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PULLBACK AND FINITE COPRODUCT PRESERVING FUNCTORS
BETWEEN CATEGORIES OF PERMUTATION REPRESENTATIONS

ELANGO PANCHADCHARAM AND ROSS STREET

Abstract. Motivated by applications to Mackey functors, Serge Bouc [Bo] character-
ized pullback and finite coproduct preserving functors between categories of permutation
representations of finite groups. Initially surprising to a category theorist, this result
does have a categorical explanation which we provide.

1. Introduction

For a finite group G, we write G-setfin for the category of finite (left) G-sets (that is,
of permutation representations of G) and equivariant functions. We write Spn(G-setfin)
for the category whose morphisms are isomorphism classes of spans between finite G-
sets. Coproducts in Spn(G-setfin) are those of G-setfin and composition in Spn(G-setfin)
involves pullbacks in G-setfin.

According to Harald Lindner [Li], a Mackey functor M on a finite group H is a coprod-
uct preserving functor M : Spn(H-setfin) // Modk. A functor F : G-setfin

// H-setfin

which preserves pullbacks and finite coproducts will induce a functor

Spn(F ) : Spn(G-setfin) // Spn(H-setfin)

preserving finite coproducts. By composition with Spn(F ), each Mackey functor M on
H will produce a Mackey functor M ◦ Spn(F ) on G.

This observation led Bouc [Bo] to a systematic study of pullback and finite coproduct
preserving functors F : G-setfin

// H-setfin. He characterized them in terms of Gop ×H-
sets A (where Gop is G with opposite multiplication). This perplexed us initially, as the
category (Gop×H)-set of such A is equivalent to the category of finite colimit preserving
functors L : G-setfin

// H-setfin; these L generally do not preserve pullbacks, while the
F generally do not preserve coequalizers. Of course, Bouc’s construction of L from a left
H-, right G-set A is quite different from the standard module theory construction of F
from A. We shall explain the two constructions.
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We put (g, h)a = hag for g ∈ G, h ∈ H and a in the (Gop × H)-set A, so that A
becomes a left H-set and a right G-set. For each left G-set X, define the left H-set
A⊗G X to be the quotient of the set A×X = {(a, x) | a ∈ A, x ∈ X} by the equivalence
relation generated by

(ag, x) ∼ (a, gx), a ∈ A, x ∈ X, g ∈ G.

Write [a, x] for the equivalence class of (a, x) and define h[a, x] = [ha, x]. For A finite,
this defines our functor L = A ⊗G − : G-setfin

// H-setfin on objects; it is defined on
morphisms f : X // X ′ by L(f)[a, x] = [a, f(x)]. Certainly L preserves all colimits that
exist in G-setfin since it has a right adjoint R : H-setfin

// G-setfin defined on the left
H-set Y by R(Y ) = H-setfin(A, Y ) with action (g, θ) � // gθ where (gθ)(a) = θ(ag). All
this is classical “module” theory.

Now we turn to Bouc’s construction. Again let A be a (Gop ×H)-set. Rather than a
mere G-set X, we define a functor on all (Kop × G)-sets B where K, G, H are all finite
groups. Put

A ∧G B = {(a, b) ∈ A×B | g ∈ G, ag = a ⇒ there exists k ∈ K with gb = bk}.

This becomes a (Kop ×G×H)-set via the action

(k, g, h)(a, b) = (hag−1, gbk).

Then Bouc defines the (Kop ×H)-set

A ◦G B = (A ∧G B)/G,

to be the set of orbits orb(a, b) = [a, b] of elements (a, b) of A∧G B under the action of G.
In particular, when K = 1 and B = X ∈ G-setfin, we obtain F (X) = A ◦G X ∈ H-setfin.
This defines the functor

F : G-setfin
// H-setfin.

1.1. Theorem. [Bo] Suppose K, G and H are finite groups.
(i) If A is a finite (Gop ×H)-set then the functor

A ◦G − : G-setfin
// H-setfin

preserves finite coproducts and pullbacks.
(ii) Every functor F : G-setfin

// H-setfin which preserves finite coproducts and pull-
backs is isomorphic to one of the form A ◦G −.

