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EXPONENTIABILITY IN LAX SLICES OF TOP

SUSAN NIEFIELD

Abstract.

We consider exponentiable objects in lax slices of Top with respect to the specialization
order (and its opposite) on a base space B. We begin by showing that the lax slice
over B has binary products which are preserved by the forgetful functor to Top if and
only if B is a meet (respective, join) semilattice in Top, and go on to characterize
exponentiability over a complete Alexandrov space B.

1. Introduction

Let Top denote the category of topological space and continuous maps. Recall that b ≤ c
in the specialization order on a T0 space B, if whenever U is open in B and b ∈ U , then
c ∈ U .

A lax slice of Top is a category of the form Top↗B defined as follows for any fixed
T0 space B. Objects of Top↗B are continuous maps p: X �� B and morphisms are
triangles

X

B

p ���
��

��
��

X Y
f �� Y

B

q����
��

��
�≤

which commute up to the specialization order on B, i.e., px ≤ qfx, for all x ∈ X, or
equivalently, f(p−1U) ⊆ q−1U , for all U open in B.

In [5], Funk used the lax slice over the Sierpinski space 2 to study “homotopy of marked
spheres” by identifying Top↗2 with the category whose objects are pairs (X,XU), where
XU is an open subset of a topological space X, and morphisms f : (X,XU ) �� (Y, YU)
are continuous maps f : X �� Y such that f(XU) ⊆ YU . In the preliminaries, he shows
that this category has products given by

(X,XU) × (Y, YU) = (X × Y,XU × YU)

and he characterizes exponentiable objects as follows. A pair (Y, YU) is exponentiable if
and only if Y is exponentiable in Top and the set

ZY
U = {σ: Y �� Z|σ(YU) ⊆ ZU}
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is open in the corresponding function space ZY , for all pairs (Z,ZU).
Several natural questions arise. Is there an intrinsic characterization of these expo-

nentiable pairs, i.e., one that depends only on (Y, YU) and not directly on the function
spaces ZY ? Are there other lax slices Top↗B in which the product is preserved by
the forgetful functor to Top? If so, what are their exponentiable objects? These results
would be of interest since lax slices can be used to study other configurations of open
subsets of topological spaces. Finally, to study diagrams of closed sets, one can consider
the analogous questions for the op-lax slices Top↙B, whose morphisms are diagrams
that commute up to ≥. In particular, f : X �� Y is a morphism

X

B

p ���
��

��
��

X Y
f �� Y

B

q����
��

��
�≥

if and only if p−1U ⊇ f−1q−1U , for all U open in B if and only if p−1F ⊆ f−1q−1F , for all
F closed in B if and only if f(p−1F ) ⊆ q−1F , for all F closed in B. For example, Top↙2
can be identified with the category of pairs (X,XF ), where XF is a closed subset of X,
and morphisms are continuous maps f : X �� Y such that f(XF ) ⊆ YF .

The paper proceeds as follows. After a brief review of exponentiability in section two
and the introduction of background material in sections three and four, these questions
are answered for lax and op-lax slices in sections five and six, respectively.

2. Preliminaries

Let T be a category with binary products. Recall that an object Y is called exponentiable
if the functor −× Y :T �� T has a right adjoint, often denoted by ( )Y . The category
T is called cartesian closed if every object is exponentiable.

When T = Top, taking X to be a one-point space in the natural bijection

Top(X × Y, Z) ∼= Top(X,ZY )

one sees that ZY can be identified with the set Top(Y, Z) of continuous maps from Y to
Z, and so the question of exponentiability becomes one of finding suitable topologies on
the function spaces ZY .

The first exponentiability results in print appear to be the 1945 paper [3] of Fox,
where it was shown that a separable metric space is exponentiable if and only if it is
locally compact. A complete characterization was achieved by Day and Kelly in their
1970 paper [2], when they proved the functor −×Y :Top �� Top preserves quotients if
and only if the lattice O(Y ) of open sets of Y is a continuous lattice, in the sense of Scott
[9], and that a Hausdorff space satisfies this property if and only if it is locally compact.
Since −× Y preserves coproducts in any case, preservation of quotients is necessary and
sufficient for exponentiability in Top. Note that although sufficiency follows from Freyd’s
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Special Adjoint Functor Theorem [4], one can construct the exponentials as follows, and
use the continuity of O(Y ) to establish the exponentiability adjunction.

Recall that a subset H of O(Y ) is called Scott-open if it is upward closed, i.e., U ∈ H
and U ⊆ V implies V ∈ H, and it satisfies the finite union property,

⋃
α∈A Uα ∈ H ⇒⋃

α∈F Uα ∈ H, for some finite F ⊆ A. Then the sets of the form

〈H,W 〉 = {σ ∈ ZY |σ−1(W ) ∈ H}

where H is Scott-open in Y and W is open in Z, generate a topology on ZY which agrees
with the compact-open topology when Y is locally compact. Moreover, ( )Y :Top ��

Top is always a functor, and it is the right adjoint to −× Y when O(Y ) is a continuous
lattice.

A characterization of exponentiability in the strict slices Top/B first appeared in
[7]. Since the product is given by the fiber product there, function spaces are formed
relative to the fibers of spaces. Here we need only consider the full function spaces ZY ,
since products in the lax slices we consider below are preserved by the forgetful functor.
Note that this excludes all T1 spaces B for, since the specialization order on any T1

space B is discrete, the lax and strict slices over B coincide, and so products are clearly
not preserved by the forgetful functor, unless B consists of a single point. However,
exponentiability in lax slices over T1 spaces is completely understood as it is just that of
the strict slices characterized in [7]. For more on exponentiability in Top/B and other
strict slice categories, the reader is also referred to [8].

Finally, Johnstone’s book [6] is a good source for background on posets and lattices,
including the specialization order and Scott topology.

