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COLLARED COSPANS, COHOMOTOPY AND TQFT
(COSPANS IN ALGEBRAIC TOPOLOGY, II)

MARCO GRANDIS

Abstract.

Topological cospans and their concatenation, by pushout, appear in the theories of
tangles, ribbons, cobordisms, etc. Various algebraic invariants have been introduced for
their study, which it would be interesting to link with the standard tools of Algebraic
Topology, (co)homotopy and (co)homology functors.

Here we introduce collarable (and collared) cospans between topological spaces. They
generalise the cospans which appear in the previous theories, as a consequence of a
classical theorem on manifolds with boundary. Their interest lies in the fact that their
concatenation is realised by means of homotopy pushouts. Therefore, cohomotopy func-
tors induce ‘functors’ from collarable cospans to spans of sets, providing - by linearisation
- topological quantum field theories (TQFT) on manifolds and their cobordisms. Simi-
larly, (co)homology and homotopy functors take collarable cospans to relations of abelian
groups or (co)spans of groups, yielding other ‘algebraic’ invariants.

This is the second paper in a series devoted to the study of cospans in Algebraic Topol-
ogy. It is practically independent from the first, which deals with higher cubical cospans
in abstract categories. The third article will proceed from both, studying cubical topo-
logical cospans and their collared version.

Introduction

A cospan of topological spaces is a pair of maps with the same codomain

u = (u− : X− → X0 ← X+ : u+), (1)

viewed as a kind of morphism u : X− ·→ X+; they are composed by pushouts, and -
of course - this composition is not strictly associative. They form a bicategory [1] and,
also, the weak arrows of a weak double category Cosp(Top), whose strict arrows are the
ordinary maps of topological spaces [11]. But it is well known that pushouts of spaces are
not homotopy invariant, generally, and do not behave well under homology or homotopy
functors.
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Here, we are interested in particular cospans, the collarable ones (2.2), which give rise
to a substructure Cblc(Top) ⊂ Cosp(Top). Typically, (non oriented) tangles, ribbons
and cobordisms between manifolds (as studied in Topological Quantum Field Theories)
are collarable cospans and are composed by means of pushouts (in the following figures,
collars are suggested by dashes or dots)
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The structural interest of restricting to collarable cospans abides in the fact that the
‘collarable pushouts’ appearing in their composition are always homotopy pushouts (Thm.
2.5), hence homotopy invariant and ‘respected’ by most homotopy and homology functors,
in some sense specified below.

First, the Borsuk cohomotopy functor πS = [−, S] : Top → Setop (where S is an
arbitrary topological space) always turns a collarable pushout into a weak pullback of
sets, and extends thus to a functor

πS : Cblciso(Top)→ Rel(Set), (2)

defined on the category of topological spaces and isomorphism-classes of collarable cospans,
with values in the category of relations of sets (Thm. 3.3). Under suitable restrictions,
we get an extension with values in Spiso(fSet), the category of isomorphism-classes of
spans of finite sets; this extension can be ‘linearised’ with values in finite-dimensional
vector spaces (or free modules on a given ring), providing various topological quantum
field theories.

Similar extensions can be obtained for relative homology or cohomology (4.2, 4.4).
The same holds for the fundamental-groupoid functor, with values in cospans of groupoids
(4.5), as a consequence of R. Brown’s version of the Seifert-van Kampen theorem [5, 6].
(One can not use the fundamental group, as a pointed cospan can not admit collars.)

In Section 1 we recall the construction of the weak double category Cosp(Top) of
topological cospans. It contains the corresponding bicategory, which could also be used
here; but we want to have general ‘transversal maps’ in the structure, which allows for
limits (cf. 1.3) and adjunctions, as studied in [11, 12]. Moreover, this setting is adequate
for the cubical extension which will be given in Part III, on the basis of the weak cubical
category of higher cospans of Part I [10].

In Section 2 we define collarable cospans; they form a weak double subcategory

Cblc(Top) ⊂ Cosp(Top).
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Notice that, as motivated in 1.6, the definition is more general than one might expect,
and also the degenerate cospans e1(X) = (idX, idX) are accepted: a collarable cospan
decomposes into a sum of a trivially collarable part (a pair of homeomorphisms) and a
1-collarable part; only the second admits ‘real’ collars. We end with a notion of weak
equivalence of topological cospans, which is sufficiently general to make the cylindrical
cospan on a space equivalent to the degenerate one (2.8); homotopy invariance of functors
on topological cospans is defined with respect to this notion. Collared cospans, which are
equipped with collars, are only hinted at (see 2.2); they will be studied in Part III of this
series, together with their higher cubical versions.

Sections 3 and 4 show that cohomotopy functors, (co)homology theories and the
fundamental-groupoid functor can be extended to collarable cospans, as outlined above,
obtaining homotopy-invariant (co)lax or pseudo double functors. Some Frobenius alge-
bras derived from cohomotopy functors are computed in 3.4, 3.5. A few computations on
(absolute or relative) homology relations can be found in 4.6, 4.7. Finally, the Appendix
in Section 5 deals with extending functors to (co)spans and relations, by classifying the
squares of ‘ordinary maps’ which become ‘bicommutative’ in these involutive categories.

As to literature, a clear, elementary exposition of low-dimensional TQFT can be found
in [16]. Other invariants for links, tangles and ribbons can be seen, for instance, in [15, 2]
and their references.

Acknowledgements. The author gratefully acknowledges helpful discussions with
Renzo Piccinini, Timothy Porter and Marco Zunino, and various accurate suggestions by
the referee.

1. Topological cospans and homotopy pushouts

We review here the basic notions of this paper: the weak double category of topological
cospans, with its limits and colimits, and the classical notion of homotopy pushout. The
index α always takes the values ±1, which are written −, + in superscripts. IX = X×[0, 1]
denotes the cylinder on a space X.

1.1. Topological cospans and their transversal maps. The weak double cate-
gory Cosp(Top) of topological spaces, maps and cospans, has been introduced and studied
in [11]. It is also the 1-truncated structure of the weak cubical category of higher cospans
Cosp∗(Top) introduced in Part I of this series [10]: truncation acts on the weak direc-
tions, leaving only one of them (together with the strict direction); here we will use a
terminology and notation similar to the one of [10], which is more suited for a future
study of higher topological cospans.

Therefore, a 0-cube, or object, is a topological space, viewed as a functor X : 1→ Top
defined on the singleton category 1 = {∗}. A 1-cube is a (topological) cospan, i.e. a pair
of continuous mappings between topological spaces

u = (u− : X− → X0 ← X+ : u+), (3)
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and is viewed as a functor u : ∧→ Top, defined on the category

∧ : −1→ 0 ← 1 (the formal cospan). (4)

(An n-cube in the higher cubical structure Cosp∗(Top) is a functor ∧n → Top [10]).
Ordinary cospans form a 1-truncated cubical set, or reflexive graph, with (cubical) faces
and degeneracies

∂α
1 u = Xα, e1(X) = (id : X → X ← X : id). (5)

We often write u = (u−, u+) : X− ·→ X+ to specify the cubical faces of u.
A (transversal) 0-map f : X → Y is a continuous mapping between topological spaces,

also viewed as a natural transformation f : X → Y : 1 → Top. A (transversal) 1-map
f : u→ v, or double cell, is a natural transformation f : u→ v : ∧→ Top, which amounts
to two commutative squares in Top

X− f− //

u−
��

Y −

v−
��

X0
f0

// Y 0 f = (f−, f0, f+) : u→ v.

X+
f+

//

u+

OO

Y +

v+

OO (6)

Also transversal maps (of cubical degree 0 or 1) form a 1-truncated cubical set, with:

∂α
1 f = fα, e1(f) = (f, f, f) (α = ±1). (7)

The 1-map f is said to be special if its cubical faces f−, f+ are identities.
Transversal maps compose (as natural transformations), forming the category of dia-

grams Top∧, with identities id(u) = (idX−, idX0, idX+). Cospans (and their transversal
maps) are concatenated using pushouts: given u and v = (v− : Y − → Y 0 ← Y + : v+),
with X+ = A = Y −, the concatenation w = u +1 v is computed as:

Z0

G
G

w
w

X0

::uuuu
Y 0

ddIIII

w = u +1 v = (X− → Z0 ← Y +).

