ABSOLUTE HOMOLOGY

MICHAEL BARR

ABSTRACT. Call two maps, $f, g: C \longrightarrow C'$, of chain complexes absolutely homologous if for any additive functor F, the induced Ff and Fg are homologous (induce the same map on homology). It is known that the identity is absolutely homologous to 0 iff it is homotopic to 0 and tempting to conjecture that f and g are absolutely homologous iff they are homotopic. This conjecture is false, but there is an equational characterization of absolute homology. I also characterize left absolute and right absolute (in which F is quantified over left or right exact functors).

1. Introduction

An exactness property is generally called *absolute* if it is preserved by all functors (or all in a relevant class). For example, an arrow in a category is an absolute epimorphism if it is taken to a epimorphism by every functor. It is easy to characterize such arrows as split epics. And only one functor is actually needed, the one represented by its codomain. Probably the earliest non-trivial example was the characterization of absolute coequalizers. Paré [1969, 1971] characterized those diagrams

$$A \Longrightarrow B \longrightarrow C$$

that are taken to coequalizers by every functor, using a generalization of the notion of split coequalizer.

If (C, d) is a chain complex (or even just a differential object) in an abelian category, we say that it is *absolutely acyclic* if for every additive functor F to another abelian category, the complex (FC, Fd) is acyclic. Such an object can be characterized as being contractible. Here is a quick sketch of the proof (see [Barr, 2002] for details). Let Z(C)denote the object of cycles—the kernel of d. Apply the functor represented by Z(C) to conclude that the complex (Hom(Z(C), C), Hom(Z(C), d) is an acyclic complex of abelian groups. The inclusion arrow $i : Z(C) \longrightarrow C$ is obviously a cycle and hence a boundary. This means that there is an arrow $z : Z(C) \longrightarrow C$ such that d.z = i. Since the image of d is contained in Z(C), it makes sense to form the composite z.d and then one can calculate that the image of 1 - z.d is also in Z(C) and one can then form the composite h = z.(1 - z.d) and calculate that id = d.h + h.d, which means that (C, d) is contractible.

This research was supported by the NSERC of Canada

Received by the editors 2003-05-08 and, in revised form, 2005-02-04.

Transmitted by Robert Paré. Published on 2005-02-20.

²⁰⁰⁰ Mathematics Subject Classification: 18G35.

Key words and phrases: absolutely homologous chain maps.

[©] Michael Barr, 2005. Permission to copy for private use granted.

MICHAEL BARR

With this example in mind, it seemed reasonable to conjecture that any two absolutely homologous maps are homotopic. This turns out to be not quite true. For maps $f, g : C \longrightarrow C'$ to be homotopic requires that there be a morphism $h : C \longrightarrow C'$ such that f - g = h.d + d.h. What we actually find as the characterization is that there be two morphisms $h, k : C \longrightarrow C'$ such that f - g = h.d + d.k. This is still an equational condition, preserved by all additive functors, that implies that they induce the same map on homology, since on cycles, it says that f - g = d.k, which means that whenever $c \in C$ cycle, (f - g)(c) is a boundary.

In the case of absolutely acyclic complexes, not all functors are needed; in fact, only a representable functor was used. For the more general case considered here, representable functors are not quite enough and what is used is the coequalizer of two representable functors, which is not left or right exact. It turns out that one can also characterize *left absolute* and *right absolute* homologous arrows, which remain homologous under the application of all left exact, resp. right exact, functors.

We have stated and proved the theorems for the ungraded case. The application to chain complexes and cochain complexes is easy; just replace the category of abelian groups by graded abelian groups and maps that have a degree, not necessarily 0.

1.1. NOTATION. For a differential object (C, d), we let $i : Z(C, d) \longrightarrow C$ denote the kernel of d and $q : C \longrightarrow B(C, d)$ denote the cokernel. We also let $j : B(C, d) \longrightarrow C$ be the inclusion of the image so that d = j.q. We will normally omit the d and write Z(C) and B(C).

2. Absolute homology

2.1. THEOREM. Suppose $f, g: (C, d) \longrightarrow (C', d)$ are maps of differential objects. Then f and g are absolutely homologous if and only if there are morphisms $h, k: C \longrightarrow C'$ such that f - g = h.d + d.k.

PROOF. It suffices to do this in the case that g = 0. So suppose that $f : (C, d) \longrightarrow (C', d)$ is a morphism such that the induced $H(Ff) : H(F(C, d)) \longrightarrow H(F(C', d))$ is 0 for every functor $F : \mathcal{A} \longrightarrow \mathcal{A} \mathcal{b}$. We will use the functor F defined as the coequalizer of $\operatorname{Hom}(d, -)$ so that for an object A of \mathcal{A} ,

$$\operatorname{Hom}(C,A) \xrightarrow{\operatorname{Hom}(d,A)} \operatorname{Hom}(C,A) \longrightarrow FA$$

is a coequalizer. Thus an element of FA is an equivalence class of morphisms $u: C \longrightarrow A$ with $u \cong v$ if and only if there is a $w: C \longrightarrow A$ such that u = v + w.d. Then we have a

commutative diagram

which means that for a morphism $u : C \longrightarrow C$, Fd(u) = d.u. This implies that if u commutes with d, then $Fd(u) = d.u = u.d \cong 0$ and is thus a cycle in the differential abelian group (FC, Fd). In particular, the class containing id $: C \longrightarrow C$ is a cycle. But then the class $Ff(id) \in (FC', Fd)$ must be a boundary and this is just the class of f. This means that there has to be a morphism $h \in \text{Hom}(C, C')$ such that $f \cong d.h$, which in turn means there is a morphism $k \in \text{Hom}(C, C')$ such that f = d.h + k.d.

