark. We still can characterize morphisms of the class (I−1(E))↓ in Theorem
3.4 if I is not necessarily a left adjoint in an admissible (or, equivalently, semi-left-exact)
reflection, but if, nevertheless, each IC has a full and faithful right adjoint. As is known
[JT1], the latter condition is equivalent to requiring that I be a fibration. In that case,
the pair of morphism classes (

I−1(E),ΘM

)
, (3.11)

where ΘM is the class of Cartesian morphisms over all M-morphisms, is a factorization
system on C.

3.11. Example. Let us consider the category C of commutative rings R with units,
which have precisely one prime ideal (equivalently, each element of which is either invert-
ible or nilpotent; another equivalent condition is that the quotient of R by its nilradical is
a field [AM]). We will first verify the existence of pullbacks along an injective homomor-

phism g : R �� �� R′ in C. For this, consider any h : R′′ −→ R′ from C and the pullback
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in the category of rings

P h′
��

��
g′

��

R
��
g
��

R′′
h

�� R′

Each element a of P is either nilpotent or invertible in R′′. If b is its inverse, then h(b)
is the inverse of h′(a), and hence h′(a) is not nilpotent (without loss of generality it can
be assumed that 0 �= 1 in R′). Therefore h′(a) has the inverse in R, which clearly should
coincide with h(b). This implies that b ∈ P . Consequently, P is an object of C.

It is obvious that the subcategory Fld of fields is reflective in C. Therefore the functor
IC : C/C −→ Fld/I(C) has a right adjoint for any C. One can easily observe that the
corresponding counit εC is an isomorphism and therefore I is a fibration.

Take the following factorization system (E,M) on Fld: E consists of all algebraic

extensions and M consists of extensions F �� �� F ′ for which F is algebraically closed in
F ′. Then, as is easy to verify:

f : R −→ R′ lies in I−1(E) precisely when for each a ∈ R′ there exists a polynomial
α ∈ f(R)[x], at least one coefficient of which does not belong to N ′ and is such that
α(a) ∈ N ′;

f : R −→ R′ lies in (H(M))↑↓ precisely when f is injective and R includes the nilradical
N ′ of R′ as well as all elements which are the roots of some polynomial α ∈ R[x], at least
one coefficient of which does not belong to N ′.

Theorem 3.4 may turn out to be conveniently applicable if C is well-powered and all
morphisms of C and X are monomorphisms because in that case both slice categories in
(3.5) are posets and the adjoint functor theorem might be easily used.

3.12. Example. It is well known how to transport factorization systems from a
category C to a slice category C/C. (In passing, let us point out that this construction
gives an example of factorization systems of form (3.11) for the relevant fibration.) Below
we will generalize this construction in the particular case of the category Top of topological
spaces and special factorization systems on it.

Let us first adopt the following convention: the subscript Emb in the notation of
topological categories indicates the subcategory of all objects and (only) embeddings of
an entire category.

Let Y be a topological space and let Y ′ be an arbitrary subspace. Consider the functor

I :
(
Top/Y

)
Emb

�� TopEmb

mapping each α : X −→ Y to X ′ in the pullback

X ′

α′
��

�� iα �� X

α

��
Y ′ �� �� Y



338 DALI ZANGURASHVILI

Clearly, (Top/Y )Emb /α is isomorphic to TopEmb /X and the induced functor

Iα : TopEmb /X �� TopEmb /X
′

is merely a change-of-base functor i∗α for subspaces. We can apply the adjoint functor
theorem to it3 since both TopEmb /X and TopEmb /X

′ are complete lattices and Iα pre-
serves arbitrary joins. Moreover, Iα is surjective. This implies [B] that its right adjoint
is full. Using Theorem 3.4, we obtain the factorization system (I−1(E), (I−1(E))↓) on
(Top/Y )Emb for any factorization system (E,M) on TopEmb (for instance, for (isomor-
phisms, embeddings)). Combining (I−1(E), (I−1(E))↓) with the factorization system (surj.
cont. mappings, embeddings) on Top/Y , we get the factorization system (EY ,MY ) on
Top/Y :

f : α −→ β lies in EY precisely when f(X) ∩ β−1(Y ′) �� ��β−1(Y ′) lies in E;

f :α −→ β lies in MY precisely when f :X �� �� Z is an embedding, α−1(Y ′) �� �� β−1(Y ′)
lies in M and X contains the complement of β−1(Y ′) in Z; here X = dom α and
Z = dom β.

Note that when Y ′ = Y , (EY ,MY ) is obtained in the usual way from a certain fac-

torization system on Top, namely, from (Ẽ,M), where Ẽ consists precisely of continuous
mappings which can be factorized as a composition of a surjective continuous mapping
and some E-morphism.