(iii) The functor F in (ii) preserves terminal objects if and only if A is transitive (con-
nected) as a right G-setfin.

(iv) If A is as in (i) and B is a finite (Kop ×G)-set then the composite functor

K-setfin
B◦K− // G-setfin

A◦G− // H-setfin

is isomorphic to (A ◦G B) ◦K −.
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Our intention in the present paper is to provide a categorical explanation for this
Theorem.

In Section 2, before turning to the problem of preserving pullbacks, we examine finite
limit preserving functors from categories like G-setfin to setfin. We adapt the appropriate
classical adjoint functor theorem to this “finite” situation. To make use of this for the
purpose in hand, in Section 3, we need to adapt the result to include preservation of finite
coproducts and reduce the further preservation of pullbacks to the finite limit case.

Section 4 interprets the work in the finite G-set case. In Section 5 we express the
conclusions bicategorically. Implications for our original motivating work on Mackey
functors are explained in the final Section 6.

2. Special representability theorem

In this section we provide a direct proof of the well-known representability theorem (see
Chapter 5 [Ma]) for the case where “small” means “finite”.

Recall that an object Q of a category A is called a cogenerator when, for all f, g :
A // B in A , if uf = ug for all u : B // Q, then f = g.

A subobject of an object A of A is an isomorphism class of monomorphisms m : S // A;
two such monomorphisms m : S // A and m′ : S ′ // A are isomorphic when there is an
invertible morphism h : S // S ′ with m′ ◦ h = m. We call A finitely well powered when
each object A has only finitely many subobjects. Write Sub(A) for the set of subobjects
[m : S // A] of A.

For each set X and object A of A , we write AX for the object of A for which there
is a natural isomorphism

A (B, AX) ∼= A (B, A)X

where Y X is the set of functions from X to Y . Such an object may not exist; if A has
products indexed by X then AX is the product of X copies of A.

We write setfin for the category of finite sets and functions. A functor T : A // setfin

is representable when there is an object K ∈ A and a natural isomorphism T ∼= A (K,−).

2.1. Theorem. (Special representability theorem) Suppose A is a category with the fol-
lowing properties:

(i) each homset A (A, B) is finite;
(ii) finite limits exist;
(iii) there is a cogenerator Q;
(iv) A is finitely well powered.
Then every finite limit preserving functor T : A // setfin is representable.

Proof. Using (ii) and (iv), we have the object

P =
∏

[S]∈Sub(QTQ)

STS.
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We shall prove that, for each A ∈ A and a ∈ TA, there exists p ∈ TP and w : P // A
such that (Tw)p = a. The following diagram defines δ, ι and S0.

S0 QTQm //

QA (A,Q)

ι

��

Q

prf

++XXXXXXXXXXA

t

��

δ
//

pr(Tf)a

��

f

55

pb

Now δu = δv implies fu = fv for all f : A // Q, so u = v by (iii). So δ is a monomor-
phism. So [S0] ∈ Sub(QTQ). Since T preserves pullbacks, there is a unique s ∈ TS0 such
that (Tt)s = a and (Tm)s transports to 1TQ under T (QTQ) ∼= (TQ)TQ. Let p transport

to (1TS)[S] under TP ∼=
∏
[S]

(TS)TS. Then we can define w to be the composite

P
pr[S0],s // S0

t // A

with (Tw)p = a.
Now let K be the equalizer of all the endomorphisms (including 1P ) of P (we are using

(i)):

K.

P

l

<<zzzzzzzz

P

l

bbDDDDDDDD

e //

Since T preserves limits, there is a unique k ∈ TK with (T l)k = p. Define

θA : A (K,A) // TA

by θA(r) = (Tr)k; this is natural in A. Moreover, θA is surjective since (K, k) clearly has
the same property that we proved for (P, p).