2.2. EXAMPLE. This is an example to show that absolute homology equivalence need not imply homotopy equivalence. Consider the following situation. Let $C = \mathbf{Z}_{16}$ and $C' = \mathbf{Z}_{8}$. The differential in each is multiplication by 4, which has square 0. Let $k : C \longrightarrow C'$ be the natural projection and let f = d.k = k.d. Then f is evidently absolutely null homotopic. On the other hand, for any $h : C \longrightarrow C'$, d.h + h.d = 4h + 4h = 8h = 0 in \mathbf{Z}_{8} , so f is not null homotopic.

2.3. EXAMPLE. Here is an example of a morphism of chain complexes that is absolutely null without being homotopic to 0. Consider the chain complex

Then f = d.h, but it is easy to see that there is no k for which f = d.k + k.d.

MICHAEL BARR

3. Left and right absolute homology equivalence

3.1. THEOREM. Suppose $f, g: (C, d) \longrightarrow (C', d)$ are maps of differential objects. Then f and g are left absolutely homologous if and only if there is a morphism $k: Z(C) \longrightarrow C'$ such that (f - g).i = d.k. If, in addition, C' is injective, then f and g are absolutely homologous.

PROOF. It is sufficient to consider the case that g = 0. We let F = Hom(Z(C), -). Since $0 \longrightarrow Z(C) \xrightarrow{i} C \xrightarrow{d} C \longrightarrow 0$ is exact, so is

 $0 \longrightarrow \operatorname{Hom}(Z(C), Z(C)) \longrightarrow \operatorname{Hom}(Z(C), C) \xrightarrow{\operatorname{Hom}(Z(C), d)} \operatorname{Hom}(Z(C), C)$

which means that $\operatorname{Hom}(Z(C), Z(C)) = Z(\operatorname{Hom}(Z(C), C))$. In particular, the identity arrow of Z(C), whose image in $\operatorname{Hom}(Z(C), C)$ is *i*, is a cycle and hence its image f.i in the differential abelian group $\operatorname{Hom}(Z(C), C')$ is a boundary. But this means that there is a $k: Z(C) \longrightarrow C'$ such that d.k = f.i as claimed.

Now suppose that C' is injective. In that case, k can be extended to a map \hat{k} : $C \longrightarrow C'$ such that $\hat{k}.i = k$. It follows that $(f - d.\hat{k}).i = f.i - d.\hat{k}.i = f.i - d.k = 0$. Since $q: C \longrightarrow B(C)$ is the cokernel of i, there is a unique $h: B(C) \longrightarrow C'$ such that $h.q = f - d.\hat{k}$. Another application of injectivity, implies the existence of $\hat{h}: C \longrightarrow C'$ such that $\hat{h}.j = h$. Then

$$\hat{h}.d = \hat{h}.j.q = h.q = f - d.\hat{k}$$

from which we conclude that $f = \hat{h} \cdot d + d \cdot \hat{k}$.

By replacing \mathcal{A} by \mathcal{A}^{op} , we can translate this theorem into one for right absolute homology.

3.2. THEOREM. Suppose $f, g : (C, d) \longrightarrow (C', d)$ are maps of differential objects. Then f and g are right absolutely homologous if and only if there is a morphism $h : C \longrightarrow C'/B(C')$ such that q.(f - g) = k.d. If, in addition, C is projective, then f and g are absolutely homologous.

4. An example of a left absolute homology

The following theorem is suggested by Theorem 1.1 of [Bauer, 2001] although there are significant differences. But Bauer's complexes are functors into the category of free abelian groups. Although a subgroup of a free abelian group is free, such complexes are not projective in the functor category. Later, we will look at another result suggested by the same theorem.

4.1. THEOREM. Suppose that \mathcal{A} is an abelian category in which subobjects of projectives are projective. Let (C, d) and (C', d') be differential objects of \mathcal{A} with C projective. Then any homomorphism $u : H(C, d) \longrightarrow H(C', d')$ is induced by a chain homorphism $f : C \longrightarrow C'$.

