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COMPOSING PROPS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

STEPHEN LACK

Abstract. A PROP is a way of encoding structure borne by an object of a symmetric
monoidal category. We describe a notion of distributive law for PROPs, based on Beck’s
distributive laws for monads. A distributive law between PROPs allows them to be
composed, and an algebra for the composite PROP consists of a single object with an
algebra structure for each of the original PROPs, subject to compatibility conditions
encoded by the distributive law. An example is the PROP for bialgebras, which is a
composite of the PROP for coalgebras and that for algebras.

1. Introduction

1.1 Monads provide a formalism for describing structure borne by an object of a
category; the resulting structures are called algebras. A distributive law in the sense of
Beck [1] allows two such monads to be “composed”; an algebra for the composite monad
consists of an algebra for each of the original monads, subject to certain compatibility
conditions between the two algebra structures. The fundamental example is the structure
of a ring, which involves an abelian group (the additive structure) and a monoid (the
multiplicative structure) subject to the compatibility condition of distributivity. There
is a distributive law between the monad for abelian groups and the monad for monoids,
and the composite monad is precisely the monad for rings. Not all such compatibility
conditions can be expressed in terms of a distributive law, but in practice very many do
so.

1.2 In this paper we consider a different formalism for describing structure borne by an
object of a category; in our case the category is supposed to be symmetric monoidal. We
shall write ⊗ for the tensor product, I for the unit, and c for the symmetry, and write as if
the monoidal structure were strict (this simplification is made legitimate by the coherence
theorem for symmetric monoidal categories — see [9, Section VII.2]). The formalism,
recalled below, is that of a PROP [8], or “one-sorted symmetric monoidal theory”. The
structures on an object A involve morphisms A⊗m → A⊗n, called operations, between
tensor powers of A, with these operations being subject to equations between derived such
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operations, built up out of the given operations using the symmetric monoidal category
structure. Thus monoids (also known as algebras, and consisting of maps A⊗A→ A and
I → A subject to the usual associative and unit laws) are the algebras for a PROP, but
so too are comonoids (also known as coalgebras; involving maps A→ A⊗A and A→ I).
One can also consider an object A equipped with a monoid structure and a comonoid
structure, subject to certain compatibility conditions: of course the most important case
is that of bimonoids or bialgebras, but we shall also consider Carboni’s notion of separable
algebra [3]. We shall define and study a notion of distributive law between PROPs and see
that such distributive laws allow one to “compose” PROPs, and in particular that the
bialgebras and the separable algebras are each the algebras for such composite PROPs.

1.3 If something is a composite, then we might expect that it can be factorized into
its constituent parts, and this point of view does turn out to be helpful in connection
with composite PROPs. The fact that the PROP for bialgebras, described in [11], can be
factorized as the PROP for comonoids followed by the PROP for monoids amounts to the
fact that for a bialgebra A, any map A⊗m → A⊗n built up out of the basic structure maps
can be factorized, in an essentially unique way, as a map A⊗m → A⊗p built up out the
comonoid structure, followed by a map A⊗p → A⊗n, built up out of the monoid structure.
For instance the composite

A⊗ A
µ �� A

δ �� A⊗ A

of the multiplication µ and the comultiplication δ, can be factorized as

A⊗ A
δ⊗δ �� A⊗ A⊗ A⊗ A

1⊗c⊗1 �� A⊗ A⊗ A⊗ A
µ⊗µ �� A⊗ A

and here all the comonoid structure comes before the monoid structure. This factorization
is only “essentially unique” because the symmetry can be regarded as part of the comonoid
structure or as part of the monoid structure, and extra symmetries can be artificially
introduced into each side.

1.4 Before looking at PROPs, we shall first consider the case of PROs, which involve
monoidal categories rather than symmetric monoidal categories. They are less expressive
than PROPs, but many important structures can still be defined in terms of PROs,
including monoids and comonoids, although not commutative monoids, cocommutative
comonoids, or bialgebras. Although our main interest is in distributive laws between
PROPs, it will be useful to have available the machinery of distributive laws between
PROs, and the latter are also somewhat easier to describe, for the following reason. As
observed by Street [13], one can consider monads not on a category but on an object of
some bicategory, and the theory of distributive laws works perfectly for such “monads
in a bicategory”. Moreover, PROs can be considered as monads in a certain bicategory
Span(Mon) (of spans in the category of monoids), and we can then simply apply the
general theory. PROPs can also be regarded as monads in a bicategory, as we shall see
in Section 4 below, but the bicategory in question is somewhat more complicated.
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1.5 There is a close analogy between PROs, PROPs, and Lawvere theories: Lawvere
theories are the one-sorted finite product theories, PROPs are the one-sorted symmet-
ric monoidal theories, while PROs are the one-sorted monoidal theories; here the “one-
sortedness” refers to the fact that the structure in question is borne by a single object, as
opposed to such structures as a ring with a module over it.

1.6 The construction of PROPs using distributive laws is clearly closely related to
their construction using generalized Q-constructions, as in [11], but we have chosen the
approach presented here because of the flexibility provided by working with various bi-
categories of spans, and in order to make the connection with prior work on distributive
laws.