It remains to prove θA injective. Suppose r and r′ : K // A are such that (Tr)k =
(Tr′)k.

Let n : U // K be the equalizer of r and r′, and let u ∈ TU be unique with (Tn)u = k.
By the property of (P, p), there exists w : P // U with (Tw)p = u.

K

P

l

99ssssssssss

P

l

eeKKKKKKKKKK

U
w // K

n // l //

From the definition of K, we have lnwl = l. Yet l is a monomorphism (since it is an
equalizer), so nwl = 1 and r = rnwl = r′nwl = r′, as required.
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For categories A and X admitting finite limits, write Lex(A , X ) for the full sub-
category of the functor category [A , X ] consisting of the finite limit preserving functors.

2.2. Corollary. For a category A satisfying the conditions of Theorem 2.1, the Yoneda
embedding defines an equivalence of categories

A op ' Lex(A , setfin) , A � // A (A,−).

3. Finite coproducts

Suppose the category A has finite coproducts. An object C of A is called connected
when the functor A (C,−) : A // Set preserves finite coproducts. Write Conn(A ) for
the full subcategory of A consisting of the connected objects.

Write Cop(A , X ) for the full subcategory of [A , X ] consisting of the finite coproduct
preserving functors. Also CopLex(A , X ) consists of the finite coproduct and finite limit
preserving functors. As an immediate consequence of Corollary 2.2 we have

3.1. Corollary. For a category A with finite coproducts and the properties of Theorem
2.1, the Yoneda embedding defines an equivalence of categories

Conn(A )op ' CopLex(A , setfin).

Suppose A is a finitely complete category and T : A // setfin is a functor. For each
t ∈ T1, define a functor Tt : A // setfin using the universal property of the pullback

TtA TA
ιtA //

T1.

T !

��
1
��

t
//

pb

Clearly T ∼=
∑
t∈T1

Tt. Taking A = 1 in the above pullback, we see that each Tt preserves

terminal objects. The following observations are obvious.

3.2. Proposition. Suppose A is a finitely complete category, T : A // setfin is a func-
tor, and the functors Tt : A // setfin, t ∈ T1, are defined as above.

(i) If T preserves pullbacks then each Tt preserves finite limits.
(ii) Each Tt preserves whatever coproducts that are preserved by T .

For any small category C , we write Fam(C op) for the free finite coproduct completion
of C op. The objects are families (Ci)i∈I of objects Ci of C with indexing set I finite.
A morphism (ξ, f) : (Ci)i∈I

// (Dj)j∈J consists of a function ξ : I // J and a family
f = (fi)i∈I of morphisms fi : Cξ(i)

// Di in C .
There is a functor

ZC : Fam(C op) // [C ,Set]
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defined by

ZC (Ci)i∈I =
∑
i∈I

C (Ci,−)

which is fully faithful. So Fam(C op) is equivalent to the closure under finite coproducts
of the representables in [C ,Set].

We write Pb(A , X ) for the full subcategory of [A , X ] consisting of pullback pre-
serving functors. Also CopPb(A , X ) has objects restricted to those preserving finite
coproducts and pullbacks.

3.3. Proposition. Suppose the category A is as in Corollary 3.1. The functor ZA

induces an equivalence of categories

Fam(Conn(A )op) ' CopPb(A , setfin).

Proof. Clearly Fam(Conn(A )op) is a full subcategory of Fam(A op) and ZA restricts
to a fully faithful functor

Fam(Conn(A )op) // [A , setfin].

It remains to identify the essential image of this functor as those T : A // setfin which
preserve finite coproducts and pullbacks. However, we have seen in Proposition 3.2 that

such a T has the form T ∼=
∑
t∈T1

Tt where each Tt preserves finite coproducts and is left

exact. By Corollary 3.1, we have

Tt
∼= A (Ct,−)

where each Ct is connected.

4. Application to permutation representations

A permutation representation of a finite group G, also called a finite left G-set, is a finite
set X together with a function G×X // X , (g, x) � // gx, called the action such that

1x = x and g1(g2x) = (g1g2)x.