3. Products in Lax Slices

In this section, we consider the existence of binary products in Top↗B and Top↙B.
This can be achieved simultaneously if we let ≤ denote an arbitrary partial order on B
and work in the category Top/≤B whose objects are continuous map p: X �� B and
morphisms are triangles which commute up to ≤.

Recall that for a partially-ordered set B, the upward closed subsets form a topology
known as the Alexandrov topology on B. These spaces, known as Alexandrov spaces, are
precisely those in which arbitrary intersections of open sets are open [1]. In particular,
every finite T0 space is Alexandrov.

Now, if B has the Alexandrov topology relative to ≤, or more generally, ≤ is the
specialization order on B, then Top↗B = Top/≤B and Top↙B = Top/≥B.

3.1. Proposition. The category Top/≤B has binary products preserved by the forgetful
functor to Top if and only if B is a topological ∧-semilattice, i.e., B is a ∧-semilattice
with order ≤ and the function ∧: B × B �� B is continuous.
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Proof. Suppose Top/≤B has binary products preserved by the forgetful functor, and
let ∧ = idB × idB, where idB: B �� B is the identity map. Then ∧: B × B �� B
is continuous, and the projections πi: B × B �� B are morphisms in Top/≤B, i.e.,
∧ ≤ idB ◦ πi. Thus, for all b1, b2 ∈ B, b1 ∧ b2 ≤ bi, for i = 1, 2. To see that b1 ∧ b2 is the
meet in B, suppose that a ≤ bi, for i = 1, 2. Since

1

B

a ���
��

��
��

1 B
bi �� B

B
idB����

��
��

�≤

are morphisms in Top↗B, the unique map 〈b1, b2〉: 1 �� B × B satisfies

1

B

a ���
��

��
��

1 B × B
〈b1,b2〉 �� B × B

B
∧����

��
��≤

and so a ≤ b1 ∧ b2, as required.
For the converse, given p: X �� B and q: Y �� B, consider

p ∧ q: X × Y
p×q

��B × B
∧ ��B

Then, given a pair of morphisms,

X Z�� f
X

B

p

���
��

��
��

��
� Z Y

g ��Z

B

r

��

Y

B

q

����
��

��
��

��≥ ≤

one easily shows that the induced map 〈f, g〉: Z �� X × Y is a morphism in Top/≤B,
i.e.,

Z

B

r ���
��

��
��

Z X × Y
〈f,g〉 �� X × Y

B
p∧q����

��
��≤

and so p ∧ q is the desired product.

One can show that the forgetful functor Top/≤B �� Top has a left adjoint if and
only if B has a bottom element. Since right adjoints preserve products, we get:

3.2. Corollary. The following are equivalent for a partial order ≤ with a bottom element
on a space B.

(a) Top/≤B has binary products.
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(b) Top/≤B has binary products preserved by the forgetful functor.

(c) B is a topological ∧-semilattice (relative to ≤).

Taking ≤ to be the specialization order and its opposite we get, based on the remark
at the beginning of the section, we get the following two corollaries:

3.3. Corollary. The following are equivalent for a T0 space B with a bottom element
relative to the specialization order ≤.

(a) Top↗B has binary products.

(b) Top↗B has binary products preserved by the forgetful functor.

(c) B is a topological ∧-semilattice (relative to ≤).

3.4. Corollary. The following are equivalent for a T0 space B with a top element
relative to the specialization order ≤.

(a) Top↙B has binary products.

(b) Top↙B has binary products preserved by the forgetful functor.

(c) B is a topological ∨-semilattice (relative to ≤).

Note that we could have stated a more general version of Corollary 3.3 (respectively,
3.4) omitting both (a) and the bottom (respectively, top) assumption, but every finite
∧-semilattice has a bottom (respectively, ∨-semilattice has a top), and the infinite ones
we consider below are all complete.

4. Top↗B and Open Families

In this section, we introduce a category of B-indexed families of open sets that will be
used to characterize exponentiable objects in Top↗B.

Given x ∈ X and p: X �� B, we get a morphism

1

B
b ���

��
��

��
1 Xx �� X

B

p����
��

��
�≤

whenever b ≤ px. If B is a finite T0 space, or more generally, any Alexandrov space, then
the sets Xb̂ = p−1(↑b) are open in X. It will be useful to have conditions on this family
of open sets that will make it possible to retrieve the original map p: X �� B.

Suppose B is any poset with a bottom element ⊥, and let OFamB denote the category
whose objects are families {Xb̂}b∈B of open subsets of a space X⊥̂ satisfying

(O1) b ≤ c ⇒ Xb̂ ⊇ Xĉ
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(O2) ∀x ∈ X⊥̂, the subposet {b ∈ B|x ∈ Xb̂} of B has a top element �x

Morphisms of are continuous maps f : X⊥̂ �� Y⊥̂ such that f(Xb̂) ⊆ Yb̂, for all b ∈ B.
For example, if 2 denotes the Sierpinski space, then OFam2 is the category of pairs

(X,XU) used by Funk [5] in his study of marked spheres. If B = 2 × 2, then objects of
OFamB are given by a space X together with a pair of open subsets X(0,1) and X(1,0), and
morphisms are continuous maps f : X �� Y such that f(X(0,1)) ⊆ Y(0,1) and f(X(1,0)) ⊆
Y(1,0). If V is the subposet

(0,1)

(0,0)

��

��
��

��
�(0,1) (1,0)(1,0)

(0,0)

��

��
��

��
�

then OFamV is the full subcategory in which the open subsets are disjoint.
We will see, in Proposition 4.1 below, that if B has suprema of nonempty subsets

which are bounded above, then (O2) is equivalent to

(O2�) ∀{bα} ⊆ B,
⋂

Xb̂α
=

{
Xb̂ if ∀{bα} ⊆ B, b = ∨bα exists

∅ otherwise

To establish an isomorphism Top↗B ∼= OFamB, we will consider an alternate view
of these families as certain relations, and obtained a bijection on objects from properties
that hold in this more general setting. Although the bijection can be established directly
in a straightforward manner, this approach sheds light on the role of condition (O2) above.