X−

99tttt
A

ddIIII
::uuuu

Y +

ddJJJJ
(8)

This ‘cubical’ composition is categorical up to isomorphisms of cospans, i.e. invertible
special transversal maps.

The weak double category structure is described more in detail in [11] (and [10]). In
[11], the transversal (strict) direction is called horizontal and the cubical (weak) direction
is called vertical. A 0-map is called a horizontal arrow, a 1-cube is a vertical arrow, a 1-map
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is always called a double cell. (In other articles on weak double categories, ‘horizontal’
and ‘vertical’ are interchanged, which agrees with the usual terminology of bicategories.
Here, such terms will be avoided.)

We will also use the associated category Cospiso(Top), of topological spaces and iso-
morphism classes of cospans, up to invertible special 1-maps.

1.2. Remarks. The bicategory of topological cospans [1] can be identified to the weak
double subcategory of Cosp(Top) obtained by restricting 0-maps to identities of topolog-
ical spaces and 1-maps to the special ones.

We prefer to use the larger structure of a weak double category, where (double) limits
and colimits exist and essentially amount to (co)limits in the category of diagrams Top∧,
together with the (co)tabulator, i.e. the double (co)limit of a 1-cube (see [11]: the cotab-
ulator of a cospan is its central space, while the tabulator is its pullback). The (co)limits
of interest for the sequel are briefly described below (1.3).

Finally, let us remark that concatenation in Cosp(Top) is well-defined once we assume
that we have in Top (or any other setting for cospans) a (symmetric) choice of a distin-
guished pushout for any span. As discussed in [10], 3.1, it is convenient to assume the
following restriction on the choice (which is formulated there in a more general context)

(a) the pair (f, 1) has distinguished pushout (1, f), and symmetrically (unitarity con-
straint).

1.3. Limits and colimits. The product
Q

uj of a family of cospans uj : ∧ → Top
(j ∈ J) is a cospan u equipped with a family pj : u → uj of 1-maps satisfying the usual
universal property; it is simply computed componentwise: X− =

Q
X−

i , and so on.
Similarly, a sum

P
uj of cospans is computed componentwise, and the (co)equaliser

of two 1-maps f, g : u → v, in the category of diagrams Top∧, consists of the three
(co)equalisers of the components.

A sub-cospan of u = (u− : X− → X0 ← X+ : u+) will be a regular subobject of u (an
equaliser of two 1-maps, as above). Therefore, it amounts to assigning three subspaces
(Y −, Y 0, Y +) such that

Y t ⊂ X t, uα(Y α) ⊂ Y 0 (t ∈ ∧; α = ±), (9)

and we say that the sub-cospan is open (resp. closed) in u if so are the three subspaces
Y t ⊂ X t. The sub-cospans of u form a complete lattice, which is a sublattice of P(X−)×
P(X0)×P(X+).

Finally, let us recall that decomposing a space X into a categorical sum X =
P

Xj

(in Top) amounts to giving a partition of the space X into a family of clopens (closed
and open subspaces). Similarly, to give a decomposition u =

P
uj into a sum of cospans

amounts to give a clopen partition (uj) of u, i.e. a cover of u by disjoint sub-cospans,
closed and open in u.

1.4. Standard homotopy pushouts. We recall now a fundamental notion of homotopy
theory, introduced by Mather [18].
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Let f : A→ X, g : A→ Y form a span in Top. The standard homotopy pushout from
f to g is a four-tuple (P ; u, v; λ) as in the left diagram below, where λ : uf → vg : A→ P
is a homotopy satisfying the following universal property (as for cocomma squares of
categories), which determines it up to homeomorphism

A
g //

d+

��

Y

v

��

A
g //

f

��

Y

v

��
A

d− //

f

��

IA
λ

##GG
GG

GG
GG

G

X u
//

λ 11

P

X u
// P

(10)

(a) for every λ′ : u′f → v′g : A → W , there is precisely one map h : P → W such that
u′ = hu, v′ = hv, λ′ = hλ.

(Writing hλ we are using the obvious whisker composition of homotopies and maps).
In Top, the solution always exists and can be constructed as the ordinary colimit of the
right-hand diagram above. This construction is based on the cylinder IA = A×[0, 1] and
its faces

d−, d+ : A→ IA, d−(a) = (a, 0), d+(a) = (a, 1) (a ∈ A). (11)

Therefore, the space P is a pasting of X and Y with the cylinder IA, and can be
realised as a quotient of their topological sum, under the equivalence relation which gives
the following identifications:

P = (X + IA + Y )/∼, [f(a)] = [a, 0], [g(a)] = [a, 1] (a ∈ A). (12)

As a crucial feature, this construction always has strong properties of homotopy in-
variance (e.g., see [9], Section 3), which an ordinary pushout - generally - does not have.
Notice also that the cylinder IA is itself the standard homotopy pushout from idA to idA.

1.5. General homotopy pushouts. As in Mather’s original paper, a homotopy pushout
of f, g will be any space P ′ homotopy equivalent to the standard homotopy pushout P .

With the notation of 1.4, the triple (u, v, λ) of P , composed with an equivalence-map
P → P ′, gives maps u′ : X → P ′, v′ : Y → P ′ and a homotopy λ′ : u′f → v′g : A → P ′

satisfying the following weak universal property, of mere existence:

(a) for every λ′′ : u′′f → v′′g : A→ P ′′, there is some map k : P ′ → P ′′ such that u′′'ku′

and v′′'kv′.
It follows easily that every homotopy pushout becomes a weak pushout in the homotopy

category HoTop = Top/ ' (of spaces and homotopy classes of maps). Furthermore,
every (contravariant) cohomotopy functor [−, S] : Top→ Set takes a homotopy pushout
of spaces to a weak pullback of sets, a fact which will be used below.
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1.6. Degenerate and cylindrical cospans. Before going on to define collarable
maps, in the next section, it will be useful to compare the degenerate cospan e1(X) =
(idX, idX) of a space X with the cylindrical cospan

E1(X) = (d− : X → IX ← X : d+), d−(x) = (x, 0), d+(x) = (x, 1), (13)

X

X

e1(X)
X

X

E1(X)

_______

_______

which are produced by the degenerate span X ← X → X, as an ordinary pushout and
a standard homotopy pushout, respectively. (They coincide for X = ∅.)

Assuming that X 6= ∅, let us note that these cospans are not isomorphic, i.e. cannot be
linked by an invertible special transversal map. (They are just weakly equivalent cospans,
as defined in 2.8).

In fact, we have a special transversal 1-map p : E1(X)→ e1(X), as in the left diagram
below

X
d− //

1
��

IX

p

��

X
d+

oo

1
��

X
1 //

f−

��

X

f0

��

X
1oo

f+

��
= = ? ?

X
1

// X X
1

oo X
d−

// IX X
d+

oo

(14)

but there is no transversal map f going backwards (special or not): in the right diagram
above, any point x ∈ X would give (f−(x), 0) = f 0(x) = (f+(x), 1).

Now, the cylinder cospans admits ‘collars’ (suggested by dashed lines, in the figure
above), while e1(X) does not (for X 6= ∅). However, working with the cylindrical cospans
as weak identities for the collarable cospans gives various problems. In Part III, extending
our construction to cubical collared cospans, of any degree, we will see that the cubical
relation e1e1 = e2e1 cannot be fulfilled with cylindrical cospans: we would not even get
a cubical set. Already here (as a minor point), if we want the new structure to be a
weak double subcategory of Cosp(Top), we must keep the same degeneracies. This is
why we will use a generalised notion of collarable cospan, including the degenerate ones
as ‘trivially collarable’.

Finally, one can think of a third alternative, which presents other technical prob-
lems. One can modify Cosp(Top) with a ‘better’ concatenation of consecutive cospans,
say u ⊗1 v, realised by means of standard homotopy pushouts (instead of using ordi-
nary pushouts and restricting cospans, as we do below). Now, associativity works well
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for the new concatenation, up to invertible special transversal maps, as one can eas-
ily see. But degenerate cospans do not work as weak identities: for a space X, we get
e1(X)⊗1 e1(X) = E1(X), which is not isomorphic to e1(X). On the other hand, we have
already seen that, using the cylindrical cospans instead of the degenerate ones, as weak
identities, gives other problems in the higher cubical structure.