If X and Y are such G-sets, a (left) G-morphism f : X // Y is a function satisfying
f(gx) = gf(x). We write G-setfin for the category of finite left G-sets and left G-
morphisms.

The terminal object of G-setfin is the set 1 with only one element with its unique
action. The pullback in G-setfin of two morphisms f : X // Z and k : Y // Z is given by
{(x, y) ∈ X × Y |f(x) = k(y)} with componentwise action g(x, y) = (gx, gy). So G-setfin

has finite limits.
Since the set G-setfin(X, Y ) is a subset of the set setfin(X, Y ) = Y X , it is finite.
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The set PG of subsets of G becomes a G-set by defining the action as

gS = {h ∈ G | hg ∈ S}

for S ⊆ G and g ∈ G. For each x ∈ X ∈ G-setfin, we can define a G-morphism
χx : X // PG by

χx(z) = {h ∈ G | hz = x}.
If x, y ∈ X ∈ G-setfin then χx(x) = χx(y) implies 1 ∈ χx(y), so y = x. It follows that
PG is a cogenerator for G-setfin.

Subobjects of X ∈ G-setfin are in bijection with sub-G-sets of X. So G-setfin is finitely
well powered.

From Section 2, we therefore have:

4.1. Corollary. Every limit preserving functor T : G-setfin
// setfin is representable.

The Yoneda embedding induces an equivalence of categories

G-setop
fin ' Lex(G-setfin, setfin).

Recall that a G-set X is called transitive when it is non-empty and, for all x, y ∈ X,
there exists g ∈ G with gx = y.

For any G-set X and any x ∈ X, we put

stab(x) = {g ∈ G | gx = x}

which is a subgroup of G called the stabilizer of x. We also put

orb(x) = {gx | g ∈ G}

which is a transitive sub-G-set X called the orbit of x. We write X/G for the set of
orbits which can be regarded as a G-setfin with trivial action so that orb : X // X/G is
a surjective G-morphism. If u ∈ X/G, we also write Xu for the orbit u as a sub-G-set of
X. So every G-set is the disjoint union of its orbits.

The empty coproduct is the empty set 0 with its unique action. The coproduct of two
G-sets X and Y is their disjoint union X + Y with action such that the coprojections
X // X + Y and Y // X + Y are G-morphisms. So every G-set X is a coproduct

X ∼=
∑

u∈X/G

Xu

of transitive G-sets (the orbits Xu).
Each subgroup H of G determines a transitive G-set

G/H = {xH | x ∈ G}

where xH = {xh | h ∈ H} is the left coset of H containing x, and where the action is

g(xH) = (gx)H.
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Every transitive G-set X is isomorphic to one of the form G/H; we can take H = stab(x)
for any x ∈ X.

The G-morphisms f : G/H // X are in bijection with those x ∈ X such that H ≤
stab(x). The G-sets G/H and G/K are isomorphic if and only if the subgroups H and K
are conjugate (that is, there exists x ∈ G with Hx = xK).

We provide a proof of the following well-known fact.

4.2. Proposition. A finite G-set X is transitive if and only if X is a connected object
of G-setfin.

Proof. A G-set X is non-empty if and only if G-setfin(X,0) is empty; that is, if and
only if G-setfin(X,−) preserves empty coproducts.

A morphism G/H // Y + Z is determined by an element of Y + Z stable under H;
such an element must either be an element of Y or an element of Z stable under H. So
transitive G-sets are connected.

Assume X is connected. We have already seen that X is non-empty so choose x ∈ X.
Then

X = orb(x) + U

for some sub-G-set U of X. We therefore have the canonical function

G-setfin(X, orb(x)) + G-setfin(X, U) // G-setfin(X, X)

which is invertible since X is connected. So the identity function X // X is in the image
of the canonical function and so factors through orb(x) ⊆ X or U ⊆ X. Since x /∈ U , we
must have orb(x) = X. So X is connected.