1.7 The plan of the paper is as follows. In Section 2, we review the notions of
PROPs, PROs, and their algebras. In Section 3, we look at the bicategories Span and
Span(Mon), at the monads therein, and at distributive laws between such monads, and
apply this to the case of PROs. In Section 4 we study distributive laws for PROPs, and
in Section 5 we look at some examples of distributive laws between PROPs.

2. PROPs

2.1 In this section we recall the formal definitions of PROs and PROPs. A PRO is a
strict monoidal category T whose set of objects is the set of natural numbers, with tensor
product given by addition. For an arbitrary strict monoidal category V , an algebra of
T in V is a strict monoidal functor from T to V . The image of a map ξ : m → n in T

will thus be a map A⊗m → A⊗n in V , usually also denoted by ξ. (Algebras in non-strict
monoidal categories can also be defined, but it is easier to do this in a slightly different
manner, described below.) A morphism of algebras is a monoidal natural transformation.
These algebras and their morphisms together constitute a category T-Alg, equipped with
a forgetful functor T-Alg → V given by evaluation at the object 1 of T.

2.2 An example is the strict monoidal category D of finite ordinals and order-preserving
maps (the “algebraicist’s simplicial category”), with tensor product being given by ordinal
sum. The objects have the form n = {0 < 1 < . . . < n − 1}; the ordinal sum of two
ordinals is their disjoint union, with all elements of the first ordinal deemed to be less
than all elements of the second ordinal. An algebra of D in a monoidal category V is just
a monoid in V : the multiplication of the monoid is the image of the map 2 → 1 in D,
and the unit is the image of the map 0 → 1; see [9, Section VII.5] for details.

2.3 A strict monoidal category can be seen either as a monoid in the monoidal category
Cat of categories, or as an internal category in the category Mon of monoids. From the
latter point of view, a PRO is precisely a category in Mon whose monoid of objects is
the natural numbers.

A morphism of PROs is a strict monoidal functor which is the identity on objects;
from the point of view of the previous paragraph this amounts to an internal functor in
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Mon which is the identity on objects. Thus there is a category PRO of PROs and their
morphisms. Algebras for a PRO can be viewed as morphisms of PROs: given an object
A in a monoidal category V , not necessarily strict, there is a PRO 〈A,A〉 whose hom-sets
are given by 〈A,A〉(m,n) = V (A⊗m, A⊗n), with the composition and tensor product in
〈A,A〉 defined using the corresponding structures in V . A morphism of PROs from T

to 〈A,A〉 is precisely a T-algebra with underlying object A. Algebra morphisms can be
defined in a similar way. If f : A → B is a morphism in V , there is a PRO {f, f} with
hom-sets {f, f}(m,n) given by the pullback

{f, f}(m,n) ��

��

V (B⊗m, B⊗n)

V (f⊗m,B⊗n)
��

V (A⊗m, A⊗n)
V (A⊗m,f⊗n)

�� V (A⊗m, B⊗n)

in Cat. The projections of these pullbacks organize themselves into morphisms of PROs
D : {f, f} → 〈A,A〉 and C : {f, f} → 〈B,B〉. Suppose now that A and B have T-algebra
structures corresponding to PRO-morphisms P : T → 〈A,A〉 and Q : T → 〈B,B〉. Then
f : A→ B is a morphism of T-algebras if and only if the diagram

T(m,n)
Q ��

P
��

V (B⊗m, B⊗n)

V (f⊗m,B⊗n)
��

V (A⊗m, A⊗n)
V (A⊗m,f⊗n)

�� V (A⊗m, B⊗n)

commutes, in which case the maps T(m,n) → {f, f}(m,n) induced by the universal
property of the pullback {f, f}(m,n) organize themselves into a PRO-morphism F : T →
{f, f} with DF = P and CF = Q. Another point of view is that to make f : A→ B into
a morphism between some T-algebra structures on A and B is to give a PRO-morphism
F : T → {f, f}; one then finds the relevant T-algebra structures by looking at the PRO-
morphisms DF : T → 〈A,A〉 and CF : T → 〈B,B〉.
2.4 A PROP is simply a PRO which, as a monoidal category, is equipped with a
symmetry. Since the set of objects of a PRO is just the natural numbers, this is essentially
saying that the category “contains the permutations”; to express this more formally, we
introduce the PRO P which is the skeletal symmetric monoidal category of finite sets and
bijections. The objects are as usual the natural numbers; there are morphisms from m
to n only if m = n, in which case the set of such morphisms is the symmetric group on n
elements. A PROP is now a PRO T with a morphism of PROs J : P → T; the symmetry
isomorphism c : m + n → n +m in T is the image under J of the permutation of m + n
which interchanges first m elements with the last n. A morphism of PROPs is a morphism
of PROs which commutes with the maps out of P; in other words, the category PROP
of PROPs and their morphisms is just the slice category P/PRO.
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2.5 For a symmetric strict monoidal category V , an algebra in V of the PROP T is a
symmetric strict monoidal functor from T to V , while a morphism of such algebras is a
monoidal natural transformation. If V is an arbitrary symmetric monoidal category (not
necessarily strict) then for an object A of V , the PRO 〈A,A〉 is canonically a PROP,
and A becomes an algebra of T when there is given a PROP morphism from T to 〈A,A〉;
similarly {f, f} is a PROP and can be used to define morphisms of algebras.