2. Collarable cospans and collarable pushouts

We introduce here the weak double subcategory of collarable cospans Cblc(Top) ⊂
Cosp(Top). They are concatenated by means of pushouts of collarable maps, which are
homotopy pushouts (Thm. 2.5). This will be crucial for applying cohomotopy functors
(Section 3), or (co)homology and homotopy functors (Section 4).

2.1. Collarable maps. The idea of a topological cospan which ‘admits collars’, inspired
by cobordisms between manifolds, is rather intuitive. Examples can be seen in fig. 1 of
the Introduction, in the right-hand figure of (13) and, below, in all the figures of (44),
(75), (77). We have already seen above that it is convenient to generalise it, to include
degenerate cospans (1.6); similarly, we must use a generalised notion of collarable map.

Let us begin by recalling that a closed injective map f : X → Y in Top is always
a topological embedding, in the sense that X has the pre-image topology (the less fine
one which makes f continuous): indeed, if C is closed in X, then C = f−1(f(C)) is
the pre-image of a closed subset of Y . Such maps will be called closed (topological)
embeddings.

We say that a map f : X → Y between topological spaces:

(i) is 0-collarable, or trivially collarable, if it is a homeomorphism,

(ii) is 1-collarable, or admits a collar, if it has a (continuous) extension F to the cylinder
IX, which is a closed embedding

F : IX → Y, f = F (−, 0) : X → Y, (15)

so that the subset F (X×[0, 1[ ) is open in Y .
The only map which is both 0- and 1-collarable is id(∅) (because F is injective and

F (X×I) ⊂ Y = f(X) = F (X×{0})).
Now, a collarable map f : X → Y will be a continuous mapping which can be decom-

posed in a sum of two maps:

f = f0 + f1 : (X0 + X1)→ (Y0 + Y1) (collarable decomposition), (16)

where f0 is 0-collarable and f1 is 1-collarable.
Each component fi and f itself are closed embeddings. The collarable decomposition

of f is uniquely determined (if it exists): given a second, based on the decomposition
X = X ′

0 +X ′
1, f must be both 0- and 1-collarable on the subspaces X0∩X ′

1 and X ′
0∩X1,

which must be empty. Collarable maps, as here defined, do not form a subcategory of
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Top: the composition of two 1-collarable maps is 2-collarable, in a graded category (see
2.9).

A 1-collared map is a map equipped with a collar. A collared map is a sum f = f0 + f1

of topological maps, where f0 is a homeomorphism (considered as 0-collared) and f1 is
1-collared.

2.2. Collarable cospans. Similarly, we say that a topological cospan

u = (u− : X− → X0 ← X+ : u+), (17)

(i) is 0-collarable, or trivially collarable, if it is a pair of homeomorphisms,

(ii) is 1-collarable, or admits a collar cospan, (or, simply, a collar), if there exists a cospan
(U−, U+) formed of a pair of collars of its maps having disjoint images.

In other words, in the second case, we have two disjoint closed embeddings

U = (U− : IX− → X0 ← IX+ : U+), uα = Uα(−, 0) : Xα → X0, (18)

where Uα(Xα× [0, 1[) is open in X0. (Examples have been recalled at the beginning of
2.1.)

Furthermore, we say that the cospan u is collarable if it admits a collarable decompo-
sition, i.e. can be decomposed into a binary sum (1.3):

u = u0 + u1 = (X−
0 + X−

1 → X0
0 + X0

1 ← X+
0 + X+

1 ),

u0 = (u−0 : X−
0 → X0

0 ← X+
0 : u+

0 ), u1 = (u−1 : X−
1 → X0

1 ← X+
1 : u+

1 ),
(19)

where u0 is 0-collarable and u1 is 1-collarable (with collar cospan (U−, U+)).
Again, the only cospan which is both 0- and 1-collarable is the empty cospan e1(∅),

and the collarable decomposition of a cospan is uniquely determined.
Cubical faces and degeneracy are inherited from Cosp(Top)

∂α
1 u = Xα, e1(X) = (id : X → X ← X : id) (α = ±1). (20)

We prove below (2.4) that collarable cospans are closed under the concatenation u+1v
of cospans. Topological spaces and collarable cospans form thus a transversally full weak
double subcategory

Cblc(Top) ⊂ Cosp(Top). (21)

Also here, we will write u = (u−, u+) : X− ·→ X+ to specify the cubical faces of u.
Notice that a topological map, even if collarable, cannot be viewed as a collarable cospan,
in general. The category of topological spaces is transversally embedded in Cblc(Top),
sending a map f : X → Y to the same transversal 0-map.

Collared cospans, where the 1-collared component is equipped with assigned collars,
will be studied in Part III.
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2.3. Studying concatenation. Let us be given a concatenation w = u +1 v of two
collarable cospans, with the following collarable decompositions (2.2):

u = (u−, u+) : X− ·→ X+, u = u0 + u1, ((u−1 , u+
1 ) has collar (U−, U+)),

v = (v−, v+) : Y − ·→ Y +, v = v0 + v1, (v−1 , v+
1 ) has collar (V −, V +),

X+ = A = Y −.

(22)

In order to prove that w is collarable, we remark that the middle space A inherits a
decomposition into four clopens (1.3)

Aij = X+
i ∩ Y −

j , A = A00 + (A10 + A01 + A11) (i, j = 0, 1), (23)

which we reorganise as above into two, A00 (on which both cospans are trivially collarable)
and its complement.

This decomposes the trivially collarable cospan u0 into a sum u′ + u′′ of two trivially
collarable cospans with ∂+

1 u′ = A00; analogously, v0 = v′ + v′′ with ∂−1 v′ = A00. The
decompositions u = u′+(u′′+u1) and v = v′+(v′′+v1) give a decomposition of w = u+1v
as

u +1 v = (u′ +1 v′) + ((u′′ + u1) +1 (v′′ + v1)), (24)

where the first component w0 = u′ +1 v′ is 0-collarable. We prove below (Thm. 2.4) that
the second is 1-collarable.

The argument can be better understood looking at the following example, where the
spaces X−, A and Y + are discrete (with four points, each), and each Aij is a singleton

X− → X0 ← A → Y 0 ← Y + (25)

• • • • • (A00)

• • • • (A01)

• • • • (A10)

• • • (A11)

The bottom row contains the component w0 of w, constructed by concatenating the
restrictions of u0 and v0 to A00. All the rest yields the component w1, whose ‘left’ and
‘right’ collars are suggested by thick segments; notice that the collar of w−

1 is produced
by the collars of u−1 and part of the ones of v−1 ; on the other hand, the two dashed
collars, which are pasted at A11 in the pushout, do not intervene in the collars of the
composite. (One can get a similar example for cobordisms between 1-manifolds, replacing
the singletons with circles and the 1-dimensional spaces with spheres with holes).

We speak of a 1-collarable concatenation when X+
0 ∩ Y −

0 = ∅, so that the trivial part
is empty and u+1 v admits a collar; in this case, concatenation is computed by a pushout
which will be said to be 1-collarable - and will be proved to be homeomorphic to a standard
homotopy pushout (Thm. 2.5).
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Thus, a concatenation of collarable cospans decomposes into the sum of two concate-
nations: the first is computed by a trivial pushout of homeomorphisms (preserved by any
functor), and the second by a 1-collarable pushout, which will be proved to be respected
- in suitable ways - by most (co)homotopy and (co)homology functors.

2.4. Theorem. [Concatenating collarable cospans] Collarable cospans of topological spaces
are stable under concatenation in Cosp(Top). As a consequence, the same holds for their
transversal maps.

More precisely, a concatenation w = u +1 v of collarable cospans has a collarable
decomposition as in (24); in particular, w is 1-collarable if and only if the clopen X+

0 ∩Y −
0 ,

on which u and v are both 0-collarable, is empty.

Proof. We have to prove that the second component of the last term in (24) admits a
collar. To simplify notation, we will assume that A00 = X+

0 ∩ Y −
0 is empty (in figure

(25), this amounts to discard the bottom row) and prove that then the concatenation
w = u +1 v admits a collar. Note that, in A, we have now: X+

0 ⊂ Y −
1 and Y −

0 ⊂ X+
1 .