Given {Xb̂}, let R = {(x, b)|x ∈ Xb̂}. Using (O1) and the fact that each Xb̂ is upward
closed, being an open subset of X⊥̂, it follows that R is an order-ideal (i.e., a downward
closed subset) of Xop

⊥̂ × B.
Let Ord denote the category whose objects are posets and morphisms from X to B

are order ideals of Xop × B. The identity on X is the ideal IX = {(x, y)|x ≥ y} and
composition is given by the usual composition of relations.

Following the custom for relations, morphisms will be denoted X−� �� B. Every
order-preserving map p: X �� B gives rise to a morphism Rp: X−� �� B with a right
adjoint R�

p: B−� �� X defined by

Rp = {(x, b)|px ≥ b} and R�
p = {(b, x)|b ≥ px}

The following proposition shows that these are precisely the maps of the bicategory Ord,
in the sense of [10]. Thus, to establish a relationship between families {Xb̂} and continuous
maps p: X �� B, we would like to determine which families give rise to maps in Ord.

Given R: X−� �� B and x ∈ X, let R[x] = {b ∈ B|(x, b) ∈ R}. Then R[x] is a down-
ward closed subset of B and x ≤ y ⇒ R[x] ⊆ R[y]. Similarly, let R[b] = {x ∈ X|(x, b) ∈
R}. Then R[b] is an upward closed subset of X and b ≤ c ⇒ R[b] ⊇ R[c]. Note that if
p: X �� B is an order-preserving map of posets, then Rp[b] = p−1(↑ b), and if R is the
order ideal related to a family {Xb̂}, then R[b] = Xb̂ and R[x] = {b ∈ B|x ∈ Xb̂}. Note
that the latter says that condition (O2) is precisely (c) given below.
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4.1. Proposition. The following are equivalent for R: X−� �� B in Ord.

(a) R = Rp, for some order-preserving map p: X �� B.

(b) R has a right adjoint.

(c) R[x] has a top element �x, for all x ∈ X.

Moreover, if B has suprema of nonempty subsets which are bounded above, then (a)
through (c) are equivalent to

(d) ∀{bα} ⊆ B,
⋂

R[bα] =

{
R[b] if b = ∨bα exists in B

∅ otherwise

Proof. First, (a) ⇒ (b) since Rp � R�
p.

For (b) ⇒ (c), suppose R � S. Since (x, x) ∈ IX and IX ⊆ S ◦ R, there exists �x ∈ B
such that (x,�x) ∈ R and (�x, x) ∈ S. Given b ∈ R[x], since (�x, x) ∈ S and (x, b) ∈ R
implies (�x, b) ∈ R ◦ S ⊆ IB, it follows that �x ≥ b, as desired.

For (c) ⇒ (a), define p: X �� B by px = �x. Then p is order preserving since
x ≤ y ⇒ R[x] ⊆ R[y] ⇒ �x ≤ �y, and R = Rp since

(x, b) ∈ R ⇐⇒ �x ≥ b ⇐⇒ px ≥ b ⇐⇒ (x, b) ∈ Rp

where the first “⇐” holds since (x,�x) ∈ R and R is downward closed in Xop × B, and
the third “⇒” from the definition of Rp.

It remains to show that (c) ⇐⇒ (d), when B satisfies the suprema assumption.
Suppose (c) holds and

⋂
R[bα] �= ∅, say x ∈ ⋂

R[bα]. Then for all α, we know bα ≤ �x

since bα ∈ R[x], and so ∨bα exists and ∨bα ≤ �x. Since R[∨bα] ⊇ R[�x], it follows that
x ∈ R[∨bα]. Thus,

⋂
R[bα] ⊆ R[∨bα], and so

⋂
R[bα] = R[∨bα], as desired.

Conversely, suppose R satisfies (d), and let x ∈ X. Then tx = ∨R[x] exists by (d),
since

⋂ {R[b]|b ∈ R[x]} �= ∅, as x ∈ R[b] for all b ∈ R[x], and tx ∈ R[x] since

x ∈
⋂

{R[b]|b ∈ R[x]} = R[tx]

Therefore, R[x] has a top element, to complete the proof.

4.2. Corollary. If B is an Alexandrov space on a poset with ⊥, then Top↗B ∼=
OFamB.

Proof. By Proposition 4.1 and its preceding remarks, families {Xb̂} correspond to order-
preserving maps p: X⊥̂ �� B such that Rp[b] is open in X⊥̂. Since B has the Alexandrov
topology and Rp[b] = p−1(↑ b), it follows that these are precisely the continuous maps
p: X⊥̂ �� B, thus defining a bijection between the objects of OFamB and Top↗B.
For morphisms, given p: X �� B and q: Y �� B, a continuous map f : X �� Y is in
Top↗B if and only if f (p−1(↑b)) ⊆ q−1(↑b), for all b ∈ B if and only if f(Xb̂) ⊆ Yb̂, for
all b ∈ B, and it follows that Top↗B ∼= OFamB.
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4.3. Corollary. If B is a poset with ⊥, then OFamB has finite products if and only if
B is a ∧-semilattice. Moreover, {Xb̂} × {Yb̂} = {Xb̂ × Yb̂}.

Proof. This follows directly from Corollaries 3.3 and 4.2.