2.6 If we need to distinguish between a PROP T and its underlying PRO, obtained by
forgetting the symmetry, we write T0 for the latter. In particular, it is important to note
that although every T-algebra is a T0-algebra, the converse is false. On the other hand,
there is no distinction between the corresponding notions of morphism, and the category
of T-algebras is a full subcategory of the category of T0-algebras.

3. Distributive laws for PROs

3.1 Given monads T = (T, µ, η) and S = (S, µ, η) on a category C , a distributive
law [1] of T over S consists of a natural transformation λ : TS → ST satisfying various
conditions; one way of expressing these conditions is that ST becomes a monad with
multiplication and unit given by

STST
SλT �� SSTT

SSµ �� SST
µT �� ST

1
η �� S

Sη �� ST.

Street [13] showed that the whole theory of monads, distributive laws, Eilenberg-Moore
objects, and so on, can be developed in the context of an arbitrary bicategory (actually
Street worked with a 2-category, but the modifications for dealing with a bicategory are
relatively minor, and in any case by the coherence theorem [10] for bicategories one can
always replace a bicategory by a biequivalent 2-category). The “formal theory of monads”
of [13] was further developed by Street and the author in [6].

We shall often work with bicategories with only one object; these are essentially the
same thing as monoidal categories: the objects of the monoidal category are the 1-cells
of the bicategory, and the tensor product becomes the composition of 1-cells. A monad
in a one-object bicategory is the same thing as a monoid (or algebra) in the monoidal
category. Thus we can consider monoids T = (T, µ, η) and S = (S, µ, η) with a distributive
law λ : T ⊗ S → S ⊗ T , and this induces a monoid structure on S ⊗ T . The following is
an immediate generalization of a result of Beck:
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3.2. Proposition. There is a bijection between monoid maps S ⊗ T → R and pairs
f : S → R and g : T → R of monoid maps making the diagram

T ⊗ S
g⊗f ��

λ

��

R⊗R
m

���������

R

S ⊗ T
f⊗g

�� R⊗R
m

���������

commute, where m denotes the multiplication of the monoid R. The bijection sends the
pair (f, g) to the map m(f ⊗ g) : S ⊗ T → R along the bottom of the diagram.

3.3 The case of monads in the bicategory Span was studied in detail by Rosebrugh
and Wood in [12], where the name set-mat was used rather than Span. An object of
Span is just a set, while a morphism from X to Y consists of a set E with functions
d : E → X and c : E → Y . A 2-cell from (E, d, c) to (E ′, d′, c′) consists of a morphism
E → E ′ compatible with the maps into X and Y . The 1-cells are composed by pullback;
with the evident compositions of 2-cell this gives a bicategory. A monad in Span consists
of a set X, an endomap of X in the form of a set E with functions d, c : E → X, an
associative multiplication m : E×XE → E, with a unit X → E; in other words, a monad
in Span is precisely a category. A distributive law between two such monads allows one to
“compose” the corresponding categories. The “composite” category can be factorized into
its constituent parts, and this amounts to giving a certain sort of “strict” factorization
system on the category, as is explained in [12]. In these strict factorization systems, there
are as usual two subcategories E and M , and every arrow has a unique factorization
(not just unique up to isomorphism) as an E followed by an M . This uniqueness means
however that only the identities are contained in both E and M , not all the isomorphisms.
Thus a strict factorization system in this sense is not (strictly speaking!) a factorization
system, although it does induce one when one closes E and M under composition with
isomorphisms.

3.4 Given any category C with pullbacks one can construct the bicategory Span(C )
of spans in C , consider monads in it, and distributive laws between them. We shall
use the symbol ⊗ to denote composition in Span(C ). Just as in the case C = Set, a
monad in Span(C ) is precisely an internal category in C . Once again, distributive laws
between such monads allow one to “compose” the corresponding categories, and such
composite categories have a strict factorization system, in the evident C -internal sense.
(The possibility of working in Span(C ) rather than Span was pointed out already in
[12].)

3.5 Here we are interested in the case C = Mon. The forgetful functor U : Mon →
Set preserves finite limits, and so induces a homomorphism of bicategories Span(U) :
Span(Mon) → Span(Set), which takes monads to monads (by taking a strict monoidal
category to its underlying category), distributive laws to distributive laws, and so on.



COMPOSING PROPS 153

As we have seen, a monad in Span(Mon) is a category in Mon, and a PRO is such
a category whose monoid of objects is N; in other words, a monad in Span(Mon) on
the object N. We shall write N for the monoidal category Span(Mon)(N,N) of spans
of monoids from N to N, with tensor product given by composition. Then the category
PRO of PROs is just the category of monoids in N . We define a distributive law between
PROs to be a distributive law between the corresponding monads in Span(Mon); that
is, between the corresponding monoids in N .