The cospan w = (w−, w+) is computed by a (distinguished) pushout in Top, over the
common face A = X+ = Y −

Z0

H
H

v
v

X0

j− ::uuuu
Y 0

j+ddIIII

w− = j−u−, w+ = j+v+.

X−

u− 99rrrr
A

u+

ddJJJJ
v−

::uuuu
Y +

v+eeKKKK
(26)

The maps u+ and v− are closed embeddings, and the set Z0 (the pasting of X0 and
Y 0 over A) is determined as

Z0 = j−(X0) ∪ j+(Y 0), j−(X0) ∩ j+(Y 0) = j−u+(A) = j+v−(A). (27)

Therefore, the mappings jα are injective and Z0 has the finest topology which makes
them continuous. Moreover, both jα are closed embeddings: if C is closed in X0, then
the set j−(C) has pre-image C in X0 and v−((u+)−1(C)) in Y 0; since both are closed, so
is j−(C) in Z0.

We construct now a collar cospan W = (W−, W+) for w. Following again the guideline
of figure (25), the extension W− : IX− → Z0 of w− is defined separately on the compo-
nents of IX− = IX−

1 + IX−
0 , using the collars U− and V −, respectively, and is a closed

embedding

Z0

F
F

x
x

IX−
1

U−
// X0

j− ;;vvvvv
Y 0

j+ddIIIII

IY +
1

V +
oo w− = j−u−,

w+ = j+v+,

X−
1

//

d−
AA�������

X−

u−
??��������
X0

0

OO

A

u+

^^>>>>>>>> v−

??��������
IY −

1

V −

OO

a = u−0 ,

b = u+
0 ,

X−
0

OO

a

??�������
X+

0
⊂

b

^^=======

OO

IY −
1

V −

OO

(28)
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W−
1 = j−U− : IX−

1 → Z0, W−
1 (x, 0) = j−U−(x, 0) = j−u−(x) = w−(x),

W−
0 = j+.V −.Ib−1.Ia : IX+

0 → IX0
0 → IX+

0 ⊂ IY −
1 → Y 0 → Z0,

W−
0 (x, 0) = j+.v−.b−1a(x) = j−.u+.b−1a(x) = j−u−(x) = w−(x).

(29)

The extension W+ is defined in the symmetric way, using V + on IY +
1 and U+

on IY +
0 .

The images of Wα are disjoint, because:

Im(W−) = Im(j−U−) ∪ Im(j+V −), Im(W+) = Im(j+V +) ∪ Im(j−U+),

Im(j−U−) ∩ Im(j+V +) ⊂ Im(j−U−) ∩ (Im(j−) ∩ Im(j+))

= Im(j−U−) ∩ Im(j−u+) = ∅,
Im(j−U−) ∩ Im(j−U+) = j−(ImU− ∩ ImU+) = ∅,

(30)

and symmetrically.
Finally W−(X−×[0, 1[) is open in Z0, since its pre-images in X0 and Y 0 are, respectively

U−(X−
1 ×[0, 1[) ∪ b(X+

0 ×[0, 1[), ∅ ∪ V −(X+
0 ×[0, 1[). (31)

2.5. Theorem. [Collarable pushouts and homotopy] (a) A pushout in Top of two col-
larable maps f and g is a homotopy pushout and satisfies the weak universal property
1.5(a), only concerning existence.

(b) More particularly, a 1-collarable pushout (2.3), i.e. the pushout of two collarable maps
f and g whose clopens A′

0, A′′
0 (where both f and g restrict to homeomorphisms) do not

meet, is homeomorphic to the standard homotopy pushout.
In fact, the canonical map p from the standard homotopy pushout (P ; u, v; λ) to the

ordinary pushout (B, u′′, v′′), which collapses the cylinder IA, is a homotopy equivalence,
with a quasi inverse h : B → P , which is a homeomorphism

X

u

�� u′′ ""FF
FF

FF
FF

F
u′

))RRRRRRRRRRRRRRRRR

λ

��
A

f
<<yyyyyyyyy

g
""EE

EE
EE

EE
E P p // B h // P

Y

v

OO
v′′

<<xxxxxxxxx v′

55lllllllllllllllll

(32)

(c) The same, as in (b), holds for the pushout of a closed embedding f along a 1-collarable
map g (and symmetrically).

Note. This statement has some similarity with a classical fact, stating that the ordinary
pushout of any map along a cofibration is a homotopy pushout.
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Proof. Point (a) is a consequence of (b), since a pushout of homeomorphisms is trivially
a homotopy pushout. We prove (c), the proof of (b) being similar. The map g has a collar
G : IA→ Y .

The standard homotopy pushout (P ; u, v; λ) is constructed as in (12), with u, v closed
embeddings

P = (X + IA + Y )/∼, [f(a)] = [a, 0], [g(a)] = [a, 1] (a ∈ A). (33)

We define u′ : X → P as the obvious composite

u′ = (X ⊂ X + IA + Y → (X + IA + Y )/∼). (34)

Now, Y has a closed cover (Y1, Y2, Y3) with two possibly non-empty intersections

Y1 = G(A×[0, 1/2]), Y2 = G(A×[1/2, 1]), Y3 = (Y \G(A×[0, 1[),

Y1 ∩ Y2 = F (A×{1/2}), Y2 ∩ Y3 = G(A×{1}).
(35)

We define v′ : Y → P as the pasting of the following closed embeddings

v1 : Y1 → P, v1G(a, t) = [a, 2t] (0 6 t 6 1/2),

v2 : Y2 → P, v2G(a, t) = [G(a, 2t− 1) (1/2 6 t 6 1),

v3 : Y3 → P, v3(y) = [y],

(36)

which agree on the intersections, because

v1G(a, 1/2) = [a, 1] = [g(a)] = [G(a, 0)], v2G(a, 1) = [G(a, 1)] = v3(G(a, 1)). (37)

Now, u′ and v′ agree on A

u′(f(a)) = [f(a)] = [a, 0] = v′G(a, 0) = v′(g(a), (38)

and define a closed embedding h : B → P which forms commutative triangles in (32). It
is surjective, hence a homeomorphism. Finally, it is easy to prove that p (which is not
injective) and h are inverse up to homotopy.

2.6. Cobordisms. We will use the weak double subcategory Cob(n) ⊂ Cblc(Top) of
n-dimensional manifolds and their cobordisms. Explicitly:

(a) a 0-cube is any n-dimensional compact manifold (without boundary);

(b) a 1-cube, called a (generalised) cobordism, is a cospan between 0-cubes which can be
decomposed as u = u0 +u1 in a trivial part u0, consisting of a pair of homeomorphisms of
compact n-manifolds, together with a cobordism part u1 = (u−1 : X−

1 → X0
1 ← X+

1 : u+
1 ),

where X0
1 is a compact (n+1)-manifold with boundary and the maps uα

1 : Xα
1 → X0

1 are
disjoint closed embeddings whose images cover the boundary of X0

1 ; then, the existence
of the collar-pair (U−, U+) is a well-known consequence (e.g., see [22], 6.2 and [4]);

(c) transversal n-maps are all the natural transformations (in Top) between such n-cubes
(n = 0, 1); notice that 1-maps are double cells.

One has only to check that, in the 1-collarable pushout (26) for two consecutive cobor-
disms, the central space Z0 is again an (n + 1)-manifold, with boundary covered by the
new collars Wα. But all this is well known.
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2.7. Pairs of spaces. We will also use the category Top2, of relative pairs (X, A) of
topological spaces, in the usual sense of Algebraic Topology: A is a subspace of X; a map
f : (X, A)→ (Y,B) is a continuous mapping X → A which takes A into B.

This category gives rise to a weak double category Cosp(Top2) of relative cospans and
to a weak double subcategory Cblc(Top2) of relative collarable cospans.