5. Exponentiability in Top↗B

In this section, we characterize exponentiable objects of Top↗B when B is an Alexandrov
space on a complete lattice. We begin with the first of four conditions (E1)–(E4) necessary
for exponentiability using the presence of ⊥ to get information about exponentials when
they exist. We prove the following in the more general setting of Top/≤B, so that we can
use it when we consider exponentiability in Top↙B.

5.1. Lemma. If B is a topological ∧-semilattice with ⊥ and q: Y �� B is exponentiable
in Top/≤B, then

(E1) Y is exponentiable in Top.

Moreover, if r: Z �� B, then rq: ZY �� B and

(rq)−1(↑b) = {σ ∈ ZY |b ∧ q ≤ rσ}

for all b ∈ B.

Proof. Given r: Z �� B, let rq: [q, r] �� B denote the exponential in Top/≤B. Since
there are bijections

X × Y
f �� Z �� ��

X × Y

B
⊥∧q=⊥ ���

��
��

�X × Y Z
f �� Z

B

r����
��

��
�≤ �� ��

X

B
⊥ ���

��
��

��
X [q, r]

f̂ �� [q, r]

B
rq����

��
��≤ �� �� X

f̂ �� [q, r]

which are natural in X, it follows that the functors X � �� Top(X × Y, Z) are repre-
sentable, and so Y is exponentiable in Top, ZY = [q, r], and rq: ZY �� B. Moreover,
since

1

B
b ���

��
��

��
1 ZYσ �� ZY

B
rq����

��
��

�≤ �� 		
1 × Y

B
b∧q ���

��
��

�1 × Y Zσ �� Z

B

r����
��

��
�≤

it follows that (rq)−1(↑b) = {σ ∈ ZY |b ∧ q ≤ rσ}.
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Following Corollary 4.2, to define exponentials the rq when they exist in Top↗B, we
will present ZY as a family {ZY

b̂
} of open subsets of ZY . For simplicity, the reference to q

and r has been omitted from the notation. Lemma 5.1 tells us how to define {ZY
b̂
}, when

B is any T0 space with ∧ and ⊥ relative to specialization order ≤.

5.2. Definition. Given a topological ∧-semilattice B and continuous maps q: Y �� B
and r: Z �� B, let ZY

b̂
= {σ ∈ ZY |b ∧ q ≤ rσ}.

In view of the following proposition, it will be necessary to assume that B has all
finite infima (i.e., the empty infimum �, as well) if Top↗B is to have any exponentiable
objects. This says that if one is interested in exponentiability in OFamV , when V is the
subspace of 2 × 2 considered in section four, then it is necessary to expand to the larger
category OFamB, where B = 2 × 2.

5.3. Proposition. If B is a topological ∧-semilattice such that idq
B exists in Top/≤B,

for some q: Y �� B, then B has a top element �.

Proof. Since

1 × Y

B
b∧q ���

��
��

�1 × Y B
q �� B

B
idB����

��
��

�≤ 		
1

B
b ���

��
��

��
1 BYq �� BY

B
idq

B����
��

��
�≤

for all b, it follows that idq
B(q) is the top element of B.

To show that ZY
b̂

is open in ZY , we will assume that B is a complete lattice (an
assumption that is already necessary in the finite case), and use Proposition 4.1(d), or
equivalently, condition (O2�), to prove that {ZY

b̂
} is in OFamB. However, to establish

criteria for (O2�), it is not necessary to assume that B is complete, only that B has finite
infima.

5.4. Lemma. Suppose B is a ∧-semilattice with �, c =
∨

bα exists in B, and B has the
Alexandrov topology. Then q: Y �� B satisfies

⋂
ZY

b̂α
= ZY

ĉ , for all Z �� B if and

only if

(E2)
∨

(bα ∧ qy) exists and equals (
∨

bα) ∧ qy, for all y ∈ Y .

Proof. Suppose
⋂

ZY
b̂α

= ZY
ĉ , for all r: Z �� B. To prove (E2), it suffices to fix y0 ∈ Y

and show that

(
∨

bα) ∧ qy0 ≤ d ⇐⇒ bα ∧ qy0 ≤ d, ∀α

for all d ∈ B.

Let d ∈ B, and define σd: Y �� B by

σd(y) =

{� if qy �≤ qy0

d if qy ≤ qy0
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Then σd is clearly continuous, and b∧ qy0 ≤ d implies b∧ qy ≤ σdy, for all y ∈ Y , since if
qy �≤ qy0, then σdy = �, and if qy ≤ qy0, then b ∧ qy ≤ b ∧ qy0 ≤ d = σdy. Thus,

b ∧ qy0 ≤ d ⇐⇒ b ∧ q ≤ σd

for all b ∈ B. Taking r = idB, since
⋂

BY
b̂α

= BY
ĉ , where

BY
b̂

= {σ ∈ BY |b ∧ q ≤ σ}

we see that (
∨

bα) ∧ qy0 ≤ d iff (
∨

bα) ∧ q ≤ σd iff c ∧ q ≤ σd iff σd ∈ BY
ĉ iff σd ∈ ⋂

BY
b̂α

iff σd ∈ BY
b̂α

, for all α, iff bα ∧ q ≤ σd, for all α, iff bα ∧ qy0 ≤ d, for all α.

Conversely, suppose (E2) holds and r: Z �� B. Then σ ∈ ⋂
ZY

b̂α
iff σ ∈ ZY

b̂α
, for all α,

iff bα∧ q ≤ rσ, for all α, iff bα∧ qy ≤ rσy, for all y ∈ Y and for all α, iff
∨

(bα∧ qy) ≤ rσy,
for all y ∈ Y and for all α, iff (

∨
bα) ∧ qy ≤ rσy, for all y ∈ Y iff (

∨
bα) ∧ q ≤ rσ iff

c ∧ q ≤ rσ iff σ ∈ ZY
ĉ , and so

⋂
ZY

b̂α
= ZY

ĉ .