3.6 In the notation of [12], a distributive law in Span between categories E and M
with the same set of objects involves giving, for each m : A → B in M and e : B → C
in E , an object eλm, a morphism eεm : A→ eλm in E , and a morphism eµm : eλm→ B
in M satisfying various conditions. The maps eµm and eεm will give the factorization in
the composite category of the composite em : A→ C.

If T and S are PROs, and L : T⊗S → S⊗T is a distributive law, we adapt slightly the
notation of [12]: given σ : m → n in S and τ : n → p in T, we write σTτ : m → σLτ and
σSτ : σLτ → p for the induced maps. As we saw above, the homomorphism of bicategories
Span(U) : Span(Mon) → Span takes distributive laws to distributive laws, and so
a distributive law between PROs induces a distributive law between their underlying
categories. Conversely, a distributive law between the underlying categories of two PROs
is a distributive law of PROs if and only if the operations σLτ , σTτ and σSτ are compatible
with the monoidal structure:

3.7. Theorem. A distributive law between PROs T and S consists of a distributive
law L : T ⊗ S → S ⊗ T between their underlying categories, for which

(σ ⊗ σ′)L(τ ⊗ τ ′) = (σLτ) ⊗ (σ′
Lτ

′)

(σ ⊗ σ′)S(τ ⊗ τ ′) = (σSτ) ⊗ (σ′
S
τ ′)

(σ ⊗ σ′)T(τ ⊗ τ ′) = (σTτ) ⊗ (σ′
T
τ ′).

As usual, a distributive law induces a composite monad, and this composite monad
has a strict factorization system, where the two subcategories are actually strict monoidal
subcategories. Thus a strict factorization system on a PRO is nothing but a strict fac-
torization system on its underlying category, for which the two subcategories are closed
under the tensor product:

3.8. Theorem. A PRO R is the composite S ⊗ T of PROs S and T if and only if S

and T are subcategories of R, closed under the tensor product, and every map in R has a
unique factorization as a map in T followed by a map in S.

3.9 We now turn to S ⊗ T-algebras, and show that they have the expected description,
closely analogous to that of [1]. By Proposition 3.2 we can describe PRO-morphisms from
S⊗T to an arbitrary PRO R; we apply this in the case R = 〈A,A〉 to obtain a description
of the algebras for S⊗T. Recall that an R-algebra structure on A is just a PRO morphism
from R to 〈A,A〉, and that we use the same name for the morphism m→ n in R and the
induced map A⊗m → A⊗n in the monoidal category V .
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3.10. Proposition. If S ⊗ T is a composite PRO induced by a distributive law
L : T⊗S → S⊗T, then an S⊗T-algebra structure on A consists of an S-algebra structure
on A and a T-algebra structure on A subject to the condition that

A⊗m σ ��

σTτ

��

A⊗n

τ

��
A⊗q

σSτ
�� A⊗p

commutes for all σ : m→ n in S and τ : n→ p in T, where q denotes σLτ .

3.11 In order to describe the morphisms of S⊗T-algebras, we use the case R = {f, f} of
Proposition 3.2. To make f into a morphism of S⊗T-algebras is to give a PRO-morphism
F : S⊗T → {f, f} that is, to give PRO-morphisms F S : S → {f, f} and F T : T → {f, f}
rendering commutative

T ⊗ S
FT⊗F S

��

L

��

{f, f} ⊗ {f, f}
M

�����������

{f, f}.

S ⊗ T
F S⊗FT

�� {f, f} ⊗ {f, f} M

�����������

By the universal property of the pullbacks defining {f, f}, commutativity of this diagram
can be tested by composing with the projections D : {f, f} → 〈A,A〉 and C : {f, f} →
〈B,B〉. The resulting diagrams are

T ⊗ S
(DFT)⊗(DF S)��

L

��

〈A,A〉 ⊗ 〈A,A〉
M

�����������

〈A,A〉

S ⊗ T
(DF S)⊗(DFT)

�� 〈A,A〉 ⊗ 〈A,A〉M
�����������

and a corresponding one for C; commutativity of these diagrams is part of the fact that
A and B are S ⊗ T-algebras, and so we have:

3.12. Proposition. If S ⊗ T is a composite PRO induced by a distributive law
L : T ⊗ S → S ⊗ T, and A and B have S ⊗ T-algebra structures, then a morphism
f : A → B is a morphism of S ⊗ T-algebras if and only if it is a morphism of S-algebras
and of T-algebras.