3.13. Example. To some factorization systems on the category Haus of Hausdorff
topological spaces we will relate factorization systems on the category of the so-called
V -Hausdorff spaces defined below. Here (V, ε) is a copointed endofunctor on TopEmb and
we require of (V, ε) to satisfy the following property: for each embedding f : X �� �� Y
the square

V (X) ��
ε
X ��

��
V (f)

��

X
��
f

��
V (Y ) ��

ε
Y

�� Y

is a pullback. Let C be the full subcategory of TopEmb containing those spaces Y for
which V (Y ) is Hausdorff. We call such spaces V -Hausdorff. Consider V as a functor

V : C �� HausEmb .

Again, both C/Y and HausEmb /Y are complete lattices and

V Y : C/Y �� HausEmb /V (Y ) ,

3The adjoint functor theorem cannot be applied directly to I since (Top/Y )Emb does not admit
coequalizers.
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clearly preserves arbitrary joins. Moreover, V Y is surjective. These arguments provide
the factorization system (V −1(E), (V −1(E))↓) on C for any factorization system (E,M) on
HausEmb . Keeping in mind the factorization system (surj. cont. mappings, embeddings)
on the category of all V -Hausdorff spaces (with all continuous mappings), we get a new
factorization system (EV ,MV ) on it. Taking into account the structure of HY (namely,

HY ( Z �� �� V (Y )) =( Z ∪ (Y \V (Y )) �� �� Y ) , we obtain:

f : X −→ Y lies in EV precisely when f(X) ∩ V (Y ) −→ V (Y ) lies in E;

f : X−→Y lies in MV precisely when f is an embedding and X∩ V (Y ) �� �� V (Y ) lies

in M and X contains the complement of V (Y ) in Y .

3.14. Example. HausEmb in Example 3.13 can be replaced by CompHausEmb ,
while (surj. cont. mappings, embeddings) by (dense mappings, closed embeddings). But
then for V Y to preserve arbitrary joins

∨
, we have to restrict ourselves only to the spaces

Y satisfying the infinite distributive law

X ∩
(∨

i∈I

Xi

)
=

∨
i∈I

(X ∩Xi) (3.12)

for the closed-set lattice of Y . In this way, for each factorization system (E,M) on
CompHausEmb , we obtain the factorization system (EV ,MV ) on the category of all topo-
logical spaces Y which satisfy (3.12) and are such that V (Y ) is compact and Hausdorff.
We have:

f : X �� Y lies in EV precisely when f(X) ∩ V (Y ) �� �� V (Y ) lies in E;

f : X �� Y lies in MV precisely when f is a closed embedding, X ∩ V (Y ) �� �� V (Y )

lies in M and X is the largest element in the closed-set lattice of Y among those Z for
which Z ∩ V (Y ) ⊂ X ∩ V (Y ).

4. When M ⊂ Mon X
Even if the condition of the fullness of all HC fails to be fulfilled, to the given data (3.1)
and a factorization system (E,M) on X we can relate the full replete subcategory CC of
C/C induced by the class HC(M/C) of C/C-objects and sometimes turning out to be
reflective. To find the corresponding condition, we will first consider a general situation.

4.1. Lemma. Let

C
I

�� XH�� (4.1)

be an adjunction with unit η and let Y be a reflective subcategory of X with reflector

r : X �� Y (4.2)

and unit ζ. Suppose B denotes the full replete subcategory of C given by the class H(Ob Y)
of objects. The following conditions are equivalent:
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(i) B is reflective and the units of the reflection are the compositions

C
η

C �� HIC
H(ζ

IC
)
�� HrIC ; (4.3)

(ii) for each C ∈ Ob C and each Y ∈ Ob Y the mapping

H : Mor (rIC, Y ) �� Mor (H(rIC), H(Y ))

is surjective;

(iii) B is reflective and for each C ∈ Ob C the mapping

H : Mor (rIC, rIC) �� Mor (H(rIC), H(rIC)) (4.4)

is surjective.

If every split C-epimorphism of the form H(α) with α ∈ Mor Y is an isomorphism, then
each of (i)–(iii) is also equivalent to

(iv) B is reflective.

Proof. We first observe that, since (4.3) are precisely the units of the composition of
adjunctions (4.1) and (4.2), they are always weakly universal with respect to B.

(i)⇒(ii). For each g : HrIC −→ HY , we have a morphism α : rIC −→ Y such that
gH(ζIC)η

C
= H(α)H(ζIC)η

C
. If B is reflective, then g = H(α).

(ii)⇒(iii). We verify that composition (4.3) is universal. Indeed, if g1H(ζIC)η
C

=
g2H(ζ

IC
)η

C
, then we have g1 = g2 since both gi have the form H(βi), .