Note that if B is a complete lattice, then (E2) holds if and only if − ∧ qy preserves
suprema, for all y ∈ Y if and only if qy is exponentiable in B, i.e., − ∧ qy: B �� B has
a right adjoint, for all y ∈ Y .

The following alternate description of ZY
b̂

will be useful in determining when these

sets are open in ZY .

5.5. Proposition. If q: Y �� B and r: Z �� B are continuous, then

ZY
b̂

= {σ ∈ ZY |σ(Yĉ) ⊆ Zĉ,∀c ≤ b} = {σ ∈ ZY |Yĉ ⊆ σ−1(Zĉ),∀c ≤ b}

where Yĉ = q−1(↑c) and Zĉ = r−1(↑c).

Proof. Suppose b∧ q ≤ rσ, c ≤ b, and y ∈ Yĉ. Then c ≤ qy, and so c = c∧ qy ≤ b∧ qy ≤
rσy, and it follows that σy ∈ Zĉ. Thus, σ(Yĉ) ⊆ Zĉ. Conversely, suppose σ(Yĉ) ⊆ Zĉ, for
all c ≤ b. To show b ∧ qy ≤ rσy, for all y, let y ∈ Y and take c = b ∧ qy. Then y ∈ Yĉ.
Since c ≤ b, we know σ(Yĉ) ⊆ Zĉ, and so σy ∈ Zĉ. Thus, b ∧ qy = c ≤ rσy, as desired.

Suppose B is a complete lattice and A ⊆ B, and let 〈A〉 denote the finite (including
empty) ∧ and ∨ closure of A in B.

5.6. Lemma. If B is a complete lattice with the Alexandrov topology and q: Y �� B is
continuous, then ZY

b̂
is open in ZY , for all b ∈ B, r: Z �� B, if and only if

(E3) q(Y ) is finite, and

(E4) Yĉ is compact, for all ∨-irreducible c in 〈q(Y )〉.
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Proof. Suppose q satisfies (E3) and (E4). Let J denote the set of ∨-irreducible elements
of 〈q(Y )〉, and for each c ∈ J , let Hc = {U ∈ O(Y )|Yĉ ⊆ U}. Then

〈Hc, Zĉ〉 = {σ ∈ ZY |Yĉ ⊆ σ−1(Zĉ)}
is open in ZY , since Hc is Scott-open (by compactness of Yĉ) and Zĉ is open in Z. To
show that ZY

b̂
is open in ZY , since J is finite, it suffices to show that

ZY
b̂

=
⋂

c∈J∩↓b
〈Hc, Zĉ〉

But, ZY
b̂

=
⋂
c≤b

〈Hc, Zĉ〉 by Proposition 5.5, and so it suffices to show that

⋂
c∈J∩↓b

〈Hc, Zĉ〉 ⊆
⋂
c≤b

〈Hc, Zĉ〉

So, suppose σ ∈ 〈Hc, Zĉ〉, for all c ∈ J∩ ↓ b, and c ≤ b. If c �∈ 〈q(Y )〉, then Yĉ ⊆ σ−1(Zĉ),
since Yĉ = ∅. If c ∈ 〈q(Y )〉, then writing c = ∨{cj ∈ J |cj ≤ c}, we see that

Yĉ = ∩Yĉj
⊆ ∩σ−1(Zĉj

) = σ−1(∩Zĉj
) = σ−1(Zĉ)

Thus, σ ∈ 〈Hc, Zĉ〉, for all c ≤ b, as desired.
Conversely, suppose ZY

b̂
is open in ZY , for all b ∈ B, r: Z �� B. To show that q(Y )

is finite, take r = idB and b = �. Then q ∈ BY
�̂ , since � ∧ q ≤ q, and so there exists

H1, . . . , Hn Scott-open in O(Y ) and finite sets F1, . . . , Fn ⊆ B such that

q ∈ 〈H1, ↑F1〉 ∩ · · · ∩ 〈Hn, ↑Fn〉 ⊆ BY
�̂

To show that q(Y ) is finite, we will show that q(Y ) ⊆ S, where

S = 〈F1 ∪ · · · ∪ Fn〉
Let σ = fq, where f : B �� B is defined by f(b) = ∨(S∩ ↓b). Then f ≤ idB and f is
order-preserving, hence, continuous. Also, f(↑s) ⊆↑s, for all s ∈ S, since s ≤ b ⇒ fs ≤
fb ⇒ s ≤ fb, as fs = s, and so ↑s ⊆ f−1(↑s) which gives

q−1(↑s) ⊆ q−1f−1(↑s) = σ−1(↑s)
for all s ∈ S. Thus, for all i, q−1(↑Fi) ⊆ σ−1(↑Fi), and it follows that σ−1(↑Fi) ∈ Hi,
since Hi is Scott-open and q ∈ 〈Hi, ↑Fi〉 ⇒ q−1(↑Fi) ∈ Hi, and so,

σ ∈
⋂

〈Hi, ↑Fi〉 ⊆ BY
�̂ ⇒ �∧ q ≤ σ ⇒ q ≤ σ ⇒ q ≤ fq

Since f ≤ idB, it follows that q = fq, and so qy = fqy ∈ S, for all y ∈ Y . Therefore,
q(Y ) ⊆ S, as desired.
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Let c be ∨-irreducible in 〈q(Y )〉. To show that Yĉ is compact, we will show that ↑Yĉ is
Scott-open in O(Y ) by showing ↑Yĉ = π−1(BY

ĉ ), for some π:O(Y ) �� BY . Take b < c
maximal in 〈q(Y )〉, and let f :2 �� B be the continuous map given by f(0) = b and
f(1) = c. Then define π to be the composite of fY :2Y �� BY and the homeomorphism
O(Y ) ∼= 2Y given by U � �� χU , the characteristic function of U . Then

U ∈ π−1(BY
ĉ ) ⇐⇒ c ∧ q ≤ fχU ⇐⇒ c ∧ qy ≤ fχU(y)

for all y ∈ Y . Note that if y �∈ Yĉ, then c∧qy < c, and so c∧qy ≤ b, since b ≤ (c∧qy)∨b ≤ c,
c is ∨-irreducible and b is maximal in 〈q(Y )〉∩ ↓c. Thus,

c ∧ qy ≤
{

b if y �∈ Yĉ

c if y ∈ Yĉ

Since

fχU(y) =

{
b if y �∈ U
c if y ∈ U

it follows that
U ∈ π−1(BY

ĉ ) ⇐⇒ Yĉ ⊆ U ⇐⇒ U ∈↑Yĉ

and so ↑Yĉ = π−1(BY
ĉ ), as desired.