For the latter, we give the following two definitions. A collarable map of relative pairs
f : (X, A)→ (Y,B) is a relative map which has a collarable decomposition

f = f0 + f1 : (X0, A0) + (X1, A1)→ (Y0, B0) + (Y1, B1), (39)

into an isomorphism f0 of Top2 and a map f1 which admits a (relative) collar, i.e. a
closed embedding F : X1×I → Y1 such that:

f1 = F (−, 0) : X1 → Y1, F (X1×[0, 1[) is open in Y,

F (A1×I) is closed in B1, F (A1×[0, 1[) is open in B1.
(40)

A collarable cospan of relative pairs is a cospan in Top2

u = (u− : (X−, A−)→ (X0, A0) ← (X+,A+) : u+), (41)

which has a collarable decomposition, in the obvious sense extending the absolute case,
2.2.

2.8. Weak equivalences and homotopy invariance. Recall that every space X
has a degenerate cospan e1(X) and a cylindrical cospan E1(X) (13), which are 0- and
1-collarable, respectively. We want to make them ‘equivalent’, also because, within cobor-
disms of n-manifolds, the cylindrical cospan is generally used as a weak identity, instead of
the degenerate one. (Notice that this latter one is not ‘represented’ by an (n+1)-manifold
with boundary.)

We say that a transversal 1-map f = (f−, f0, f+) : X → Y between topological
cospans is a weak equivalence if it is special (i.e., f− and f+ are identities) and its central
component f 0 is a homotopy equivalence. Thus, the canonical map p : E1(X) → e1(X)
(14) is a weak equivalence. We have already seen that it cannot be considered as a ‘ho-
motopy equivalence’ in Cosp(Top), because there are no arrows backwards, which is why
this notion is too restrictive (and we do not even define it).

We say that two cospans X, Y with the same cubical faces are weakly equivalent if
there exists a finite sequence of weak equivalences connecting them: X → X1 ← X2 →
...→ Xn = Y .

Plainly, weak equivalence is closed under sum of cospans. Thus, every collarable cospan
is weakly equivalent to a cospan which admits a collar.

A weak double functor F : Cosp(Top)→ A, with values in an arbitrary weak double
category, will be said to be homotopy invariant if

(i) it identifies parallel transversal 0-maps X → Y (between topological spaces) which are
homotopic;
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(ii) it sends weak equivalences f : X → Y between topological cospans to invertible (spe-
cial) cells of A, and therefore weakly equivalent cospans to isomorphic 1-cubes of A.
(This means isomorphic cospans when A is a weak double category of cospans, and equal
relations when A is a strict double category of relations.)

We use the same terminology for weak double functors defined on substructures of
Cosp(Top), like the previously considered Cblc(Top) and Cob(n) (2.2, 2.6). Weak equiv-
alences and homotopy invariance for cospans of relative pairs are similarly defined.

2.9. Higher collars. Extending the definitions of 2.1, one can form a graded category
Col∗(Top) of topological spaces and n-collarable maps, which will not be used in this
Part.

After degree 0 (which means a homeomorphism), we say that a continuous mapping
f : X → Y admits an n-collar if there is an extension to the n-cylinder InX = X×[0, 1]n,
which is a closed embedding

F : InX → Y, f = F (−, 0, ..., 0) : X → Y, (42)

so that the subset F (X×[0, 1[n) is open in Y .
It is easy to verify that the composite gf with an m-collarable map g : Y → Z is

collarable, of degree m + n. Indeed, leaving out the trivial cases, if G : ImY → Z is an
m-collar of g, then gf can be extended to

G.ImF : Im+nX → ImX → Y, (43)

and G.(ImF (X×[0, 1[m+n) = G.(F (X×[0, 1[n)×[0, 1[m) is open in Z.

3. Cohomotopy functors and the linearised TQFT

The circle S1 is a Frobenius object in the monoidal category of (isomorphism classes
of) collarable cospans. Furthermore, Borsuk’s cohomotopy functors induce functors from
collarable cospans to spans of sets. Restricting to manifolds and their cobordisms, we get
spans of finite sets, and - by linearisation - topological quantum field theories. It would
be interesting to characterise the TQFTs which can be obtained in this way.

3.1. The Frobenius structure on the circle. Let us consider the circle S1 in
the weak double category Cob(1) ⊂ Cblc(Top) of 1-dimensional manifolds and their
cobordisms (2.6), or rather in the associated involutive category Cobiso(1) ⊂ Cblciso(Top)
of isomorphism-classes of such cobordisms (cf. 1.1). These categories are equipped with
the monoidal structure induced by the sum in the previous double structures.

S1 is an involutive Frobenius object in Cobiso(1), in the sense of [16], 3.6, when
equipped with the following cospans

η : ∅ ·→ S1, ε = η] : S1 ·→ ∅, (cups),

µ : S1 + S1 ·→ S1, δ = µ] : S1 ·→ S1 + S1 (trousers),
(44)
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S1

∅

∅

S1

S1

S1 + S1

S1 + S1

S1

//��

•

The axioms are satisfied (strictly), in Cobiso(1) and Cblciso(Top):

µ(η + 1) = 1 = µ(1 + η), (ε + 1)δ = 1 = (1 + ε)δ,

(1 + µ)(δ + 1) = δµ = (µ + 1)(1 + δ).
(45)

3.2. Cohomotopy functors. Every topological space S defines a Borsuk cohomotopy
functor, which is homotopy invariant (in the classical sense)

πS = [−, S] : Top→ Setop, πS(X) = [X, S]. (46)

In particular, the spheres give the functors πn = [−,Sn]. Restricting to suitable spaces
X (e.g., CW spaces of dimension up to 2n − 1), the set πn(X) has a canonical abelian
group structure [3, 21, 14]. More generally, an arbitrary Moore space K ′(A, n) is also used
as the classifying space S, to give πn(X; A), the n-th cohomotopy group with coefficients
in the abelian group A (always under restrictions on X) [20].

The simplest non trivial example is π0(X) = [X,S0], which can be identified with the
set of clopen subsets of X; then, π0(f) = f ∗ acts as counterimage.

We will also consider the following functors, for n > 2

[−, Pn] : Top→ Setop, [−,P2] = [−, P2] : Top→ Setop, (47)

where P2 = P2 is the real projective plane, and more generally Pn (called a pseudo-
projective plane) is the quotient of the disc B2 modulo the obvious action of Zn on the
boundary (identifying each n-tuple of vertices of a regular n-gon inscribed in the bound-
ary).

3.3. Theorem. [Collarable cospans and cohomotopy] Let us be given a pushout of col-
larable maps

A
g //

f
��

Y
v

��
X u

// B

(48)

(a) Every cohomotopy functor πS = [−, S] : Top→ Setop turns it into a weak pullback of
sets, and extends therefore to a strict double functor Cblc(Top) → Rel(Setop), which is
homotopy invariant (as defined in 2.8). We will write it as

πS = [−, S] : Cblc(Top)→ Rel(Set) (contravariant on the strict maps). (49)
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In particular, this holds for πn = [−, |Sn].

(b) In the same way, we obtain a homotopy invariant colax double functor with values in
spans

πS = [−, S] : Cblc(Top)→ Sp(Set) (contravariant on the strict maps). (50)

(c) If the classifying space S is discrete (as happens for π0 = [−,S0]), every pushout (1)
is transformed into a pullback of sets, which yields a homotopy invariant pseudo double
functor

πS = [−, S] : Cblc(Top)→ Sp(Set) (contravariant on the strict maps). (51)

Moving to the associated categories Cblciso(Top) and Spiso(Set) (1.1) and restricting to
the full subcategory fcoTop of topological spaces with a finite number of clopens, then
applying the linearisation functor defined in the Appendix (see 5.2), we get a functor with
values in finitely generated modules

Cblciso(fcoTop)→ Spiso(fSet)→ fMod, (52)

(which will be used below to construct a TQFT on manifolds). It is homotopy invariant,
with respect to the weak-equivalence relation induced on the quotient Cblciso(fcoTop).

Proof. First, let us remark that, in (c), the pseudo double functor πS is not strict: we
cannot expect it to preserve the choices of pushouts and pullbacks we are using to define
concatenation in these pseudo double categories. In (a), this fact does not appear because
the composition of relations does not depend on the choice of pushouts or pullbacks we
may use.

Point (a) is a straightforward consequence of Thms. 2.4, 2.5: a concatenation of col-
larable cospans decomposes into two: the first is computed by a trivial pushout, preserved
by any functor, and the second by a 1-collarable pushout, which is a homotopy pushout.
Now, it suffices to apply Thm 5.5, of the Appendix.