56

ABSOLUTE HOMOLOGY

PROOF. Let C, Z, B, H and C, Z', B', H' denote the differential objects and the objects of cycles, boundaries, and homology classes, resp. Let $p: Z \longrightarrow H$ and $p': Z' \longrightarrow H'$ denote the projections from cycles to homology classes and let

$$B \xrightarrow{j} Z \xrightarrow{i} C \xrightarrow{q} B$$

and

$$B' \xrightarrow{j'} Z' \xrightarrow{i'} C' \xrightarrow{q'} B$$

denote, resp., the inclusion of boundaries into cycles, of cycles into chains and boundary map from chains to cycles. Thus the boundary operators are d = i.j.q and d' = i'.j'.q'. The hypotheses imply that C, Z and B are projective. In the diagram

$$0 \longrightarrow B \xrightarrow{j} Z \xrightarrow{p} H \longrightarrow 0$$

$$\downarrow h \qquad (*)$$

$$0 \longrightarrow B' \xrightarrow{j'} Z' \xrightarrow{p'} H' \longrightarrow 0$$

the rows are exact. Then the projectivity of Z implies the existence of an arrow $z : Z \longrightarrow Z'$ that makes the right hand square commute. The exactness of the lower line implies the existence of $b : B \longrightarrow B'$ making the left hand square commute. Next consider the diagram with exact rows

We make two uses of the projectivity of B. First we split the upper sequence and get a map $v : C \longrightarrow Z$ such that v.i = id. Second we get a map $x : B \longrightarrow C'$ such that q'.x = b. Now let $f = i'.z.v + x.q : C \longrightarrow C'$. Then

$$q'.f = q'.i'.z.v + q'.x.q = b.q$$

while

$$f.i = i'.z.v.i + q'.x.q.i = i'.z$$

It then follows that

$$f.d = f.i.j.q = i'.z.j.q = i'.j'.b.q = i'.j'.q'.f = d'.f$$

so that f is a chain homomorphism. The commutativity of (**) implies that z = Z(f) and b = B(f) and then the commutativity of (*) implies that h = H(f).

MICHAEL BARR

What this theorem does not claim is that f is unique up to homotopy. To show that this may fail, we give an example in which a chain map induces the 0 homomorphism in homology, but is not homotopic to 0. Consider,

4.2. EXAMPLE.

In degree 0, the upper complex has \mathbb{Z}_2 homology, but the map is 0, while in degree 1, the upper complex has 0 homology, so the map on homology is also 0, while it is evident that the map is not homotopic to 0 since 1 is not a multiple of 2. The map is also not right absolutely null homologous as tensoring with \mathbb{Z}_2 will show. It is, however, left absolutely null homologous as follows from the next result.

4.3. THEOREM. Under the same hypotheses as in Theorem 4.1 any two extensions of u are left absolutely homologous.

PROOF. It suffices to consider the case that u = 0 and f is a chain map with H(f) = 0. In the diagram

the fact that u = 0 implies the existence of $l : Z \longrightarrow B'$ making the diagram commute. The projectivity of Z lifts this to an arrow $k : Z \longrightarrow C'$ and Theorem 3.1 finishes the argument.

References

- M. Barr (2002), Acyclic Models. Amer. Math. Soc., 2002.
- F. W. Bauer (2001), Chain functors with ismorphic homology. Homology, Homotopy and Applications, **3** 37–53.
- R. Paré (1969), Absoluteness Properties in Category Theory. Dissertation, McGill University.
- R. Paré (1971), On Absolute Colimits. J. Alg. 19, 80-95.

Department of Mathematics and Statistics, McGill University 805 Sherbrooke St. W. Montreal, QC, H3A 2K6

Email: mbarr@barrs.org

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anonymous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/14/3/14-03.{dvi,ps} THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that significantly advance the study of categorical algebra or methods, or that make significant new contributions to mathematical science using categorical methods. The scope of the journal includes: all areas of pure category theory, including higher dimensional categories; applications of category theory to algebra, geometry and topology and other areas of mathematics; applications of category theory to computer science, physics and other mathematical sciences; contributions to scientific knowledge that make use of categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived electronically and in printed paper format.

SUBSCRIPTION INFORMATION. Individual subscribers receive (by e-mail) abstracts of articles as they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

INFORMATION FOR AUTHORS. The typesetting language of the journal is T_EX , and IAT_EX2e is the preferred flavour. T_EX source of articles for publication should be submitted by e-mail directly to an appropriate Editor. They are listed below. Please obtain detailed information on submission format and style files from the journal's WWW server at http://www.tac.mta.ca/tac/. You may also write to tac@mta.ca to receive details by e-mail.

MANAGING EDITOR. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXNICAL EDITOR. Michael Barr, McGill University: barr@barrs.org

TRANSMITTING EDITORS.

Lawrence Breen, Université Paris 13: breen@math.univ-paris13.fr Ronald Brown, University of North Wales: r.brown@bangor.ac.uk Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au Anders Kock, University of Aarhus: kock@imf.au.dk Stephen Lack, University of Western Sydney: s.lack@uws.edu.au F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl Susan Niefield, Union College: niefiels@union.edu Robert Paré, Dalhousie University: pare@mathstat.dal.ca Jiri Rosicky, Masaryk University: rosicky@math.muni.cz James Stasheff, University of North Carolina: jds@math.unc.edu Ross Street, Macquarie University: street@math.mg.edu.au Walter Tholen, York University: tholen@mathstat.yorku.ca Myles Tierney, Rutgers University: tierney@math.rutgers.edu Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca