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MORE MORPHISMS BETWEEN BUNDLE GERBES

KONRAD WALDORF

Abstract. Usually bundle gerbes are considered as objects of a 2-groupoid, whose 1-
morphisms, called stable isomorphisms, are all invertible. I introduce new 1-morphisms
which include stable isomorphisms, trivializations and bundle gerbe modules. They fit
into the structure of a 2-category of bundle gerbes, and lead to natural definitions of
surface holonomy for closed surfaces, surfaces with boundary, and unoriented closed
surfaces.

Introduction

From several perspectives it becomes clear that bundle gerbes are objects in a 2-category:
from the bird’s-eye view of algebraic geometry, where gerbes appear as some kind of stack,
or in topology, where they appear as one possible categorification of a line bundle, but
also from a worm’s-eye view on the definitions of bundle gerbes and their morphisms,
which show that there have to be morphisms between the morphisms.

In [Ste00] a 2-groupoid is defined, whose objects are bundle gerbes, and whose 1-
morphisms are stable isomorphisms. To explain a few details, recall that bundle gerbes
are defined using surjective submersions π : Y → M , and that a stable isomorphism A :
G1 → G2 between two bundle gerbes G1 and G2 with surjective submersions π1 : Y1 → M
and π2 : Y → M consists of a certain line bundle A over the fibre product Y1 ×M Y2. 2-
morphisms between stable isomorphisms are morphisms β : A → A′ of those line bundles,
obeying a compatibility constraint. Many examples of surjective submersions arise from
open covers {Uα}α∈A of M by taking Y to be the disjoint union of the open sets Uα and
π to be the projection (x, α) 7→ x. From this point of view, fibre products Y1 ×M Y2

correspond the common refinement of two open covers. So, the line bundle A of a stable
isomorphism lives over the common refinement of the open covers of the two bundle gerbes.

Difficulties with this definition of stable isomorphisms arise when two stable isomor-
phisms A : G1 → G2 and A′ : G2 → G3 are going to be composed: one has to define a line
bundle Ã over Y1×M Y3 using the line bundles A over Y1×M Y2 and A′ over Y2×M Y3. In
[Ste00] this problem is solved using descent theory for line bundles.

In this note, I present another definition of 1-morphisms between bundle gerbes (Def-
inition 1.4). Compared to stable isomorphisms, their definition is relaxed in two aspects:
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1) the line bundle is replaced by a certain vector bundle of rank possibly higher than
one.

2) this vector bundle is defined over a smooth manifold Z with surjective submersion
ζ : Z → Y1×M Y2. In terms of open covers, the vector bundle lives over a refinement
of the common refinement of the open covers of the two bundle gerbes.

Stable isomorphisms appear as a particular case of this relaxed definition. I also give a
generalized definition of 2-morphisms between such 1-morphisms (Definition 1.6). Two
goals are achieved by this new type of morphisms between bundle gerbes. First, relax-
ation 1) produces many 1-morphisms which are not invertible, in contrast to the stable
isomorphisms in [Ste00]. To be more precise, a 1-morphism is invertible if and only if its
vector bundle has rank 1 (Proposition 1.13). The non-invertible 1-morphisms provide a
new formulation of left and right bundle gerbe modules (Definition 3.6). Second, relax-
ation 1) erases the difficulties with the composition of 1-morphisms: the vector bundle Ã
of the composition A′ ◦ A is just defined to be the tensor product of the vector bundles
A and A′ of the two 1-morphisms pulled back to Z ×Y2 Z ′, where A over Z is the vector
bundle of A and A′ over Z ′ is the vector bundle of A′. The composition defined like that
is strictly associative (Proposition 1.8). This way we end up with a strictly associative
2-category BGrb(M) of bundle gerbes over M . The aim of this note is to show that a
good understanding of this 2-category can be useful.

This note is organized as follows. Section 1 contains the definitions and properties of
the 2-category BGrb(M) of bundle gerbes over M . We also equip this 2-category with
a monoidal structure, pullbacks and a duality. Section 2 relates our new definition of 1-
morphisms between bundle gerbes to the one of a stable isomorphism: two bundle gerbes
are isomorphic objects in BGrb(M) if and only if they are stably isomorphic (Corollary
2.2). In section 3 we present a unified view on important structure related to bundle
gerbes in terms of the new morphisms of the 2-category BGrb(M):

a) a trivialization of a bundle gerbe G is a 1-isomorphism A : G → Iρ from G to a
trivial bundle gerbe Iρ given by a 2-form ρ on M .

b) a bundle gerbe module of a bundle gerbe G is a (not necessarily invertible) 1-
morphism E : G → Iω from G to a trivial bundle gerbe Iω.

c) a Jandl structure on a bundle gerbe G over M is a triple (k,A, ϕ) of an involution
k of M , a 1-isomorphism A : k∗G → G∗ and a certain 2-morphism ϕ : k∗A ⇒ A∗.

Then we demonstrate how this understanding in combination with the properties of the
2-category BGrb(M) can be employed to give convenient definitions of surface holonomy.
For this purpose we classify the morphisms between trivial bundle gerbes: there is an
equivalence of categories

Hom(Iρ1 , Iρ2)
∼= Bunρ2−ρ1(M)
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between the morphism category between the trivial bundle gerbes Iρ1 and Iρ2 and the
category of vector bundles over M for which the trace of the curvature gives the 2-form
ρ2 − ρ1 times its rank.

The interpretation of bundle gerbe modules and Jandl structures in terms of mor-
phisms between bundle gerbes is one step to understand the relation between two ap-
proaches to two-dimensional conformal field theories: on the one hand the Lagrangian
approach with a metric and a bundle gerbe G being the relevant structure [GR02] and
on the other hand the algebraic approach in which a special symmetric Frobenius algebra
object A in a modular tensor category C plays this role [FRS02]. Similarly as bundle
gerbes, special symmetric Frobenius algebra objects in C form a 2-category, called FrobC.
In both approaches it is well-known how boundary conditions have to be imposed. In
the Lagrangian approach one chooses a D-brane: a submanifold Q of the target space
together with a bundle gerbe module for the bundle gerbe G restricted to Q [Gaw05].
In the algebraic approach one chooses a 1-morphism from A to the tensor unit I of C
(which is trivially a special symmetric Frobenius algebra object) in the 2-category FrobC
[SFR06]. Now that we understand a gerbe module as a 1-morphism from G to Iω we
have found a common principle in both approaches. A similar success is obtained for
unoriented conformal field theories. In the Lagrangian approach, the bundle gerbe G has
to be endowed with a Jandl structure [SSW05], which is in particular a 1-isomorphism
k∗G → G∗ to the dual bundle gerbe G∗. In the algebraic approach one has to choose a
certain algebra isomorphism A → Aop from A to the opposed algebra [FRS04].

Acknowledgements. I would like to thank Christoph Schweigert for his advice and
encouragement, and Urs Schreiber for the many helpful discussions on 2-categories.

Conventions. Let us fix the following conventions for the whole article: by vector bundle
I refer to a complex vector bundle of finite rank, equipped with a hermitian structure
and with a connection respecting this hermitian structure. Accordingly, a morphism of
vector bundles is supposed to respect both the hermitian structures and the connections.
In particular, a line bundle is a vector bundle in the above sense of rank one. The
symmetric monoidal category Bun(M), which is formed by all vector bundles over a
smooth manifold M and their morphisms in the above sense, is for simplicity tacitly
replaced by an equivalent strict tensor category.

1. The 2-Category of Bundle Gerbes

Summarizing, the 2-category BGrb(M) of bundle gerbes over a smooth manifold M
consists of the following structure:

1. A class of objects – bundle gerbes over M .

2. A morphism category Hom(G,H) for each pair G, H of bundle gerbes, whose objects
are called 1-morphisms and are denoted by A : G → H, and whose morphisms are
called 2-morphisms and are denoted β : A1 ⇒ A2.
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3. A composition functor

◦ : Hom(H,K)× Hom(G,H) −→ Hom(G,K)

for each triple G,H,K of bundle gerbes.

4. An identity 1-morphism idG : G → G for each bundle gerbe G together with natural
2-isomorphisms

ρA : idH ◦ A =⇒ A and λA : A ◦ idG =⇒ A

associated to every 1-morphism A : G → H.

This structure satisfies the axioms of a strictly associative 2-category:

(2C1) For three 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4, the
composition functor satisfies

A′′ ◦ (A′ ◦ A) = (A′′ ◦ A′) ◦ A.

(2C2) For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the 2-isomorphisms λA and ρA
satisfy the equality

idA′ ◦ ρA = λA′ ◦ idA

as 2-morphisms from A′ ◦ idG2 ◦ A to A′ ◦ A.

The following two subsections contain the definitions of the structure of the 2-category
BGrb(M). The two axioms are proved in Propositions 1.8 and 1.11. The reader who is
not interested in these details may directly continue with section 3.

1.1. Objects and Morphisms.The definition of the objects of the 2-category BGrb(M)
– the bundle gerbes over M – is the usual one, just like, for instance, in [Mur96, Ste00,
GR02]. Given a surjective submersion π : Y → M we use the notation Y [k] := Y ×M ...×M

Y for the k-fold fibre product, which is again a smooth manifold. Here we consider fibre
products to be strictly associative for simplicity. For the canonical projections between
fibre products we use the notation πi1...ik : Y [n] → Y [k].

1.2. Definition. A bundle gerbe G over a smooth manifold M consists of the following
structure:

1. a surjective submersion π : Y → M ,

2. a line bundle L over Y [2],

3. a 2-form C ∈ Ω2(Y ), and
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4. an isomorphism
µ : π∗12L⊗ π∗23L −→ π∗13L

of line bundles over Y [3].

This structure has to satisfy two axioms:

(G1) The curvature of L is fixed by

curv(L) = π∗2C − π∗1C.

(G2) µ is associative in the sense that the diagram

π∗12L⊗ π∗23L⊗ π∗34L
π∗123µ⊗id

//

id⊗π∗234µ

²²

π∗13L⊗ π∗34L

π∗134µ

²²
π∗12L⊗ π∗24L π∗124µ

// π∗14L

of isomorphisms of line bundles over Y [4] is commutative.