As warned, there are relatively few interesting examples of distributive laws between
PROs (although there will be plenty of examples of distributive laws between PROPs).
There are two cases worth mentioning though; both will be referred to again in Section 5.
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3.13. Example. Recall that D is the PRO of finite ordinals, and that its algebras
are the monoids. As a category, D has a well-known factorization system given by the
surjections and the injections; since there are no non-identity isomorphisms this is actually
a strict factorization system. Thus the category D is a composite of the corresponding
subcategories De and Dm, via a distributive law. Furthermore, these subcategories are
closed under the tensor product, so they are themselves PROs, the distributive law is a
distributive law of PROs, and the PRO D is the composite of the PROs De and Dm. An
algebra for De in V is a semigroup — that is, an object A with an associative multiplication
m : A⊗ A→ A — while an algebra for Dm is an I-pointed object — that is, an object A
with an arbitrary map i : I → A. The compatibility condition between the De-structure
and the Dm-structure says precisely that i is a unit for the semigroup, so that A is in fact
a monoid. A morphism in V is of course a morphism of monoids if and only if it preserves
the multiplication and the unit — that is, if and only if it is a morphism of De-algebras
and of Dm-algebras.

3.14. Example. The second example involves a distributive law L : P ⊗ D → D ⊗ P,
defined as follows. A morphism in P ⊗ D from m to n is a pair (π, ϕ), where ϕ : m → n
is an order-preserving map and π is a permutation of n. The image under L of (π, ϕ)
will be a pair (ϕDπ, ϕPπ), where ϕPπ is a permutation of m and ϕDπ : m → n is an
order-preserving map. The permutation may be specified by saying that, for i, j ∈ m, we
have (ϕPπ)(i) < (ϕPπ)(j) if and only if either πϕi < πϕj or ϕi = ϕj and i < j. We now
define ϕDπ : m→ n to be the unique morphism rendering commutative

m
ϕ ��

ϕPπ

��

n

π
��

m ϕDπ
�� n,

and observe that ϕDπ is order-preserving. A routine calculation verifies that the equations
for a distributive law hold, and so that D ⊗ P becomes a PRO. In fact the canonical
map P → D ⊗ P makes D ⊗ P into a PROP, whose algebras are the monoids. The
full subcategory of D ⊗ P consisting of the objects n with n > 0 was studied in [7,
Section 6.1]. It is isomorphic to a category described in [5, p. 191] and in [11]: in the
isomorphic category a morphism from m to n consists of a function f : m → n equipped
with a total order on each of the fibres. Both categories were described in [4], where the
maps P(n, n)×D(m,n) → D(m,n)×P(m,m) were informally called a “distributive law”.
We shall return to D ⊗ P as a PROP in Section 5 below.

3.15 There is a subcategory C of P consisting of only those permutations of n = {0 <
1 < . . . < n− 1} generated by the cycle (01 . . . n− 1), but this subcategory is not closed
under tensor product. The distributive law P ⊗ D → D ⊗ P of categories restricts to a
distributive law C ⊗ D → D ⊗ C, but this is not a distributive law of PROs. The full
subcategory of the composite category D⊗C consisting of the objects n with n > 0, was
studied in [7, Section 6.1], in connection with cyclic homology. We shall not consider it
further.
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4. Distributive laws for PROPs

4.1 In this section we come to distributive laws for PROPs. Given PROPs T and S,
and a distributive law between their underlying PROs T0 and S0, one obtains a composite
PRO S0 ⊗ T0. The problem is that this has two PROP structures, given by the maps
P → T0 → S0 ⊗T0 and P → S0 → S0 ⊗T0, since we have included the symmetry of S and
that of T whereas really these two should be identified. In this case the correct notion of
composite will be given by the coequalizer (in PRO) of these two maps P → S0 ⊗ T0.

4.2 The example of bialgebras, discussed in the introduction, is typical: one doesn’t
know whether to regard the symmetry maps as being part of the monoid structure or as
part of the comonoid structure. There is a further complication in that, in this case and
many others, one does not even have a distributive law of the underlying PROs, but only
some sort of “relaxed distributive law”, in a sense related to, but not the same as, that
of [12, Section 5]. Rather than work with relaxed distributive laws, we take the approach
outlined in the following paragraph. This approach could clearly be adapted to give an
alternative treatment of (non-strict) factorization systems to that in [12, Section 5] or
[6, Example 3.5]. This alternative approach would involve profunctors between groupoids
rather than spans between sets.

4.3 Let N be a monoidal category with colimits, preserved by tensoring on either side,
and let P be a fixed monoid in N . There is a category P of left P-, right P-bimodules,
and this category is itself monoidal via a tensor product ⊗P given by “tensoring over P”:
the tensor product of bimodules A and B is given by the coequalizer

A⊗ P ⊗B
ρ⊗B ��

A⊗λ
�� A⊗B �� A⊗P B

where λ is the left action of P on B and ρ is the right action of P on A. For purely
formal reasons, the category Mon(P) of monoids in P is equivalent to the slice category
P/Mon(N ) of monoids in N under the monoid P. We apply this in the case N =
Span(Mon)(N,N) — the monoidal category of spans of monoids from N to N, with tensor
product given by composition of spans. As we have seen, a monoid in N is precisely a
PRO, while a monoid with a monoid map out of P is precisely a PROP. Thus the category
PROP of PROPs may be seen as the category Mon(P) of monoids in P. We now define
a distributive law of PROPs to be a distributive law of monoids in P: that is, a morphism
T ⊗P S → S ⊗P T of P,P-bimodules, satisfying the usual equations for distributive laws.