5.7. Theorem. Suppose B is a complete lattice with the Alexandrov topology. Then
q: Y �� B is exponentiable in Top↗B if and only if

(E1) Y is exponentiable in Top,

(E2) qy is exponentiable in B, i.e., − ∧ qy preserves
∨

, for all y ∈ Y ,

(E3) q(Y ) is finite, and

(E4) Yĉ is compact, for all ∨-irreducible c in 〈q(Y )〉.
Proof. Suppose q: Y �� B is exponentiable. Applying Lemma 5.1, we see that (E1)
holds, and for all r: Z �� B, we have rq: ZY �� B and the sets ZY

b̂
defined in 5.2 agree

with those in the family of open sets corresponding to rq via Corollary 4.2. Then (E2)
follows from Lemma 5.4, since the family satisfies (O2�), and properties (E3) and (E4)
follow from Lemma 5.6, since ZY

b̂
is open in ZY , for all b ∈ B.

Conversely, suppose q satisfies (E1)–(E4). Given r: Z �� B, define

ZY
b̂

= {σ ∈ ZY |b ∧ q ≤ rσ}
Then ZY

⊥̂ = ZY and {ZY
b̂
} is in OFamB by Lemmas 5.4 and 5.6, since (E2)–(E4) hold,

and so we get a continuous map rq: ZY �� B. Since Y is exponentiable, we have the
usual bijection between f : X × Y �� Z and f̂ : X �� ZY . It remains to show that

X × Y

B
p∧q ���

��
��

�X × Y Z
f �� Z

B

r����
��

��
�≤ �� 		

X

B

p ���
��

��
��

X ZYf̂ �� ZY

B
qr����

��
��

�≤
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But, p∧ q ≤ rf iff px∧ qy ≤ rf(x, y), for all (x, y), iff px∧ q ≤ rf̂x, for all x, iff f̂x ∈ ZY
p̂x,

for all x, iff px ≤ rq(f̂x), for all x, iff p ≤ rqf̂ , where the third “iff” follows from the
definition of ZY

b̂
and the fourth from the definition of rq via the family {ZY

b̂
}. Therefore,

q: Y �� B is exponentiable in Top↗B.

Since every finite T0 space is an Alexandrov space, applying Propositions 3.3 and 5.3,
we get:

5.8. Corollary. Suppose B is a finite T0 space with a bottom element ⊥ relative to the
specialization order. Then Top↗B has finite products if and only if B is a topological
∧-semilattice. Moreover, q: Y �� B is exponentiable in Top↗B if and only if

(a) B has a top element � ,

(b) Y is exponentiable in Top,

(c) qy is exponentiable in B, i.e., − ∧ qy preserves
∨

, for all y ∈ Y , and

(d) Yĉ is compact, for all ∨-irreducible c ∈ B.

Taking B to be the Sierpinski space 2, the desired intrinsic characterization of expo-
nentials alluded to in the introduction follows.

5.9. Corollary. (Y, YU) is exponentiable in Top↗2 if and only if YU is compact and
Y is exponentiable in Top.

6. Exponentiability in Top↙B

To characterize exponentiable objects in Top ↙B, we define a category of B-indexed
families of closed sets, and proceed as before. Note that we consider closed rather than
open sets here since the opposite of the specialization order gives us information about
the sets ↓b.

Given x ∈ X and p: X �� B, we get a morphism

1

B
b ���

��
��

��
1 Xx �� X

B

p����
��

��
�≥

whenever b ≥ px. If B is a finite T0 space, or more generally, any Alexandrov space, then
the sets Xb̌ = p−1(↓b) are closed in X. As before, we would like to have conditions on the
family of sets Xb̌ that will make it possible to retrieve the original map p: X �� B, but
we need an additional assumption here since the sets B\ ↓ b do not necessarily generate
the topology on B (in the sense that one cannot represent every open set as a union of a
finite intersection of these open sets).

Suppose B is any poset with a top element �, and let CFamB denote the category
whose objects are families {Xb̌}b∈B of closed subsets of a space X�̌ satisfying



EXPONENTIABILITY IN LAX SLICES OF TOP 231

(C1) b ≤ c ⇒ Xb̌ ⊆ Xč

(C2) ∀x ∈ X�̌, the subposet {b ∈ B|x ∈ Xb̌} of B has a bottom element ⊥x

Morphisms of CFamB are continuous maps f : X�̌ �� Y�̌ such that f(Xb̌) ⊆ Yb̌, for all
b ∈ B.

For example, if B = 2 × 2, then objects of CFamB are given by a space X together
with a pair of closed subsets X(0,1) and X(1,0), and morphisms f : X �� Y such that
f(X(0,1)) ⊆ Y(0,1) and f(X(1,0)) ⊆ Y(1,0).