(iii)⇒(i). If B is reflective and the units of this reflection are ξ
C

: C −→ H(YC), then
there exist morphisms α : rIC −→ YC and g : H(YC)−→HrIC such that gξ

C
=H(ζIC)η

C

and H(α)H(ζIC)η
C

=ξ
C
. Hence

H(α)g = 1H(YC) (4.5)

and (gH(α))H(ζIC)η
C

= H(ζIC)η
C
. Since gH(α) = H(β) for some β, we obtain β = 1rIC .

Hence gH(α) = 1HrIC .
(iv)⇒(i) trivially follows from equality (4.5) under the relevant condition on the H-

image of Y-morphisms.

Now we can formulate our next statement.

4.2. Proposition. Let M ⊂ Mon X . The following conditions are equivalent:

(i) (EA,MA) is a factorization system;

(ii) for all objects C,C ′ of C and each f ∈ Ob C/C, if ef : α −→ β is a morphism in
C/C ′, then there exists a C/C ′-isomorphism eα ≈ eβ ef for eα : α −→ mα and
eβ : β −→ mβ, and the mapping

HC : Mor (m,m′) �� Mor (mf , H
C(m′)) 4 (4.6)

is surjective for any m′ ∈ M/T (C);

4Recall that, as usual, m is an M-morphism in the (E, M)-factorization of f .
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(iii) for each morphism f , we have ef ∈ EA.

If, moreover, C has pullbacks, then each of (i)–(iii) is equivalent to the following condition:

(iv) MA is stable under pullbacks, and for each C ∈ Ob C, f ∈ Ob C/C and
m′ ∈ M/T (C), the mapping (4.6) is surjective and mef

is an isomorphism.

If, in addition, C has all intersections of monomorphisms, then we have one more equiv-
alent condition:

(v) MA is stable under pullbacks and is closed under composition and intersection.

Proof. (i)⇒(ii). We first apply Lemma 4.1, taking into account the easily verified fact
that HC preserves monomorphisms considered as objects of the slice category X /T (C),
and conclude that (4.6) is surjective and the unit of the obtained reflection C/C −→ CC

is given by ef : f −→ mf . Then we use Proposition 2.2.
(ii)⇒(iii) and the equivalence (i)⇔(iv) follow again from Lemma 4.1 and Proposition

2.2, while (i)⇔(v) follows from Theorem 2.1.

4.3. Remark. Under the conditions of Proposition 4.2 both the structure of EA
and the form of the (EA,MA)-factorization of morphisms coincide with those described
in Section 3.

The results obtained above will be applied below to the problem of relating a factor-
ization system to a pointed endofunctor.

From now on it is assumed that C admits pullbacks. Let (T, η) be a pointed endofunctor
on C. Consider the family of adjunctions

D :
(
C/C

η
C

!
�� C/T (C)

η∗
C��

)
C∈Ob C

, (4.7)

where η∗
C

is the usual change-of-base functor and η
C
! is the corresponding composition

functor. Observe that in that case MD contains precisely the pullbacks of M-morphisms
along the corresponding η for any factorization system (E,M) on C. Moreover, for each
f : B −→ C in C, the morphism ef is the canonical one in the commutative diagram

B

f

		�
��

��
��

��
��

��
��

ef


�

�
�

�
e

�����������������

P σ
��

mf

��

X

m

��
C η

C

�� TC

(4.8)

where me is the (E,M)-factorization of η
C
f and the internal square is a pullback.
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4.4. Lemma. The class MD is stable under pullbacks.

Proof. For a given pullback

A
β ��

n

��

B

m′
��

C α
�� D

with m′ ∈ MD, we have the commutative diagram

A
β ��

n

��

ξ
������������� B ��

m′

��

K

m

��

S

��									

m′′

��

C

η
C

����������������������
α �� D

η
D �� TD

TC
Tα

��								

(4.9)

for some m ∈ M and ξ, where the right-hand rear square and the right-hand lateral square
are pullbacks, and therefore the left-hand lateral square is also a pullback; moreover,
m′′ ∈ M.

4.5. Theorem. If (E,M) is a factorization system on C with M ⊂ Mon C and there
holds the condition

if m ∈ M, then T (m) ∈ M, (4.10)

then the pair (ED,MD) is also a factorization system on C. If for each C ∈ Ob C, the
pullback along η

C
reflects isomorphisms for M-morphisms, then ED consists precisely of

those f : A −→ B for which ηBf ∈ E; if, moreover, η
C
∈ E, then (ED,MD) coincides

with the pair (
T−1(E), (T−1(E))↓

)
. (4.11)

Proof. Let us show that the condition (iii) of Proposition 4.2 is satisfied. By Proposition
2.6 of [CJKP] and Lemma 4.4, it suffices to verify the existence of a diagonal morphism
in the commutative square

B
ef ��

α

��

P

1
P

��
A

m′
�� P
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for each f : B −→ C and each m′ ∈ MD. Consider the commutative diagram

B
α















ef

���
��

��
��

�
e

������������������������

A

(I)

m′
��

��







P

(II)

σ
��

mf

��η
P

����
��
��
��
��
��
��
�

X

m

��
C η

C

�� TC

S
m′′

�� TP
Tmf

����������������������

(4.12)

Here the squares (I), (II) are pullbacks and m′′ ∈ M. By condition (4.10) we have
T (mf )m

′′ ∈ M. Hence e ↓ T (mf )m
′′, which implies the existence of a diagonal morphism

δ : X −→ S for the bordering quadrangle in (4.12). We have T (mf )m
′′(δσ) = mσ =

T (mf )ηP
, whence m′′δσ = η

P
. The pullback (I) gives rise to the sought-for morphism

δ′ : P −→ A.
To prove the second part of the theorem, recall that ED consists precisely of morphisms

of the form ief , where i is an isomorphism. Consider diagram (4.8), but this time for ef

instead of f . Since ef = mef
eef

is the (ED,MD)-factorization of ef , we have that mef
is

an isomorphism. Therefore so is m, and η
C
ef ∈ E. The converse is obvious. From the

commutativity of the diagram
C η

C

��

f
��

TC

T (f)
��

C ′
η

C′
�� TC ′ (4.13)

it follows that (ED,MD) coincides with (4.11).

4.6. Example. As is known [M], the set SG of all compact elements (i.e., of elements
a of a topological group G, such that the smallest closed subgroup gp(a) of G containing
a is compact) is a closed subgroup of G if G is locally compact Hausdorff and Abelian. If
f : G −→ G′ is a continuous homomorphism of such groups and a ∈ SG, then f(gp(a))
is compact and hence closed. Therefore gp(f(a)) ⊂ f(gp(a)), whence f(a) ∈ SG′ . These
arguments provide the pointed endofuctor T (G) = G/SG (with ηG being the projection
G −→ G/SG) on the category C of locally compact Hausdorff Abelian groups with compact
sets of compact elements (the latter requirement is needed for our further purposes).

To verify that C has finite products, we observe that SG×G′ = SG × SG′ for any
Hausdorff topological groups G and G′. Indeed, if (a, a′) ∈ SG×G′ , then the projection
π : G × G′ → G maps gp(a, a′) into a closed subset of G. This readily implies that
gp(a) = πgp(a, a′) and a ∈ SG. The converse inclusion is obvious. Since the closed
subsets of a locally compact space are also locally compact, C admits equalizers and thus
C is finitely complete.
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Obviously, (E =dense homom., M = closed embeddings) is a factorization system on
C. We will show that T preserves closed embeddings. Let f : G � G′ be a mapping of
this kind, and let a ∈ G be a compact element of G′. Then gp′(a) ⊂ G, whence gp(a)
(equal to gp′(a)) is also compact. Therefore T (f) is injective. Since SG is compact, the
mapping ηG is closed. From the commutativity of (4.13) we conclude that T (f) is also
closed.

Thus all the conditions of Theorem 4.5 are satisfied and we obtain the factorization
system (4.11) on C. We have:

f : G −→ G′ lies in T−1(E) precisely when f(G) + SG′ (= f(G) + SG′) coincides with G′;
f : G −→ G′ lies in (T−1(E))↓ precisely when f is a closed embedding and SG′ ⊂ G.

4.7. Remark. One can easily verify that Theorem 4.5 can be generalized to the
case where (E,M) is not necessarily a (usual) factorization system, but, more generally,
an arbitrary local factorization system with respect to a class C′ of objects such that
T (Ob C) ⊂ C′ – we only have to replace “ m ∈ M ” in (4.10) by “ m ∈ MD ”.

4.8. Remark. In [JT2], among many other things, the pair (ET ,MT ) of morphism
classes is related to a pointed endofunctor (T, η). Recall that ET consists precisely of
T -vertical morphisms, i.e., of morphisms f : B −→ C for which there exists a morphism
d such that the diagram

C d ��

1
C

��

TB

Tf
��

C
η

C �� TC

is a pullback, while MT consists precisely of trivial T -coverings, i.e., of morphisms
f : B −→ C for which the diagram

B η
B

��

f

��

TB

Tf

��
C η

C

�� TC

is a pullback. It is proved in [JT2] that (ET ,MT ) is a factorization system and coincides
with (

T−1(Iso C),
(
T−1(Iso C)

)↓)
if T is induced by a simple reflection.