4.4 The description of the previous paragraph may be recast in the following terms.
There is a bicategory Prof(Mon) whose objects are the internal categories in Mon, and
whose morphisms are the internal profunctors (or modules). The monoidal category P

may be regarded as a category in Mon, and so as an object of Prof(Mon). A P,P-
bimodule, in the sense of the previous paragraph, is just a morphism in Prof(Mon) from
P to P. Thus a PROP is precisely a monad in the bicategory Prof(Mon) on the object
P.
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4.5 The interpretation of a composite PROP S ⊗P T in terms of strict factorization
systems is more complicated, since there is no reason in general why the maps S → S⊗P T

and T → S ⊗P T should be injective, and so we cannot suppose that S and T constitute
subcategories. As an extreme example, consider the case where S is P, and T is the chaotic
category Nch on N; then S⊗T ∼= P⊗P Nch

∼= Nch, so that S → S⊗P T is the map P → Nch

which sends all permutations of n to the same map.

For simplicity, we focus our attention on the case where the maps S → S ⊗P T and
T → S ⊗P T are injective; this seems to cover the examples of interest.

4.6. Theorem. Let R be a PROP, and let S and T be subcategories of R containing
all the objects and all the symmetry isomorphisms, and closed under tensoring. Suppose
that every map ρ in R can be represented as a composite ρ = στ with σ in S and τ in
T, and that if ρ = σ′τ ′ is another such representation, then there is a permutation π
with τ = τ ′π and πσ = σ′. Then R is the composite of S and T via a distributive law
L : T ⊗P S → S ⊗P T.

Proof. Given σ : m → n in S and τ : n → p in T, factorize the composite τσ : m → p
in R as τTσ : m → τLσ (in T) followed by τSσ : τLσ → p (in S). The object τLσ is
uniquely determined, while the pair (τSσ, τTσ) is determined as a morphism of S⊗PT. The
uniqueness of factorizations up to the action of P also guarantees that this defines a map
L : T⊗P S → S⊗P T. The equations for the distributive law follow from the associativity
of composition in R. The inclusions S → R and T → R induce, by Proposition 3.2, a
map S⊗P T → R in PROP. This is full by the existence of factorizations, faithful by the
uniqueness (modulo the actions of P) of factorizations, and is the identity on objects, so
is an isomorphism.

Just as in the case of PROs, we have:

4.7. Proposition. If S ⊗P T is a composite PROP induced by a distributive law
L : T ⊗P S → S ⊗P T, then an S ⊗P T-algebra structure on A consists of an S-algebra
structure on A and a T-algebra structure on A subject to the condition that

A⊗m σ ��

σTτ

��

A⊗n

τ

��
A⊗q

σSτ
�� A⊗p

commutes for all σ : m→ n in S and τ : n→ p in T, where q denotes σLτ .

4.8. Proposition. If S ⊗P T is a composite PROP induced by a distributive law
L : T ⊗P S → S ⊗P T, and A and B have S ⊗P T-algebra structures, then a morphism
f : A→ B is a morphism of S⊗P T-algebras if and only if it is a morphism of S-algebras
and of T-algebras.
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5. Examples

In this section we look at examples of distributive laws between PROPs. Most of the
PROPs were also described in [11].

5.1 Let F be the skeletal category of finite sets, equipped with the monoidal structure
given by disjoint union, and with the usual symmetry. This is a PROP whose algebras
in a monoidal category V are the commutative monoids in V . We shall see below how
F participates in various composite PROPs, but it is also itself a composite PROP, in a
manner very similar to that in which the PRO D for monoids is a composite PRO. The
category F has subcategories Fe and Fm consisting of the surjections and the injections.
These are closed under tensor product (disjoint union) and every arrow in F has an
essentially unique factorization as a surjection followed by an injection. By Theorem 4.6,
the PROP F is the composite Fm⊗PFe of Fe and Fm. The Fe-algebras are the commutative
semigroups, and the Fm-algebras are the I-pointed objects.

5.2 The opposite F
op of F is also a PROP; its algebras are the cocommutative comonoids.

It is a composite F
op
e ⊗P F

op
m .

5.3 A morphism in F ⊗ F
op from m to n consists of morphism p → m and p → n in F;

that is, of a span in F. The spans

p
α

����
��

��
�� β

���
��

��
��

� p′
α′

		��
��

��
�� β′



�
��

��
��

�

m n m n

become equal in F ⊗P F
op if there is a map π : p → p′ with α′π = α and δπ = β (of

course this implies that p = p′) in other words if the spans are isomorphic as 1-cells in
the bicategory Span(F) of spans in F. Similarly, a morphism in F

op ⊗ F from m to n is
a cospan in F, and we can obtain from it a span by forming the pullback.

p
β1

		��
��

��
�� α1



�
��

��
��

�

m

α
��	

		
		

		
	 n

β����
��

��
��

q

(∗)

This defines a map F
op⊗F → F⊗F

op which, by the usual pasting properties of pullbacks,
induces a map F

op ⊗P F → F ⊗P F
op satisfying the equations for a distributive law.