We have thus identified Conn(G-setfin) as consisting of the transitive G-sets. This
category has a finite skeleton CG since there are only finitely many G-sets of the form
G/H. Corollary 3.1 yields:

4.3. Corollary. The Yoneda embedding induces an equivalence of categories

C op
G ' CopLex(G-setfin, setfin).

Let N : CG
// G-setfin denote the inclusion functor and define the functor

Ñ : G-setfin
// [C op

G , setfin]

by ÑX = G-setfin(N−, X).

4.4. Proposition. The functor Ñ induces an equivalence of categories

G-setfin ' Fam(C op
G ).
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Proof. We first prove that N is dense; that is, that Ñ is fully faithful. Let θ : ÑX // ÑY
be a natural transformation. For each u : C // D in CG we have a commutative square

G-setfin(D, X) G-setfin(D, Y )
θD //

G-setfin(C, Y ).

−◦u
��

G-setfin(C, X)

−◦u
��

θC

//

Since the single-object full subcategory of G-setfin consisting of G is dense (Gop // G-setfin

is a Yoneda embedding), by restricting C and D to be equal to G ∈ CG, we obtain a G-
morphism f : X // Y defined uniquely by f(x) = θG(x̂)(1) where x̂ : G // X is given by
x̂(g) = gx. Then, for all w : D // X and d ∈ D, the above commutative square, with
C = G, yields

θD(w)(d) = (θD(w) ◦ d̂)(1) = θG(w ◦ d̂)(1) = θG(ŵ ◦ d)(1) = (f ◦ w)(d).

So θD = G-setfin(D, f) for a unique G-morphism f .
The proof of the equivalence of categories will be completed by characterizing the es-

sential image of Ñ as finite coproducts of representables in [C op
G , setfin]. If F ∈ [C op

G , setfin]
is a finite coproduct of representables then we have a finite family (Ci)i∈I of objects of

CG and an isomorphism F ∼=
∑

i

C (−, Ci). We have the calculation:

∑
i

C (−, Ci) ∼=
∑

i

G-setfin(N−, Ci)

∼= G-setfin(N−,
∑

i

Ci)

∼= Ñ(
∑

i

Ci).

So F is in the essential image of Ñ . Conversely, every X ∈ G-setfin is a coproduct

X ∼=
∑

i

Ci of connected G-sets. So the same calculation, read from bottom to top, shows

that Ñ(X) is a finite coproduct of representables.

4.5. Corollary. There is an equivalence of categories

G-setfin ' CopPb(G-setfin, setfin)

taking the left G-set C to the functor∑
w∈C/G

G-setfin(Cw,−)
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where Cw is the orbit w as a sub-G-set of C.

There is an isomorphism of categories

`G : Gop-setfin
// G-setfin

which preserves the underlying sets. If A is a right G-set then `GA = A as a set with
left action ga in `GA equal to ag−1 in A. As a special case of the construction in the
Introduction, for a right G-set A and a left G-set X, we have

A ∧G X = {(a, x) ∈ `GA×X | stab(a) ≤ stab(x)} and

A ◦G X = (A ∧G X)/G.

Each (a, x) ∈ A ∧G X defines a G-morphism

θX(a, x) : `GAu
// X

where u = orb(a) and θX(a, x)(ag−1) = gx (which is well defined since ag−1
1 = ag−1

2 ⇒
g−1
2 g1 ∈ stab(a) ⇒ g−1

2 g1 ∈ stab(x) ⇒ g1x = g2x). This defines a function

θX : A ∧G X //
∑

u∈G\A

G-setfin(`GAu, X)

naturally in X ∈ G-setfin (where G\A is the set of orbits of the right action). Clearly

θX(a, x) = θX(b, y) if and only if orb(a, x) = orb(b, y).

This proves:

4.6. Proposition. For all A ∈ Gop-setfin, the natural transformation θ induces a natural
isomorphism

θ̄ : A ◦G − ∼=
∑

u∈G\A

G-setfin(`GAu,−)

between functors from G-setfin to setfin.