In view of Theorem 4.5 there arises a question whether the pair (ET ,MT ) is equal to
(Iso C D,Mor C D) and if not, whether it is equal to (ED,MD) for some (E,M). Note that
if Tη is an isomorphism and ηT is a monomorphism, then MT = Mor C D if and only if
η is an isomorphism. Indeed, η

C
obviously lies in Mor C D and if it lies also in MT , then

it is the pullback of T (η
C
) along η

TC
and is therefore an isomorphism. This in particular

implies that ET �= Iso C D in general.
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However, sometimes (ET ,MT ) may coincide with (ED,MD) for E = {iη
C
|C ∈ Ob C, i

is isomorphism} and M = {T (f)i|f ∈ Mor C, i is isomorphism} if (E,M) is a T (Ob C)-
factorization system (this happens if, for instance, either T is induced by a reflection
or each η

C
is an epimorphism and T is idempotent, i.e., ηT is an isomorphism). More

precisely,
MT = MD

if and only if for each f : B −→ C the pullback of T (f) along η
C

lies in MT . This
condition is studied in detail in [JT2]. We observe that if, in addition, the canonical
morphism in the diagram

B

f

���
��

��
��

��
��

��
��

���
�

�
�

η
B

����������������

P ��

��
pb

TB

Tf
��

C η
C

�� TC

lies in ET for any f and C has a terminal object preserved by T , then, according to [JT2],
(ET ,MT ) is a factorization system and consequently

ET = ED.

4.9. Remark. The requirement M ⊂ Mon C is essential for the validity of the first part
of Theorem 4.5. Indeed, on the category of Abelian groups let us consider the pointed
endofunctor defined by T (G) = G/2G. It is obvious that a monomorphism f : G �� �� G′

lies in Mor C D if and only if G contains 2G′. This implies that Mor C D is not closed under
composition since it contains, for instance, the inclusions 4Z �� �� 2Z and 2Z �� �� Z ,
but does not contain 4Z �� �� Z .

Furthermore, requirement (4.10) is also essential for the validity of Theorem 4.5 since,
as is easy to verify, Mon C D = Mon C ∩ Mor C D.

From Remark 4.8 we conclude that the equality of (ED,MD) with (4.11) shown in the
second part of Theorem 4.5 does not hold in general even if M ⊂ Mon C.

5. The Case of Complete and Well-Powered Categories

According to Remark 4.9, it is by no means true that the pair (EA,MA) is always a
factorization system even if a given category C satisfies a number of natural conditions
and M ⊂ Mon C. From this remark it follows in particular that (EA,MA) is, in general,
not even a prefactorization system. This leads us to considering a new pair of morphism
classes (

EA,M
↑↓
A

)
, (5.1)

which sometimes turns out to be a factorization system, while (EA,MA) does not (see
Examples 5.7 and 5.8).
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5.1. Proposition. Let C be a complete and well-powered category and let (E,M)
be a factorization system on X with M ⊂ Mon X . Suppose A satisfies the condition of
compatibility with respect to E (see Section 3) and IC(α) is an isomorphism for each one
in C. Then the pair (EA,M

↑↓
A ) is a factorization system on C, M

↑↓
A ⊂ Mon C and

EA =
⋃

C∈Ob C
IC−1

(E). (5.2)

5.2. Remark. We do not specify whether E in (5.2) is taken as a class of objects
or a class of morphisms in X /T (C) since, by virtue of Lemma 3.5 and the compatibility
condition, in both cases EA in the left-hand part of (5.2) is the same.

Proof of Proposition 5.1. Let f : B −→ C be any morphism of C. We already have the
factorization

f = mf ef . (5.3)

Recall that mf = HC(m) and m is an M-morphism in the (E,M)-factorization IC(f) =

me. Let N be the morphism class M
↑↓
A ∩ Mon C. By Theorem (2.1), (N↑,N) is a fac-

torization system and therefore ef = nf ′ with n ∈ N and f ′ ∈ N↑. It suffices to show
that f ′ ∈ EA. Again consider factorization (5.3), this time assuming that f ∈ N↑. Then
mf ∈ N and thus f ↓ mf . This implies that mf is a split epimorphism and thus mf is
an isomorphism. Since IC(mf ) = mεC

m
and m ∈ Mon C, we conclude that m is also an

isomorphism . Hence IC(f) ∈ E and, consequently, the image of f : f → 1
C

under IC lies
in E. By the condition of compatibility and Lemma 3.5, we obtain that f ∈ EA. Actually,
we have proved that N↑ = EA and therefore M

↑↓
A ⊂ Mon C. The above arguments also

prove (5.2). �
Proposition 5.1 immediately gives rise to

5.3. Theorem. Let C be a complete and well-powered category and let

I : C �� X

be any functor such that for each C ∈ Ob C the induced functor

IC : C/C �� X /I(C)

admits a right adjoint. Then, for each factorization system (E,M) on X with
M ⊂ Mon X , the pair of morphism classes

(
I−1(E), (I−1(E))↓

)

is a factorization system on C.

In particular, we have
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5.4. Theorem. Let C be both complete and well-powered. For each adjunction

C
I

�� XH��

and each factorization system (E,M) on X with M ⊂ Mon X the pair of morphism classes(
I−1(E), (H(M))↑↓

)
(5.4)

is a factorization system on C.

Proof. Just recall that, according to [Z1], (5.4) is a prefactorization system.

To describe morphisms from (H(M))↑↓, we give

5.5. Lemma. Let C be a category with pullbacks, and let E be any class of morphisms
closed under composition and satisfying the following cancellation property:

if e = βα and e ∈ E, then β ∈ E.

Suppose (E′,M′) is a factorization system on C such that E′ ⊂ E. Then the following
conditions for a C-morphism m are equivalent:

(i) m ∈ E↓;

(ii) if the pullback α of m along some morphism lies in E, then α is an isomorphism;

(iii) if the pullback α of m along some M′-morphism lies in E, then α is an isomorphism;

(iv) m ∈ M′ and (iii) holds.

Proof. (i)⇒(ii), (ii)⇒(iii), (i)⇒(iv) and (iv)⇒(iii) are obvious. We verify (iii)⇒(i).
Consider the commutative diagram

A e ��

f

��

B

g

��
C m

�� D
(5.5)

with e ∈ E. Factorizing g by (E′,M′) and taking the corresponding pullback, we obtain
the diagram

A e ��

h
���
�
� B

e′
��

P q
��

m′′
��

K

m′
��

C m
�� D

From the upper square one has q ∈ E, whence q is an isomorphism. The rest of the proof
is obvious.
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Note that the class I−1(E) from Theorems 5.3 and 5.4 satisfies the cancellation prop-
erty of Lemma 5.5 since (I−1(E))↓ ⊂ Mon C.

5.6. Example. It is well-known that the pair of morphism classes (E,M), where E con-

sists of all integral homomorphisms, while M consists of monomorphisms f : G �� �� G′

for which G is integrally closed in G′, is a factorization system on the category Rng
of commutative rings with units. Theorem 5.4 allows us to transport (E,M) along the
adjunction

Ab
I

�� Rng
H�� , (5.6)

where Ab is the category of Abelian groups and I(G) is the group ring over an Abelian
group G.

We have:

f : G −→ G′ lies in I−1(E) precisely when for each x ∈ G′ there exists n ≥ 1 such that
xn ∈ Im f 5.

Indeed, if xn = f(a), then x clearly is integral over I(f)(I(G)) and now it suffices
to observe that elements of G′ are generators of I(G′). For the converse, suppose I(G′)
is integral over I(f)(I(G)). Since Im f generates I(f)(I(G)) as an Abelian group, each
x ∈ G′ satisfies an equality of the form

xn + b1x
n−1 + · · · + bn−1x+ bn = 0, (5.7)

where every bi is written as

bi = ki1f(ai1) + ki2f(ai2) + · · · + kimi
f(aimi

). (5.8)

Here kij ∈ Z and aij ∈ G. But I(G′) is free over G′ (as an Abelian group), hence,
from (5.7) and (5.8) we obtain xn = f(aij)x

k for some i, j and 0 ≤ k < n. Therefore
xn−k ∈ Im f .

Applying Lemma 5.5, the class of morphisms diagonalized with I−1(E) can be easily
calculated. Namely, we have:

(H(M))↑↓ consists of those monomorphisms f : G �� �� G′ for which G contains all
x ∈ G′ with the property xn ∈ G for some n ≥ 1.

Note that the latter class coincides with MA for the family A induced by (5.6). Indeed,

any f from (H(M))↑↓ is a pullback of the inclusion R �� �� I(G′) along the corresponding

unit, where R is the integral closure of I(G) in I(G′).

5Here we use the multiplicative abbreviation for the operation of an Abelian group G so as not to
confuse it with the operation of addition in I(G).
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5.7. Example. We return to Example 3.9 and follow its notation. In particular,
C denotes an Abelian category with a copointed endofunctor (V, ε) such that ε

C
is a

monomorphism and V (C/V (C)) = 0 for any C ∈ Ob C. We have seen that if, in addition,
(V, ε) is idempotent, then (I−1(E), (H(M))↑↓) is a factorization system on C. Theorem
5.4 implies that this is the case even if (V, ε) is not idempotent, but C is complete and
well-powered. The class I−1(E) has already been calculated in Example 3.9. The class
(H(M))↑↓ is not, in general, described as in that example (take the copointed endofunctor
V (G) = 2G on the category of Abelian groups and then apply arguments similar to those
of Remark 4.9). To characterize its morphisms, observe in the first place that all of them
are monomorphisms. Applying Lemma 5.5, we obtain:

For a monomorphism f : C �� �� C ′ the following conditions are equivalent:

(i) f ∈ (H(M))↑↓;

(ii) if g : S � C ′ is a subobject of C ′ such that

S = (C ∩ S) + V (S), (5.9)

then S ⊂ C (equivalently V (S) ⊂ C).

It is obvious that V preserves subobjects. From now on it is assumed that V also
preserves finite joins in the lattices of subobjects and hence is additive.

Each of (i) and (ii) is implied by the following condition:
(iii) V l(C ′) ⊂ C for some l ≥ 1.

If the chain of subobjects
C ′ ⊃ V (C ′) ⊃ V 2(C ′) ⊃ . . . (5.10)

is stabilized at the k-th step, then (i)–(iii) are equivalent and, moreover, we have one more
equivalent condition:

(iv) V k(C ′) ⊂ C.

(iii)⇒(ii): From (5.9) we obtain

S = (C ∩ S) + V (C ∩ S) + V 2(C ∩ S) + · · · + V l−1(C ∩ S) + V l(S),

whence S ⊂ C.
(ii)⇒(iv): We only observe that C contains any subobject S with V (S) = S.

We have already encountered the condition (iv) for k = 1 in Example 3.9, namely:

(v) V (C ′) ⊂ C.

Observe that monomorphisms satisfying (v) are precisely morphisms from MA for the
evident family A. Obviously, we have (v)⇒(i). As has been noted, the converse is true
if V is idempotent, though it fails in general. Nevertheless, even for V described in the
corresponding counter-example, under some additional conditions on f the equivalence
(i)⇔(v) holds. More precisely,
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Let C be the category of Abelian groups, and let V (C) = nC (n ≥ 2). If one of the
following conditions holds:

(a) C ′ is isomorphic to the product of cyclic groups of prime orders;

(b) nC ′ is a serving subgroup of C ′;

(c) C + nC ′ is a serving subgroup of C ′,

then each of the conditions (i) and (ii) is equivalent to (v).

Indeed, if (b) holds, then n2C ′ = nC and we apply the preceding statement. Suppose
C + nC ′ is serving so that n(C + nC ′) = (C + nC ′) ∩ nC ′ = nC ′. Then the extension

C �� �� C + nC ′ clearly lies in I−1(E) and therefore nC ′ ⊂ C. It remains to observe that
each C ′ from (a) satisfies (b) [FKS].

Finally, let us consider the case where C is the category of (left) R-modules for any com-
mutative ring R with unit, and V is any pointed endofunctor (with the above-mentioned
properties). If R is a field and C ′ is finitely generated, then chain (5.10) is obviously
stabilized. For arbitrary R, we observe that if x1, x2, . . . , xm ∈ C ′, then the inclusion

C ∩ mod (x1, x2, . . . , xm) �� �� mod (x1, x2, . . . , xm)

lies in I−1(E) if and only if there exist elements yij ∈ V (Rxj) (1 ≤ i, j ≤ m) such that
for any i we have

xi + yi1 + yi2 + · · · + yim ∈ C; (5.11)

here mod (x1, x2, . . . , xm) denotes the submodule generated by x1, x2, . . . , xm.
From this observation we immediately get:

Each of (i) and (ii) implies the following conditions:

(vi) C contains all x1, x2, . . . , xm from C ′ satisfying (5.11) for some yij ∈ V (Rxj);

(vii) C contains all x from G′ such that there exists an element y ∈ V (Rx) with x+y ∈ C.

If R is a principal ideal ring and C ′ is finitely generated, then (i), (ii) and (vi) are equiv-
alent. If, moreover, C ′ is a cyclic module, then these conditions are also equivalent to
(vii).

5.8. Example. Let Σ be a nonempty set, and let C be the category of groups equipped
with unary operators wi for each i ∈ Σ. Applying the above results, we will relate a certain
factorization system on C to any structure that makes Σ a commutative semigroup. In
what follows it is assumed that Σ is equipped with this structure. First we observe that
for any (G, (wi)i∈Σ) from C every wi (i ∈ Σ) induces the operator on G/N(G), where
N(G) is the normal subgroup generated by all njk(x) ≡ wjwk(x)wjk(x

−1), where x ∈ G
and j, k ∈ Σ. Indeed, we have

wi

(
wjwk(x)wjk(x

−1)
)

=
[
wiwjwk(x) [wiwjk(x

−1)wijk(x)]wiwjwk(x
−1)

]
· [wiwjwk(x)wijwk(x

−1)
] · [wijwk(x)wijk(x

−1)
]



SEVERAL CONSTRUCTIONS FOR FACTORIZATION SYSTEMS 351

and all of the three factors lie in N(G). This implies that the full subcategory X of all
(G, (wi)i∈Σ) such that

wj wi = wji (5.12)

for every i, j ∈ Σ, is reflective in C.
The structure of a factorization system naturally arises on X . The class E in it consists

of morphisms e : G −→ G′ such that for each x ∈ G′ there exists i ∈ Σ with wi(x) ∈ Im e,

while M consists of monomorphisms m : G �� �� G′ which satisfy the following condition:
if wi(x) ∈ G for some i, then x ∈ G. The (E,M)-factorization of f : G −→ G′ is given

as G �� H �� �� G′ , where H = {x ∈ G′|∃i, wi(x) ∈ Im f}. (5.12) implies that H is a

subgroup of G′, is closed under the action of all operators and the inclusion H �� �� G′

lies in M.
We apply Theorem 5.4 and extend (E,M) to the entire C. We have:

f : G −→ G′ lies in I−1(E) precisely when for each x ∈ G′ there exists i ∈ Σ such that
wi(x) ∈ Im f ·N(G′).