To give an example of a bundle gerbe, we introduce trivial bundle gerbes. Just as for
every 1-form A ∈ Ω1(M) there is the (topologically) trivial line bundle over M having
this 1-form as its connection 1-form, we find a trivial bundle gerbe for every 2-form
ρ ∈ Ω2(M). Its surjective submersion is the identity id : M → M , and its 2-form is ρ.
Its line bundle over M ×M M ∼= M is the trivial line bundle with the trivial connection,
and its isomorphism is the identity isomorphism between trivial line bundles. Now, axiom
(G1) is satisfied since curv(L) = 0 and π1 = π2 = idM . The associativity axiom (G2) is
surely satisfied by the identity isomorphism. Thus we have defined a bundle gerbe, which
we denote by Iρ.

It should not be unmentioned that the geometric nature of bundle gerbes allows explicit
constructions of all (bi-invariant) bundle gerbes over all compact, connected and simple
Lie groups [GR02, Mei02, GR03]. It becomes in particular essential that a surjective
submersion π : Y → M is more general than an open cover of M .

An important consequence of the existence of the isomorphism µ in the structure of a
bundle gerbe G is that the line bundle L restricted to the image of the diagonal embedding
∆ : Y → Y [2] is canonically trivializable (as a line bundle with connection):

1.3. Lemma. There is a canonical isomorphism tµ : ∆∗L → 1 of line bundles over Y ,
which satisfies

π∗1tµ ⊗ id = ∆∗
112µ and id⊗ π∗2tµ = ∆∗

122µ

as isomorphisms of line bundles over Y [2], where ∆112 : Y [2] → Y [3] duplicates the first
and ∆122 : Y [2] → Y [3] duplicates the second factor.
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Proof. The isomorphism tµ is defined using the canonical pairing with the dual line
bundle L∗ (which is strict by convention) and the isomorphism µ:

∆∗L = ∆∗L⊗∆∗L⊗∆∗L∗
∆∗µ⊗id // ∆∗L⊗∆∗L∗ = 1 (1)

The two claimed equations follow from the associativity axiom (G2) by pullback of the
diagram along ∆1222 and ∆1112 respectively. ¤

Now we define the category Hom(G1,G2) for two bundle gerbes G1 and G2, to whose
structure we refer by the same letters as in Definition 1.2 but with indices 1 or 2 respec-
tively.

1.4. Definition. A 1-morphism A : G1 → G2 consists of the following structure:

1. a surjective submersion ζ : Z → Y1 ×M Y2,

2. a vector bundle A over Z, and

3. an isomorphism
α : L1 ⊗ ζ∗2A −→ ζ∗1A⊗ L2 (2)

of vector bundles over Z ×M Z.

This structure has to satisfy two axioms:

(1M1) The curvature of A obeys

1

n
tr(curv(A)) = C2 − C1,

where n is the rank of the vector bundle A.

(1M2) The isomorphism α is compatible with the isomorphisms µ1 and µ2 of the gerbes
G1 and G2 in the sense that the diagram

ζ∗12L1 ⊗ ζ∗23L1 ⊗ ζ∗3A
µ1⊗id //

id⊗ζ∗23α

²²

ζ∗13L1 ⊗ ζ∗3A

ζ∗13α

²²

ζ∗12L1 ⊗ ζ∗2A⊗ ζ∗23L2

ζ∗12α⊗id

²²
ζ∗1A⊗ ζ∗12L2 ⊗ ζ∗23L2

id⊗µ2

// ζ∗1A⊗ ζ∗13L2

of isomorphisms of vector bundles over Z ×M Z ×M Z is commutative.
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Here we work with the following simplifying notation: we have not introduced notation
for the canonical projections Z → Y1 and Z → Y2, accordingly we don’t write pullbacks
with these maps. So in (2), where the line bundles Li are pulled back along the induced
map Z [2] → Y

[2]
i for i = 1, 2 and also in axiom (1M1) which is an equation of 2-forms on

Z.

As an example of a 1-morphism, we define the identity 1-morphism

idG : G −→ G (3)

of a bundle gerbe G over M . It is defined by Z := Y [2], the identity ζ := idZ , the line
bundle L of G over Z and the isomorphism λ defined by

π∗13L⊗ π∗34L
π∗134µ

// π∗14L
π∗124µ−1

// π∗12L⊗ π∗24L, (4)

where we identified Z [2] = Y [4], ζ2 = π34 and ζ1 = π12. Axiom (1M1) is the same as axiom
(G1) for the bundle gerbe G and axiom (1M2) follows from axiom (G2).

The following lemma introduces an important isomorphism of vector bundles associ-
ated to every 1-morphism, which will be used frequently in the definition of the structure
of BGrb(M) and also in section 2.

1.5. Lemma. For any 1-morphism A : G1 → G2 there is a canonical isomorphism

dA : ζ∗1A −→ ζ∗2A

of vector bundles over Z [2] = Z×P Z, where P := Y1×M Y2, with the following properties:

a) It satisfies the cocycle condition

ζ∗13dA = ζ∗23dA ◦ ζ∗12dA

as an equation of isomorphisms of vector bundles over Z [3].

b) The diagram

L1 ⊗ ζ∗3A

id⊗ζ∗34dA

²²

ζ∗13α
// ζ∗1A⊗ L2

ζ∗12dA⊗id

²²
L1 ⊗ ζ∗4A ζ∗24α

// ζ∗2A⊗ L2

of isomorphisms of vector bundles over Z [2] ×M Z [2] is commutative.

Proof. Notice that the isomorphism α of A restricted from Z ×M Z to Z ×P Z gives
an isomorphism

α|Z×P Z : ∆∗L1 ⊗ ζ∗2A −→ ζ∗1A⊗∆∗L2. (5)
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By composition with the isomorphisms tµ1 and tµ2 from Lemma 1.3 we obtain the iso-
morphism dA:

ζ∗1A
id⊗t−1

µ2 // ζ∗1A⊗∆∗L2

α|−1
Z×P Z // ∆∗L1 ⊗ ζ∗2A

tµ1⊗id
// ζ∗2A. (6)

The cocycle condition a) and the commutative diagram b) follow both from axiom (1M2)
for A and the properties of the isomorphisms tµ1 and tµ2 from Lemma 1.3. ¤

Now that we have defined the objects of Hom(G1,G2), we come to its morphisms. For
two 1-morphisms A1 : G1 → G2 and A2 : G1 → G2, consider triples

(W,ω, βW ) (7)

consisting of a smooth manifold W , a surjective submersion ω : W → Z1 ×P Z2, where
again P := Y1 ×M Y2, and a morphism βW : A1 → A2 of vector bundles over W . Here
we work again with the convention that we don’t write pullbacks along the unlabelled
canonical projections W → Z1 and W → Z2. The triples (7) have to satisfy one axiom
(2M): the morphism βW has to be compatible with isomorphism α1 and α2 of the 1-
morphisms A1 and A2 in the sense that the diagram

L1 ⊗ ω∗2A1
α1 //

1⊗ω∗2βW

²²

ω∗1A1 ⊗ L2

ω∗1βW⊗1

²²
L1 ⊗ ω∗2A2 α2

// ω∗1A2 ⊗ L2

(8)

of morphisms of vector bundles over W ×M W is commutative. On the set of all triples
(7) satisfying this axiom we define an equivalence relation according to that two triples
(W,ω, βW ) and (W ′, ω′, βW ′) are equivalent, if there exists a smooth manifold X with
surjective submersions to W and W ′ for which the diagram

X

~~~~
~~

~~
~

ÃÃA
AA

AA
AA

W
ω

ÂÂ@
@@

@@
@@

W ′

ω′
~~}}

}}
}}

}

Z1 ×P Z2

(9)

of surjective submersions is commutative, and the morphisms βW and βW ′ coincide when
pulled back to X.

1.6. Definition. A 2-morphism β : A1 ⇒ A2 is an equivalence class of triples (W,ω, βW )
satisfying axiom (2M).
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As an example of a 2-morphism we define the identity 2-morphism idA : A ⇒ A
associated to every 1-morphism A : G1 → G2. It is defined as the equivalence class of the
triple (Z [2], idZ[2] , dA) consisting of the fibre product Z [2] = Z×P Z, the identity idZ[2] and
the isomorphism dA : ζ∗1A → ζ∗2A of vector bundles over Z [2] from Lemma 1.5. Axiom
(2M) for this triple is proven with Lemma 1.5 b).

Now we have defined objects and morphisms of the morphism category Hom(G1,G2),
and we continue with the definition the composition β′•β of two 2-morphisms β : A1 ⇒ A2

and β′ : A2 ⇒ A3. It is called vertical composition in agreement with the diagrammatical
notation

G1

A1

¾¾A2 //

A3

CCG2

β

®¶

β′
®¶

. (10)

We choose representatives (W,ω, βW ) and (W ′, ω′, βW ′) and consider the fibre product
W̃ := W ×Z2 W ′ with its canonical surjective submersion ω̃ : W̃ → Z1×P Z3, where again
P := Y1×M Y2. By construction we can compose the pullbacks of the morphisms βW and
βW ′ to W̃ and obtain a morphism

βW ′ ◦ βW : A1 −→ A3 (11)

of vector bundles over W̃ . From axiom (2M) for β and β′ the one for the triple (W̃ , ω̃, βW ′◦
βW ) follows. Furthermore, the equivalence class of this triple is independent of the choices
of the representatives of β and β′and thus defines the 2-morphism β′•β. The composition
• of the category Hom(G1,G2) defined like this is associative.

It remains to check that the 2-isomorphism idA : A ⇒ A defined above is the identity
under the composition •. Let β : A ⇒ A′ be a 2-morphism and (W,ω, βW ) a repre-
sentative. The composite β • idA can be represented by the triple (W ′, ω′, β ◦ dA) with
W ′ = Z ×P W , where ω′ : W ′ → Z ×P Z ′ is the identity on the first factor and the
projection W → Z ′ on the second one. We have to show, that this triple is equivalent to
the original representative (W,ω, βW ) of β. Consider the fibre product

X := W ×(Z×P Z′) W ′ ∼= W ×Z′ W , (12)

so that condition (9) is satisfied. The restriction of the commutative diagram (8) of
morphisms of vector bundles over W ×M W from axiom (2M) for β to X gives rise to the
commutative diagram

ζ∗2A
d−1
A //

ω∗2βW

²²

ζ∗1A

ω∗1βW

²²
A′

∆∗d−1
A′

// A′

(13)
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of morphisms of vector bundles over X, where dA and dA′ are the isomorphisms determined
by the 1-morphisms A and A′ according to Lemma 1.5. Their cocycle condition from
Lemma 1.5 a) implies ∆∗dA′ = id, so that diagram (13) is reduced to the equality ω∗2βW ◦
dA = ω∗1βW of isomorphisms of vector bundles over X. This shows that the triples
(W,ω, βW ) and (W ′, ω′, βW ◦ dA) are equivalent and we have β • idA = β. The equality
idA′ • β = β follows analogously.

Now the definition of the morphism category Hom(G1,G2) is complete. A morphism
in this category, i.e. a 2-morphism β : A ⇒ A′, is invertible if and only if the morphism
βW : A → A′ of any representative (W,ω, βW ) of β is invertible. Since – following our
convention – morphism of vector bundles respect the hermitian structures, βW is invertible
if and only if the ranks of the vector bundles of the 1-morphisms A and A′ coincide. In
the following, we call two 1-morphisms A : G1 → G2 and A′ : G1 → G2 isomorphic, if there
exists a 2-isomorphism β : A ⇒ A′ between them.

1.7. The Composition Functor. Let G1, G2 and G3 be three bundles gerbes over M .
We define the composition functor

◦ : Hom(G2,G3)× Hom(G1,G2) −→ Hom(G1,G3) (14)

on objects in the following way. Let A : G1 → G2 and A′ : G2 → G3 be two 1-morphisms.
The composed 1-morphism

A′ ◦ A : G1 −→ G3 (15)

consists of the fibre product Z̃ := Z ×Y2 Z ′ with its canonical surjective submersion
ζ̃ : Z̃ → Y1 ×M Y3, the vector bundle Ã := A⊗ A′ over Z̃, and the isomorphism

α̃ := (idζ∗1A ⊗ α′) ◦ (α⊗ idζ′∗2 A′) (16)

of vector bundles over Z̃ ×M Z̃.
Indeed, this defines a 1-morphism from G1 to G3. Recall that if ∇A and ∇A′ denote the

connections on the vector bundles A and A′, the tensor product connection ∇ on A⊗A′

is defined by
∇(σ ⊗ σ′) = ∇A(σ)⊗ σ′ + σ ⊗∇A′(σ

′) (17)

for sections σ ∈ Γ(A) and σ′ ∈ Γ(A′). If we take n to be the rank of A and n′ the rank of
A′ the curvature of the tensor product vector bundle is

curv(A⊗ A′) = curv(A)⊗ idn′ + idn ⊗ curv(A′). (18)

Hence its trace

1

nn′
tr(curv(Ã)) =

1

n
tr(curv(A)) +

1

n′
tr(curv(A′))

= C2 − C1 + C3 − C2

= C3 − C1 (19)
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satisfies axiom (1M1). Notice that equation (19) involves unlabeled projections from Z̃
to Y1, Y2 and Y3, where the one to Y2 is unique because Z̃ is the fibre product over Y2.
Furthermore, α̃ is an isomorphism

L1 ⊗ ζ̃∗2 Ã L1 ⊗ ζ∗2A⊗ ζ ′∗2 A′

α⊗id

²²
ζ∗1A⊗ L2 ⊗ ζ ′∗2 A′

id⊗α′
²²

ζ∗1A⊗ ζ ′∗1 A′ ⊗ L3 ζ̃∗1 Ã⊗ L3.

(20)

Axiom (1M2) follows from axioms (1M2) for A and A′.

1.8. Proposition. The composition of 1-morphisms is strictly associative: for three 1-
morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4 we have

(A′′ ◦ A′) ◦ A = A′′ ◦ (A′ ◦ A).

Proof. By definition, both 1-morphism (A′′ ◦ A′) ◦ A and A′′ ◦ (A′ ◦ A) consist of the
smooth manifold X = Z×Y2 Z

′×Y3 Z
′′ with the same surjective submersion X → Y1×M Y4.

On X, they have the same vector bundle A⊗A′ ⊗A′′, and finally the same isomorphism

(id⊗ id⊗ α′′) ◦ (id⊗ α′ ⊗ id) ◦ (α⊗ id⊗ id) (21)

of vector bundles over X ×M X. ¤

Now we have to define the functor ◦ on 2-morphisms. Let A1,A′
1 : G1 → G2 and

A2,A′
2 : G2 → G3 be 1-morphisms between bundle gerbes. The functor ◦ on morphisms

is called horizontal composition due to the diagrammatical notation

G1

A1

##

A′1

;;β1

®¶

G2

A2

##

A′2

;;β2

®¶

G3 = G1

A2◦A1

%%

A′2◦A′1

99β2◦β1

®¶

G3 . (22)

Recall that the compositionsA2◦A1 andA′
2◦A′

1 consist of smooth manifolds Z̃ = Z1×Y2Z2

and Z̃ ′ = Z ′
1 ×Y2 Z ′

2 with surjective submersions to P := Y1 ×M Y3, of vector bundles
Ã := A1 ⊗ A2 over Z̃ and Ã′ := A′

1 ⊗ A′
2 over Z̃ ′, and of isomorphisms α̃ and α̃′ over

Z̃ ×M Z̃ and Z̃ ′ ×M Z̃ ′.
To define the composed 2-morphism β2 ◦ β1, we first need a surjective submersion

ω : W −→ Z̃ ×P Z̃ ′. (23)
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We choose representatives (W1, ω1, βW1) and (W2, ω2, βW2) of the 2-morphisms β1 and β2

and define
W := Z̃ ×P (W1 ×Y2 W2)×P Z̃ ′ (24)

with the surjective submersion ω := z̃ × z̃′ projecting on the first and the last factor.
Then, we need a morphism βW : z̃∗Ã → z̃′∗Ã′ of vector bundles over W . Notice that we
have maps

u : W1 ×Y2 W2 −→ Z̃ and u′ : W1 ×Y2 W2 −→ Z̃ ′ (25)

such that we obtain surjective submersions

z̃ × u : W −→ Z̃ [2] and u′ × z̃′ : W −→ Z̃ ′[2]. (26)

Recall from Lemma 1.5 that the 1-morphisms A2 ◦ A1 and A′
2 ◦ A′

1 define isomorphisms
dA2◦A1 and dA′2◦A′1 of vector bundles over Z̃ [2] and Z̃ ′[2], whose pullbacks to W along the
above maps are isomorphisms

dA2◦A1 : z̃∗Ã −→ u∗Ã and dA′2◦A′1 : u′∗Ã′ −→ z̃′∗Ã′ (27)

of vector bundles over W . Finally, the morphisms βW1 and βW2 give a morphism

β̃ := βW1 ⊗ βW2 : u∗Ã −→ u′∗Ã′ (28)

of vector bundles over W so that the composition

βW := dA′2◦A′1 ◦ β̃ ◦ dA2◦A1 (29)

is a well-defined morphism of vector bundles over W . Axiom (2M) for the triple (W,ω, βW )
follows from Lemma 1.5 b) for A2 ◦ A1 and A′

2 ◦ A′
1 and from the axioms (2M) for

the representatives of β1 and β2. Furthermore, the equivalence class of (W,ω, βW ) is
independent of the choices of the representatives of β1 and β2.

1.9. Lemma. The assignment ◦, defined above on objects and morphisms, is a functor

◦ : Hom(G2,G3)× Hom(G1,G2) −→ Hom(G1,G3).

Proof. i) The assignment ◦ respects identities, i.e. for 1-morphisms A1 : G1 → G2 and
A2 : G2 → G3,

idA2 ◦ idA1 = idA2◦A1 . (30)

To show this we choose the defining representatives (W1, id, dα1) of idA1 and (W2, id, dα2) of
idA2 , where W1 = Z1×(Y1×MY2)Z1 and W2 = Z2×(Y2×MY3)Z2. Consider the diffeomorphism

f : W1 ×Y2 W2 → Z̃ ×Y1×MY2×MY3 Z̃ : (z1, z
′
1, z2, z

′
2) 7→ (z1, z2, z

′
1, z

′
2), (31)

where Z̃ = Z1 ×Y2 Z2. From the definitions of the isomorphisms dA1 , dA2 and dA2◦A2 we
conclude the equation

dA1 ⊗ dA2 = f ∗dA2◦A1 (32)
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of isomorphisms of vector bundles over W1×Y2 W2. The horizontal composition idA2 ◦ idA1

is canonically represented by the triple (W,ω, βW ) where W is defined in (24) and βW is
defined in (29). Now, the diffeomorphism f extends to an embedding f : W → Z̃ [4] into
the four-fold fibre product of Z̃ over P = Y1 ×M Y3, such that ω : W → Z̃ [2] factorizes
over f ,

ω = ζ̃14 ◦ f . (33)

From (29) and (32) we obtain

βW = dA2◦A1 ◦ (dA1 ⊗ dA2) ◦ dA2◦A1

= f ∗(ζ̃∗34dA2◦A1 ◦ ζ̃∗23dA2◦A1 ◦ ζ̃∗12dA2◦A1). (34)

The cocycle condition for dA2◦A1 from Lemma 1.5 a) and (33) give

βW = f ∗ζ̃∗14dA2◦A1 = ω∗dA2◦A1 . (35)

We had to show that the triple (W,ω, βW ) which represents idA2 ◦ idA2 is equivalent to
the triple (Z̃ [2], id, dA2◦A1) which defines the identity 2-morphism idA2◦A1 . For the choice
X := W with surjective submersions id : X → W and ω : X → Z̃ [2], equation (35) shows
exactly this equivalence.

ii) The assignment ◦ respects the composition •, i.e. for 2-morphisms βi : Ai ⇒ A′
i

and β′i : A′
i ⇒ A′′

i between 1-morphisms Ai, A′
i and A′′

i from Gi to Gi+1, everything for
i = 1, 2, we have an equality

(β′2 • β2) ◦ (β′1 • β1) = (β′2 ◦ β′1) • (β2 ◦ β1) (36)

of 2-morphisms from A2 ◦A1 to A′′
2 ◦A′′

1. This equality is also known as the compatibility
of vertical and horizontal compositions. To prove it, let us introduce the notation Z̃ :=
Z1 ×Y2 Z2, and analogously Z̃ ′ and Z̃ ′′, furthermore we write P := Y1 ×M Y3. Notice that
the 2-morphism on the left hand side of (36) is represented by a triple (V, ν, βV ) with

V = Z̃ ×P (W̃1 ×Y2 W̃2)×P Z̃ ′′, (37)

where the fibre products W̃i := Wi ×Z′i W ′
i arise from the vertical compositions β′i • βi.

The surjective submersion ν : V → Z̃ ×P Z̃ ′′ is the projection on the first and the last
factor, and

βV = dA′′2◦A′′1 ◦ ((β′1 ◦ β1)⊗ (β′2 ◦ β2)) ◦ dA2◦A1 (38)

is a morphism of vector bundles over V . The 2-morphism on the right hand side of (36)
is represented by the triple (V ′, ν ′, βV ′) with

V ′ = (Z̃ ×P (W1 ×Y2 W2)×P Z̃ ′)×Z̃′ (Z̃
′ ×P (W ′

1 ×Y2 W ′
2)×P Z̃ ′′)

∼= Z̃ ×P (W1 ×Y2 W2)×P Z̃ ′ ×P (W ′
1 ×Y2 W ′

2)×P Z̃ ′′, (39)

where ν ′ is again the projection on the outer factors, and

βV ′ = dA′′2◦A′′1 ◦ (β′1 ⊗ β′2) ◦ dA′2◦A′1 ◦ (β1 ⊗ β2) ◦ dA2◦A1 , (40)
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where we have used the cocycle condition for dA′2◦A′1 from Lemma 1.5 b).
We have to show that the triples (V, ν, βV ) and (V ′, ν ′, βV ′) are equivalent. Consider

the fibre product
X := V ×Z̃×P Z̃′′ V

′ (41)

with surjective submersions v : X → V and v′ : X → V ′. To show the equivalence of the
two triples, we have to prove the equality

v∗βV = v′∗βV ′ . (42)

It is equivalent to the commutativity of the outer shape of the following diagram of
isomorphisms of vector bundles over X:

A1 ⊗ A2
dA2◦A1

uullllllll dA2◦A1

))RRRRRRRR

v∗(A1 ⊗ A2) dA2◦A1
//

β1⊗β2

²²

v′∗(A1 ⊗ A2)

β1⊗β2²²
v′∗(A′

1 ⊗ A′
2)

dA′2◦A′1

²²

v∗(A′
1 ⊗ A′

2)

β′1⊗β′2

²²

dA′2◦A′1fffffff

22fffffff

dA′2◦A′1
XXXXXXX

,,XXXXXXX

v′∗(A′
1 ⊗ A′

2)
β′1⊗β′2²²

v∗(A′′
1 ⊗ A′′

2) dA′′2 ◦A′′1
//

dA′′2 ◦A′′1
((RRRRRRRR

v′∗(A′′
1 ⊗ A′′

2)

dA′′2 ◦A′′1
uullllllll

A′′
1 ⊗ A′′

2

(43)

The commutativity of the outer shape of this diagram follows from the commutativity of
its five subdiagrams: the triangular ones are commutative due to the cocycle condition
from Lemma 1.5 a), and the commutativity of the foursquare ones follows from axiom
(2M) of the 2-morphisms. ¤

To finish the definition of the 2-category BGrb(M) we have to define the natural 2-
isomorphisms λA : A◦ idG ⇒ A and ρA : idG′ ◦A ⇒ A for a given 1-morphism A : G → G ′,
and we have to show that they satisfy axiom (2C2). We define the 1-morphism A ◦ idG
as follows: it has the canonical surjective submersion from Z̃ = Y [2] ×Y Z ∼= Y ×M Z to
P := Y ×M Y ′ and the vector bundle L⊗ A over Z̃. Consider

W := Z̃ ×P Z ∼= Z ×Y ′ Z (44)

and the identity ω := idW . Under this identification, let us consider the restriction of the
isomorphism α of the 1-morphism A from Z ×M Z to W = Z ×Y ′ Z. If s : W → W
denotes the exchange of the two factors, we obtain an isomorphism

s∗α|W : L⊗ ζ∗1A −→ ζ∗2A⊗∆∗L′ (45)
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of vector bundles over W . By composition with the canonical trivialization of the line
bundle ∆∗L′ from Lemma 1.3 it gives an isomorphism

λW := (id⊗ tµ′) ◦ s∗α|W : L⊗ ζ∗1A −→ ζ∗2A (46)

of vector bundles over W . The axiom (2M) for the triple (W,ω, λW ) follows from axiom
(1M2) for the 1-morphism A and from the properties of tµ′ from Lemma 1.3. So, λA is
defined to be the equivalence class of this triple. The definition of ρA goes analogously:
we take W = Z ×Y Z and obtain by restriction the isomorphism

α|W : ∆∗L⊗ ζ∗2A −→ ζ∗1A⊗ L′. (47)

Then, the 2-isomorphism ρA is defined by the triple (W,ω, ρW ) with the isomorphism

ρW := (tµ ⊗ id) ◦ α|−1
W : ζ∗1A⊗ L′ −→ ζ∗2A (48)

of vector bundles over W .

1.10. Lemma. The 2 -isomorphisms λA and ρA are natural in A, i.e. for any 2-morphism
β : A ⇒ A′ the naturality squares

idG′ ◦ A
ididG′ ◦β

®¶

ρA +3 A
β

®¶
idG′ ◦ A′

ρA′
+3 A′

and

A ◦ idG

β◦ididG
®¶

λA +3 A
β

®¶
A′ ◦ idG λA′

+3 A′

are commutative.

Proof. To calculate for instance the horizontal composition ididG′ ◦β in the diagram on
the left hand side first note that ididG′ is canonically represented by the triple (Y ′[2], id, idL).
The isomorphism

didG′◦A : ζ̃∗1 (A⊗ L′) → ζ̃∗2 (A⊗ L′), (49)

which appears in the definition of the horizontal composition, is an isomorphism of vector
bundles over Z̃×Y×MY ′ Z̃, where ζ̃ : Z̃ := Z×M Y ′ → Y ×M Y ′ is the surjective submersion
of the composite idG′ ◦ A. Here it simplifies to

didG′◦A = (tµ ⊗ id⊗ id) ◦ (α−1 ⊗ id) ◦ (1⊗ ζ̃∗1µ
′−1). (50)

With these simplifications and with axiom (1M2) for A and A′, the naturality squares
reduce to the compatibility axiom (2M) of β with the isomorphisms α and α′ of A and
A′ respectively. ¤

It remains to show that the isomorphisms λA and ρA satisfy axiom (2C2) of a 2-
category.



MORE MORPHISMS BETWEEN BUNDLE GERBES 255

1.11. Proposition. For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the 2-isomorphisms
λA and ρA satisfy

idA′ ◦ ρA = λA′ ◦ idA.

Proof. The equation to prove is an equation of 2-morphisms from A′ ◦ idG2 ◦ A to
A′ ◦ A. The first 1-morphism consists of the surjective submersion Z̃ := Z ×M Z ′ → P13,
where we define Pij := Yi ×M Yj, further of the vector bundle A ⊗ L2 ⊗ A′ over Z̃. The
second 1-morphism A′ ◦ A consists of the surjective submersion Z̃ ′ := Z ×Y2 Z ′ → P13

and the vector bundle A⊗ A′ over Z̃ ′. Let us choose the defining representatives for the
involved 2-morphisms: we choose (Z ′[2], id, dA′) for idA′ , with W := Z ×Y1 Z we choose
(W, id, ρW ) for ρA, with W ′ := Z ′ ×Y3 Z ′ we choose (W ′, id, λW ′) for λA′ , and we choose
(Z [2], id, dA′) for idA.

Now, the horizontal composition idA′ ◦ ρA is defined by the triple (V, ν, βV ) with

V = Z̃ ×P13 (W ×Y2 Z ′[2])×P13 Z̃ ′, (51)

the projection ν : V → Z̃ ×P13 Z̃ ′ on the first and the last factor, and the isomorphism

βV = dA′◦A ◦ (ρW ⊗ dA′) ◦ dA′◦id◦A (52)

of vector bundles over V . The horizontal composition λA′ ◦ idA is defined by the triple
(V ′, ν ′, βV ′) with

V ′ = Z̃ ×P13 (Z [2] ×Y2 W ′)×P13 Z̃ ′, (53)

again the projection ν ′ on the first and the last factor, and the isomorphism

βV ′ = dA′◦A ◦ (dA ⊗ λW ′) ◦ dA′◦id◦A (54)

of vector bundles over V .
To prove the proposition, we show that the triples (V, ν, βV ) and (V ′, ν ′, βV ′) are equiv-

alent. Consider the fibre product

X := V ×(Z̃×P13
Z̃′) V ′ (55)

with surjective submersions v : X → V and v′ : X → V ′. The equivalence of the two
triples follows from the equation

v∗βV = v′∗β′ (56)

of isomorphisms of vector bundles over X. It is equivalent to the commutativity of the
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outer shape of the following diagram of isomorphisms of vector bundles over X:

A⊗ L2 ⊗ A′

dA′◦id◦A

yyssssssssssssss
dA′◦id◦A

%%LLLLLLLLLLLLLL

v∗(A⊗ L2 ⊗ A′)

ρW⊗dA′

²²

dA′◦id◦A // v′∗(A⊗ L2 ⊗ A′)

dA⊗λW ′

²²
v∗(A⊗ A′)

dA′◦A
%%LLLLLLLLLLLLLL
dA′◦A // v′∗(A⊗ A′)

dA′◦A
yyrrrrrrrrrrrrrr

A⊗ A′

(57)

The diagram is patched together from three subdiagrams, and the commutativity of
the outer shape follows because the three subdiagrams are commutative: the triangle
diagrams are commutative due to the cocycle condition from Lemma 1.5 b) for the
1-morphisms A′ ◦ idG2 ◦ A and A′ ◦ A respectively. The commutativity of the rectangu-
lar diagram in the middle follows from Lemma 1.3 and from axioms (1M2) forA andA′. ¤