Given {Xb̌}, let R� = {(b, x)|x ∈ Xb̌}. Using (C1) and the fact that each Xb̌ is
downward closed, being a closed subset of X�̌, it follows that R�: B−� �� X is a relation
in Ord. Thus, by the dual of Proposition 4.1, if B has infima of nonempty subsets which
are bounded below, then (C2) is equivalent to

(C2�)
⋂

Xb̌α
=

{
Xb̌ if b = ∧bα exists

∅ otherwise

∀{bα} ⊆ B

If p: X �� B is an order-preserving map of posets, then R�
p[b] = p−1(↓ b), and if R�

is the order ideal related to a family {Xb̌}, then R�[b] = Xb̌ and R�[x] = {b ∈ B|x ∈ Xb̌}.
The latter says that condition (C2) is precisely the dual of Proposition 4.1(c), and we get
the following corollary to Proposition 4.1.

6.1. Corollary. If B a poset with � and the sets B\↓b generate the Alexandrov topology
on B, then Top↙B ∼= CFamB.

Proof. By the dual of Proposition 4.1, families {Xb̌} correspond to order-preserving
maps p: X�̌ �� B such that R�

p[b] is closed in X�̌. Since the sets B\ ↓ b generate the
topology on B and R�

p[b] = p−1(↓b), it follows that these are precisely the continuous maps
p: X�̌ �� B, thus defining a bijection between the objects of CFamB and Top↙B. For
morphisms, given p: X �� B and q: Y �� B, a map f : X �� Y is in Top↙B if and
only if

f
(
p−1(↓b)

) ⊆ q−1(↓b), for all b ∈ B

if and only if f(Xb̌) ⊆ Yb̌, for all b ∈ B, and so Top↙B ∼= CFamB.

6.2. Corollary. If B is as in Corollary 6.1, then CFamB has finite products if and
only if B is a ∨-semilattice. Moreover, {Xb̌} × {Yb̌} = {Xb̌ × Yb̌}.
Proof. This follows directly from Corollaries 3.4 and 6.1.

Following Corollary 6.1, to define exponentials rq when they exist in Top↙B, we will
present ZY as a family {ZY

b̌
} of closed subsets of ZY . The dual of Lemma 5.1 tells us how

to define {ZY
b̌
}, when B is any T0 space with ∨ and � relative to specialization order ≤.

6.3. Definition. Given a topological ∨-semilattice B and continuous maps q: Y �� B
and r: Z �� B, let ZY

b̌
= {σ ∈ ZY |b ∨ q ≥ rσ}.
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6.4. Theorem. Suppose B is a complete lattice and the sets B\↓b generate the Alexan-
drov topology on B. Then q: Y �� B is exponentiable in Top↙B if and only if

(E1) Y is exponentiable in Top and

(E2) qy is exponentiable in Bop, i.e., − ∨ qy preserves
∧

, for all y ∈ Y .

Proof. Suppose q: Y �� B is exponentiable in Top ↙ B. Applying the dual of
Lemma 5.1, we see that (E1) holds, and for all r: Z �� B, we have rq: ZY �� B
and the sets ZY

b̌
defined in 6.3 agree with those in the family of closed sets corresponding

to rq via Corollary 6.1. In addition, (E2) follows from the dual of Lemma 5.4, since the
family satisfies (C2�).

Conversely, suppose q satisfies (E1) and (E2). Given r: Z �� B, define

ZY
b̌

= {σ ∈ ZY |b ∨ q ≥ rσ}

Then ZY
�̌ = ZY and {ZY

b̌
} satisfies (C1) and (C2) by definition and the dual of Lemmas 5.4.

To see that ZY
b̌

is closed in ZY , we will show that its complement is open. Since

ZY
b̌

= {σ ∈ ZY |Yč ⊆ σ−1 (Zč) ,∀c ≥ b}

by the dual of Proposition 5.5, it follows that

ZY \ ZY
b̌

=
⋃
b≤c

〈Hc, Z \ Zč〉

where Hc = {U ∈ O(Y )|U �⊆ Y \Yč}. Since Hc is Scott-open, each 〈Hc, Z \Zč〉 is open in
ZY , and so ZY \ ZY

b̌
is open, as desired. Finally, the proof that

X × Y

B
p∨q ���

��
��

�X × Y Z
f �� Z

B

r����
��

��
�≥ �� 		

X

B

p ���
��

��
��

X ZYf̂ �� ZY

B
qr����

��
��

�≥

is dual to that of Theorem 5.7. Therefore, q: Y �� B is exponentiable in Top↗B.

Since every finite T0 space is an Alexandrov space, applying Proposition 3.4, and the
dual of Proposition 5.3, we get:

6.5. Corollary. Suppose B is a finite T0 space with a top element � relative to the
specialization order. Then Top↙B has finite products if and only if B is a topological
∨-semilattice. Moreover, q: Y �� B is exponentiable in Top↙B if and only if

(a) B has a bottom element ⊥ ,

(b) Y is exponentiable in Top, and
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(c) qy is exponentiable in Bop, i.e., − ∨ qy preserves
∧

, for all y ∈ Y .

Thus, if B is a finite T0 space which is a co-Heyting algebra relative to the specializa-
tion order (so that −∨ b preserves

∧
, for all b ∈ B), then q: Y �� B is exponentiable in

Top↙B if and only if Y is exponentiable in Top. There are also infinite spaces satisfying
the latter, for example, take B to be the negative integers with the natural order and a
bottom adjoined. In fact:

6.6. Corollary. Suppose Bop is a spatial locale. Then the following are equivalent for
the Alexandrov space on the poset B.

(a) B is Noetherian

(b) q: Y �� B is exponentiable in Top↙B ⇐⇒ Y is exponentiable in Top

Proof. Suppose Bop is a spatial locale and B is Noetherian. Then every element is
exponentiable in Bop. Since

↑c =
⋂

b∈B\↑c
B\↓b

to apply Theorem 6.4, it suffices to show that the set of maximal elements of B\↑c is
finite. Since Bop is a spatial, we know Bop = O(X), for some sober space X, and so it
suffices to show that set M of minimal (nonempty) elements of {U ∈ O(X)|U �⊆ V } is
finite, for all V ∈ O(X).