Thus we obtain a composite PROP F ⊗P F
op; it is the classifying category [2] of the

bicategory Span(F), obtained by identifying isomorphic 1-cells, and then throwing away
the 2-cells. We may calculate the algebras of F ⊗P F

op using Proposition 4.7. An algebra
for F⊗P F

op should consist of an object A with an F
op-algebra structure (a cocommutative

comonoid structure) and an F-algebra structure (commutative monoid structure) subject
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to a compatibility condition for each morphism in F
op ⊗P F; in other words, for each

pullback as in (∗) above. For a map α : m → n in F we write, as usual, α for the
corresponding structure map A⊗m → A⊗n of an F-algebra A, but we write α∗ : A⊗n →
A⊗m for the corresponding structure map of an F

op-algebra. The compatibility condition
amounts to commutativity of the diagram

A⊗p
β1

��










A⊗m

α∗
1

��������

α
���

������� A⊗n

A⊗q
β∗



for each pullback diagram (∗) in F. Since every such diagram is a coproduct of diagrams
in which q = 1, it will suffice to consider the case q = 1. By an inductive argument a
further reduction is possible to the cases where m and n are either 2 or 0. If m = n = 2
and q = 1, then the resulting commutativity condition is

A⊗4
A⊗c⊗A �� A⊗4

µ⊗µ
��











A⊗2

δ⊗δ
��

µ
������������������� A⊗2

A
δ

�������������������

which is the usual condition that δ : A → A ⊗ A preserve the multiplication. The
remaining three conditions can be similarly described, and we conclude that the F⊗P F

op-
algebras are precisely the commutative and cocommutative bialgebras; by Proposition 4.8
the F ⊗P F

op-morphisms are likewise the bialgebra morphisms: that is, the maps which
preserve both the algebra/monoid and the coalgebra/comonoid structure.

An alternative description of this PROP is given in [11]: it is (isomorphic to) the
category of finitely generated free commutative monoids. The isomorphism is easily un-
derstood: to give a span

p
α

		��
��

��
�� β



�
��

��
��

�

m n

in F is, up to isomorphism, to give the cardinality of each fibre of the map p → m × n,
which in turn is to give a function m× n→ N. Finally this may be viewed as a function
m → N

n or as a homomorphism N
m → N

n of (free, finitely generated) commutative
monoids.
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5.4 Next we consider cospans rather than spans. A cospan in F is the same as a map in
F

op⊗F, and the isomorphism classes of cospans in F are the maps in F
op⊗PF. Composition

of cospans via pushout defines a distributive law F ⊗P F
op → F

op ⊗P F and the resulting
composite category F

op ⊗P F is the classifying category of the bicategory of cospans in
F. Once again an algebra for F

op ⊗P F will be an object A with a commutative monoid
structure and a cocommutative comonoid structure, subject to compatibility conditions:
there will be a condition for every pushout in F. This time it suffices to consider just two
pushouts:

1 + 1
∇

����
��

��
��

� ∇

���
��

��
��

��
1 + 1 + 1

∇+1

������������
1+∇

������������

1

1
���

�������� 1

1
����������� 1 + 1

∇
������������� 1 + 1

∇
�������������

1 1

and the corresponding commutativity conditions are

A⊗ A
µ

��















A⊗ A⊗ A

A⊗µ
�������������

A

δ


1
�� A A⊗ A

δ⊗A
�������������

µ
�������������� A⊗ A

A
δ

��������������

which are precisely axioms (U) and (D) of [3], so that the F
op ⊗P F-algebras are precisely

the commutative separable algebras of [3].

5.5 In Example 3.14 we saw how to construct a composite PRO D ⊗ P, and that the
canonical map P → D⊗P made this into a PROP. By Proposition 3.10, an algebra for the
PRO (D ⊗ P)0 consists of an object A in a symmetric monoidal category, with D-algebra
and P-algebra structures on A satisfying a compatibility condition. A D-algebra structure
is a monoid structure; a P-algebra structure involves an isomorphism π : A⊗n → A⊗n for
each permutation π of n. The (D ⊗ P)0-algebra A is a D ⊗ P-algebra if and only if the
isomorphisms π : A⊗n → A⊗n are those induced by the symmetry. The compatibility
condition is then a consequence of the naturality of the symmetry isomorphisms, and so
the algebras of the PROP are just the monoids; similarly, the algebra morphisms are the
monoid morphisms.

There are also distributive laws of PROs P ⊗ Dm → Dm ⊗ P and P ⊗ De → De ⊗ P

inducing composite PROs Dm⊗P and De⊗P, and these have canonical PROP structures.
Moreover, tensoring over P with a free P-module behaves in the usual way, and we have
Dm⊗P⊗P De⊗P ∼= Dm⊗De⊗P ∼= D⊗P, and the PROP D⊗P is indeed the composite
of Dm ⊗ P and De ⊗ P via a distributive law of PROPs.
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5.6 Just as D ⊗ P is the PROP for monoids, so (D ⊗ P)op ∼= P
op ⊗ D

op ∼= P ⊗ D
op

is the PROP for comonoids. It is a composite of the PROPs P ⊗ D
op
e and P ⊗ D

op
m ,

via a distributive law of PROPs (the “opposite” of the distributive law in the previous
paragraph).

5.7 There is a distributive law L : F
op⊗D → D⊗F

op of PROs, which makes D⊗F
op into

a composite PRO. A morphism in F
op ⊗D from m to n is a pair (f, ϕ), where ϕ : m→ p

is order-preserving and f : n→ p is arbitrary. One now forms the pullback

q ψ ��

g

��

n

f

��
m ϕ

�� p

(∗∗)

in Set, where q is given the unique ordering for which ψ is order-preserving and g is
order-preserving on the fibres of ψ. In other words, for elements i and j of q, we have
i ≤ j if and only if qi < qj or both qi = qj and i ≤ j. We now define L(f, ϕ) to be (ψ, g):
the distributive law axioms are easily verified, and so D⊗F

op becomes a PRO. It becomes
a PROP via the PROP structure P → F

op of F
op and the canonical map F

op → D ⊗ F
op.

An object A of a symmetric monoidal category V becomes a (D ⊗ F
op)0-algebra if it is

both a D-algebra and a F
op
0 -algebra, and the usual compatibility conditions hold; it is a

D ⊗ F
op-algebra if the F

op
0 -algebra is in fact an F

op-algebra. A D-algebra is a monoid,
an F

op-algebra is a cocommutative comonoid, and compatibility involves a condition for
each square (∗∗); but since each such square is a coproduct of squares with p = 1 it
suffices to consider this case. Very much as in Section 5.3 above, these conditions reduce
to the condition that A be a bialgebra. One analyzes the algebra morphisms similarly,
and deduces that D ⊗ F

op is the PROP for cocommutative bialgebras.
We have described the PRO (D⊗F

op)0 in terms of a distributive law F
op
0 ⊗D → D⊗F

op
0 ,

but D ⊗ F
op is also a composite PROP, via a distributive law

F
op ⊗P (D ⊗ P) → (D ⊗ P) ⊗P F

op ∼= D ⊗ F
op

of PROPs; we omit the details.
In [11] an alternative description of the PROP for cocommutative bialgebras was given:

it is the opposite of the category of finitely generated free monoids.

5.8 Similarly, one can construct the PROP for commutative bialgebras as a composite
PRO F⊗D

op made into a PROP via the PROP structure of F, or as a composite PROP
F ⊗P (P ⊗ D

op), or as the category of finitely generated free monoids.

5.9 Our final example concerns the PROP for bialgebras (not necessarily commutative or
cocommutative). Not surprisingly, this will involve a distributive law between the PROP
D ⊗ P for monoids/algebras and the PROP P ⊗ D

op for comonoids/coalgebras, with the
resulting composite being (D⊗P)⊗P (P⊗D

op) ∼= D⊗P⊗D
op. To describe the distributive

law, we first describe a map L0 : D
op ⊗D → D⊗P⊗D

op. A morphism m→ n in D
op ⊗D
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is a pair (ψ, ϕ), consisting of order-preserving maps ϕ : m → p and ψ : n → p. We form
the pullback

q

ψ′

��

f �� n

ψ

��
m ϕ

�� p

in Set, and equip q with the unique order for which ψ′ is order-preserving and f is order-
preserving on the fibres of ψ′. There is now a unique factorization of f as a permutation
π followed by an order-preserving map ϕ′ : q → n, with the property that ψ′π−1 is order-
preserving on the fibres of ϕ′. We now define L0(ψ, ϕ) to be the morphism (ϕ′, π, ψ′) :
m→ n in D ⊗ P ⊗ D

op. The resulting morphism L0 : D
op ⊗ D → D ⊗ P ⊗ D

op determines
a unique morphism P ⊗ D

op ⊗ D ⊗ P → D ⊗ P ⊗ D
op of P,P-bimodules; that is, a map

L : (P⊗D)⊗P (Dop ⊗ P) → (Dop ⊗ P)⊗P (P⊗D) of P,P-bimodules, and this turns out to
be a distributive law of PROPs.

An algebra for the composite PROP consists of an object A of a symmetric monoidal
category V , equipped with a P ⊗ D-algebra (monoid) structure and a D

op ⊗ P-algebra
(comonoid) structure, satisfying a compatibility condition for each diagram

q π ��
ψ′

		��
��

q
ϕ′



�
��

�

m

ϕ ���������� n

ψ����������

p

as above. Once again, it suffices to consider the case p = 1, and the compatibility condition
becomes

(A⊗n)⊗m π �� (A⊗m)⊗n
µn

m

�������

A⊗m

δm
n ��������

µm ������������������ A⊗n

A
δn

������������������

where µm : A⊗m → A denotes the unique map built up out of µ and η using tensoring and
composition (but not symmetry isomorphisms), while δn : A → A⊗n denotes the unique
map built up out of δ and ε. The cases where m and n are either 2 or 0 are precisely the
conditions in the definition of bialgebra; the remaining cases are then a consequence. One
then deduces that D ⊗ P ⊗ D

op is the PROP for bialgebras. An alternative description
was given in [11].
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