1.12. Invertible 1-Morphisms. In this subsection we address the question, which of
the 1-morphisms of the 2-category BGrb(M) are invertible. Let G1 and G2 be two bundle
gerbes over M . In a (strictly associative) 2-category, a 1-morphism A : G1 → G2 is called
invertible or 1-isomorphism, if there is a 1-morphism A−1 : G2 → G1 in the opposite
direction, together with 2-isomorphisms il : A−1 ◦ A ⇒ idG1 and ir : idG2 ⇒ A◦A−1 such
that the diagram

A ◦ A−1 ◦ AKS

ir◦idA

idA◦il +3 A ◦ idG1

λA

®¶
idG2 ◦ A ρA

+3 A

(58)

of 2-isomorphisms is commutative. The inverse 1-isomorphism A−1 is unique up to iso-
morphism.

Notice that if β : A ⇒ A′ is a 2-morphism between invertible 1-morphisms we can
form a 2-morphism β# : A′−1 ⇒ A−1 using the 2-isomorphisms ir for A−1 and il for A′−1.
Then, diagram (58) induces the equation id#

A = idA−1 .

1.13. Proposition. A 1-morphism A : G1 → G2 in BGrb(M) is invertible if and only if
the vector bundle of A is of rank 1.

Proof. Suppose that A is invertible, and let n be the rank of its vector bundle.
Let A−1 be an inverse 1-morphism with a vector bundle of rank m. By definition, the
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composed 1-morphisms A◦A−1 and A−1 ◦A have vector bundles of rank nm, which has
– to admit the existence of the 2-isomorphisms il and ir – to coincide with the rank of
the vector bundle of the identity 1-morphisms idG1 and idG2 respectively, which is 1. So
n = m = 1. The other inclusion is shown below by an explicit construction of an inverse
1-morphism A−1 to a 1-morphism A with vector bundle of rank 1. ¤

Let a 1-morphism A consist of a surjective submersion ζ : Z → Y1 ×M Y2, of a line
bundle A over Z and of an isomorphism α of line bundles over Z ×M Z. We explicitly
construct an inverse 1-morphism A−1: it has the surjective submersion Z → Y1×M Y2 →
Y2×M Y1, where the first map is ζ and the second one exchanges the factors, the dual line
bundle A∗ over Z and the isomorphism

L2 ⊗ ζ∗2A
∗ ζ∗1A

∗ ⊗ ζ∗1A⊗ L2 ⊗ ζ∗2A
∗

id⊗α−1⊗id
²²

ζ∗1A
∗ ⊗ L1 ⊗ ζ∗2A⊗ ζ∗2A

∗ ζ∗1A
∗ ⊗ L1.

(59)

Axiom (1M1) for the 1-morphism A−1 is satisfied because A∗ has the negative curvature,
and axiom (1M2) follows from the one for A.

To construct the 2-isomorphism il : A−1◦A ⇒ idG1 notice that the 1-morphism A−1◦A
consists of the line bundle ζ∗1A ⊗ ζ∗2A

∗ over Z̃ = Z ×Y2 Z. We identify Z̃ ∼= Z̃ ×P Y
[2]
1 ,

where P = Y
[2]
1 , which allows us to choose a triple (Z̃, idZ̃ , βZ̃) defining il. In this triple,

the isomorphism βZ̃ is defined to be the composition

ζ∗1A⊗ ζ∗2A
∗ id⊗t−1

µ2
⊗id

// ζ∗1A⊗∆∗L2 ⊗ ζ∗2A
∗ α−1⊗id // L1 ⊗ ζ∗2A⊗ ζ∗2A

∗ = L1. (60)

Axiom (2M) for the isomorphism βZ̃ follows from axiom (1M2) of A, so that the triple
(Z̃, idZ̃ , βZ̃) defines a 2-isomorphism il : A−1 ◦ A ⇒ idG1 . The 2-isomorphism ir : idG2 ⇒
A ◦A−1 is constructed analogously: here we take the isomorphism

L2 = ζ∗1A
∗ ⊗ ζ∗1A⊗ L2

id⊗α−1
// ζ∗1A

∗ ⊗∆∗L1 ⊗ ζ∗2A
id⊗tµ1⊗id

// ζ∗1A
∗ ⊗ ζ∗2A. (61)

of line bundles over W . Notice that by using the pairing A∗ ⊗ A = 1 we have used that
A is a line bundle as assumed. Finally, the commutativity of diagram (58) follows from
axiom (1M2) of A.

Proposition 1.13 shows that we have many 1-morphisms in BGrb(M) which are not
invertible, in contrast to the 2-groupoid of bundle gerbes defined in [Ste00]. Notice that
we have already benefited from the simple definition of the composition A−1 ◦ A, which
makes it also easy to see that it is compatible with the construction of inverse 1-morphisms
A−1:

(A2 ◦ A1)
−1 = A−1

1 ◦ A−1
2 . (62)
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1.14. Additional Structures. The 2-category of bundle gerbes has natural definitions
of pullbacks, tensor products and dualities; all of them have been introduced for objects
in [Mur96, MS00].

Pullbacks and tensor products of 1-morphisms and 2-morphisms can also be defined
in a natural way, and we do not carry out the details here. Summarizing, the monoidal
structure on BGrb(M) is a strict 2-functor

⊗ : BGrb(M)×BGrb(M) −→ BGrb(M), (63)

for which the trivial bundle gerbe I0 is a strict tensor unit, i.e.

I0 ⊗ G = G = G ⊗ I0. (64)

The idea of the definition of ⊗ is to take fibre products of the involved surjective submer-
sions, to pull back all the structure to this fibre product and then to use the monoidal
structure of the category of vector bundles over that space. This was assumed to be strict,
and so is ⊗. Pullbacks for the 2-category BGrb(M) are implemented by strict monoidal
2-functors

f ∗ : BGrb(M) −→ BGrb(X) (65)

associated to every smooth map f : X → M in the way that g∗ ◦f ∗ = (f ◦g)∗ for a second
smooth map g : Y → X. The idea of its definition is, to pull back surjective submersions,
for instance

f−1Y
f̃ //

²²

Y

π

²²
X

f
// M

(66)

and then pull back the structure over Y along the covering map f̃ . The 2-functors ⊗
and f ∗ are all compatible with the assignment of inverses A−1 to 1-morphisms A from
subsection 1.12:

f ∗(A−1) = (f ∗A)−1 and (A1 ⊗A2)
−1 = A−1

1 ⊗A−1
2 . (67)

Also the trivial bundle gerbes Iρ behave naturally under pullbacks and tensor products:

f ∗Iρ = If∗ρ and Iρ1 ⊗ Iρ2 = Iρ1+ρ2 . (68)

To define a duality we are a bit more precise, because this has yet not been done
systematically in the literature. Even though we will strictly concentrate on what we
need in section 3.8. For those purposes, it is enough to understand the duality as a strict
2-functor

()∗ : BGrb(M)op → BGrb(M) (69)
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where the opposed 2-category BGrb(M)op has all 1-morphisms reversed, while the 2-
morphisms are as before. This 2-functor will satisfy the identity

()∗∗ = idBGrb(M). (70)

We now give the complete definition of the functor ()∗ on objects, 1-morphisms and
2-morphisms. For a given bundle gerbe G, the dual bundle gerbe G∗ consists of the same
surjective submersion π : Y → M , the 2-form −C ∈ Ω2(Y ), the line bundle L∗ over Y [2]

and the isomorphism
µ∗−1 : π∗12L

∗ ⊗ π∗23L
∗ → π∗13L

∗ (71)

of line bundles over Y [3]. This structure clearly satisfies the axioms of a bundle gerbe. We
obtain immediately

G∗∗ = G and (G ⊗H)∗ = H∗ ⊗ G∗, (72)

and for the trivial bundle gerbe Iρ the equation

I∗ρ = I−ρ. (73)

For a 1-morphisms A : G1 → G2 consisting of a vector bundle A over Z with surjective
submersion ζ : Z → P with P := Y1 ×M Y2 and of an isomorphism α of vector bundles
over Z ×M Z, we define the dual 1-morphism

A∗ : G∗2 −→ G∗1 (74)

as follows: its surjective submersion is the pullback of ζ along the exchange map s : P ′ →
P , with P ′ := Y2 × Y1; that is a surjective submersion ζ ′ : Z ′ → P ′ and a covering map
sZ in the commutative diagram

Z ′

ζ′

²²

sZ // Z

ζ

²²
P ′

s
// P .

(75)

The vector bundle of A∗ is A′ := s∗ZA over Z ′ and its isomorphism is

L∗2 ⊗ ζ ′∗2 A′ L∗2 ⊗ L1 ⊗ ζ ′∗2 s∗ZA⊗ L∗1

id⊗s̃∗α⊗id
²²

L∗2 ⊗ ζ ′∗1 s∗ZA⊗ L2 ⊗ L∗1 ζ ′∗1 A′ ⊗ L∗1.

(76)

Axiom (1M1) is satisfied since the dual bundle gerbes have 2-forms with opposite signs,

curv(A′) = s∗Zcurv(A) = s∗Z(C2 − C1) = C2 − C1 = (−C1)− (−C2). (77)

Axiom (1M2) relates the isomorphism (76) to the isomorphisms µ∗−1
1 and µ∗−1

2 of the dual
bundle gerbes. It can be deduced from axiom (1M2) of A using the following general fact,
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applied to µ∗1 and µ∗2: the dual f ∗ of an isomorphism f : L1 → L2 of line bundles coincides
with the isomorphism

L∗2 = L∗2 ⊗ L1 ⊗ L∗1
id⊗f⊗id // L∗2 ⊗ L2 ⊗ L∗1 = L∗1, (78)

defined using the duality on line bundles.
Dual 1-morphisms defined like this have the properties

A∗∗ = A , (A′ ◦ A)∗ = A∗ ◦ A′∗ and (A1 ⊗A2)
∗ = A∗

2 ⊗A∗
1. (79)

Finally, for a 2-morphism β : A1 ⇒ A2 we define the dual 2-morphism

β∗ : A∗
1 =⇒ A∗

2 (80)

in the following way. If β is represented by a triple (W,ω, βW ) with an isomorphism
βW : A1 → A2 of vector bundles over W , we consider the pullback of ω : W → Z1 ×P Z2

along sZ1 × sZ2 : Z ′
1 ×P ′ Z

′
2 → Z1 ×P Z2, where Z1, Z ′

2 and P ′ are as in (75), and sZ1 and
sZ2 are the respective covering maps. This gives a commutative diagram

W ′

ω′

²²

sW // W

ω

²²
Z ′

1 ×P ′ Z
′
2 sZ1

×sZ2

// Z1 ×P Z2.

(81)

Now consider the triple (W ′, ω′, s∗W βW ) with the isomorphism

s∗W βW : s∗Z1
A1 −→ s∗Z2

A2 (82)

of vector bundles over W ′. It satisfies axiom (2M), and its equivalence class does not
depend on the choice of the representative of β. So we define the dual 2-morphism β∗ to
be this class. Dual 2-morphisms are compatible with vertical and horizontal compositions

(β2 ◦ β1)
∗ = β∗1 ◦ β∗2 and (β • β′)∗ = β∗ • β′∗ (83)