Suppose U1, U2, . . . are distinct elements of M. Since U1 �⊆ V , there exists x1 ∈ U1 such
that x1 �∈ V . Then x1 �∈ U2, since U1 ∩U2 ⊆ V (by minimality of U2 �⊆ V ). Since U2 �⊆ V ,
there exists x2 ∈ U2 such that x2 �∈ V . Then x1, x2 �∈ U3, since U1 ∩ U3, U2 ∩ U3 ⊆ V (by
minimality of U3 �⊆ V ). Continuing we get x1, x2, . . . �∈ V such that x1, . . . xn−1 �∈ Un and
xn ∈ Un, and so

xn �∈ {x1, x2, . . . xn−1}
giving a descending sequence

X \ {x1} ⊇ X \ {x1, x2} ⊇ . . . ⊇ X \ {x1, x2, . . . xn} ⊇ . . .

of proper subsets, contradicting that B = O(X)op is Noetherian.
For the converse, we will show that if B is not Noetherian, say

y1 < y2 < y3 . . .

in B, then Y = {y1, y2, . . .} is exponentiable in Top but the inclusion j: Y �� B is not
exponentiable in Top↙B. Exponentiability of Y is clear since the Alexandrov topology
on Y is locally compact. So, assume for contradiction that j is exponentiable in Top↙B,
and consider idj

B: BY �� B.
Define σ: Y �� B by σ(yn) = yn+1, and let b = idj

B(σ). Then σ ∈ (idj
B)−1(↑ b), and

so there exist Scott-open sets H1, . . . , Hk of O(Y ) and open sets W1, . . . ,Wk of B such
that

σ ∈ 〈H1,W1〉 ∩ . . . ∩ 〈Hk,Wk〉 ⊆ (idj
B)−1(↑b)
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and 〈Hi,Wi〉 �= BY , for any i. Note that σ−1(Wi) �= ∅ for otherwise ∅ ∈ Hi making
〈Hi,Wi〉 = BY .

First, we show that we can assume

H1 = Hn1 = {U ∈ O(Y )|yn1 ∈ U} and W1 =↑yn1+1

where n1 is the least integer such that yn1 ∈ σ−1(W1). Since σ−1(W1) is open in Y =
{y1, y2, . . .}, the minimality of n1 implies that σ−1(W1) =↑ yn1 . Since σ(yn1) = yn1+1,
we know ↑ yn1+1 ⊆ W1 and σ ∈ 〈Hn1 , ↑ yn1+1〉. Thus, 〈Hn1 , ↑ yn1+1〉 ⊆ 〈H1,W1〉, since
τ−1(↑ yn1+1) ∈ Hn1 ⇒ yn1 ∈ τ−1(↑ yn1+1) ⇒ yn1 ∈ τ−1(W1) ⇒ ↑ yn1 ⊆ τ−1(W1) ⇒
σ−1(W1) ⊆ τ−1(W1) ⇒ τ−1(W1) ∈ H1, as H1 is Scott-open and σ−1(W1) ∈ H1. Similarly,
for i = 2, . . . , k, we can assume

Hi = Hni
= {U ∈ O(Y )|yni

∈ U} and W1 =↑yni+1

for some yi ∈ Y .
Thus, without loss of generality, we have n1 < . . . < nk such that

σ ∈ 〈Hn1 , ↑yn1+1〉 ∩ . . . ∩ 〈Hnk
, ↑ynk+1〉 ⊆ (idj

B)−1(↑b)

Let N = nk and define τ : Y �� B by

τ(yn) =

{
yn+1 if n ≤ N
yN+1 otherwise

Then τ is continuous and

τ ∈ 〈Hn1 , ↑yn1+1〉 ∩ . . . ∩ 〈Hnk
, ↑ynk+1〉 ⊆ (idj

B)−1(↑b)

and so idj
B(τ) ≥ b. Now, yN+1∨j ≥ τ , since yN+1∨j(yn) ≥ yN+1 ≥ τ(yn), for all n. Thus,

yN+1 ≥ idj
B(τ) ≥ b. Since b = idj

B(σ), we know that b∨j ≥ σ, Thus, b∨j(yN+1) ≥ σ(yN+1),
or equivalently, b∨ yN+1 ≥ yN+2. But, the latter contradicts yN+1 < yN+2, since yN+1 ≥ b
would imply yN+1 = b∨yN+1 ≥ yN+2. Therefore, the inclusion j in B is not exponentiable
in Top↙B.

7. Concluding Remarks

As noted in the introduction, this work began as a search for an intrinsic characterization
of exponentiability in Top↗B and Top↙B when the category has finite products
preserved by the forgetful functor and B is a finite T0 space. It soon became apparent
that the results could be extended to infinite Alexandrov spaces by adding an additional
condition to obtain exponentiability in Top↗B and assuming that B has the topology
generated by the sets B\↓b for Top↙B. In the process of writing this paper, it became
clear that some of the results for Top↗B were dual to those in Top↙B, and did not
require a separate proof, if they were cast in Top/≤B. Although the paper covers more
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than was initially intended, many new questions arise with the relaxation of the finiteness
assumption and the introduction of Top/≤B. Here are a few.

Does the characterization of exponentiability in Top↙B extend to all Alexandrov
spaces without the assumption that the sets B\↓b generate the topology on B? What can
be said about exponentiability in Top/≤B when B does not have the Alexandrov topology
on ≤, or when ≤ is not the specialization order or its opposite? What happens if we relax
the assumption that the forgetful functor preserves products?
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