4.7. Corollary. There is an equivalence of categories

Gop-setfin ' CopPb(G-setfin, setfin) , A � // A ◦G −.

5. A bicategory of finite groups

The goal of this section is to consolidate our results in terms of a homomorphism of
bicategories which is an equivalence on homcategories. We construct a bicategory whose
objects are finite groups and whose morphisms are permutation representations between
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them. This bicategory is the domain of the homomorphism. The codomain is the 2-
category of categories of the form G-setfin and pullback-and-finite-coproduct-preserving
functors between them.

Suppose G and H are finite groups. There is a monad H × − on Gop-setfin whose
Eilenberg-Moore algebras are the (Gop ×H)-sets. For the endofunctor

H ×− : Gop-setfin
// Gop-setfin,

we simply regard H as a trivial Gop-setfin (hg = h) and take A to H × A in Gop-setfin.
The unit A // H ×A and multiplication H ×H ×A // H ×A for the monad are defined
by a � // (1, a) and (h1, h2, a) � // (h1h2, a).

In the case G = 1, we have the monad H × − on setfin. This lifts pointwise to a
monad H ×− on [G-setfin, setfin]. There is a canonical isomorphism

Gop-setfin [G-setfin, setfin]//

[G-setfin, setfin],

H×−
��

Gop-setfin

H×−
��

//

∼=

which is compatible with the monad structures, where the horizontal functors are both
A � // A ◦G −. The component

A ◦G (H ×X) ∼= H × (A ◦G X)

of the isomorphism at X is induced by the G-set isomorphism

`GA× (H ×X) ∼= H × (`GA×X) , (a, (h, x)) � // (h, (a, x)).

Notice that, for (h, x) ∈ H ×X, stab(h, x) = stab(x). It follows that A � // A ◦G− induces
a functor

(Gop ×H)-set // [G-setfin, H-setfin].

If F : G-setfin
// setfin preserves pullbacks and finite coproducts, so does H × F−.

Also, the forgetful functor H-setfin
// setfin creates both finite coproducts and pullbacks.

Therefore, Corollary 4.7 yields:

5.1. Theorem. There is an equivalence of categories

(Gop ×H)-set ' CopPb(G-setfin, H-setfin) , A � // A ◦G −.

Parts (i), (ii) and (iii) of Theorem 1.1 follows from Theorem 5.1. It is also clear, in
the setting of Theorem 1.1(iv), that there exists a (Kop ×H)-set C such that

A ◦G (B ◦K −) ∼= C ◦K −

since the composite of pullback and finite coproduct preserving functors also preserves
them. It remains to identify C as A ◦G B. We do this directly.
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5.2. Proposition. If A, B and Z are respectively (Gop × H)-, (Kop × G)-, and K-sets
then

A ◦G (B ◦K Z) ∼= (A ◦G B) ◦K Z , [a, [b, z]] � // [[a, b], z]

is an isomorphism of H-sets.

Proof. To say (a, [b, z]) ∈ A ∧G (B ◦K Z) is to say that ag = a implies g[b, z] = [b, z];
that is, there exists k ∈ K such that gb = bk and hz = z. In particular, this means that
(a, b) ∈ A∧G B. We need to see that ([a, b], z) ∈ (A◦G B)∧K Z. So suppose [a, b]k = [a, b].
Then there exists g ∈ G with a = ag and bk = gb. The former implies there is k1 ∈ K
such that gb = bk1 and k1z = z. Then bk = gb = bk1, so bkk−1

1 = b. Since (b, z) ∈ B∧K Z,
we have kk−1

1 z = z; so kz = z. One also sees that

[a, [b, z]] = [a′, [b′, z′]] ⇐⇒ ∃g ∈ G, k ∈ K : a = a′g, gb = b′k, kz = z′

⇐⇒ [[a, b], z] = [[a′, b′], z′].

This proves the bijection. Clearly the H-actions correspond.