and satisfy furthermore

β∗∗ = β and (β1 ⊗ β2)
∗ = β∗2 ⊗ β∗1 . (84)

We can use adjoint 2-morphisms in the following situation: if A : G → H is an
invertible 1-morphism with inverse A−1 and associated 2-isomorphisms il : A−1 ◦A ⇒ idG
and ir : idH ⇒ A◦A−1, their duals i∗l and i∗r show that (A−1)∗ is an inverse to A∗. Since
inverses are unique up to isomorphism,

(A∗)−1 ∼= (A−1)∗. (85)

Summarizing, equations (72), (79), (83) and (84) show that ()∗ is a monoidal strict
2-functor, which is strictly involutive. Let us finally mention that it is also compatible
with pullbacks:

f ∗(G∗) = (f ∗G)∗ , f ∗A∗ = (f ∗A)∗ and f ∗β∗ = (f ∗β)∗. (86)
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2. Descent Theory for Morphisms

In this section we compare 1-morphisms between bundle gerbes in the sense of Definition
1.4 with 1-morphisms whose surjective submersion ζ : Z → Y1×M Y2 is the identity, like in
[Ste00]. For this purpose, we introduce the subcategory HomFP (G1,G2) of the morphism
category Hom(G1,G2), where all smooth manifolds Z and W appearing in the definitions
of 1- and 2-morphisms are equal to the fibre product P := Y1 ×M Y2. Explicitly, an
object in HomFP (G1,G2) is a 1-morphism A : G1 → G2 whose surjective submersion is the
identity idP and a morphism in HomFP (G1,G2) is a 2-morphism β : A1 ⇒ A2 which can
be represented by the triple (P, ω, β) where ω : P → P ×P P ∼= P is the identity.

2.1. Theorem. The inclusion functor

D : HomFP (G1,G2) −→ Hom(G1,G2)

is an equivalence of categories.

In the proof we will make use of the fact that vector bundles form a stack, i.e. fibred
category satisfying a gluing condition. To make this gluing condition concrete, we define
for a surjective submersion ζ : Z → P a category Des(ζ) as follows. Its objects are pairs
(A, d), where A is a vector bundle over Z and

d : ζ∗1A −→ ζ∗2A (87)

is an isomorphism of vector bundles over Z [2] such that

ζ∗13d = ζ∗23d ◦ ζ∗12d. (88)

A morphism α : (A, d) → (A′, d′) in Des(ζ) is an isomorphism α : A → A′ of vector
bundles over Z such that the diagram

ζ∗1A

d
²²

ζ∗1α
// ζ∗1A

′

d′
²²

ζ∗2A ζ∗2α
// ζ∗2A

′
(89)

of isomorphisms of vector bundles over Z [2] is commutative. The composition of mor-
phisms is just the composition of isomorphisms of vector bundles. Now, the gluing con-
dition for the stack of vector bundles is that the pullback along ζ is an equivalence

ζ∗ : Bun(P ) −→ Des(ζ) (90)

between the category Bun(P ) of vector bundles over P and the category Des(ζ).

Proof of Theorem 2.1. We show that the faithful functor D is an equivalence of
categories by proving (a) that it is essentially surjective and (b) that the subcategory
HomFP (G1,G2) is full.
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For (a) we have to show that for every 1-morphism A : G1 → G2 with arbitrary
surjective submersion ζ : Z → P there is an isomorphic 1-morphism SA : G1 → G2 with
surjective submersion idP . Notice that the isomorphism dA : ζ∗1A → ζ∗2A of vector bundles
over Z [2] from Lemma 1.5 satisfies the cocycle condition (88), so that (A, dA) is an object
in Des(ζ). Now consider the surjective submersion ζ2 : Z ×M Z → P [2]. By Lemma 1.5
b) and under the identification of Z [2]×M Z [2] with (Z×M Z)×P [2] (Z×M Z) the diagram

L1 ⊗ ζ∗2A

1⊗ζ∗24dA
²²

ζ∗12α
// ζ∗1A⊗ L2

ζ∗13dA⊗1

²²
L1 ⊗ ζ∗4A ζ∗34α

// ζ∗3A⊗ L2

(91)

of isomorphisms of vector bundles over (Z ×M Z) ×P [2] (Z ×M Z) is commutative, and
shows that α is a morphism in Des(ζ2). Now we use that ζ∗ is an equivalence of categories:
we choose a vector bundle S over P together with an isomorphism β : ζ∗S → A of vector
bundles over Z, and an isomorphism

σ : L1 ⊗ ζ∗2S −→ ζ∗1S ⊗ L2 (92)

of vector bundles over P ×M P such that the diagram

L1 ⊗ ζ∗2ζ
∗S

id⊗ζ∗2β

²²

ζ∗σ // ζ∗1ζ
∗S ⊗ L2

ζ∗1β⊗id

²²
L1 ⊗ ζ∗2A α

// ζ∗1A⊗ L2

(93)

of isomorphisms of vector bundles over Z×MZ is commutative. Since ζ is an equivalence of
categories, the axioms of A imply the ones of the 1-morphism SA defined by the surjective
submersion idP , the vector bundle S over P and the isomorphism σ over P [2]. Finally,
the triple (Z ×P P, idZ , β) with Z ∼= Z ×P P defines a 2-morphism SA ⇒ A, whose axiom
(2M) is (93).

(b) We have to show that any morphism β : A ⇒ A′ in Hom(G1,G2) between objects
A and A′ in HomFP (G1,G2) is already a morphism in HomFP (G1,G2). Let (W,ω, βW ) be
any representative of β with a surjective submersion ω : W → P and an isomorphism
βW : ω∗A → ω∗A′ of vector bundles over W . The restriction of axiom (2M) for the triple
(W,ω, βW ) from W ×M W to W ×P W shows ω∗1βW = ω∗2βW . This shows that βW is a
morphism in the descent category Des(ω). Let βP : A → A′ be an isomorphism of vector
bundles over P such that

ω∗βP = βW (94)

Because ω is an equivalence of categories, the triple (P, idP , βP ) defines a 2-morphism
from A to A′ being a morphism in HomFP (G1,G2). Equation (94) shows that the triples
(P, idP , βP ) and (W,ω, βW ) are equivalent. ¤
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In the remainder of this section we present two corollaries of Theorem 2.1. First, and
most importantly, we make contact to the notion of a stable isomorphism between bundle
gerbes. By definition [MS00], a stable isomorphism is a 1-morphism, whose surjective
submersion is the identity idP on the fibre product of the surjective submersions of the
two bundle gerbes, and whose vector bundle over P is a line bundle. From Proposition
1.13 and Theorem 2.1 we obtain

2.2. Corollary. There exists a stable isomorphism A : G1 → G2 if and only if the bundle
gerbes are isomorphic objects in BGrb(M).

It is shown in [MS00] that the set of stable isomorphism classes of bundle gerbes over
M is a group (in virtue of the monoidal structure) which is isomorphic to the Deligne
cohomology group H2(M,D(2)). This is a very important fact which connects the theory
of bundle gerbes to other theories of gerbes, for instance, to Dixmier-Douady sheaves of
groupoids [Bry93]. Corollary 2.2 states that although our definition of morphisms differs
from the one of [MS00], the bijection between isomorphism classes of bundle gerbes and
the Deligne cohomology group persists.

Second, Theorem 2.1 admits to use existing classification results for 1-isomorphisms.
Consider the full subgroupoid Aut(G) of Hom(G,G) associated to a bundle gerbe G, which
consists of all 1-isomorphisms A : G → G, and all (necessarily invertible) 2-morphisms
between those. From Theorem 2.1 and Lemma 2 of [SSW05] we obtain

2.3. Corollary. The skeleton of the groupoid Aut(G), i.e. the set of isomorphism classes
of 1-isomorphisms A : G → G is a torsor over the group Pic0(M) of isomorphism classes
of flat line bundles over M .

In 2-dimensional conformal field theory, where a bundle gerbe G is considered to be a
part of the background field, the groupoid Aut(G) may be called the groupoid of gauge
transformations of G. The above corollary classifies such gauge transformation up to
equivalence.

3. Some important Examples of Morphisms

To discuss holonomies of bundle gerbes, it is essential to establish an equivalence between
the morphism categories between trivial bundle gerbes over M and vector bundles of
certain curvature over M . Given two 2-forms ρ1 and ρ2 on M , consider the category
HomFP (Iρ1 , Iρ2). An object A : Iρ1 → Iρ2 consists of the smooth manifold Z = M
with the surjective submersion ζ = idM , a vector bundle A over M and an isomorphism
α : A → A. Axiom (1M2) states

1

n
tr(curv(A)) = ρ2 − ρ1 (95)

with n the rank of A, and axiom (1M2) reduces to α2 = α, which in turn means α = idA.
Together with Theorem 2.1, this defines a canonical equivalence of categories

Bun : Hom(Iρ1 , Iρ2) −→ Bunρ2−ρ1(M), (96)
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where Bunρ(M) is the category of vector bundles A over M whose curvature satisfies
(95). Its following properties can directly be deduced from the definitions.

3.1. Proposition. The functor Bun respects the structure of the 2-category of bundle
gerbes, namely:

a) the composition of 1-morphisms,

Bun(A2 ◦ A1) = Bun(A1)⊗ Bun(A2) and Bun(idIρ) = 1.

b) the assignment of inverses to invertible 1-morphisms,

Bun(A−1) = Bun(A)∗.

c) the monoidal structure,

Bun(A1 ⊗A2) = Bun(A1)⊗ Bun(A2).

d) pullbacks,

Bun(f ∗A) = f ∗Bun(A) and Bun(f ∗β) = f ∗Bun(β).

e) the duality
Bun(A∗) = Bun(A) and Bun(β∗) = Bun(β).

In the following subsections we see how the 2-categorial structure of bundle gerbes
and the functor Bun can be used to give natural definitions of surface holonomy in several