Point (b) is obvious. As to (c), let h, k : B → S be two maps whose homotopy classes
coincide on X and Y . Since S is discrete, this means that hu = hv and ku = kv.
Therefore, h = k.

3.4. An elementary example. Consider the involution-preserving functor

π0 = [−,S0] : Cblciso(Top)→ Spiso(Set);

it is monoidal, in the sense that it takes sums of spaces to product of sets.
Applying it to the involutive Frobenius object S1 (3.1), we get an involutive Frobenius

object in the category Spiso(Set) of isomorphism-classes of spans. Writing 2 = {0, 1} the
Boolean algebra of clopens of S1, we have:

η : {0} ·→ {0, 1}, µ : {00, 01, 10, 11} ·→ {0, 1} (ε = η], δ = µ]). (53)
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By elementary computation on cups and trousers, we see that ε and δ are mappings:

ε : 2→ 1, δ : 2→ 2×2 (the Cartesian diagonal). (54)

This Frobenius object has a peculiar property, which will obviously be preserved in
its linearisation:

µδ = id: 2 ·→ 2. (55)

Applying now the (monoidal) linearisation functor Spiso(fSet) → fVct on a field k
(5.2), we get an ordinary Frobenius algebra on k2 (whose canonical basis we write e0, e1)

η : k→ k2, η(a) = (a, a),

µ : k2 ⊗ k2 → k2, µ((a, b)⊗ (c, d)) = µ((ae0 + be1)⊗ (ce0 + de1))

= µ(ace00 + ade11 + bce10 + bde11) = (ac, bd),

ε : k2 → k, ε(a, b) = a + b,

δ : k2 → k2 ⊗ k2, δ(a, b) = ae00 + be11 = ae0 ⊗ e0 + be1 ⊗ e1.

(56)

The (plainly non-degenerate) pairing is:

β = εµ : k2 ⊗ k2 → k, β((a, b)⊗ (c, d)) = ac + bd. (57)

3.5. The Frobenius algebra associated to a pseudo-projective plane. Con-
sider the colax double functor π∗ = [−,P2] : Cblc(Top)→ Sp(Set) (contravariant on the
strict maps). It would be interesting to prove that it is actually a pseudo double functor,
or at least that this holds true when restricting to Cob(1).

In any way, applying π∗, we do get a Frobenius object in Sp(Set), on the set (group)
[S1,P2] = Z2. Then, the cup is contractible and any map to P2 is nullhomotopic; the
trousers T have the homotopy type of the space ‘eight’ T ′ (two tangent circles) and the
obvious quotient-map S1 + S1 → T ′ yields an isomorphism π∗(T ) → Z2×Z2 which will
be used to identify these sets.

Therefore we get the following involutive Frobenius object in Spiso(Set)

η : {0} → Z2, µ = sum: Z2×Z2 → Z2 (ε = η], δ = µ]). (58)

When we linearise this Frobenius object on the field k, we get the vector space k2,
with Frobenius structure:

(a, b).(c, d) = (ac + bd, ad + bc), δ(a, b) = a(e00 + e11) + b(e01 + e10),

η(a) = (a, 0), ε(a, b) = a.
(59)

The ‘handle operator’ µδ : S1 ·→ S1 and the torus εµδη : ∅ ·→ ∅ give the following
linear maps

µδ : k2 → k2, µδ(a, b) = 2(a, b), εµδη : k→ k, εµδη(a) = 2a. (60)
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Notice that the multiplicative part is precisely the group-algebra k[Z2]. In fact, the
space ‘eight’ T ′ is the sum of two pointed circles (S1, x0), and, in the cospan

µ = (S1 + S1 → T ← S1),

the second map can be viewed as the usual ‘comultiplication’ of the H-cospace structure on
the pointed circle. Now, the functor π∗ sends the first map to an isomorphism (which we
have made into an identity), and the second to the multiplication of π∗(S1) = [S1,P2] =
π1(P

2).
More generally, the pseudo-projective plane Pn (3.2) gives a Frobenius algebra on the

vector space kn, whose multiplicative part is the group-algebra k[Zn]

η : {0} → Zn, µ = sum: Zn×Zn → Zn (ε = η], δ = µ]), (61)

(a0, ..., an−1).(b0, ..., bn−1) = (
P

i+j=k aibj)k=0,...n−1,

δ(a0, ..., an−1) = a0(
P

i+j=0 eij) + ... + an−1(
P

i+j=n−1 eij),

η(a) = (a, 0, ..., 0), ε(a0, ..., an−1) = a0.

(62)

4. Extending homology and homotopy functors to cospans

Absolute and relative (co)homology functors can be extended to collarable cospans, us-
ing the Mayer-Vietoris sequence. Similar extensions hold for the fundamental-groupoid
functor.

4.1. Theorem. [Collarable pushouts and homology] Let us be given a homology theory H∗,
defined on all pairs of topological spaces (and satisfying the axioms of Eilenberg-Steenrod).

(a) In a pushout (B; u, v) of collarable maps f, g (as in (48)), the maps u, v and uf = vg
are closed embeddings, and we have a Mayer-Vietoris exact sequence

... // Hn(A)
(f∗,g∗)// Hn(X)⊕Hn(Y )

[u∗,−v∗]// Hn(B) d // Hn−1(A) // ... (63)

(b) More generally, a pushout ((B, B0); u, v) of collarable relative maps

f : (A, A0)→ (X, X0), g : (A, A0)→ (Y, Y0), (64)

yields a Mayer-Vietoris exact sequence for relative homology

... // Hn(A, A0)
(f∗,g∗)// Hn(X,X0)⊕Hn(Y, Y0)

[u∗,−v∗]// Hn(B, B0)

d // Hn−1(A, A0) // ...
(65)
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Proof. We prove (a), since the generalisation to the relative case is straightforward. By
Thm. 2.5, we can assume that our pushout is 1-collarable, hence homeomorphic to a
homotopy pushout, since the contribute of the trivial part plainly satisfies our thesis.

Let us replace the ordinary pushout with the standard homotopy pushout, in the usual
construction B = (X +IA+Y )/ ∼. Writing u′, w, v′ the closed embeddings of X, IA and
Y in B, the latter is covered by the following closed neighbourhoods X ′, Y ′ of u(X), v(Y )

X ′ = u′(X) ∪ w(A×[0, 2/3]) ⊂ B, Y ′ = v′(Y ) ∪ w(A×[1/3, 1]) ⊂ B,

A′ = X ′ ∩ Y ′ = w(A×[1/3, 2/3]).
(66)

The embeddings A → A′, X → X ′, Y → Y ′ are homotopy equivalences, and induce
isomorphisms in homology. It suffices therefore to apply the exact sequence of the triad
(B, X ′, Y ′), provided we prove that the latter is a proper triad for H∗, in the sense of
Eilenberg-Steenrod ([7], p, 34).

In other words, we want to show that the following induced homomorphisms are
isomorphisms

Hn(X ′, A′)→ Hn(B, Y ′), Hn(Y ′, A′)→ Hn(B, X ′). (67)

In fact, they are excision isomorphisms. Working on the first, we are exciding the
subset Y ′ \ A′, since B \ (Y ′ \ A′) = X ′. The topological hypotheses are satisfied:

(i) the subset Y ′ \ A′ = v′(Y ) ∪ w(A×]2/3, 1]) is open in B,

(ii) its closure is contained in the interior of Y ′:

cl(Y ′ \ A′) = v′(Y ) ∪ w(A× [2/3, 1]) ⊂ v′(Y ) ∪ w(A×]1/3, 1]) = int(Y ′). (68)

4.2. Extending homology theories. Let us be given a homology theory H∗ on Top2.
We already know, by Thm. 4.1 (and definition 5.3(b)) that Hn takes any pushout of
collarable maps to an exact square of abelian groups. Therefore, by 5.5, every Hn has a
canonical extension to a homotopy invariant (strict) double functor

Hn : Cblc(Top)→ Rel(Ab), (69)

with values in the strict double category of abelian groups and relations. Furthermore,
if we restrict to the full substructure Cblc(Top, Hn−1) ⊂ Cblc(Top) determined by the

topological spaces X whose reduced homology H̃n−1(X) is trivial:

H̃n−1(X) = Ker(Hn−1(X)→ Hn−1{∗}), (70)

we get a stronger result: the functor Hn takes a pushout of collarable maps to a pushout
of abelian groups (see 4.3).

