#
Enriched model categories and an application to additive endomorphism spectra

##
Daniel Dugger and Brooke Shipley

We define the notion of an additive model category and prove that any
stable, additive, combinatorial model category $\cal M$ has a model
enrichment over $Sp^\Sigma(sAb)$ (symmetric spectra based on
simplicial abelian groups). So to any object $X$ in $\cal M$ one can
attach an endomorphism ring object, denoted $hEnd_ad(X)$, in
the category $Sp^\Sigma(sAb)$. We establish some useful properties of
these endomorphism rings.

We also develop a new notion in enriched category theory which we call
`adjoint modules'. This is used to compare enrichments over one
symmetric monoidal model category with enrichments over a Quillen
equivalent one. In particular, it is used here to compare enrichments
over $\Sp^\Sigma(s\Ab)$ and chain complexes.

Keywords:
model categories, symmetric spectra, endomorphism ring

2000 MSC:
18D20, 55U35, 55P42, 18E05

*Theory and Applications of Categories,*
Vol. 18, 2007,
No. 15, pp 400-439.

http://www.tac.mta.ca/tac/volumes/18/15/18-15.dvi

http://www.tac.mta.ca/tac/volumes/18/15/18-15.ps

http://www.tac.mta.ca/tac/volumes/18/15/18-15.pdf

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/18/15/18-15.dvi

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/18/15/18-15.ps

TAC Home