situations.

3.2. Trivializations. We give the following natural definition of a trivialization.

3.3. Definition. A trivialization of a bundle gerbe G is a 1-isomorphism

T : G −→ Iρ.

Let us write out the details of such a 1-isomorphism. By Theorem 2.1 we may assume
that the surjective submersion of T is the identity idP on P := Y ×M M ∼= Y with
projection π to M . Then, T consists further of a line bundle T over Y , and of an
isomorphism τ : L⊗ π∗2T → π∗1T of line bundles over Y [2]. Axiom (1M2) gives π∗13τ ◦ (µ⊗
id) = π∗12τ ◦π∗23τ as an equation of isomorphisms of line bundles over Y [3]. This is exactly
the definition of a trivialization one finds in the literature [CJM02]. Additionally, axiom
(1M2) gives curv(T ) = π∗ρ− C. If one does not specify ρ as a part of the definition of a
trivialization, it is uniquely determined by this equation.

Trivializations are essential for the definition of holonomy around closed oriented sur-
faces.
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3.4. Definition. Let φ : Σ → M be a smooth map from a closed oriented surface Σ to a
smooth manifold M , and let G a bundle gerbe over M . Let

T : φ∗G −→ Iρ

be any trivialization. The holonomy of G around φ is defined as

holG(φ) := exp

(
i

∫

Σ

ρ

)
∈ U(1).

In this situation, the functor Bun is a powerful tool to prove that this definition does
not depend on the choice of the trivialization: if T ′ : φ∗G → Iρ′ is another trivialization,
the composition T ◦ T ′−1 : Iρ′ → Iρ corresponds to a line bundle Bun(T ◦ T ′−1) over M
with curvature ρ− ρ′. In particular, the difference between any two 2-forms ρ is a closed
2-form with integer periods and vanishes under the exponentiation in the definition of
holG(φ).

3.5. Bundle Gerbe Modules. For oriented surfaces with boundary one has to choose
additional structure on the boundary to obtain a well-defined holonomy. This additional
structure is provided by a vector bundle twisted by the bundle gerbe G [Gaw05], also
known as a G-module. In our formulation, its definition takes the following form:

3.6. Definition. Let G be a bundle gerbe over M . A left G-module is a 1-morphism
E : G → Iω, and a right G-module is a 1-morphism F : Iω → G.

Let us compare this definition with the original definition of (left) bundle gerbe mod-
ules in [BCM+02]. Assume – again by Theorem 2.1 – that a left G-module E : G → Iω has
the surjective submersion idP with P ∼= Y . Then, it consists of a vector bundle E over Y
and of an isomorphism ε : L⊗ π∗2E → π∗1E of vector bundles over Y [2] which satisfies

π∗13ε ◦ (µ⊗ id) = π∗23ε ◦ π∗12ε (97)

by axiom (1M2). The curvature of E is restricted by axiom (1M2) to

1

n
tr(curv(E)) = π∗ω − C (98)

with n the rank of E.

The definition of bundle gerbe modules as 1-morphisms makes clear that left and right
G-modules form categories LMod(G) and RMod(G). This is useful for example to see that
a 1-isomorphism A : G → G ′ defines equivalences of categories

LMod(G) ∼= LMod(G ′) and RMod(G) ∼= RMod(G ′) (99)

and that there are equivalences between left modules of G and right modules of G∗ (and
vice versa), by taking duals of the respective 1-morphisms. Moreover, for a trivial bundle
gerbe Iρ the categories LMod(Iρ) and RMod(Iρ) become canonically equivalent to the
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category Bun(M) of vector bundles over M via the functor Bun. We can combine this
result with the equivalences (99) applied to a trivialization T : G → Iρ of a bundle gerbe
G over M . In detail, a left G-module E : G → Iω first becomes a left Iρ-module

E ◦ T −1 : Iρ −→ Iω (100)

which in turn defines the vector bundle E := Bun(E ◦ T −1) over M . The same applies to
right G-modules F : Iω → G which defines a vector bundle Ē := Bun(T ◦ F) over M .

A D-brane for the bundle gerbe G is a submanifold Q of M together with a left
G|Q-module. Here G|Q means the pullback of G along the inclusion Q ↪→ M .

3.7. Definition. Let G be a bundle gerbe over M with D-brane (Q, E) and let φ : Σ → M
be a smooth map from a compact oriented surface Σ with boundary to M , such that
φ(∂Σ) ⊂ Q. Let

T : φ∗G −→ Iρ

be any trivialization of the pullback bundle gerbe φ∗G and let

E := Bun(φ∗E ◦ T −1) (101)

be the associated vector bundle over ∂Σ. The holonomy of G around φ is defined as

holG,E(φ) := exp

(
i

∫

Σ

ρ

)
· tr (holE(∂Σ)) ∈ C.

The definition does not depend on the choice of the trivialization: for another trivial-
ization T ′ : φ∗G → Iρ′ and the respective vector bundle E ′ := Bun(E ◦ T ′−1) we find by
Proposition 3.1 a)

E ′ = Bun(E ◦ T ′−1) ∼= Bun(E ◦ T −1 ◦ T ◦ T ′−1) = E ⊗ Bun(T ◦ T ′−1). (102)

Because isomorphic vector bundles have the same holonomies, and the line bundle Bun(T ◦
T ′−1) has curvature ρ− ρ′ we obtain

tr (holE′(∂Σ)) = tr (holE(∂Σ)) · exp

(
i

∫

Σ

ρ− ρ′
)
. (103)

This shows the independence of the choice of the trivialization.

3.8. Jandl Structures. In this last section, we use the duality on the 2-category
BGrb(M) introduced in section 1.14 to define the holonomy of a bundle gerbe around
unoriented, and even unorientable surfaces (without boundary). For this purpose, we
explain the concept of a Jandl structure on a bundle gerbe G, which has been introduced
in [SSW05], in terms of 1- and 2-isomorphisms of the 2-category BGrb(M).
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3.9. Definition.A Jandl structure J on a bundle gerbe G over M is a collection (k,A, ϕ)
of an involution k : M → M , i.e. a diffeomorphism with k ◦ k = idM , a 1-isomorphism

A : k∗G −→ G∗

and a 2-isomorphism
ϕ : k∗A =⇒ A∗

which satisfies the condition
k∗ϕ = ϕ∗−1.

Notice that the existence of the 2-isomorphism ϕ is only possible because G∗∗ = G
from (72), and that the equation k∗ϕ = ϕ∗−1 only makes sense because A∗∗ = A from
(79). Let us now discuss the relation between Definition 3.9 and the original definition of
a Jandl structure from [SSW05]. For this purpose we elaborate the details. We denote
the pullback of the surjective submersion π : Y → M along k by πk : Yk → M ; for
simplicity we take Yk := Y and πk := k ◦ π. Now, we assume by Theorem 2.1 that the
1-isomorphism A consists of a line bundle A over Yk ×M Y . As smooth manifolds, we
can identify Yk ×M Y with P := Y [2]; to have an identification as smooth manifolds with
surjective submersions to M , we define the projection p : P → M by p := π ◦ π2. Under
this identification, the exchange map s : Y ×M Yk → Yk ×M Y becomes an involution of
P which lifts k,

P

p

²²

s // P

p

²²
M

k
// M .

(104)

The dual 1-isomorphism A∗ has by definition the line bundle s∗A over P . Now, similarly
as for the pullback of π : Y → M we denote the pullback of p : P → M by pk : Pk → M
and choose Pk := P and pk := k ◦ p. This way, the pullback 1-isomorphism k∗A has the
line bundle A over P . Again by Theorem 2.1, we assume that the 2-isomorphism ϕ can
be represented by a triple (P, idP , ϕP ) with an isomorphism ϕP : A → s∗A of line bundles
over P satisfying the compatibility axiom (2M) with the isomorphism α of A:

L⊗ ζ∗2A

id⊗ζ∗2ϕP

²²

α // ζ∗1A⊗ L

ζ∗1ϕP⊗id

²²
L⊗ ζ∗2s

∗A
s∗α

// ζ∗1s
∗A⊗ L

(105)

The dual 2-isomorphism ϕ∗ is given by (P, idP , s∗ϕP ), and the equation ϕ = k∗ϕ∗−1

becomes ϕP = s∗ϕ−1
P . So, ϕP is an s-equivariant structure on A. This is exactly the

original definition [SSW05]: a stable isomorphism A : k∗G → G∗, whose line bundle A is
equipped with an s-equivariant structure which is compatible with the isomorphism α of
A in the sense of the commutativity of diagram (105).
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Defining a Jandl structure in terms of 1- and 2-morphisms has – just like for gerbe
modules – several advantages. For example, it is easy to see that Jandl structures are
compatible with pullbacks along equivariant maps, tensor products and duals of bundle
gerbes. Furthermore, we have an obvious definition of morphisms between Jandl struc-
tures, which induces exactly the notion of equivalent Jandl structures we introduced in
[SSW05].

3.10. Definition. A morphism β : J → J ′ between Jandl structures J = (k,A, ϕ)
and J ′ = (k,A′, ϕ′) on the same bundle gerbe G over M with the same involution k is a
2-morphism

β : A =⇒ A′

which commutes with ϕ and ϕ′ in the sense that the diagram

A ϕ +3

β

®¶

k∗A∗

k∗β∗

®¶
A′

ϕ′
+3 k∗A′∗

of 2-morphisms is commutative.

Since A is invertible, every morphism of Jandl structures is invertible. We may thus
speak of a groupoid Jdl(G, k) of Jandl structures on the bundle gerbe G with involution