Thus, Hn has a unique involution-preserving extension to a homotopy invariant pseudo
double functor

Hn : Cblc(Top, Hn−1)→ Cosp(Ab). (71)
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Notice that the condition H̃n−1(X) = 0 is only imposed on the cubical faces of cospans,
not on their middle spaces. Of course, composing extension (71) with the projection
Cosp(Ab) → Rel(Ab) we find again the previous extension of Hn; or, more precisely, a
restriction of the latter.

4.3. Proposition. Let us be given a concatenation u +1 v of collarable cospans, in the
usual notation u = (u− : X− → X0 ← X+ : u+), v = (v− : Y − → Y 0 ← Y + : v+) and
X+ = A = Y −.

(a) Each of the following conditions ensures that Hn preserves the concatenation u +1 v:

(i) the homomorphism u+
∗ = Hn−1(u

+) : Hn−1(A)→ Hn−1(X
0) is injective,

(ii) the homomorphism v−∗ = Hn−1(v
−) : Hn−1(A)→ Hn−1(Y

0) is injective.

More generally, it suffices to know that this pair of homomorphisms is jointly monic.

(b) These conditions are necessarily satisfied if H̃n−1(A) = 0.

Proof. (a). In the composition w = u +1 v (8), the pushout gives rise to an exact
sequence

Hn(A)→ Hn(X0)⊕Hn(Y 0)→ Hn(Z0)→ Hn−1(A)→ Hn−1(X
0)⊕Hn(Y 0). (72)

Saying that the pair (u+
∗ , v−∗ ) is jointly monic means that the last homomorphism

is injective. Then the preceding one (the third) is null, and the second is surjective.
Applying 5.3(d), we conclude that Hn preserves our pushout.

(b) For n > 1, our condition means Hn−1(A) = 0, which trivially implies (i) and (ii).
For n = 1, it suffices to note that the terminal map t : A → {∗} can be factored as
A → X0 → {∗}; therefore, if Hn−1(t) is injective, so must Hn−1(u

+) be (and, similarly,
Hn−1(v

−)).

4.4. Extending cohomology theories. Let us be given a cohomology theory H∗ on
Top2.

We could redo and adapt what we have done for homology theories, but duality can
be used as a shortcut, since H∗ is a homology theory with values in the abelian category
Abop. Moreover, Rel(Ab) and Rel(Abop) have the same weak structure and a dual strict
structure. Finally, the notion of an exact square in an abelian category (5.3) is self-dual.

Thus, we conclude that Hn takes any pushout of collarable maps to an exact square
of abelian groups, and has canonical extensions to homotopy invariant double functors,
contravariant on the strict maps

Hn : Cblc(Top)→ Rel(Ab), Hn : Cblc(Top2)→ Rel(Ab). (73)

4.5. Theorem. [Extending the fundamental-groupoid functor] Let us be given a pushout
of collarable maps f, g, as in (48). Then the fundamental-groupoid functor Π1 : Top →
Gpd turns it into a pushout of groupoids. Therefore, Π1 has a canonical extension to a
pseudo double functor

Π1 : Cblc(Top)→ Cosp(Gpd), (74)
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with values in the pseudo double category of small groupoids, their functors and their
cospans.

Proof. As in the proof of 4.1, one replaces A, X, Y with homotopy equivalent spaces
A′, X ′, Y ′, so that B is covered by the interior of X ′, Y ′. Then one applies R. Brown’s
version of the Seifert-van Kampen theorem for the fundamental groupoid [5, 6].

4.6. Using absolute homology groups and relations. We end this section by a
few elementary computations, to show how these invariants can work.

Consider the following collarable cospans S1 ·→ S1

S1 S1 S1 S1 (75)

S1 S1

K

S1

������������������

??????????????????

•

S1

//��

The first is the cylinder E1(S
1), while the second, K, results from ‘reversed’ embed-

dings of S1 into the cylinder (the coequaliser of such embeddings being the Klein bottle).
The functor H1 sends these cospans to the following relations Z ·→ Z, respectively

id : Z→ Z, − : Z→ Z, ω : Z ·→ Z, Ω: Z ·→ Z, (76)

(ω is the least endorelation, which only associates 0 to 0, while Ω is the greatest).
More interesting examples can be obtained on non-connected 1-manifolds, like topo-

logical sums of circles S1 + ... + S1, or, more generally, n-dimensional manifolds.
Working with Cosp(Ab), we get lax double functors Hn : Cblc(Top) → Cosp(Ab)

which are pseudo (i.e., preserve concatenation up to isomorphism) under suitable hy-
potheses (4.2, 4.3). This version can be used to distinguish the collarable cospans above,
in figure (75), from other similar ones, having some non connected component in the
middle space of the cospan (which would be ignored by the homology relation).

Similar results hold for the fundamental-groupoid functor (see 4.5).

4.7. Using relative homology groups and relations. Tangles live in an ambient
space: say the disc B2 for domain and codomain, and the solid cylinder B = B2× [0, 1]
for the tangles themselves.

Relative homology (in these ambient spaces) allows one to distinguish among the
following generators, viewed as relative cospans (the tangle is always written as T)

(B2,S0)→ (B, T ) ← (B2,S0), (B2,S0)→ (B, T ) ← (B2,S0),

(B2,S0)→ (B, T ) ← (B2, ∅), (B2, ∅)→ (B, T ) ← (B2,S0),
(77)
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a b

a b

�����

�����

??
??

??
??

??
??

??

a b

a b

L+

a b

a b
• • • • • •

• • • • • •

//��

•

In fact, easy computations show that they induce, via H1, the following relations

id : Z→ Z, − : Z→ Z, 0: Z→ 0, 0] : 0 ·→ Z. (78)

Note, however, that we cannot distinguish in this way the tangle L+ from L− (which
has the opposite choice of the arc which passes over). Thus, the invariants which we are
obtaining are not sufficient to classify the isotopy classes of tangles.

On the other hand, again, relative-homology cospans (instead of relations) can detect
components of the tangle which are not connected to domain and codomain, as in fig. 1
of the Introduction.

5. Appendix: Extending functors to cospans and relations

The abelian category of left R-modules, on a fixed (unitary) ring R is written Mod. In the
preceding sections, we have used a field k, and written Vct the corresponding category
(but rings and modules can also be used there).

5.1. Theorem. [Extending functors to cospans] (a) An arbitrary functor F : X → Y
between categories with (a full choice of) pushouts has a canonical extension to a lax
double functor

F : Cosp(X)→ Cosp(Y), (79)

which is a pseudo double functor if F preserves pushouts (and is strict if F preserves the
distinguished choices).

(b) For X = Top, we have a lax extension Cblc(Top) → Cosp(Y), which is a pseudo
double functor if F preserves pushouts of collarable maps.

(c) For the contravariant case, take Y = Cop, where C is a category with pullbacks. Now,
we have a colax extension (contravariant on the strict maps)

F : Cosp(X)→ Sp(C), (80)

which is pseudo if F transforms pushouts of X into pullbacks of C.
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Proof. We only have to prove (a). Let the extension F act on cospans and their transver-
sal maps in the obvious way:

u = (u− : X− → X0 ← X+ : u+), Fu = (Fu− : FX− → FX0 ← FX+ : Fu+),

f = (f−, f0, f+) : u→ v, Ff = (Ff−, Ff 0, Ff+).
(81)

Degenerate cospans are strictly preserved, but a concatenation in X of consecutive
cospans u, v (with notation as in (8)) gives rise to a comparison special transversal map
F [u, v]

F [u, v] : Fu +1 Fv → F (u +1 v), (82)

FZ0

Z0 •

OO

JJ
t t N

N
p

p
X0

99ttt
Y 0

ddJJJ

FX0

77pppppp

??���������
FY 0

ggNNNNNN

^^>>>>>>>>>

X−

88qqqq
A

eeJJJJ
99tttt

Y +

eeKKKK

FX−

77oooo
FA

ggOOOO
77pppp

FY +

ggOOOO

Plainly, if F preserves pushouts (resp. distinguished pushouts), then these comparisons
are invertible (resp. identities) and the extension is a pseudo (resp. strict) double functor.