The class (H(M))↑↓ contains only monomorphisms and from Lemma 5.5 we obtain:

The following conditions for a monomorphism f : G �� �� G′ are equivalent:

(i) f lies in (H(M))↑↓;

(ii) for every subgroup S of G′ closed under each wi, if the inclusion G ∩ S �� �� S lies
in I−1(E), then S ⊂ G.

Similarly to Example 5.7, the class (H(M))↑↓ differs from the class MA which is de-
termined by the following condition:

(iii) N(G′) ⊂ G and for each x ∈ G′, if wi(x) ∈ G for some i ∈ Σ, then x ∈ G,

and is not closed under composition (for a counter-example, we consider the case where
Σ is trivial, G′ is the cyclic group of order 4 and the unique operator w on G′ maps 1
to 3. The monomorphisms {0 } �� �� N(G′) and N(G′) �� �� G′ lie in MA, while their

composition does not).

If the chain of subgroups
G′ ⊃ N(G′) ⊃ N2(G′) ⊃ . . .

is stabilized at the k-th step and for any i, j ∈ Σ we have

wiwj = wjwi (5.13)

in G′, then each of (i) and (ii) implies the condition:

(iv) Nk(G′) ⊂ G and if wi(x) ∈ G for some i ∈ Σ, then x ∈ G.
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If, in addition, G is normal in G′, then (i), (ii), (iv) are equivalent and we have one more
equivalent condition:

(v) N l(G′) ⊂ G for some l ≥ 1 and if wi(x) ∈ G for some i ∈ Σ, then x ∈ G.

(ii)⇒(iv): Let S be the smallest Σ-subgroup containing x. Clearly, it is generated (as
a group) by x and elements of the form wj1wj2 · · ·wjn(x) for all j1, j2, . . . , jn ∈ Σ. (5.13)
implies that wi(S) ⊂ G, whence S ⊂ G and x ∈ G.

(v)⇒(ii): Let S be a subgroup of G′ closed under each wi and such that the inclusion
G ∩ S �� �� S lies in I−1(E). Let x ∈ S. Then

wi(x) = a z1 z2 · · · zm (5.14)

for some i ∈ Σ, a ∈ G and elements zk of the form

sk nikjk
(xk) s

−1
k

with sk, xk ∈ S. There exist pk, qk ∈ Σ such that wpk
(sk) = ak nk and wqk

(xk) = bk mk for
some ak, bk ∈ G and nk,mk ∈ N(S). Then, according to (5.13) we have

wpk
wqk

(zk) = wqk
(ak nk)wpk

(nikjk
(bk mk))wqk

(n−1
k a−1

k ).

But
nikjk

(bk mk) = wikwjk
(bk)nikjk

(mk)wikjk
(b−1

k ).

Hence
wpk

wqk
(zk) = wqk

(ak)wqk
(nk)wpk

wikwjk
(bk)wpk

(nikjk
(mk))

· wpk
wikjk

(b−1
k )wqk

(n−1
k )wqk

(a−1
k ).

Since G, N(S) and N2(S) are closed under the action of all operators and G is normal in
G′, we have

wpk
wqk

(zk) = a′k n
′
k b

′
k nk b

′
k
−1
n′

k
−1
a′k

−1
= a′k ck(n

′
k nk n

′
k
−1

)dk a
′
k
−1
,

where a′k, b
′
k, ck, dk ∈ G, n′

k ∈ N(S) and nk ∈ N2(S). Applying the normality of G several
times, we obtain from (5.13) that

wp1wq1wp2wq2 · · ·wpmwqmwi(x) = bn (5.15)

for some b ∈ G and n ∈ N2(S).
If x ∈ N(S), then (5.15) is equal to wp1q1p2q2···pmqmi(x)n

′ for some n′ ∈ N2(S), and
hence

wp1q1p2q2···pkqki(x) ∈ G ·N2(S).

We have shown that if the inclusion G∩S �� �� S lies in I−1(E), then G∩N(S) �� �� N(S)

and therefore G ∩N l−1(S) �� �� N l−1(S) also lie in I−1(E). Hence, for any x ∈ N l−1(S),

there exists i ∈ Σ such that wi(x) ∈ G · N l(S) ⊂ G, whence x ∈ G and N l−1(S) ⊂ G.
Similar arguments show that N t(S) ⊂ G for any t ≥ 1. This implies that S ⊂ G.
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