k. The skeleton of this groupoid has been classified [SSW05]: it forms a torsor over the
group of flat k-equivariant line bundles over M . The following proposition relates these
groupoids of Jandl structures on isomorphic bundle gerbes on the same space with the
same involution. This relation is a new result, coming and benefiting very much from the
2-categorial structure of bundle gerbes we have developed.

3.11. Proposition. Any 1-isomorphism B : G → G ′ induces an equivalence of groupoids

JB : Jdl(G ′, k) −→ Jdl(G, k)

with the following properties:

a) any 2-morphism β : B ⇒ B′ induces a natural equivalence JB ∼= JB′.

b) there is a natural equivalence JidG
∼= idJdl(G,k).

c) it respects the composition of 1-morphisms in the sense that

JB′◦B = JB ◦ JB′.

Proof. The functor JB sends a Jandl structure (k,A, ϕ) on G ′ to the triple (k,A′, ϕ′)
with the same involution k, the 1-isomorphism

A′ := B∗ ◦ A ◦ k∗B : k∗G −→ G∗ (106)
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and the 2-isomorphism

k∗A′ k∗B∗ ◦ k∗A ◦ B
idk∗B∗◦ϕ◦idB

®¶
k∗B∗ ◦ A∗ ◦ B k∗A′∗

(107)

where we use equation (79). The following calculation shows that (k,A′, ϕ′) is a Jandl
structure:

k∗ϕ′∗ def
= k∗(idk∗B∗ ◦ ϕ ◦ idB)∗

(79)
= idk∗B∗ ◦ k∗ϕ∗ ◦ idB
= idB ◦ ϕ−1 ◦ idB∗
def
= ϕ′−1. (108)

A morphism β of Jandl structures on G ′ is sent to the morphism

JB(β) := idB∗ ◦ β ◦ idk∗B (109)

of the respective Jandl structures on G ′. The two axioms of the composition functor ◦
from Lemma 1.9 show that the composition of morphisms of Jandl structures is respected,
so that JB is a functor. It is an equivalence because JB−1 is an inverse functor, where the
natural equivalences JB−1 ◦ JB ∼= id and JB ◦ JB−1

∼= id use the 2-isomorphisms ir and il
from section 1.12 associated to the inverse 1-morphism B−1.

To prove a), let β : B ⇒ B′ be a 2-morphism. We define the natural equivalence
JB ∼= JB′ , which is a collection of morphisms βJ : JB(J ) → JB′(J ) of Jandl structures on
G for any Jandl structure J on G ′ by

βJ := β∗ ◦ idA ◦ k∗β. (110)

This defines indeed a morphism of Jandl structures and makes the naturality square

JB(J )
βJ //

JB(β)

²²

JB′(J )

JB′ (β)

²²
JB(J ′)

βJ ′
// JB′(J ′)

(111)

commutative. The natural equivalence for b) uses the 2-isomorphisms λA and ρA of the
2-category BGrb(M) and the fact that id∗G = idG∗ . Finally, c) follows from the definition
of JB and the fact that the duality functor ()∗ respects the composition of 1-morphisms,
see (79). ¤
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It is worthwhile to consider a Jandl structure J = (k,A, ϕ) over a trivial bundle gerbe
Iρ. By definition, this is a 1-isomorphism

A : Ik∗ρ −→ I−ρ (112)

and a 2-isomorphism ϕ : k∗A ⇒ A∗ satisfying ϕ = k∗ϕ∗−1. Now we apply the functor
Bun and obtain a line bundle R̂ := Bun(A) over M of curvature −(ρ + k∗ρ) and an
isomorphism ϕ̂ := Bun(ϕ) : k∗R̂ → R̂ of line bundles over M which satisfies ϕ̂ = k∗ϕ̂−1,
summarizing: a k-equivariant line bundle. So, the functor Bun induces an equivalence of
groupoids

Bunk
ρ : Jdl(Iρ, k) −→ LBunk

−(ρ+k∗ρ)(M) (113)

between the groupoid of Jandl structures on Iρ with involution k and the groupoid of
k-equivariant line bundles over M with curvature −(ρ + k∗ρ). In particular, if G is a
bundle gerbe over M and T : G → Iρ a trivialization, we obtain a functor

Jdl(G, k)
JT −1 // Jdl(Iρ, k)

Bunk
ρ // LBunk

−(ρ+k∗ρ)(M) (114)

converting a Jandl structure on the bundle gerbe G into a k-equivariant line bundle over
M . It becomes obvious that the existence of a Jandl structure with involution k on the
trivial bundle gerbe Iρ constraints the 2-form ρ: as the curvature of a line bundle, the
2-form −(ρ + k∗ρ) has to be closed and to have integer periods.

Let us now explain how Jandl structures enter in the definition of holonomy around
unoriented surfaces, and how we can take further advantage of the 2-categorial formalism.
We have learned before that to incorporate surfaces with boundary we had to do two steps:
we first specified additional structure, a D-brane of the bundle gerbe G, and then specified
which maps φ : Σ → M are compatible with this additional structure: those who send the
boundary of Σ into the support of the D-brane. To discuss unoriented surfaces (without
boundary), we also do these two steps: the additional structure we choose here is a Jandl
structure J = (k,A, ϕ) on the bundle gerbe G. To describe the space of maps we want
to consider, we have to introduce the following geometric structures [SSW05]:

• For any (unoriented) closed surface Σ there is an oriented two-fold covering pr : Σ̂ →
Σ. It is unique up to orientation-preserving diffeomorphisms and it is connected if
and only if Σ is not orientable. It has a canonical, orientation-reversing involution
σ, which permutes the sheets and preserves the fibres. We call this two-fold covering
the orientation covering of Σ.

• A fundamental domain of Σ in Σ̂ is a submanifold F of Σ̂ with ( possibly only
piecewise smooth) boundary, such that

F ∪ σ(F ) = Σ̂ and F ∩ σ(F ) = ∂F . (115)

A key observation is that the involution σ restricts to an orientation-preserving invo-
lution on ∂F ⊂ Σ̂. Accordingly, the quotient ∂F is an oriented closed 1-dimensional
submanifold of Σ.
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Now, given a closed surface Σ, we consider maps φ̂ : Σ̂ → M from the orientation covering
Σ̂ to M , which are equivariant with respect to the two involutions on Σ̂ and M , i.e. the
diagram

Σ̂
φ̂ //

σ

²²

M

k

²²
Σ̂

φ̂

// M

has to be commutative.

3.12. Definition. Let J be a Jandl structure on a bundle gerbe G over M , and let
φ̂ : Σ̂ → M be an equivariant smooth map. For a trivialization

T : φ̂∗G −→ Iρ

let R̂ be the σ-equivariant line bundle over Σ̂ determined by the functor

Bunρ
σ ◦ JT −1 : Jdl(φ̂∗G, σ) −→ LBunσ

−(ρ+σ∗ρ)(Σ̂) (116)

from (114). In turn, R̂ defines a line bundle R over Σ. Choose any fundamental domain
F of Σ. Then, the holonomy of G with Jandl structure J around φ̂ is defined as

holG,J (φ̂) := exp

(
i

∫

F

ρ

)
· holR(∂F ).

Definition 3.12 is a generalization of Definition 3.4 of holonomy around an oriented sur-
face: for an orientable surface Σ and any choice of an orientation, they coincide [SSW05].
To show that Definition 3.12 does not depend on the choice of the trivialization T , we
combine all the collected tools. Let T ′ : φ̂∗G → Iρ′ be any other trivialization. We
consider the 1-isomorphism

B := T ◦ T ′−1 : Iρ′ −→ Iρ (117)

and the corresponding line bundle T := Bun(B). To compare the two σ-equivariant line
bundles R̂ and R̂′ corresponding to the two trivializations, we first compare the Jandl
structures JT −1(J ) on Iρ and JT ′−1(J ) on Iρ′ . By Proposition 3.11 a), b) and c), there
exists an isomorphism

JT ′−1(J ) ∼= JB(JT −1(J )) (118)

of Jandl structures on Iρ. By definition of the functor JB, this isomorphism is a 2-
isomorphism

A′ ∼= B∗ ◦ A ◦ σ∗B, (119)
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where A is the 1-morphism of JT −1(J ) and A′ is the 1-morphism of JT ′−1(J ). Now we
apply the functor Bun and obtain an isomorphism

R̂′ ∼= T ⊗ R̂⊗ σ∗T (120)

of σ-equivariant line bundles over Σ̂, where Q̂ := σ∗T ⊗T has the canonical σ-equivariant
structure by exchanging the tensor factors. Thus, we have isomorphic line bundles

R′ ∼= R⊗Q (121)

over Σ. Notice that the holonomy of the line bundle Q is

holQ(∂F ) = holT (∂F ) = exp

(
i

∫

F

ρ− ρ′
)

(122)

This shows

exp

(
i

∫

F

ρ′
)
· holR′(∂F ) = exp

(
i

∫

F

ρ′
)
· holQ(∂F ) · holR(∂F )

= exp

(
i

∫

F

ρ

)
· holR(∂F ) (123)

so that Definition 3.12 does not depend on the choice of the trivialization. In [SSW05]
we have deduced from the equation curv(R̂) = −(ρ + σ∗ρ) that it is also independent of
the choice of the fundamental domain.

Unoriented surface holonomy, defined in terms of Jandl structures on bundle gerbes,
provides a candidate for the Wess-Zumino term in two-dimensional conformal field theory
for unoriented worldsheets, as they appear in type I string theories. Following the exam-
ples of M = SU(2) and M = SO(3) we give in [SSW05], we reproduce results known from
other approaches. This indicates, that a bundle gerbe with Jandl structure, together with
a metric, is the background field for unoriented WZW models. In this setup, Proposition
3.11 assures, that – just like for oriented WZW models – only the isomorphism class of
the bundle gerbe is relevant.
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