5.2. Theorem. [Linearisation] The free R-module functor F : fSet→ fMod, from finite
sets to finitely generated R-modules, can be extended to a monoidal functor Spiso(fSet)→
fMod, defined on the category of isomorphism classes of spans.

Also the latter is monoidal: it takes Cartesian product of sets to tensor product of
(free) modules.

Proof. Let u = (f, g) = (X ← A→ Y ) be a span in fSet. Its linearised homomorphism
is defined on the standard basis X of FX as

Fu : FX → FY, (Fu)(x) =
∑

a∈A, f(a)=x

g(a). (83)

One can notice that Fu is represented by the matrix (nxy), where nxy is the number of
points a ∈ A such that f(a) = x and g(b) = y. The reversed span gives thus the transpose
matrix. (The extension could be said to be an involution-preserving functor with values
in the category of free modules with an assigned basis.)

Indeed, given a consecutive span v = (h, k) = (Y ← B → Z), with composition u+ v
over the pullback C = {(a, b) | g(a) = h(b)}:

(Fv)(Fu)(x) =
∑

a∈A, b∈B, f(a)=x, h(b)=g(a)

k(b) =
∑

(a,b)∈C, f(a)=x

k(b). (84)

Notice that a similar procedure for relations, instead of spans, would not be consistent
with composition.
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5.3. Additive relations and exact squares. We are also interested in extending
functors to double categories of relations, like Rel(Mod) or Rel(Set). Let us begin by
recalling the first case.

A relation a : A ·→ B between R-modules (also called an additive, or linear, relation)
can be equivalently defined as:

(i) a submodule of the direct sum A⊕B,

(i′) a quotient of the direct sum A⊕B,

(ii) an equivalence class [v] : A ·→ B of spans having the same image in A ⊕ B (or the
same pushout),

(ii′) a class [u] : A ·→ B of cospans giving the same quotient of A⊕B (or having the same
pullback),

(iii) a jointly monic span A ·→ B,

(iii′) a jointly epic cospan A ·→ B.

Relations A ·→ B, with a fixed domain and codomain, form an ordered set, by means
of the inclusion of submodules of A⊕B, or by the existence of a special transversal map
between representative (co)spans. The composition of (co)spans induces a (well known)
composition of relations, which is strictly categorical. We have thus a category Rel(Mod),
which is a quotient of the categories Spiso(Mod) and Cospiso(Mod).

Now, in order to extend functors to additive relations, we must know which squares
in Mod

A
f //

g
��

B

h
��

C
k

// D

(85)

become bicommutative in Rel(Mod), which means that:

hf = kg, gf ] = k]h : B → C. (86)

This has been determined in a 1966 paper, by Hilton [13]. An arbitrary square (85)
of R-homomorphisms has an associated sequence

0 // A
(f,g) // B ⊕ C

[h,−k] // D // 0 (87)

The square is:

(a) commutative if and only if the sequence is of order two,

(b) exact (by definition) if and only if the sequence is exact in the central object,

(c) a pullback if and only if the sequence is exact in the central and left objects,

(d) a pushout if and only if the sequence is exact in the central and right objects.

It is easy to see that the square (85) is exact if and only if:
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(e) for all b ∈ B, c ∈ C with h(b) = k(c), there exists some a ∈ A such that f(a) = b,
g(a) = c,

if and only if the underlying square of mappings is a weak pullback in Set (i.e., it verifies
there the existence part of the universal property).

(A self-dual diagrammatic characterisation of exact squares will be given below, in
5.6). It is now straightforward to verify that the square (85) becomes bicommutative in
Rel(Mod) if and only if it is exact in Mod.

Of course, we also have a strict double category Rel(Mod) (studied in [11]), which
is a quotient of the weak double categories of spans and cospans: objects are modules,
1-cubes are relations, 0-maps are homomorphisms and 1-maps (or double cells) are ‘lax-
commutative’ squares

A
f //

•a

��

A′

•b

��
6 ga 6 bf.

B g
// B′

(88)

Notice that this double category is flat [11]: a double cell is determined by its boundary.
All this extends to arbitrary abelian categories, except the characterisation of exact

squares as weak pullbacks, or by property (e), which is based on elements. It is still true
that a square in an abelian category is exact if and only if it is bicommutative in the
corresponding category of relations.

5.4. Relations of sets. For sets (or for a general regular category), these dual construc-
tions of relations - as classes of spans or cospans - split into two distinct constructions.

Thus, a relation a : A ·→ B between sets amounts, equivalently, to:

(i) a subset of the Cartesian product A×B,

(ii) an equivalence class [v] : A ·→ B of spans having the same image in A×B,

(iii) a jointly monic span v : A ·→ B.

They are composed by pullback, and form a category Rel(Set), which is a quotient of
Spiso(Set).

Again, we also have a larger structure, the (flat) double category Rel(Set), which is a
quotient of the weak double category Sp(Set).

On the other hand, the dual construction, say Corel(Set) = Rel(Setop), is not used
here. (A corelation A ·→ B is a quotient of the sum A + B; they compose by pushouts.
Corelations between sets, or finite sets, were studied in the 70’s under the name of trans-
ductors, for applications to the theory of devices, since they can be viewed as formalising
‘boxes’ of electrical connections between two sets of terminals. See [19] and its references.)

Also here, it is straightforward to see that a square (85) of mapping of sets becomes
bicommutative in Rel(Set) if and only if it satisfies the condition 5.3(e), if and only if it
is a weak pullback in Set. More elegant, self-dual characterisations are given below (5.6),
but are not used in this article.
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5.5. Theorem. [Extending functors to relations] Let Y be the category Mod of R-
modules (resp. Set). A functor F : X → Y defined on a category X with (a full choice
of) pushouts has a canonical extension to a lax double functor

F : Cosp(X)→ Rel(Y). (89)

The latter is a strict double functor if F sends pushouts of X to exact squares of
modules (resp. weak pullbacks of sets); in this case, the extension is uniquely determined.

For X = Top, we have a similar extension Cblc(Top)→ Rel(Mod), which is a strict
double functor if F sends pushouts of collarable maps to exact squares of modules (resp.
weak pullbacks of sets).

Proof. The existence of the extension is proved as in 5.1, taking into account the char-
acterisation of bicommutative squares recalled above, in 5.3 (resp. 5.4).

Its uniqueness depends on the fact that the reversed relation f ] of a morphism f : A→
B is determined as its adjoint morphism in the 2-categorical structure, by the inequalities
1 6 f ]f and ff ] 6 1. Now, writing u] = (1: Y → Y ← X : u) the reversed cospan of a
map u : X → Y in X, it is easy to see that there are special transversal maps in Cosp(X)

e1(X)→ u +1 u], u] +1 u→ e1(Y ). (90)

Therefore a double functor (89) which extends the original F must send u] to the
adjoint of Fu, and is thus uniquely determined on all cospans.

5.6. Semicartesian squares. We end by recalling a self-dual notion, which charac-
terises the squares which become bicommutative within relations of sets or modules (or
also in any abelian category).

A commutative square (f, g; h, k) in an arbitrary category is said to be semicartesian
[8] if:

(i) given a span (f ′, g′) which commutes with (h, k) and a cospan (h′, k′) which commutes
with (f, g), the outer diamond commutes: h′f ′ = k′g′

B
h

CC

!!CC
h′

))SSSSSSSSSSSSS

•

f ′
55kkkkkkkkkkkkk

g′ ))SSSSSSSSSSSSS A

f{{

=={{

g
CC

!!CC
D •

C

k{{

=={{
k′

55kkkkkkkkkkkkk

(91)

Plainly, any pullback and any pushout is semicartesian. When pullbacks and (or)
pushouts exist, semicartesian squares can be characterised by various equivalent properties
based on such (co)limits: e.g., the span (f, g) and the pullback of (h, k) commute with
the same cospans, or have the same pushout.

In Set, a square is semicartesian if and only if it is a weak pullback. In an abelian
category, a square is semicartesian if and only if it is exact in the sense of Hilton (5.3(b)).
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