Let CopPb denote the 2-category whose objects are categories admitting pullbacks
and finite coproducts, whose morphisms are functors which preserve these, and all natural
transformations between such functors. This is a sub-2-category of the 2-category Cat
of small categories. Let CopLex be the sub-2-category of CopPb consisting of the
categories which also have terminal objects (and so are finitely complete), and the functors
which preserve them.

We can now summarize the results in:

5.3. Theorem. There is a bicategory Bouc whose objects are finite groups, whose hom-
categories are

Bouc(G, H) = (Gop ×H)-set,

and whose composition functors are

Bouc(G, H)×Bouc(K, G) // Bouc(K, H) , (A, B) � // A ◦G B.

There is a homomorphism of bicategories

Φ : Bouc // CopPb

defined on objects by ΦG = G-setfin and on homcategories by the equivalences of Theorem
5.1. The restriction of the morphisms A : G // H of Bouc to those Gop×H-sets which
are connected as right G-sets is a sub-bicategory Boucc of Bouc, and Φ restricts to a
homomorphism

ΦC : Boucc // CopLex

which is also an equivalence on homcategories.
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6. Application to Mackey functors

Given a finite group G, there is a bicategory of spans in the category G-setfin [Bé]. We
write Spn(G-setfin) for the category obtained by taking isomorphism classes of spans as
morphisms. This category is compact closed and the coproduct in G-setfin becomes direct
sum (that is, it is also the product) in Spn(G-setfin). These matters are made explicit in
[PS].

We fix a field k and write vect for the category of finite dimensional vector spaces
over k with linear functions as morphisms. A finite dimensional Mackey functor on G
is a functor M : Spn(G-setfin) // vect which preserves finite direct sums. We write
Mkyfin(G) for the category of finite dimensional Mackey functors on G; the morphisms
are natural transformations. It is an abelian k-linear category.

Each pullback preserving functor F : G-setfin
// H-setfin induces a functor Spn(F ) :

Spn(G-setfin) // Spn(H-setfin) (since composition of spans only involves pullbacks). If
F also preserves finite coproducts then Spn(F ) preserves direct sums. In that case, we
obtain an exact functor

F̄ : Mkyfin(H) // Mkyfin(G)

defined by F̄ (N) = N ◦ Spn(F ) for all N ∈ Mkyfin(H). Moreover, F̄ has a left adjoint

Mkyfin(F ) : Mkyfin(G) // Mkyfin(H)

defined by

Mkyfin(F )(M) =

∫ C

Spn(H-setfin)(F (C),−)⊗MC

where C runs over the connected G-sets as objects of Spn(G-setfin) and the tensor product
is that of additive (commutative) monoids.

Let AbCatk denote the 2-category of abelian k-linear categories, k-linear functors
with right exact right adjoints, and natural transformations.

6.1. Corollary. There is a homomorphism of bicategories

Mkyfin : Bouc // AbCatk

(A : G // H) � // (Mkyfin(A ◦G −) : Mkyfin(G) // Mkyfin(H)).

Actually, Mkyfin(G) is much more than an abelian k-linear category. It is monoidal un-
der the Day convolution tensor product [Da] using the monoidal structure on Spn(G-setfin)
coming from cartesian product in G-setfin. In fact, Mkyfin(G) is ∗-autonomous in the
sense of [Ba]; details can be found in [PS].

If F : G-setfin
// H-setfin is left exact and finite coproduct preserving then Spn(F )

is strong monoidal (=tensor product preserving). It follows (for example from [DS]) that
Mkyfin(F ) is strong monoidal. It also preserves the ∗-autonomous structure.

Let ∗-AbCatk denote the 2-category of ∗-autonomous monoidal abelian k-linear cate-
gories, ∗-preserving strong-monoidal k-linear functors with right exact right adjoints, and
natural transformations.
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6.2. Corollary. The homomorphism of bicategories in Corollary 6.1 induces a homo-
morphism

Mkyfin : Boucc // ∗-AbCatk.
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